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1 Basic Relations

Nearly all of the salt in sea ice exists in brine inclusions, yet measuremens of sea ice salinity
are practical only for the bulk material (the ice and brine combined). Further assuming the
ice and brine are in thermodynamic equilibrium, the brine salinity Sbr and temperature T
follow the liquidus relation

Sbr = −21.4T − 0.886T 2
− 0.0170T 3 (1)

for a third-order fit to labratory experimental data (Notz and Worster, 2009) with temper-
ature in Celsius.

Because the salt trapped in the ice crystal is negligible, the bulk salinity S can be related to
the brine salinity by the brine mass fraction φm:

S = φmSbr. (2)

The brine mass fraction φm is related to the brine volume fraction φ by:

φm =
ρbr

ρm

φ (3)

where ρbr is the brine density and ρm is the density of the combined ice and brine. The
densities are related by volume weighting:

ρm = ρi(1 − φ) + ρbrφ (4)

where ρi is the ice density. We assume there are no bubbles in the ice, so the porosity is
equal to the brine volume fraction.

It is instructive to consider mass conservation to gain an appreciation for the conservation
laws of sea ice (although we don’t actually need the equation). The mass tendency is equal
to the mass flux through the boundaries:

d

dt

∫

V

ρmdV = −

∫

S

φρbrubr · n dS (5)

where ubr is the brine velocity in brine channels. With Gauss’ theorem:

d

dt

∫

V

ρmdV = −

∫

V

∇ · (φρbrubr)dV. (6)
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Eliminating the integrals and substituting from Eq. 4 gives
(

ρi

ρbr

− 1

)

∂φ

∂t
+ ∇ · (φubr) = 0. (7)

2 Governing Equations

A thermo and haline model of sea ice is governed by three equations: The first law of
thermodynamics, the Stefan condition for phase change at the top and bottom surfaces, and
conservation of salt. The enthalpy of sea ice is

qm = qi(1 − φ) + qbrφ (8)

where qi and qbr are the volumetric specific enthalpies of ice and brine, resp. The first law is
thus written:

∂qm

∂t
+ ∇(ubrφqbr) = ∇(km∇T ) + R (9)

where the second term captures heat transported in the brine channels due to brine flow,
the third term is the diffusion of heat, and the fourth term R represents the absorption
of shortwave radiation. The thermal conductivity for the combined ice and brine km =
ki(1 − φ) + kbrφ, where ki and kbr are the conductivities of ice and brine, resp.

For a moving boundary model, such as the one developed here, an equation describing phase
change at the top and bottom surfaces of the ice is needed:

qm

dh

dt
=

∑

F (10)

where h is the ice thickness and F is the net flux into the top and bottom surfaces, including
the conductive heat flux into the ice.

Finally conservation of salt is

∂S

∂t
+ ∇ (ubrφSbr) = ∇ (φDmol∇Sbr) (11)

where the second term captures salt transport in the brine channels due to brine flow and the
third term is the diffusion of salt. The molecular diffusion of salt Dmol = 6.8× 10−10 m2 s−1

is within the brine.

3 More on Sea Ice Enthalpy

The volumetric specific enthalpies of ice and brine are written

qi = −Lo +

∫ T

To

ci(T
′)dT ′ (12)

and

qbr =

∫ T

To

cbr(T
′)dT ′ (13)
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in terms of volumetric specific heat capacities of ice ci and brine cbr, the (constant) volumetric
latent heat of fusion of fresh ice Lo = 306 MJ m−3, and a reference temperature To.

With Eqs 12 and 13, the sea ice enthalpy is

qm = −(1 − φ)Lo +

∫ T

To

cidT ′ + φ

∫ T

To

(cbr − ci)dT ′. (14)

The last term is small so we neglect it and ci is nearly constant so we let ci = 2.054 MJ m−3 K−1

to arrive at the sea ice enthalpy used in our model

qm ≈ ci(T − To) − (1 − φ)Lo. (15)

4 Comparison with Energy-Conserving Thermodynam-

ics of Bitz and Lipscomb (1999)

Bitz and Lipscomb (1999, henceforth BL99) used nearly the same equation for sea ice en-
thalpy as Eq. 15 in their model, but they derived it by first formulating an effective heat
capacity for sea ice. BL99 assumed a steady bulk salinity profile in the ice and no brine flow,
so they could write Eq. 9 as

∂q∗

∂t
= ceff

∂T

∂t
= ∇(keff∇T ) + R. (16)

They used the derivation of the heat capacity for sea ice by Ono (1967) to write the effective
heat capacity

ceff = ci +
µLoS

T 2
, (17)

by assuming a linearized liquidus relation Sbr = −T/µ with µ = 0.054 from Assur (1958).
They used an empirical fit for keff in Eq. 16 from Untersteiner (1964), which is similar but
not exactly equal to km.

BL99 then derived q∗ by integrating the effective heat capacity with respect to temperature
from a given temperature to the melting point of sea ice Tm = −µS (also the liquidus
temperature, but for the bulk salinity):

q∗ = ci(T − Tm) − L

(

1 +
µS

T

)

. (18)

BL99 actually had a minus sign in their expression (fine since enthalpy is a relative quantity),
which they termed the “energy of melting”. Equation 18 is equivalent to Eq. 15 provided
To = Tm, assuming a linear liquidus relation, and neglecting the difference between φ and
φm (i.e., φ ≈ −µS/T , Untersteiner, 1961).

Thus BL99 developed a thermodynamic model approriate for their assumption of a steady
salinity profile. Modifications are necessary when salinity is prognostic because

∂qm

∂t
=

∂qm

∂T

∂T

∂t
+

∂qm

∂S

∂S

∂t
. (19)
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Plus it important to include the heat transport by brine flow in the first law, as shown in
Eq. 9 (will need to test though) and accuracy is improved from using the cubic liquidus
relation. (A linear liquidus relationship gives melting temperatures only accurate to about
50% between -20 and 0◦C, personal comm. Dirk Notz, 6 Mar, 2009, as shown in his thesis).

5 Mechanisms that influence salinity

Salt is captured in sea ice upon growth. Recent theoretical, experimental, and field evidence
of this process by Notz et al. (2005) showed that the bulk salinity is continuous across an
advancing ice-ocean front during growth, and hence salt is not immediately expelled during
growth. Instead the primary means of desalination are gravity drainage during the cold
season and flushing from surface meltwater during the warm season (Notz and Worster,
2009). Gravity drainage is buoyancy-driven convection in sea ice brine channels (see, e.g.,
Wettlaufer et al., 1997) that results from persistent heat loss through the top surface. The
temperature gradient in the ice produces higher brine salinities near the top surface and
thus an unstable density profile (the density at subfreezing temperatures is dominated by
salinity). Flushing is driven by the pressure head caused by meltwater pooling at the top
surface (Untersteiner, 1968).

There are two additional minor means of desalination. The first is the expulsion of brine
from internal pressure that builds-up upon freezing (owing to the lower density of ice than
brine). The second is brine pocket migration, which is caused by the molecular diffusion of
salt. The magnitude of each desalination process is described, estimated, and discussed by
Notz and Worster (2009) and references therein.

6 Parameterizations for a one-dimensional model

Several recent papers formulate two-dimensional sea ice models that treat fluid motion ex-
plicitly (Oertling and Watts, 2004; Petrich et al., 2006), which requires momentum equations
in two dimensions and a resolution finer than 1 mm. This kind of resolution is unrealistic for
a climate model, especially in the horizontal. Therefore, we must model salinity as a one-
dimensional process (within each category of the ice-thickness distribution). Eicken et al.
(2002) found that during early melt pond formation, meltwater is mostly lost through lateral
transport, rather than percolation through the ice. Pond levels usually rapidly adjust to the
sea surface. Notz and Worster (2006) and Notz and Worster (2009) argue that the lateral
flushing results in little desalination and therefore it is possible to treat desalination from
flusing in one-dimensional. A similar argument can be made for brine drainage. In addition,
the permeability, a measure of the effective pore channel area, has been shown to be much
greater in the vertical than in the horizontal (Golden et al., 2007).
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6.1 Brine Drainage

The product of brine velocity and brine salinity that appears in the transport term in the
salt conservation equation can be partitioned into slow and fast processes using Reynold’s
averaging. The vertical velocity component can then be written:

wbr(z, t) = w̄br(z, t) + w′(z, t) (20)

where z is positive downward and the horizontal and ice-thickness category dependences are
supressed. The overbar denotes a moving average over time:

w̄br(z, t) =
1

τ

∫ τ

0

w(z, t + t′)dt′ (21)

where τ is long compared to the timescale of eddy motions but comparable or shorter than
the model timestep, which is an hour. (?) We can think of the basic state flow w̄br(z, t) as
representing flow from flushing and expulsion and the average influence of eddies. The eddy
component is the anomaly from the basic state. The same expansion can be done for Sbr

and the average of their product gives a basic state and eddy flux:

wbrSbr = w̄brS̄br + w′

brS
′

br (22)

assuming no correlation between eddies and basic state components.

The eddy salinity component can be approximated from mixing length theory:

S ′

br = −ξ
∂S̄br

∂z
(23)

where a parcel moving in an eddy will maintain the salinity of the base state at a given
point over a distance known as the mixing length ξ before mixing with its environment. The
downward brine volume flux by eddies is taken as a Darcy law for flow through a porous
material

w′ =
Π

η

(

−
∂p′

∂z
− ρ′

brg

)

(24)

where Π is the permeability to vertical flows (discussed later), η is the dynamic viscosity,
p′ and ρ′

br are the eddy’s pressure and density, and g is the downward acceleration due to
gravity (used for sea ice before by Feltham et al. 2002). The downward flow speed of the
brine within channel is w′

br = w′/φ. If we assume the pressure gradient of eddies in Eq. 24
is hydrostatic and eddies adjusts freely to their surroundings, then

∂p′

∂z
=

∂p̄

∂z
= −gρ̄br (25)

and

w′

br =
Πg

φ̄η
(ρ̄br − ρ′

br) =
Πgβ

φ̄η
(S̄br − S ′

br) (26)

where β = ∂ρ/∂S is the salinity expansion coefficient.
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Thus Reynold’s averaging, mixing length theory, and Darcy’s law allow us to write the eddy
flux convergence as another diffusion term:

∂

∂z

(

φ̄ w′

brS
′

br

)

= −
∂

∂z

(

Ded

∂S̄br

∂z

)

(27)

where the eddy diffusivity is

Ded = −φ̄w′

brξ =
Π(φ(z))gβ(h − z)

η
R(Sbr(z) − S̄ocn), (28)

with the ramp function R(x) equal to x for positive x and zero otherwise. Here we have
assumed that eddies mix ocean water up to level z and thus the mixing length ξ is the
distance between level z and the bottom of the ice. This diffusivity is equal to the Rayleigh
number Ra for sea ice given by Notz and Worster (2009) multiplied by the thermal diffusivity
at a level z, except Notz and Worster let the permeability equal the minimum permeability
between z and the bottom of the ice. (I think we should do this too.)

Finally we can write salt conservation in one dimension as

∂S̄

∂t
+

∂

∂z

(

S̄w̄br

)

=
∂

∂z

(

(φ̄Dmol + Ded)
∂S̄br

∂z

)

. (29)

It is convenient to transform to a normalized coordinate z̃ = (z−zt)/h with h = zb −zt (see,
Taylor and Feltham, 2004; Huwald et al., 2005) to incorporate the effect of growth and melt
on the salinity in terms of a normalized speed of the moving boundaries:

ω̃ =
1 − z̃

h

dzt

dt
−

z̃

h

dzb

dt
. (30)

Salt conservation can thus be written:

∂(hS̄)

∂t
+

∂

∂z̃

(

hS̄(ω̃ + w̃br)
)

=
∂

∂z̃

(

φ̄Dmol + Ded

h

∂S̄br

∂z̃

)

, (31)

where w̃br = w̄br/h. It is also convenient to define an effective salt flow that results molecular
diffusion

W̃ = −
ρmDmol

ρbrS̄brh2

∂S̄br

∂z̃
(32)

and substituting for φ̄ from Eqs. 2 and 3:

∂(hS̄)

∂t
+

∂

∂z̃

(

hS̄(W̃ + ω̃ + w̃br)
)

=
∂

∂z̃

(

Ded

h

∂S̄br

∂z̃

)

. (33)

Eddies influence heat transport as well as salt transport and thus we also Reynold’s average
the first law of thermodynamics. It is first helpful to rewrite the heat transport in brine
channels using the linear liquidus relations as (is this decent?)

cbr∇(ubrφT ) ≈ µcbr

ρm

ρbr

∇(ubrφSbr). (34)

Thus

∂(hq̄)

∂t
+

∂(hq̄ω̃)

∂z̃
+ µcbr

ρm

ρbr

∂

∂z̃

(

hS̄w̃br −
Ded

h

∂S̄br

∂z̃

)

=
∂

∂z̃

(

km

h

∂(hT̄ )

∂z̃

)

+ R (35)

6



6.2 Flushing

When meltwater pools on sea ice, the meltwater may percolate through the ice and flush
out brine. As already explained, the level of meltwater is rarely above the sea surface and
therefore the rate of drainage must equal the change in freeboard:

w̄br = −
1

φ̄

ρx

ρbr

R

(

−
dhx

dt

)

. (36)

where the x indicates either snow or ice, whichever is melting. The flushing rate is assumed
to be zero, however, if the porosity is below 5% at any level in the ice.

6.3 Permeability

A number of relations have been used to relate the permeability to porosity. Currently I am
using the formula given by Freitag

Π = 10−17(103φ)3.1 (37)

in m2. But I plan to investigate the model sensitivity to this assumtion.

7 Numerical solutions

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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