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1 Introduction

Among the large-scale transformations of the
Earth’s surface that are apparently due to global
warming, the sharp decline of the summer Arc-
tic sea ice pack is probably the most dramatic.
For example, the area of the Arctic Ocean cov-
ered by sea ice in September of 2012 was less
than half of its average over the 1980’s and 1990’s.
While global climate models generally predict de-
clines in the polar sea ice packs over the 21st cen-
tury, these precipitous losses have significantly
outpaced most projections. Here we will show
how mathematics is being used to better under-
stand the role of sea ice in the climate system and
improve projections of climate change. In partic-
ular, we will focus on how mathematical mod-
els of composite materials and statistical physics
are being used to study key sea ice structures
and processes, and represent sea ice more rig-
orously in global climate models. Also, we will
briefly discuss these climate models as systems of
partial differential equations (PDEs) solved using
computer programs with millions of lines of code,
on some of the world’s most powerful computers,
with particular focus on their sea ice components.

1.1 Sea Ice and the Climate System

Sea ice is frozen ocean water, which freezes at a
temperature of about −1.8◦ C, or 28.8◦ F. As a
material, sea ice is quite different from the glacial
ice in the world’s great ice sheets covering Antarc-
tica and Greenland. When salt water freezes, the
result is a composite of pure ice with inclusions of
liquid brine, air pockets, and solid salts. As the
temperature of sea ice increases, the porosity or
volume fraction of brine increases. The brine in-
clusions in sea ice host extensive algal and bacte-
rial communities which are essential for support-
ing life in the polar oceans. For example, krill feed
on the algae, and in turn support fishes, penguins,
seals, and Minke whales, and up the food chain
to the top predators – killer whales, leopard seals,

and polar bears. The brine microstructure also
facilitates the flow of salt water through sea ice,
which mediates a broad range of processes, such
as the growth and decay of seasonal ice, the evolu-
tion of ice pack reflectance, and biomass build-up.

As the boundary between the ocean and atmo-
sphere in the polar regions of Earth, sea ice plays
a critical role as both a leading indicator of cli-
mate change, and as a key player in the global cli-
mate system. Roughly speaking, most of the solar
radiation which is incident on snow-covered sea
ice is reflected, while most of the solar radiation
which is incident on darker sea water is absorbed.
The sea ice packs serve as part of Earth’s polar
refrigerator, cooling it and protecting it from ab-
sorbing too much heat from sunlight. The ratio
of reflected sunlight to incident sunlight is called
albedo. While the albedo of snow-covered ice is
close to 1 (larger than 0.8), the albedo of sea wa-
ter is close to zero (less than 0.1).

Ice-albedo feedback. As warming tempera-
tures melt more sea ice over time, fewer bright
surfaces are available to reflect sunlight, more
heat escapes from the ocean to warm the atmo-
sphere, and the ice melts further. As more ice is
melted, the albedo of the polar oceans is lowered,
leading to more solar absorption and warming,
which in turn leads to more melting, in a positive
feedback loop. It is believed that this so-called
ice-albedo feedback has played an important role
in the recent dramatic declines in summer Arctic
sea ice extent.

Thus even a small increase in temperature can
lead to greater warming over time, making the
polar regions the most sensitive areas to climate
change on Earth. Global warming is amplified in
the polar regions. Indeed, global climate models
consistently show amplified warming in the high
latitude Arctic, although the magnitude varies
considerably across different models. For exam-
ple, the average surface air temperature at the
North Pole by the end of the 21st century is pre-
dicted to rise by a factor of about 1.5 to 4 times
the predicted increase in global average surface
air temperature.

While global climate models generally predict
declines in sea ice area and thickness, they have
significantly underestimated the recent dramatic
losses observed in summer Arctic sea ice. Im-
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Figure 1: Sea ice exhibits composite structure on length scales over many orders of magnitude. From left to right:

the sub-millimeter scale brine inclusions in sea ice; pancake ice in the Southern Ocean with microstructural scale

on the order of tens of centimeters; melt ponds on the surface of Arctic sea ice with meter scale microstructure;

ice floes in the Arctic Ocean on the kilometer scale.

proving projections of the fate of Earth’s sea ice
cover and its ecosystems depends on a better un-
derstanding of important processes and feedback
mechanisms. For example, during the melt sea-
son the Arctic sea ice cover becomes a complex,
evolving mosaic of ice, melt ponds, and open wa-
ter. The albedo of sea ice floes is determined by
melt pond evolution. Drainage of the ponds, with
a resulting increase in albedo, is largely controlled
by the fluid permeability of the porous sea ice un-
derlying the ponds. As ponds develop, ice–albedo
feedback enhances the melting process. More-
over, this feedback loop is the driving mechanism
in mathematical models developed to address the
question of whether we have passed a so-called
tipping point or critical threshold in the decline
of summer Arctic sea ice. Such studies often fo-
cus on the existence of a saddle node bifurcation
in dynamical system models of sea ice coverage
of the Arctic Ocean. In general, sea ice albedo
represents a significant source of uncertainty in
climate projections and a fundamental problem
in climate modeling.

Multiscale structure of sea ice. One of
the fascinating, yet challenging aspects of mod-
eling sea ice and its role in global climate is the
sheer range of relevant length scales of structure,
over ten orders of magnitude from the submillime-
ter scale to hundreds of kilometers. In Figure 1
we show examples of sea ice structure illustrating
such a range of scales. Modeling sea ice on a large
scale depends on some understanding of the phys-
ical properties of sea ice at the scale of individual
floes, and even on the submillimeter scale since
the brine phase in sea ice is such a key deter-

minant of its bulk physical properties. Today’s

climate models challenge the most powerful su-
per computers to their fullest capacity. However,
even the largest computers still limit the horizon-
tal resolution to tens of kilometers and require
clever approximations and parameterizations to
model the basic physics of sea ice. One of the
central themes of this article is how to use infor-
mation on smaller scales to predict behavior on
larger scales. We observe that this central prob-
lem of climate science shares commonality with
the key challenges, for example, in theoretical
computations of the effective properties of com-
posites.

Here we’ll explore some of the mathematics
used in studying sea ice and its role in the cli-
mate system, particularly through the lens of sea
ice albedo and processes related to its evolution.

2 Global Climate Models and Sea Ice

Global climate models, also known as General
Circulation Models (GCM’s), are systems of
PDEs derived from the basic laws of physics,
chemistry, and fluid motion. They describe the
state of the ocean, ice, atmosphere, and land,
as well as their interactions. The equations
are solved on very powerful computers using 3-
dimensional grids of the air-ice-ocean-land sys-
tem, with horizontal grid sizes on the order of
tens of kilometers. Consideration of general cli-
mate models will take us too far afield, but here
we will briefly consider the sea ice components of
these large scale models.

The polar sea ice packs consist primarily of
open water, thin first-year ice, thicker multiyear
ice, and pressure ridges created by ice floes col-
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Figure 2: Different factors contributing to the evolu-

tion of the ice thickness distribution g(h, x, t).

liding with each other. The dynamic and ther-
modynamic characteristics of the ice pack depend
largely on how much ice is in each thickness range.
One of the most basic problems in sea ice mod-
eling is thus to describe the evolution of the ice
thickness distribution (ITD) in space and time.
The ITD g(x, t, h)dh is defined (informally) as
the fractional area covered by ice in the thickness
range (h, h + dh) at a given time t and location
x. The fundamental equation controlling the evo-
lution of the ITD, which is solved numerically in
sea ice models, is

∂g

∂t
= − ∇ · (gu) −

∂

∂h
(βg) + Ψ

where u is the horizontal ice velocity, β is the
rate of thermodynamic ice growth, and Ψ is a
ridging redistribution function which accounts for
changes in ice thickness due to ridging and me-
chanical processes, as illustrated in Figure 2.

The momentum equation, or Newton’s second
law for sea ice, can be deduced by considering the
forces on a single floe, including interactions with
other floes,

m
Du

Dt
= ∇ ·σ + τa + τw −mαn × u −mg∇H,

where each term has units of force per unit area
of the sea ice cover, m is the combined mass of
ice and snow per unit area, τ a and τ w are wind
and ocean stresses, and D

Dt = ∂
∂t + u · ∇ is the

material or convective derivative. This is a two
dimensional equation, obtained by integrating the
3D equation through the thickness of the ice in
the vertical direction.

The strength of the ice is represented by the
internal stress tensor σij. The other two terms
on the right hand side are, in order, stresses due
to Coriolis effects and the sea surface slope, where
n is a unit normal vector in the vertical direction,
α is the Coriolis parameter, H describes the sea
surface, and in this equation g is the acceleration
due to gravity.

The temperature field T (x, t) inside the sea ice
(and snow layer), which couples to the ocean be-
low and the atmosphere above through appropri-
ate boundary conditions, satisfies an advection
diffusion equation,

∂T

∂t
= ∇ · (D(T ) ∇T ) − v · ∇T,

where D = K/ρC is the thermal diffusivity of
sea ice, K is its thermal conductivity, ρ its bulk
density, C the specific heat, and v is an averaged
brine velocity field in the sea ice.

The bulk properties of low Reynolds number
flow of brine of viscosity η through sea ice can
be related to the geometrical properties of the
porous brine microstructure using homogeniza-

tion theory. The volume fractions of brine and
ice are φ and 1 − φ. The local velocity and pres-
sure fields in the brine satisfy the Stokes equa-
tions for incompressible fluids, where the length
scale of the microstructure (for example, the pe-
riod in periodic media) is ε. Under appropri-
ate assumptions, in the homogenization limit as
ε −→ 0, the averaged velocity v(x) and pressure
p(x) satisfy Darcy’s law and the incompressibility
condition,

v = −
1

η
k ∇p, ∇ · v = 0. (1)

Here, k is the permeability tensor, with vertical
component kzz = k in units of m2. The perme-
ability k is an example of an effective or homog-

enized parameter. The existence of the homoge-
nized limits v,k, and p in (1) can be proven under
broad assumptions, such as for media with inho-
mogeneities that are periodic or have translation
invariant statistics.

Obtaining quantitative information on k or
other effective transport coefficients such as elec-
trical or thermal conductivity and how they de-
pend on, say, the statistical properties of the mi-
crostructure, is a central problem in the theory
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of composites. A broad range of techniques have
been developed to obtain rigorous bounds, ap-
proximate formulas and general theories of effec-
tive properties of composite and inhomogeneous
media, in terms of partial information about the
microstructure. This problem is, of course, quite
similar in nature to the fundamental questions
of calculating bulk properties of matter from in-
formation on molecular interactions – central to
statistical mechanics.

We note that it is also the case that one of
the fundamental challenges of climate modeling is
how to rigorously account for sub-grid scale pro-
cesses and structures in models whose grid size
is far greater than the scale of relevant phenom-
ena. For example, obviously it is not realistic
to account for every detail of the sub-millimeter
scale brine microstructure in sea ice in a GCM!
However, the volume fraction and connectedness
properties of the brine phase control whether or
not fluid can flow through the ice. The on–off

switch for fluid flow in sea ice, known as the
rule of fives (see below), in turn controls such
critical processes as melt pond drainage, snow
ice formation (where sea water percolates up-
ward, floods the snow layer on the sea ice sur-
face and subsequently freezes), the evolution of
salinity profiles, and nutrient replenishment. It
is the homogenized transport coefficient – the ef-
fective fluid permeability – which is incorporated
into sea ice and climate models to account for
these and related physical and biogeochemical
processes. This effective coefficient is a well de-
fined parameter (under appropriate assumptions
about the microstructure) which captures the rel-
evant microstructural transitions and determines
how a number of sea ice processes evolve. In this
example, we will see that rigorous mathematical
methods can be employed to analyze effective sea
ice behavior on length scales much greater than
the submillimeter scale of the brine inclusions.

3 Mathematics of Composites

Here we give a brief overview of some of the math-
ematical models and techniques that are used in
studying the effective properties of sea ice.

3.1 Percolation Theory

Percolation theory was initiated in 1957 with the
introduction of a simple lattice model to study
the flow of air through permeable sandstones used
in miner’s gas masks. In subsequent decades,
this theory has been used to successfully model a
broad array of disordered materials and processes,
including flow in porous media like rocks and
soils, doped semiconductors, and various types
of disordered conductors like piezoresistors, ther-
mistors, radar absorbing composites, carbon nan-
otube composites, and polar firn. The original
percolation model and its generalizations have
been the subject of intensive theoretical investi-
gations, particularly in the physics community.
One reason for the broad interest in the perco-
lation model is that it is perhaps the simplest,
purely probabilistic model which exhibits a type
of phase transition.

The simplest form of the lattice percolation
model is defined as follows. Consider the
d−dimensional integer lattice Z

d, and the square
or cubic network of bonds joining nearest neigh-
bor lattice sites. We assign to each bond a con-
ductivity σ0 > 0 (not to be confused with the
stress tensor above) with probability p, meaning
it is open (black), and a conductivity 0 with prob-
ability 1− p, meaning it is closed. Two examples
of lattice configurations are shown in Figure 3,
with p = 1/3 in (a) and p = 2/3 in (b). Groups
of connected open bonds are called open clusters.
In this model there is a critical probability pc,
0 < pc < 1, called the percolation threshold, at
which the average cluster size diverges and an in-
finite cluster appears. For the two dimensional
bond lattice pc = 1/2. For p < pc the density of
the infinite cluster P∞(p) is 0, while for p > pc,
P∞(p) > 0 and near the threshold,

P∞(p) ∼ (p− pc)
β , p→ p+

c ,

where β is a universal critical exponent, that is, it
depends only on dimension and not on the details
of the lattice. Let x, y ∈ Z

d and τ (x, y) be the
probability that x and y belong to the same open
cluster. The correlation length ξ(p) is the mean
distance between points on an open cluster, and is
a measure of the linear size of finite clusters. For
p < pc, τ (x, y) ∼ e−|x−y|/ξ(p), and ξ(p) ∼ (pc −
p)−ν diverges with a universal critical exponent
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Figure 3: The two dimensional square lattice percolation model below its percolation threshold of pc = 1/2 in

(a) and above it in (b). (c) Divergence of the correlation length as p approaches pc. The infinite cluster density

of the percolation model is shown in (d), and the effective conductivity is shown in (e).

ν as p→ p−c , as shown in Figure 3 (c).
The effective conductivity σ∗(p) of the lattice,

now viewed as a random resistor (or conductor)
network, defined via Kirchoff’s laws, vanishes for
p < pc like P∞(p) since there are no infinite path-
ways, as shown in Figure 3 (e). For p > pc,
σ∗(p) > 0, and near pc,

σ∗(p) ∼ σ0(p − pc)
t, p→ p+

c ,

where t is the conductivity critical exponent, with
1 ≤ t ≤ 2 in d = 2, 3, and numerical val-
ues t ≈ 1.3 in d = 2 and t ≈ 2.0 in d = 3.
Consider a random pipe network with effective
fluid permeability k∗(p) exhibiting similar behav-
ior k∗(p) ∼ k0(p−pc)

e, where e is the permeability
critical exponent, with e = t for lattices Both t
and e are believed to be universal − they depend
only on dimension and not on the type of lat-
tice. Continuum models, like the so-called Swiss

cheese model, can exhibit non–universal behavior
with exponents different from the lattice case and
e 6= t.

3.2 Analytic Continuation and

Spectral Measures

Homogenization is where one seeks to find a ho-
mogeneous medium which behaves macroscopi-
cally the same as a given inhomogeneous medium.
The methods are focused on finding the effective
properties of inhomogeneous media such as com-
posites. We will see that the spectral measure in
a Stieltjes integral representation for the effective
parameter provides a powerful tool for upscaling
geometrical information about a composite into
calculations of effective properties.

We now briefly describe the analytic contin-

uation method (ACM) for studying the effec-

tive transport properties of composite materials.
This method has been used to obtain rigorous
bounds on effective transport coefficients of two-
component and multicomponent composite ma-
terials. The bounds follow from the special an-
alytic structure of the representations for the ef-
fective parameters, and partial knowledge of the
microstructure, such as the relative volume frac-
tions of the phases in the case of composite media.
The ACM was later adapted to treating the effec-
tive diffusivity of passive tracers in incompressible
fluid velocity fields.

We consider the effective complex permittiv-
ity tensor ε

∗ of a two-phase random medium, al-
though the method applies to any classical trans-
port coefficient. Here, ε(x, ω) is a (spatially) sta-
tionary random field in x ∈ R

d and ω ∈ Ω, where
Ω is the set of all geometric realizations of the
medium, which is indexed by the parameter ω
representing one particular realization, and the
underlying probability measure P is compatible
with stationarity.

As in sea ice, we assume we are dealing with a
two-phase locally isotropic medium, so that the
components εjk of the local permittivity tensor
ε satisfy εjk(x, ω) = ε(x, ω)δjk, where δjk is the
Kronecker delta and

ε(x, ω) = ε1χ1(x, ω) + ε2χ2(x, ω). (2)

Here, εj is the complex permittivity for medium
j = 1, 2 and χj(x, ω) is its characteristic function,
equaling 1 for ω ∈ Ω with medium j at x, and 0
otherwise, with χ2 = 1 − χ1.

When the wavelength is much larger than the
scale of the composite microstructure, the prop-
agation properties of an electromagnetic wave in
a given composite medium are determined by the
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Figure 4: Ocean swells propagating through a vast

field of pancake ice in the Southern Ocean off the

coast of East Antarctica (photo by K. M. Golden).

These long waves do not “see” the individual floes,

whose diameters are on the order of tens of centime-

ters. The bulk wave propagation characteristics are

largely determined by the homogenized or effective

rheological properties of the pancake/frazil conglom-

erate on the surface.

quasi-static limit of Maxwell’s equations

∇×E = 0, ∇ · D = 0, (3)

where E(x, ω) and D(x, ω) are stationary electric
and displacement fields, respectively, related by
the local constitutive equation D(x) = ε(x)E(x),
and ek is a standard basis vector in the kth di-
rection. The electric field is assumed to be unit
strength on average, with 〈E〉 = ek, where 〈·〉
denotes ensemble averaging over Ω or spatial av-
erage over all of R

d. The effective complex per-
mittivity tensor ε

∗ is defined by

〈D〉 = ε
∗〈E〉. (4)

which is an homogenized version of the local con-
stitutive relation D = εE.

For simplicity, we focus on one diagonal co-
efficient ε∗ = ε∗kk, with ε∗ = 〈εE · ek〉. By
the homogeneity of ε(x, ω) in (2), ε∗ depends on
the contrast parameter h = ε1/ε2 and we define
m(h) = ε∗/ε2, which is a Herglotz function that
maps the upper half h–plane to the upper half
plane, and is analytic off (−∞, 0].

The key step in the method is obtaining a
Stieltjes integral representation for ε∗. This in-
tegral representation arises from a resolvent rep-
resentation of the electric field E = s(sI −

Γχ1)
−1ek, where Γ = ∇(∆−1)∇· acts as a pro-

jection from L2(Ω, P ) onto the Hilbert space of
curl-free random fields, and ∆−1 is based on
convolution with the free space Green’s function
for the Laplacian ∆ = ∇2. Consider the func-
tion F (s) = 1 − m(h), s = 1/(1 − h), which is
analytic off [0, 1] in the s-plane. Then writing
F (s) = 〈χ1[(sI − Γχ1)

−1ek] · ek〉 yields

F (s) =

∫ 1

0

dµ(λ)

s− λ
, (5)

where µ(dλ) = 〈χ1Q(dλ)ek ·ek〉 is a positive spec-

tral measure on [0, 1] and Q(dλ) is the (unique)
projection valued measure associated with the
bounded, self-adjoint operator Γχ1.

Equation (5) is based on the spectral theorem
for the resolvent of the operator Γχ1. It provides
a Stieltjes integral representation for the effective
complex permittivity ε∗ which separates the com-
ponent parameters in s from the complicated geo-
metrical information contained in the measure µ.
(Extensions of (5) to multicomponent media with
ε = ε1χ1 + ε2χ2 + ε3χ3 + · · ·+ εnχn involve sev-
eral complex variables.) Information about the
geometry enters through the moments

µn =

∫ 1

0

λndµ(λ) = 〈χ1[(Γχ1)
nek] · ek〉,

n = 0, 1, 2, . . .. For example, the mass µ0 is given
by µ0 = 〈χ1ek · ek〉 = 〈χ1〉 = φ, where φ is the
volume or area fraction of material of phase 1,
and µ1 = φ(1−φ)/d if the material is statistically
isotropic. In general, µn depends on the (n+ 1)–
point correlation function of the medium.

Computing the spectral measure µ for a given
composite microstructure first involves discretiz-
ing a two phase image of the composite into a
square lattice filled with 1’s and 0’s correspond-
ing to the two phases. Then the key operator Γχ1,
which depends on the geometry via χ1, becomes
a self adjoint matrix. The spectral measure may
be calculated directly from the eigenvalues and
eigenvectors of this matrix.

4 Applications to Sea Ice

4.1 Percolation Theory

Given a sample of sea ice at temperature T
in degrees Celsius and bulk salinity S in parts
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Figure 5: X-ray CT volume rendering of brine layers within a lab-grown sea-ice single crystal with S = 9.3

ppt. The (non-collocated) 8 × 8 × 2 mm sub-volumes (a)–(c) illustrate a pronounced change in the micro-scale

morphology and connectivity of the brine inclusions during warming. (d) Data for the vertical fluid permeability

k taken in situ on Arctic sea ice, displayed on a linear scale. (e) Divergence of the brine correlation length in the

vertical direction as the percolation threshold is approached from below. (f) Comparison of Arctic permeability

data in the critical regime (25 data points) with percolation theory in (7). In logarithmic variables the predicted

line has the equation y = 2 x− 7.5, while a best fit of the data yields y = 2.07 x− 7.45, assuming φc = 0.05.

per thousand (ppt), the brine volume fraction
φ is given (approximately) by the equation of
Frankenstein and Garner,

φ =
S

1000

(

49.185

|T |
+ 0.532

)

. (6)

As temperature increases for fixed salinity, the
volume fraction φ of liquid brine in the ice also
increases. The inclusions become larger and
more connected, as illustrated in Figure 5 (a)–(c),
which shows images of the brine phase in sea ice
(in gold) obtained from X-ray tomography scans
of sea ice single crystals.

As the connectedness of the brine phase in-
creases with rising temperature, the ease with

which fluid can flow through sea ice – its fluid
permeability – should increase as well. In fact,
sea ice exhibits a percolation threshold, or critical
brine volume fraction φc, or critical temperature
Tc, below which columnar sea ice is effectively im-
permeable to vertical fluid fluid flow, and above
which the ice is permeable, and increasingly so
as temperature rises. This critical behavior of
fluid transport in sea ice is illustrated in Figure 5
(d). The data on the vertical fluid permeability
k(φ) display a rapid rise just above a threshold
value of about φc ≈ 0.05 or 5%, similar to the
conductivity (or permeability) in Figure 3 (e).
This type of behavior is also displayed by data
on brine drainage, with the effects of drainage
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Figure 6: (a) A powder of large polymer spheres mixed with smaller metal spheres. (b) When the powder is

compressed, its microstrucure is similar to that of sea ice in (c).

shutting down for brine volume fractions below
about 5%. Roughly speaking, we can refer to
this phenomenon as the on–off switch for fluid
flow in sea ice. Through the Frankenstein–Garner
relation in Equation 6, the critical brine volume
fraction φc ≈ 0.05 corresponds to a critical tem-
perature Tc ≈ −5◦C, for a typical salinity of 5
ppt. Thus, this important threshold behavior has
become known as the rule of fives.

In view of this type of critical behavior, it is
reasonable to try and find a percolation theo-
retic explanation. However, with pc ≈ 0.25 for
the d = 3 cubic bond lattice, it was apparent
that key features of the geometry of the brine mi-
crostructure in sea ice were being missed by lat-
tices. The threshold φc ≈ 0.05 was identified with
the critical probability in a continuum percola-
tion model for compressed powders which exhibit
microstructural characteristics similar to sea ice.
The identification explained the rule of fives, as
well as data on algal growth and snow-ice pro-
duction. The compressed powders, shown in Fig-
ure 6, were used in the development of so-called
stealthy or radar absorbing composites.

When we applied the compressed powder
model to sea ice, we had no direct evidence that
the brine microstructure undergoes a transition
in connectedness at a critical brine volume frac-
tion. This lack of evidence was due partly to the
difficulty of imaging and quantitatively charac-
terizing the brine inclusions in three dimensions,
particularly the thermal evolution of their con-
nectivity. Through X-ray computed tomography
and pore structure analysis we have now ana-
lyzed critical behavior of the thermal evolution
of brine connectedness in sea ice single crystals,
over a temperature range from −18◦ C to −3◦ C.

We have mapped three dimensional images of the
pores and throats in the brine phase onto graphs
of nodes and edges, and analyzed their connectiv-
ity as functions of temperature and sample size.
Realistic network models of brine inclusions can
be derived from porous media analysis of 3-D
micro-tomography images. Using finite-size scal-
ing techniques largely confirms the rule of fives,
and that sea ice is a natural material that exhibits
a strong anisotropy in percolation thresholds.

Now we consider the application of percola-
tion theory to understanding the fluid permeabil-
ity of sea ice. In the continuum, the permeabil-
ity and conductivity exponents e and t can take
non-universal values, and need not be equal, such
as for the three dimensional Swiss cheese model.
Continuum models have been studied by map-
ping to a lattice with a probability density ψ(g)
of bond conductances g. Non-universal behavior
can be obtained when ψ(g) is singular as g → 0+.
However, for a lognormal conductance distribu-
tion arising from intersections of lognormally dis-
tributed inclusions, as in sea ice, the behavior is
universal. Thus e ≈ 2 for sea ice.

The permeability scaling factor k0 for sea ice
is estimated using critical path analysis. For me-
dia with g in a wide range, the overall behavior
is dominated by a critical, bottleneck conductance
gc, the smallest conductance such that the critical
path {g : g ≥ gc} spans the sample. With most
brine channel diameters between 1.0 mm and 1.0
cm, spanning fluid paths have a smallest, charac-
teristic radius rc ≈ 0.5 mm, and we estimate k0

by the pipe-flow result rc
2/8. Thus

k(φ) ∼ 3 (φ−φc)
2 × 10−8 m2, φ→ φ+

c . (7)

In Figure 5 (f), field data with φ in [0.055, 0.15],
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just above φc ≈ 0.05, are compared with (7),
showing close agreement. The striking result that
for sea ice, e ≈ 2, the universal lattice value in
three dimensions, is due to the general lognormal
structure of the brine inclusion distribution func-
tion. The general nature of our results suggests
that similar types of porous media, such as saline
ice on extraterrestrial bodies, may also exhibit
universal critical behavior.

4.2 Analytic Continuation

4.2.1 Bounds on the Effective Complex

Permittivity

Bounds on ε∗, or F (s), are obtained by fixing
s in (5), varying over admissible measures µ (or
admissible geometries), such as those that satisfy
only

µ0 = φ. (8)

and finding the corresponding range of values of
F (s) in the complex plane. Two types of bounds
on ε∗ are obtained. The first bound R1 assumes
only that the relative volume fractions p1 = φ and
p2 = 1−p1 of the brine and ice are known, so that
(8) is satisfied. In this case, the admissible set of
measures forms a compact, convex set. Since (5)
is a linear functional of µ, the extreme values of
F are attained by extreme points of the set of
admissible measures, which are the Dirac point
measures of the form p1δz. The values of F must
lie inside the circle p1/(s− z),−∞ ≤ z ≤ ∞, and
the region R1 is bounded by circular arcs, one of
which is parametrized in the F –plane by

C1(z) =
p1

s− z
, 0 ≤ z ≤ p2. (9)

To display the other arc, it is convenient to use
the auxiliary function

E(s) = 1 −
ε1
ε∗

=
1 − sF (s)

s(1 − F (s))
, (10)

which is a Herglotz function like F (s), analytic off
[0, 1]. Then in the E–plane, we can parametrize
the other circular boundary of R1 by

Ĉ1(z) =
p2

s− z
, 0 ≤ z ≤ p1. (11)

In the ε∗–plane, R1 has vertices V1 = ε1/(1 −
Ĉ1(0)) = (p1/ε1 + p2/ε2)

−1 and W1 = ε2(1 −

C1(0)) = p1ε1+p2ε2, and collapses to the interval

(p1/ε1 + p2/ε2)
−1 ≤ ε∗ ≤ p1ε1 + p2ε2 (12)

when ε1 and ε2 are real, which are the classical
arithmetic (upper) and harmonic (lower) mean
bounds, also called the elementary bounds. The
complex elementary bounds (9) and (11) are op-
timal and can be attained by a composite of uni-
formly aligned spheroids of material 1 in all sizes
coated with confocal shells of material 2, and vice
versa. These arcs are traced out as the aspect ra-
tio varies.

If the material is further assumed to be sta-
tistically isotropic, i.e., ε∗ik = ε∗δik, then µ1 =
φ(1 − φ)/d must be satisfied as well. A conve-
nient way of including this information is to use
the transformation,

F1(s) =
1

p1
−

1

sF (s)
. (13)

The function F1(s) is, again, a Herglotz function
which has the representation

F1(s) =

∫ 1

0

dµ1(z)

s− z
. (14)

The constraint µ1 = φ(1 − φ)/d on F (s) is then
transformed to a restriction of only the mass, or
zeroth moment µ1

0 of µ1, with

µ1
0 = p2/p1d. (15)

Applying the same procedure as for R1 yields a
region R2, whose boundaries are again circular
arcs. When ε1 and ε2 are real with ε1 ≥ ε2,
the region collapses to a real interval, whose
endpoints are known as the Hashin–Shtrikman
bounds. We remark that higher–order correlation
information can be conveniently incorporated by
iterating (13).

4.2.2 Inverse Homogenization

It has been shown that the spectral measure µ,
which contains all geometrical information about
a composite, can be uniquely reconstructed if
measurements of the effective permittivity ε∗ are
available on an arc in the complex s−plane. If
the component parameters depend on frequency
ω (not to be confused with realizations of the ran-
dom medium above), variation of ω in an interval
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Figure 7: Realizations of the two dimensional lattice percolation model are shown in (a) and (b), and the

corresponding spectral functions (averaged over 5000 random realizations) are shown in (c) and (d). In (c),

there is a spectral gap around λ = 1, indicating the lack of long-range order or connectedness. The gap collapses

in (d) when the percolation threshold of p = pc = 0.5 has been reached, and the system exhibits long-range

connectedness. Note the difference in vertical scale in the graphs in (c) and (d).

(ω1, ω2) gives the required data. Reconstructing
µ can be reduced to an inverse potential problem.
Indeed, F (s) admits a representation through a
logarithmic potential Φ of the measure µ,

F (s) =
∂Φ

∂s
, Φ(s) =

∫ 1

0

ln |s− z| dµ(z), (16)

where ∂/∂s = (∂/∂x − i ∂/∂y) The potential Φ
solves the Poisson equation ∆Φ = −ρ, where ρ(z)
is a density on [0, 1]. A solution to the forward
problem is given by the Newtonian potential with
µ(dz) = ρ(z)dz. The inverse problem is to find
ρ(z) (or µ) given values of Φ, ∂Φ /∂n, or ∇Φ.

The inverse problem is extremely ill-posed and
requires regularization to develop a stable numer-
ical algorithm.

When frequency ω varies across the interval
(ω1, ω2), the complex parameter s traces an arc C
in the s-plane. Let A be the integral operator in

(16), Aµ = ∂
∂s

∫ 1

0
ln |s−λ| dµ(λ), mapping the set

of measures M[0, 1] on the unit interval onto the
set of derivatives of complex potentials defined
on a curve C. To construct the solution we con-
sider the problem of minimizing ‖Aµ− F ‖2 over
µ ∈ M, where ‖·‖ is the L2(C)−norm, F (s) is the
the measured data, and s ∈ C. The solution does
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Figure 8: (a) Shading shows the solution to Laplace’s equation within the Antarctic MIZ (ψ) on 26 August

2010, and black curves show MIZ width measurements following the gradient of ψ (only a subset shown for

clarity). (b) Same as (a), but for the Arctic MIZ on 29 August 2010. (c) Width of the July-September MIZ

for 1979-2011 (red curve). Percentiles of daily MIZ widths are shaded dark gray (25th to 75th) and light gray

(10th to 90th). Results are based on analysis of satellite-derived sea ice concentrations from the National Snow

and Ice Data Center.

not depend continuously on the data, and regu-
larization based on constrained minimization is
needed. Instead of minimizing ‖Aµ − F ‖2 over
all functions in M, it is performed over a con-
vex subset satisfying J(µ) ≤ β, for a stabilizing
functional J(µ) and some β > 0. The advantage

of using quadratic J(µ) = ‖Lµ‖2, is the linearity
of the corresponding Euler equation resulting in
efficiency of the numerical schemes. However, the
reconstructed solution necessarily possesses a cer-
tain smoothness. Nonquadratic stabilization im-
poses constraints on the variation of the solution.
The total variation penalization, as well as a non-
negativity constraint, does not imply smoothness,
permitting more general recovery, including the
important Dirac measures.

We have also solved exactly a reduced inverse
spectral problem by bounding the volume frac-
tion of the constituents, an inclusion separation
parameter q, and the spectral gap of Γχ1. We de-
veloped an algorithm based on the Möbius trans-
formation structure of the forward bounds whose
output is a set of algebraic curves in parameter
space bounding regions of admissible parameter
values. These results advance the development of
techniques for characterizing the microstructure
of composite materials, and have been applied to

sea ice to demonstrate electromagnetically that
the brine inclusion separations vanish as the per-
colation threshold is approached.

5 Geometry of the Marginal Ice Zone

Dense pack ice transitions to open ocean over a
region of broken ice termed the marginal ice zone
(MIZ)—a highly dynamic region where the ice
cover lies close to an open ocean boundary and
intense atmosphere–ice–ocean interactions take
place. The width of the MIZ is a fundamen-
tal length scale for polar dynamics in part be-
cause it represents the distance over which ocean
waves and swell penetrate into the sea ice cover.
Wave penetration can break a smooth ice layer
into floes, meaning the MIZ acts as a buffer zone
that protects the stable morphology of the inner
ice. Waves also promote the formation of pancake
ice, as shown in Figure 4. Moreover, the width of
the MIZ is an important spatial dimension of the
marine polar habitat and impacts human accessi-
bility to high latitudes. Using a conformal map-
ping method to quantify MIZ width (see below),
a dramatic 39% widening of the summer Arctic
MIZ, based on three decades of satellite–derived
data (1979-2012), was reported.
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Figure 9: (a) Area–perimeter data for 5,269 Arctic melt ponds, plotted on logarithmic scales. The slope

transitions from about 1 to 2 at a critical length scale of around 100 square meters. (b) Melt pond fractal

dimension D as a function of area A, computed from the data in (a), showing the transition to complex ponds

with increasing length scale. Ponds corresponding to the three red stars in (a), from left to right, are shown in

(c), (d), and (e), respectively. The transitional pond in (d) has horizontal scale of about 30 m.

Challenges associated with objective measure-
ment of the MIZ width include the MIZ shape,
which is in general not geodesically convex, as
illustrated by the example shaded white in Fig-
ure 8 (a). Sea ice concentration (c) is used
here to define the MIZ as a body of marginal
ice (0.15 ≤ c ≤ 0.80) adjoining both pack ice
(c > 0.80) and sparse ice (c < 0.15). To define an
objective MIZ width applicable to such shapes, an
idealized sea ice concentration field ψ(x, y) satis-
fying Laplace’s equation within the MIZ,

∇2ψ = 0, (17)

was introduced. We use (x, y) to denote a point in
two dimensional space, and it is understood that
we are working on the spherical Earth. Bound-
ary conditions for (17) are ψ = 0.15 where MIZ
borders a sparse ice region and ψ = 0.80 where
the MIZ borders a pack ice region. The solutions
to (17) for the examples in Figure 8 (a) and (b)
are illustrated by color shading. Any curve γ or-
thogonal to the level curves of ψ and connecting
two points on the MIZ perimeter (a black field
line through the gradient field ∇ψ as in Figure
8 (b)) is contained in the MIZ, and its length
provides an objective measure of MIZ width (`).
Defined in this way, ` is a function of distance
along the MIZ perimeter (s) from an arbitrary
starting point, and this dependence is denoted
` = `(s). Analogous applications of Laplace’s
equation have been introduced in medical imag-
ing to measure the width or thickness of human
organs.

Derivatives in (17) were numerically approx-
imated using second-order finite differences, and
solutions were obtained in the data’s native stere-
ographic projection since solutions of Laplace’s
equation are invariant under conformal mapping.
For a given day and MIZ, a summary measure of
MIZ width (w) can be defined by averaging ` with
respect to distance along the MIZ perimeter:

w =
1

LM

∫

M

`(s) ds, (18)

where M is the closed curve defining the MIZ
perimeter and LM is the length of M . Averaging
w over July-September of each available year re-
veals the dramatic widening of the summer MIZ,
as illustrated in Figure 8 (c).

6 Geometry of Arctic Melt Ponds

From the first appearance of visible pools of wa-
ter, often in early June, the area fraction φ of sea
ice covered by melt ponds can increase rapidly to
over 70% in just a few days. Moreover, the accu-
mulation of water at the surface dramatically low-
ers the albedo where the ponds form. There is a
corresponding critical drop-off in average albedo.
The resulting increase in solar absorption in the
ice and upper ocean accelerates melting, possibly
triggering ice-albedo feedback. Similarly, an in-
crease in open water fraction lowers albedo, thus
increasing solar absorption and subsequent melt-
ing. The spatial coverage and distribution of melt
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(a) (b) (c)

(d) (e) (f )

Figure 10: Evolution of melt pond connectivity and color coded connected components. (a) disconnected ponds,

(b) transitional ponds, (c) fully connected melt ponds. The bottom row shows the color coded connected

components for the corresponding image above: (d) no single color spans the image, (e) the red phase just

spans the image, (f) the connected red phase dominates the image. The scale bars represent 200 meters for (a)

and (b), and 35 meters for (c).

ponds on the surface of ice floes and the open wa-
ter between the floes thus exerts primary control
of ice pack albedo and the partitioning of solar
energy in the ice-ocean system. Given the criti-
cal role of ice-albedo feedback in the recent losses
of Arctic sea ice, ice pack albedo and the forma-
tion and evolution of melt ponds are of significant
interest in climate modeling.

While melt ponds form a key component of the
Arctic marine environment, comprehensive obser-
vations or theories of their formation, coverage,
and evolution remain relatively sparse. Available
observations of melt ponds show that their areal
coverage is highly variable, particularly for first
year ice early in the melt season, with rates of
change as high as 35% per day. Such variabil-
ity, as well as the influence of many competing
factors controlling melt pond and ice floe evolu-
tion, makes the incorporation of realistic treat-
ments of albedo into climate models quite chal-
lenging. Small and medium scale models of melt
ponds which include some of these mechanisms
have been developed, and melt pond parameteri-
zations are being incorporated into global climate
models.

The surface of an ice floe is viewed here as a two

phase composite of dark melt ponds and white
snow or ice. The onset of ponding and the rapid
increase in coverage beyond the initial thresh-
old is similar to critical phenomena in statistical
physics and composite materials. It is natural,
therefore, to ask if the evolution of melt pond ge-
ometry exhibits universal characteristics that do
not necessarily depend on the details of the driv-
ing mechanisms in numerical melt pond models.
Fundamentally, the melting of Arctic sea ice is a
phase transition phenomenon, where a solid turns
to liquid, albeit on large regional scales and over
a period of time which depends on environmen-
tal forcing and other factors. We thus look for
features of melt pond evolution that are mathe-
matically analogous to related phenomena in the
theories of phase transitions and composite mate-
rials. As a first step in this direction, we consider
the evolution of geometric complexity of Arctic
melt ponds.

By analyzing area−perimeter data from hun-
dreds of thousands of melt ponds, we have dis-
covered an unexpected separation of scales, where
the pond fractal dimension D exhibits a transi-
tion from 1 to 2 around a critical length scale
of 100 square meters in area, as shown in Fig-
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ure 9. Small ponds with simple boundaries co-
alesce or percolate to form larger connected re-
gions. Pond complexity increases rapidly through
the transition region and reaches a maximum for
ponds larger than 1000 m2 whose boundaries re-
semble space filling curves with D ≈ 2. These
configurations affect the complex radiation fields
under melting sea ice, the heat balance of sea
ice and the upper ocean, under-ice phytoplankton
blooms, biological productivity, and biogeochem-
ical processes.

Melt pond evolution also appears to exhibit
a percolation threshold, where one phase in a
composite becomes connected on macroscopic
scales as some parameter exceeds a critical value.
An important example of this phenomenon in
the microphysics of sea ice (discussed above),
which is fundamental to the process of melt pond
drainage, is the percolation transition exhibited
by the brine phase in sea ice, or the rule of fives

discussed in section 4.1. When the brine volume
fraction of columnar sea ice exceeds about 5%, the
brine phase becomes macroscopically connected
so that fluid pathways allow flow through the
porous microstructure of the ice. Similarly, even
casual inspection of the aerial photos in Figure
10, shows that the melt pond phase of sea ice
undergoes a percolation transition where discon-
nected ponds evolve into much larger scale con-
nected structures with complex boundaries. Con-
nectivity of melt ponds promotes further melting
and break-up of floes, as well as horizontal trans-
port of meltwater and drainage through cracks,
leads, and seal holes.
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