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SEA  ICE  covers 7 - 10% of earth's ocean surface
boundary between ocean and atmosphere

indicator and agent of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  



NASA

NASA

polar ice caps critical to global climate 
 in reflecting incoming solar radiation
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              reflect

dark water and land
              absorb

0.0

0.2

0.4

0.6

0.8

1.0

A
lb

ed
o

Snow

Ocean

Earth’s refrigerator

α = re�ected sunlight

incident sunlight
albedo



  September
sea ice extent

1978 1983 1988 1993 1998 2003 2008 2013
3

4

5

6

7

8
Ic

e 
ex

te
nt

 ( 
m

illio
n 

 sq
ua

re
 k

m
  )

RECORD LOW 2012

the summer Arctic sea ice pack is melting

1979 - 2000
    average

National Snow and Ice Data Center



September 2012   --   3.4 million square kilometers
September 1980   --   7.8 million square kilometers
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Change in Arctic Sea Ice Extent
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recent losses 
in comparison to 
the United States



Stroeve et al., GRL, 2007
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September ice extent
Climate Model runs
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Arctic sea ice decline  -  faster than predicted by climate models

IPCC AR4 
  Models

Intergovernmental
  Panel on Climate 
    Change (IPCC)

Fourth Assessment 
         AR4, 2007



represent sea ice more rigorously in climate models

challenge

incorporate key processes

fundamental problem -- linkage of scales

sub-grid scale processes



sea ice is a multiscale composite 

sub-millimeter centimeters

meters kilometers

brine
inclusions

pancakes

melt
ponds

ice
�oes



1. Opposite poles of climate modeling

2. Fluid �ow through sea ice  -  percolation
     
3. Electromagnetic monitoring of sea ice
 
4. Arctic and Antarctic experiments

5. Fractal geometry of Arctic melt ponds    

What is this talk about?
Using the mathematics of composite materials, phase transitions 
and dynamical systems to study sea ice .... to improve projections 
       of climate change and how polar ecosystems may respond

critical behavior                  linkage of scales

Develop rigorous representations of sea ice in climate models.      

cross-pollination



thin silver �lm Arctic melt ponds

optical properties

(Davis, McKenzie, McPhedran, 1991)

microns kilometers

composite geometry -- area fraction of phases, connectedness, necks

(Perovich, 2005)

0.4 microns



Global Climate Models
Climate models are systems of 
partial di�erential equations (PDE) 
derived from the basic laws of 
physics, chemistry, and �uid motion. 

NOAA

Randall et al., 2002

incorporating sub - grid scale processes

They describe the state of the ocean, ice, 
atmosphere, land, and their interactions. 

The equations are solved on 3-dimensional grids 
of the air-ice-ocean-land system (with horizontal  
grid size ~ 100 km), using very powerful computers.

key challenge :

linkage of scales



1.  Ice thickness distribution evolution equation 

2.  Conservation of momentum, stress vs. strain relation  (Hibler 1979)

3.  Heat equation of sea ice and snow 

(Maykut and Untersteiner 1971)

        
dynamics

+
thermodynamics

dynamics

thermodynamics

PDE incorporating ice velocity �eld 
                            ice growth and melting 
                     mechanical redistribution 
                                  ridging and opening

F = ma   for sea ice

    What are the key ingredients -- or governing equations
that need to be solved on grids using powerful computers? 

sea ice component of a Global Climate Model

(Thorndike et al. 1975)

coupling ocean and atmosphere



tipping points in the mainstream 
climate tipping points   −   September Arctic sea ice cover

Melting of the Greenland ice sheet
Melting of the West Antarctic ice sheet
Permafrost and  tundra loss,  leading to the release of methane
Shuto� of N. Atlantic thermohaline conveyor (Gulf Stream)

Lenton, et al., PNAS 2008

 ...



nonlinear ODE for energy in upper ocean

- tipping point unlikely in loss of summer ice

Abbot, Silber, Pierrehumbert, JGR  2011 

Eisenman, Wettlaufer, PNAS 2009 :

look for “bifurcations” in solutions
multiple equilibria: ice-free, ice covered, ...

dynamical systems

active area of mathematical research on sea ice -- 
         low order (toy) models of climate change: 

Has Arctic sea ice loss passed through a ‘’tipping point’’?
an irreversible downward slide to ice-free Arctic summers, driven by ice-albedo feedback

Serreze, Nature 2011; Tietsche et al. GRL 2011
              sea ice could recover quickly

further work  

bifurcations when include clouds, ice loss



Who cares if 
Arctic sea ice 
disappears?



 ig/ude.aksala.eciaes

Ralph (Malik) Ahkivgak, c. 20 Oct 1988 



 ig/ude.aksala.eciaes



42 Photo: Marc Webber, US Fish & Wildlife Service 

Use of sea ice as a platform 

 

BMCM Tim Sullivan



holds 25% of 

undiscovered oil 
& gas reserves 
 

a hazard and a 
supporting 
feature for 
hydrocarbon 
exploration & 
production 
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oil companies care about Arctic sea ice loss 



Orsolini et al., 2011

One climate model projects reduced 
precipitation in American West 
(Sewall & Sloan, 2005) 
       Utah - greatest snow on Earth? 

Sea-ice loss: impacts beyond the Arctic

Analysis of 2007 ice minimum suggests 
above normal snow deposition in 
NW North America (Orsolini et al., 2011)

Colder weather in SE Asia, possibly 
in Eastern US (Hondo et al., 2009)

          changes in precipitation and 
temperature patterns, storm tracks, ...



sea  ice  microphysics

�uid transport



- drainage of brine and melt water 

- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

linkage of scales
2

- Antarctic surface �ooding 
   and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 



Darcy’s Law
pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity

example of homogenization

mathematics for analyzing e�ective behavior of heterogeneous systems

 e.g. transport properties of composites - electrical conductivity, thermal conductivity, etc.



σ σ σ1 2

HOMOGENIZATION
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

     e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T

0.05 0.10 0.15 0.20 0.25

brine volume fraction   φ  

φc

2 x 10
-10

3 x 10
-10

4 x 10
-10

1 x 10
-10

vertical fluid permeability  k  (m   )2

0

on - o�  switch  
for �uid �ow

o� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle                         Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



Why is the rule of �ves true?



p = 1/3 p = 2/3

impermeable permeable

percolation theory
mathematical theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability p
closed with probability 1-p

�rst appearance of in�nite cluster

bond

“tipping point” for connectivity



R

R

m

p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



correlation length

(p) ~ξ |          | − ν

(characteristic scale of connectedness)

p − pc

order parameters in percolation theory

10 ppc

ξ

10 ppc

e�ective conductivity
 or �uid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

(1 < t < 2,  Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992)

geometry transport



two dimensional lattices

square triangular hexagonal

percolation thresholds change

critical exponents are universal



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



-15 C,  = 0.033° -3 C,  = 0.143° -6 C,  = 0.075°

8 x 8 x 2  mm

brine connectivity (over cm scale)

X-ray tomography confirms percolation threshold
3-D images
pores and throats

3-D graph 
nodes and edges

analyze graph connectivity as function of temperature and sample size

φφ φ

use �nite size scaling techniques to con�rm rule of �ves

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009

order parameter data from a natural material 



The key connectivity functions of percolation theory have been computed 
      extensively for many lattice models, but NOT for natural materials.

We have calculated them for sea ice single crystals 
 and estimated anisotropic percolation thresholds.

Pringle,  Miner,  Eicken,  Golden,   JGR (Oceans)  2009
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k ( ) = k 2
0

 k   = 3 x 100
-8

m2

lattice and continuum percolation theories yield: 
 critical
exponent

exponent is UNIVERSAL lattice value                  

critical path analysis -- developed for electronic hopping
conduction -- yields scaling factor  k 0

sedimentary rocks like sandstones also exhibit universality

t

~~t 2.0

φ φ − 0.05(               )

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1
-15

-14

-13

-12

-11

-10

-9

-8

-7

x  =  log(     )

y = log k

theory :

statistical best fit:

y = 2 x - 7.5

y = 2.07 x - 7.45

φ − 0.05



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of brine and ice

What are the e�ective propagation characteristics 
                       of an EM wave in the medium?



ocean swells propagating through a vast �eld of pancake ice 

HOMOGENIZATION: long wave sees an e�ective medium, not individual �oes



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/



inverse bounds and 
recovery of brine porosity

forward and inverse bounds for sea ice
forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data

Im(ε  )*

Re(ε  )*

T = -14  C
φ = 0.015
q = 0.97

r
ri

b

q = r  / r   

0 < q < 1

b i

3 3.5

0.5

0
Golden 1995, 1997

polycrystalline bounds
two-scale homogenization
Gully, Lin, Cherkaev, Golden, 2014
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden 2014
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(a) young healthy trabecular bone (b) old osteoporotic trabecular bone

bone volume fraction = 0.54
porosity = 0.46

bone volume fraction = 0.24
porosity = 0.76

λ

µ(λ) µ(λ)

(c) spectral measure - young (d) spectral measure - old
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!

reconstruction of spectral 
  measures from complex 
         permittivity data

using regularized 
inversion scheme

+

EM monitoring 
of osteoporosis

    loss of bone 
    connectivity
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spectral measures for the Arctic sea ice pack

area under curve = φ = open water fraction
spectral gap closes as ocean phase becomes connected

µ
µ

                   spectral measures provide a path toward rigorously incorporating 
“composite microstructure” into calculations of e�ective behavior on larger scales
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N. B. Murphy, K. M. Golden 2014

eigenvalue statistics for transport tend toward the UNIVERSAL 
Wigner-Dyson distribution as the “conducting” phase becomes 
connected over large scales

random matrix characterization of connectedness transition  --  discretization of  χΓχ 

Unfolded Eigenvalue Spacing Distribution

uncorrelated                        “level repulsion”



Masters, 1989

advection enhanced di�usion

e�ective di�usivity

tracers, buoys di�using in ocean eddies
  di�usion of pollutants in atmosphere
 salt, heat, nutrient transport in ocean

homogenize

e�ective di�usivity

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

Stieltjes integral for         with spectral measure
Avellaneda and Majda, PRL 89, CMP 91 Murphy, Zhu, Golden 2014

analytic function
of Peclet number



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK
2014    Arctic           Chukchi Sea

Arctic and Antarctic �eld experiments



measuring 
�uid permeability 
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Gully, Lubbers, Sampson, Tison 2014
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SIPEX II
Percolation Theory

SIPEX II  vertical permeability data

data above threshold

    higher threshold in granular ice predicted with 
percolation theory by Golden, et al. (Science, 1998)

not con�rmed experimentally until SIPEX I (2007) and SIPEX II (2012)

same universal
critical exponent
as lattice models
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Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2014

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

cross-borehole
  tomography

cross-borehole tomography - electrical classi�cation of sea ice layers 



fractals and multiscale structure



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



S. Lovejoy, Science, 1982 

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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transition in the fractal dimension
complexity grows with length scale

compute “derivative” of area - perimeter data



                    small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation



4 August 2005, Healy–Oden Trans Arctic Expedition (HOTRAX)

map melt pond con�gurations onto resistor networks
              compute horizontal �uid permeability

Barjatia, Song, Tasdizen, Golden  2014



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              (Isichenko, Rev. Mod. Phys., 1992)

Brady Bowen, Court Strong, Ken Golden, 2014

random Fourier series representation of surface topography



“melt ponds” are clusters of magnetic spins that align with the applied �eld

Thekkedath, Alali, Strong, Golden 
Sudakov, Ma, Golden

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1

ice

water

COLD WARM

clusters exhibit transition in fractal dimension



Conclusions

1. Summer Arctic sea ice is melting rapidly.

2. Fluid �ow through sea ice mediates many processes of importance to 
     understanding climate change and the response of polar ecosystems.

3. Mathematical models of composite materials and statistical physics help 
     unravel the complexities of sea ice structure and processes, and provide 
     a path toward rigorous representation of sea ice in climate models .

4. Field experiments are essential to developing relevant mathematics. 

5. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 
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Sydney Morning Herald
         23 July, 1998

2:45 am  July 22, 1998

``Please don’t be alarmed but we
   have an uncontrolled fire in the
   engine room ....”

14

4

about 10 minutes later ...

``Please don’t be alarmed but 
   we’re lowering the lifeboats ....”
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