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SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  

polar ice caps critical
to climate in re�ecting
sunlight during summer

hosts rich ecosystem   
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polar ice caps critical to global climate 
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recent losses 
in comparison to 
the United States

Perovich
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Change in Arctic 
  Sea Ice Extent

September 2012  --   3.4  million
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                      Arctic sea ice decline:  
faster than predicted by climate models
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  Models

Intergovernmental
  Panel on Climate 
    Change (IPCC)

Fourth Assessment 
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Stroeve et al., GRL, 2012



represent sea ice more rigorously in climate models

challenge

account for key processes

such as melt pond evolution

... and other sub-grid scale structures and processes 

linkage of scales

Impact of melt ponds on Arctic sea ice 
        simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

                 For simulations with ponds 
September ice volume is nearly 40% lower.



Gully et al. Proc. Roy. Soc. A 2015Golden et al. GRL 2007
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millimeters

Sea Ice is a Multiscale Composite Material

centimeters

brine inclusions polycrystals

D. Cole

Arctic melt ponds
sea ice mesostructure

meters kilometers

brine channels

NASAK. Golden

Weeks & Assur 1969

K. Golden

sea ice microstructure

sea ice macrostructure
sea ice floesAntarctic pressure ridges sea ice pack

H. Eicken
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HOMOGENIZATION for Composite Materials

∗

inhomogeneous
          medium

homogeneous
        medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
 SCALES

MICROSCALE MACROSCALE

FORWARD

INVERSE



Solving problems in physics of sea ice drives 
advances in theory of composite materials.

cross - pollination

the role of “microstructure” in determining sea ice e�ective properties

What is this talk about?

Using methods of  homogenization and statistical physics to LINK SCALES 
    in the sea ice system ... compute e�ective behavior on scales relevant to 
              coarse-grained sea ice and climate models, process studies, ...

A tour of Stieltjes integrals in the study of sea ice and its role in climate.

homogenization for multiscale composites

MICROSCALE: brine + polycrystalline structure; EM and �uid transport 

MESOSCALE: advection di�usion, thermal transport, waves, melt ponds  

MACROSCALE: ice transport, MIZ width and location, low order models   

bone, stealthy coatings
magnets, rat brains, RMT



Linking Scales

mm
scale
brine
inclusions

Linking         Scales

meter
scale
snow
topography

km
scale
melt
ponds

km
scale
melt
ponds

basin scale -
grid scale
albedo

How do scales
interact in the
sea ice system?

Perovich
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sea  ice  microphysics

�uid transport



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



sea  ice  ecosystem

                   sea ice algae
support life in the polar oceans



�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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     for �uid �ow
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Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009
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sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =
-4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine phase in sea ice                        Golden, Eicken, et al., Geophysical Research Letters 2007

PERCOLATION THRESHOLD 

p = 1/3 p = 2/3

impermeable permeable
R

R

m

p

 compressed powdersea ice

φc ~~ 5 % Golden, Ackley, Lytle, Science 1998

lattice percolation continuum percolation

Kusy, Turner
Nature 1971
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p

compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

hierarchical model
network model

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

agree closely
with �eld data

k ( ) = k 2
0

k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds



measuring 
�uid permeability
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

                 The Melt Pond Conundrum:  
How can ponds form on top of sea ice that is highly permeable?

2014  Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) 
aboard USCGC Healy

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res.  Oceans 2017



How does EPS a�ect �uid transport?

Bimodal  lognormal  distribution for brine inclusions 

Develop random pipe network model with bimodal distribution;
Use numerical methods that can handle larger variances in sizes.

Results predict observed drop in �uid permeability k.

Rigorous bound on k for bimodal distribution of pore sizes 

Steffen, Epshteyn,  Zhu, Bowler, Deming, Golden
    Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2020

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

electromagnetically distinguishing ice types
    Kitsel Lusted, Elena Cherkaev, Ken Golden 



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Rigorous bounds on the complex permittivity tensor of sea ice 
    with polycrystalline anisotropy within the horizontal plane

    Kenzie McLean, Elena Cherkaev, Ken Golden 2020

motivated by Weeks and Gow, JGR 1979: c-axis alignment in Arctic fast ice off Barrow 
Golden and Ackley, JGR 1981: radar propagation model in aligned sea ice  

CRREL

input: orientation statistics output: bounds

3%

Re(     )ε∗

Im(     )ε∗

3.5%
4%

isotropic within
horizontal plane

anisotropic within
horizontal plane



HUMAN BONESEA ICE

Golden, Murphy, Cherkaev, J.  Biomechanics  2011

the math doesn’t care if it’s sea ice or bone!

       apply spectral measure analysis of brine connectivity and 
spectral inversion to electromagnetic monitoring of osteoporosis

 young healthy trabecular bone  old osteoporotic trabecular bone

P. Hansma

 reconstruct spectral measures 
from complex permittivity data

use regularized inversion scheme

spectral characterization 
of porous microstructures 
in human bone 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

µ(λ)

young bone

old bone



wave propagation in the marginal ice zone 

             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2019

           quasistatic assumption 
           long wavelength



Anomalous di�usion and sea ice dynamics
sub- and super-di�usive behavior of motion 
       of sea ice �oes as tracked by buoy data

Home ranges in moving habitats: 
           polar bears and sea ice

Marie Auger-Méthé, Mark Lewis, Andrew Derocher,  Ecography, 2016

Jennifer Lukovich, Jennifer Hutchings, David Barber, Ann. Glac.  2015

“di�usive” polar bear motion superimposed 
                            with drifting sea ice 

Huy Dinh, Elena Cherkaev, Ken Golden, 2019

Ice �oe di�usion in 
winds and currents

megafauna



fractals and multiscale structure



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



S. Lovejoy, Science, 1982 

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters de�ning random surface



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

 homogenized parameter 
like effective conductivity

ferromagnetic interaction

magnetization

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5
 

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



no bloom bloom

        2011 massive
under-ice algal bloom

Arrigo et al., Science 2012

melt ponds act as

WINDOWS
  allowing light 
through sea ice

Have we crossed into a 
new ecological regime?
The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances, 2017

(2015 AMS MRC, Snowbird)



macroscale



Marginal Ice Zone

Meier et al, 2011 NSIDC CDR

MIZ

biologically active region

intense ocean-sea ice-atmosphere interactions

MIZ WIDTH
fundamental length scale of 

ecological and climate dynamics

region of signi�cant wave-ice interactions 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

transitional region between 
dense interior pack  (c > 80%) 
sparse outer fringes (c < 15%)

How to objectively 
measure the “width”
of this complex, 
non-convex region?
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MIZ pack ice

streamlines of a solution 
    to Laplace’s equation 

Society for Industrial and Applied Mathematics News, April 2017
Strong and Golden

              crossection of the 
cerebral cortex of a rodent brainArctic Marginal Ice Zone

     Objective method for measuring MIZ width 
 motivated  by medical imaging and diagnostics 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

Strong, Foster, Cherkaev, Eisenman, Golden 
J. Atmos. Oceanic Tech. 2017

analysis of di�erent MIZ WIDTH de�nitions 

“average” lengths of streamlines

39% widening
1979 - 2012



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

�ll with harmonic function satisfying 
   satellite BC’s plus stochastic term

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0

NOAA/NSIDC Sea Ice Concentration CDR 
product update will use our PDE method. 



Poisson equation to identify sources and sinks of ice concentration

Advection di�usion equation model to generate more realistic dynamics of

Partial di�erential equation models for sea ice concentration
Delaney Mosier, Court Strong, Jingyi Zhu, Elena Cherkaev, Ken Golden

NSIDC

Generalize simplistic Laplace equation (steady state heat equation) model for  

∆Ψ = 0

Ψ Ψ

Ψ

Siberia

source/sink �eldice concentration 
�eld

source/sink �eldice concentration 
�eld

Siberia

∇ · (D∇Ψ) = 0 ∆Ψ = ρ

∂Ψ

∂t
= ∇ · (D∇Ψ)− �v · ∇Ψ ∇ · �v = 0

Ψ



University of Utah Sea Ice Modeling Group (2017-2020) 
Senior Personnel: Ken Golden, Distinguished Professor of Mathematics

Elena Cherkaev, Professor of Mathematics
Court Strong, Associate Professor of Atmospheric Sciences
Ben Murphy, Ph.D.  

Postdoctoral Researcher: Noa Kraitzman (now at Australian National University)

Graduate Students: Kyle Ste�en (now at UT Austin with Clint Dawson)
Christian Sampson (now at UNC Chapel Hill with Chris Jones) 
Huy Dinh (starting sea ice MURI Postdoc at NYU/Courant) 
Rebecca Hardenbrook
David Morison (Physics Department)
Ryleigh Moore
Delaney Mosier, Daniel Hallman

Undergraduate Students: Kenzie McLean, Jacqueline Cinella Rich, Dane Gollero,
Samir Suthar, Anna Hyde, Kitsel Lusted, Ruby Bowers
Kimball Johnston, Jerry Zhang  

High School Students: Jeremiah Chapman, Titus Quah, Dylan Webb

Sea Ice Ecology Group     Postdoc Jody Reimer, Grad Student Julie Sherman,
Undergrads Anna Hyde, Kayla Stewart  + incoming



Conclusions
1.  Sea ice is a fascinating multiscale composite with structure
      similar to many other natural and man-made materials.    

2. Mathematical methods developed for sea ice advance the 
     theory of composites in general.  
      
2. Homogenization and statistical physics help link scales in sea ice 
      and composites; provide rigorous methods for �nding e�ective 
     behavior; advance sea ice representations in climate models. 

3. Fluid �ow through sea ice mediates melt pond evolution and many 
     processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research will help to improve projections of climate change, 
     the fate of Earth’s sea ice packs, and the ecosystems they support. 
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