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Abstract

The paper deals with the eigenvalue statistics of n X n random
Hermitian matrices as n — oo. We consider a certain class of unitary
invariant matrix probability distributions which have been actively
studied in recent years in the quantum field theory (QFT). These en-
sembles are natural extensions of the archetype Gaussian ensemble
well known and widely studied in the field called random matrix the-
ory (RMT) and having applications in a number of areas of physics
and mathematics. Our goal is to analyze the QFT motivated matrix
ensembles from the point of view of the RMT. We consider the nor-
malized counting functions of matrix eigenvalues (NCF'), discuss the
RMT content of various physical results (limiting form of the NCF,
the eigenvalue spacing distribution, etc.), present rigorous versions
and extensions some of them and other rigorous results, and discuss
open mathematical problems, conjectures, and links with other areas.

1 Introduction

In recent years there has been considerable progress in describing impor-
tant aspects of low—dimensional bosonic string theory and two-dimensional



quantum gravity by matrix models (see e.g. recent review [1] and references
therein). A number of deep links of these models with integrable systems,
topological quantum field theory, spectral theory, algebraic geometry and
other fields of theoretical physics and mathematics was found and studied.

The majority of these results came from the analysis of various integrals
over the probability measure

po(M)dM = Z  exp {—nTrV (M)} dM (1.1)

defined on the space of n x n Hermitian matrices M. Here Z, is the nor-
malization factor, V(A), A € R, is a real valued, bounded below and growing
fastly enough at infinity function (an even polynomial in the quantum field

theory (QFT) studies) and

k=1 k<j

is the “Lebesgue” measure for the Hermitian matrices. Thus
pu(M) = Z exp {—nTrV (M)} (1.3)

is the density of probability distribution (1.1) with respect to measure (1.2).
In this paper we are going to discuss several questions concerning the
eigenvalues statistics of the random matrix ensembles defined by (1.1) and
(1.2). These questions belong to the more traditional part of random matrix
theory (RMT), whose modern history was initiated by Winger’s works in the
fifties (see their reprints and a discussion in [2]), was motivated by nuclear
physics and has been actively developing since that time (see review works
[3]-[5] for results and references). Subsequent rather strong motivations were
provided by quantum chaology and condensed matter theory (see reviews [6]
and [7] respectively). The range of problems and results of this part of
the RMT is also rather broad but there is a quantity that is of considerable
interest for a wide variety of studies. This is the normalized counting measure

(NCM)
N.(A) = {MV e A} 0! (1.4)

of eigenvalues

AW <A < <A (1.5)



of a random matrix M and A = (a, b) is an interval of the real axis. In
particular, we will be interested in the expectation value

E{N,(A)} (1.6)
of N,(A), in its variance
D, = E{NX(A)} — E*{N,(A)} , (1.7)
and in the probability
R.(A) = Pr{N,(A) =0} (1.8)

that a given interval A does not contain eigenvalues. In (1.6)—(1.8) the
expectation and the probability are determined by distribution (1.1)—(1.2).

These problems have been studied rather completely for the archetype
Gaussian case
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(see reviews [3]-[6]). In this paper we are going to discuss results that were
recently obtained for other (mostly polynomial) forms of V() in (1.3). Fol-
lowing the QFT terminology we will call V(A) the potential. Thus we
view the QFT motivated ensembles (1.1)—(1.2) as a natural generalization
of the Gaussian ensemble (1.9). All these ensembles share with the Gaus-
sian one the property to be invariant under the unitary transformations
M — UMU*, YU € U(n), and we will call them the unitary ensembles
(UE).

According to the simple theorem [2], which is a matrix analog of the
Maxwell theorem for random vectors, an UE is the Gaussian unitary ensem-
ble (GUE) if and only if all the functionally independent matrix elements
{M;;, 1 <3 <k <n} are independent random variables. Thus from the
probabilistic and spectral points of view unitary ensembles allow us to study
manifestations of statistical dependency (correlations) of matrix elements on
spectral properties of random matrices. It is easy to find that most general
unitary invariant probability distribution density is given by an arbitrary
nonnegative and integrable with respect to dM function g,(A; ... \,), while
in (1.3) the role of g, plays the product

V(A) (1.9)

gn(A1.. ) = ﬁexp{—nV()\Z)}. (1.10)

=1
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Nevertheless, as we shall see this seemingly rather special form of the en-
semble probability density provides a wide variety of problems and results
that have no analogues in the Gaussian case and widens considerably the
frameworks of the RMT and its areas of applications.

Since we are interested in spectral properties of random matrices we
have to express probability distribution (1.1)-(1.2) of the collection M =
{M;, 1 <j <k <n} of functionally independent entries via the collection

A=A < <A} (1.11)

of eigenvalues and
n
!

v, = {¢;n) = ( §7)7"'7 ¢£7)) , Yu = 0} _ (1.12)

of orthonormal eigenvectors of a Hermitian matrix M. These two collections
provide two parametrizations of M. They are related by the spectral theorem

My =3 Al (1.13)
=1

which can be viewed as the change of variable formula. The respective Jaco-
bian J (A, W) is known since the prewar time (see [8]):

J (A, ¥) = const A* (A, (1.14)

where

AR =TT - A (1.15)

J<R
Thus the distribution (1.1)—(1.2) expressed via (A, ¥) has the form

(%, 0) = (Z,)" exp{—nzn:V()\l)}Az (R) dAdW¥ (1.16)

where dA = []7 d\; and d¥ is the Haar measure on U(n). Formula (1.16)
shows that eigenvalues and eigenvectors of random matrix ensembles (1.1)-
(1.2) are statistically independent and that eigenvectors are always distributed
“uniformly” over the part of the unitary group specified by (1.12). The latter
property is a consequence of the unitary invariance of distribution (1.1)—(1.2).



We will be interested in probability properties of eigenvalues of random
matrices, more precisely, in the normalized counting measure (1.4). Thus it
suffices to know only the probability distribution of eigenvalues. The latter
can be easily obtained from (1.16) because the integration over the “angle”
variables (1.12) will not change A-dependence of (1.16), contributing only
to the normalization constant. But before to write explicitly the eigenvalue
distribution we will take into account that (1.4) and (1.16) can be easily
extended from the part of R™ specified by the r.h.s. of (1.11) onto the whole
R™ as symmetric functions. This allows us to consider in what follows the
unordered collection

A= {M7} (1.17)

of the random variables whose probability distribution has the form
Pn (N) dA (1.18)

with

pa(N) = Q;l exp{—ZV()\l)} A? (A) (1.19)

A=A, erm, da=]]dN, (1.20)
1

an/exp{—nZV(Al)}d/\ . (1.21)
in 1

In this paper we will be concerned with unitary invariant ensembles of the
Hermitian random matrices. The RMT deals also with two more invariant
ensembles that consist from real symmetric and quaternion-real matrices [3].
The role of unitary invariance plays invariance with respect to orthogonal and
symplectic transformations. One can easily write the orthogonal invariant
and the symplectic invariant analogues of distribution (1.1)—(1.2), i.e. define
the orthogonal and the symplectic ensembles (OE and SE). They will have
the same form as (1.1)-(1.2) provided that the volume element of dM of
respective matrix space is properly defined. Concerning these definitions we
refer the reader to the book [3], where the Gaussian cases (1.9) of these
ensembles (i.e. the GOE and the GSE) are considered in great detail, in
particular, the respective Jacobians are given. The latter result allows us to



write the eigenvalue probability density of the OE and the SE (cf. (1.19)-
(1.21)):

o) = @ exp{ =S VOW | ISP (122

where 3 is equal to 1 and 4 for the OE and the SE respectively. In these
notations the UE distribution density (1.18)—(1.21) is pn2. In physical ap-
plications [ is determined by symmetry of a system with respect to time
reversal and rotations and by total spin.

The paper is organized as follows. In Section 2 we consider the density
of states (DOS), more precisely, expectation (1.6) and variance (1.7) of the
counting measure (1.4) for any n-independent interval A. We prove that (1.6)
has an absolutely continuous limit N(A) as n — oo and we study property
of the limiting measure density p(A) known as the density of states:

lim B {N,(A)} = N(A):/p()\)d)\. (1.23)

n—00
A

The limiting measure N(A) is called the integrated density of states (IDS).

We also prove that variance (1.7) vanishes as n — oo and therefore the
counting measure itself converges in probability to the limit (1.23) of its
expectation. We discuss three approaches which allow us to see a number of
interesting properties of the DOS and various links of the RMT with other
branches of mathematics. In Section 3 we consider the asymptotic behavior
of probability (1.8) that a given interval of length O(1/n) is empty and we
discuss the universality conjecture of the RMT which implies in particular
that the leading term of this probability does not depend upon the form of
potential in (1.3) but is determined by the parameter 3 only.

We notice in conclusion that the considerable part of our paper is a review
of results obtained recently in the QFT for various particular classes of po-
tentials. Some of these results can be proven rigorously and for wider classes
of potentials. These results we formulate as theorems even in the cases when
their proofs are simple. This is done in order to make some mathematical
reference points in this branch of the RMT and to make the paper more
readable and accessible for the mathematically-oriented reader.



2 Density of States

2.1 Orthogonal Polynomials Approach.

Denote by P,gn)()\) , k=0,1,..., the system of polynomials that are orthog-
onal with respect to the weight

wy(A) = eV () (2.1)
so that
[ EONPE ()a()dA = b, (2.2
Iy

and let I/JI(CH)()\) , k=0,1,... be respective orthogonal system in Ly (R):

/;z;;” NdA = 8. (2.3)
4
Then, according to [3], the joint probability density (1.19) can be written as
pa(A) = (n!) ™" det b, (2.4)
= (n!)"" det k, (2.5)

where n x n matrices ¥,, and k,, are

’I’L

(n) ()\k)

n = S

Ji k=1

n (s Ak) (2.6)

Jy k=1
and

= S p ) 27)

This function is well known in classical analysis as the reproducing ker-
nel. The function [k,(\, A)]™" is known in the approximation theory as the
Christoffel function. We have

ko(A, 1) = ko (j1, A /k N k(v p)dy = koM, 1), (2.8)

/ka(A, w)drdy = n. (2.9)



By using these formulas it can be shown that the joint probability distribution
PO(A1, ..., \) of 1 < n eigenvalues is [3]
PO, ) = /pn()\l,...)\l, Mgty ) dAigr - dA, (2.10)
mn—i

{

=[n(n—1)...(n =1+ 1)] " det | k,(X;, \e) (2.11)

5 k=1

This formula allows us to rewrite the expectation (1.6) and the variance (1.7)
of the NCM (1.4) in terms of the orthogonal polynomials:

E{N,(A)} = A/pn (V) dA | (2.12)

pa(N) = pV(N) = K (A, ) (2.13)

Ko )= b, O ) = izw WP (@

D, {N, (A)} = %/p (3) d) — % [ B O ) dxdp (2.15)

Now we are able to formulate our first simple but important statement.

Theorem 2.1 Let an ensemble of n x n Hermitian matrices is defined by
distribution (1.2) and (1.3) in which V(X) is a real valued bounded below

function such that

V) > 2+, N>L, >0, L<oo. (2.16)

Then {
D{N,(A)} =0 (-) (2.17)

n

The proof of (2.17) follows immediately from (2.15).

The relation similar to (2.17) is also known in other branches of spec-
tral theory of random operators and in mathematical physics of disordered
systems [9]. This relation implies that the fluctuations of a corresponding
random spectral or physical characteristic vanish as n — oo (the large pa-
rameter n may have different origin and meaning). As for the existence of
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the limit of the expectation of a corresponding characteristic it usually re-
quires additional conditions and arguments. We begin the discussion of this
problem for the NCM (1.4) of ensembles (1.1)—(1.2) from the Gaussian case
(1.1). In this case polynomials (2.1) are

9 1/4
PI(”)(A):<—) Hl<)\ ). (2.18)

n

where H;(¢), [ =0,1,... are the Hermite polynomials that are orthogonal
with the weight e=¢". By using (2.13) and (2.14) and the Plancherel-Rotah
asymptotic formula for the Hermite polynomials [10]

2 9 1/4 ‘ 1
=8 H,(6) = (crg) s @O +90) +0(5) . (219)
E=v/2l+1-cosf TS
[ — oo,
in 20 -
D(6)==—5——0, 7(6)=T(0)+ %ﬂ , (2.20)

we prove for the GUE (1.9) the result (1.23) in which

o) = — VI w0 (2.21)

o *

Va =y/max(a, 0) .

This is the well known semicircle law of Wigner [3].
Unfortunately, rigorous asymptotic formulas for the orthogonal polyno-
mials specified by (2.1) and (2.2), where V()) is a general enough function,

and

are not know (see however physical papers [11, 12]). Thus we consider here
the case

_ e

«

V() (2.22)

where o > 1 is a real number. Respective asymptotic formulas were found

in [13] and [14]. They yield

pa(N) = a tv,(N/a), (2.23)



where

1
@ =9 / T dt (2.24)
a® =2« )
J V1 —t2
and )
o ldr
« TS5 |t| S 17
va(t) = — 0 VT2 =12 (2.25)
s
0, [t| > 1.

The function v, (%) is known in the theory of orthogonal polynomials as the

Ulman-Nevai density. It describes the so-called contracted zero distribution

of polynomials orthogonal on R with the weight exp {—Q(z)} where Q(x) is

an even nonnegative and smooth enough function that behaves as |z|* for
If & = 2p where p is a positive integer, then

Pa(A) = taca(A) Va? — A2, (2.26)

where t,_5(A) is a polynomial of degree & — 2 in A and a which is positive
for |A| < a. (2.26) is an analogue of the semicircle law for more general than
(1.9) monomial potential

A?P
)

We demonstrate now one more formula for the DOS. This formula uses
another asymptotic characteristic of orthogonal polynomials. Recall that an
arbitrary system of orthogonal polynomials Fj()), [=0,1,... satisfies the
second order finite-difference equations of the form [10]:

V() (2.27)

Tl_|_1P1+1()\) + T[Pl_l()\) = )\P[()\), ) Z 0, (228)

where

ra=0, m= /)\PJ(A)PZ_lw()\)d)\ > 0. (2.29)

In our case the weight (2.1) depends on n. Thus coefficients (2.29) are also
dependent on n: r = rl(n). The following theorem is a rigorous version of
one of the results of the seminal physical paper [15]. Our proof is based on

an idea different from that of [15].

10



Theorem 2.2 Letr,(z), 0<ax <1, bethe piece-wise linear function with
(n)

verticesr;’ atx = —, [=0,1,...n. Assume that
n
(7) sup rl(n) <(C < oo
0<i<n .
(22) there exists a piece-wise continuous function (2.30)
r(xz) such that uniformly in x € [0, 1]
lim r,(z) =r(z) . (2.31)
Then the DOS defined in (1.23) has the form
(2.32)

dx
Ry
’ X(/A) \Aar(x) — A2
where X(A) ={x €0, 1] : 2r(z) > A}.

Proof (scheme). We will use the Stieltjes transform of all measures in-
volved and some simple properties of the resolvent of the selfadjoint operator
J™ defined in I5(Z ) by (2.28). Recall that the Stieltjes transform f,(z) of

a nonnegative measure v(d\), v(R) =1 is defined as

fulz) = / I;(@ L Imz#0. (2.33)

f, is an analytic function for Im z # 0,
Im f(z)-Ima>0, Imz#0, (2.34)
supn|f (i) =1, (2.35)
nz1

and any function possessing these properties can be represented in the form
(2.33). f,(z) determines uniquely the measure v(d)). If A = (a, b) and «
and b are continuity points of v(d\), then

V(A) = lilm—/]m FOA+0)dA. (2.36)

a

11



Besides if {v,.} ~_, is a sequence of measures that converges weakly to a
measure v, then

77hlél_r)réo fon(2) = fu(2) (2.37)

uniformly on compact sets of {z: Im z # 0}. The converse statement is
also true. T £ (d)) = {£(dN)} "
selfadjoint operator J( defined by (2.28), i.e. by the semi-infinite Jacobi

matrix

o is the resolution of the identity of the

J!i?) = 7“1(97215“1,1 + T;@ﬁk—u ) (2.38)
then [16]
EM(dN) = M (AN (N)dA = D(N)dA | (2.39)
Thus we can rewrite (2.13) as
1 -1
pa(X) =~ 3 e (). (2.40)

This relation and the spectral theory for selfadjoint operators imply that the
Stieltjes transform f, (z) is

1 n—1 .
f() = =3 GV (2.41)
=0

where GV (2) = (J(”) - 2) " is the resolvent of J*. By using (2.38) and the

resolvent identity we can prove that f,, (z) differs by O ( ) from the

n|lm z|?
Stieltjes transform f,, (z) of the eigenvalue counting measure v, (d)) of the
(n) .(n) (n)

n X n Jacobi matrix defined by rg’, vy, ..., r, ;. Then we set n = pq, divide
the “interval” [0, n] on p subintervals of the length g each, and show by similar
arguments that f,, (z) differs by O ( !
n|lm z|?
Stieltjes transforms of the eigenvalue counting measures of the ¢ x ¢ “block”
Jacobi matrices defined by rggi_t, t=1,...,¢—1, s=0,1,...,p— 1.

) from the arithmetic mean of p

Then we choose p to be so large as to guarantee the inequality |r(z)—
g, |z —2a'| <p—1foragiven ¢ > 0 (see condition (zz) of theorem

»

allows us to replace rl(n) within the s-th “block” by the constant r (—) It

12



q is also large enough then the contribution of each block is close enough

s
to the Stieltjes transform f (r (—) ,Z) of the semi-infinite Jacobi matrix
P

J (r (i)), where J(r) is defined by (2.38) in which rl(n) = r. This means
1

that uniformly in z, [Im z| > g > 0 T}Lrgo for(2) = /f(r(a:),z)dx It is
0

easy to show that f(r, z) = (2% — 4r?)7'/2 where the branch of the square
root is defined by (2.34) and (2.35). The latter expression, (2.36) and (2.37)
imply (2.32).

Remark. Formula (2.32) illustrate the “slow varying” character of the
coefficients rl(m) of the second order finite-difference operator (2.38). Con-
cerning similar formulas for a wide variety of finite-difference and differential
operators see [17, 18].

Theorem 2.2 reduces the problem of the computing the DOS of the UE
(1.1)-1.2) to the proof of asymptotic relations given in its conditions (z) and
(12) just as the more general formula (2.13) reduces this problem to proof of
asymptotic formulas for the orthogonal polynomials (2.2). The next theorem
treats a simple case where conditions () and (i¢) of Theorem 2.2 can be
justified and the function r(z) defined in (2.31) can be found. This theorem
again is a rigorous version of some statement from [15].

Theorem 2.3 Assume that the potential V(X) in (1.1) is an even polynomial
with nonnegative coefficients. Then conditions (¢) and (i) of Theorem 2.2
are valid. In particular, there exists the even polynomial W(t) of the same
degree such that r(x) is a unique positive solution of the algebraic equation

x=W(r(z)). (2.42)

Proof. We consider the simplest nontrivial case when

2t
V(t) = g15 + Z , g1 >0 (2.43)
and we use the formula [15]
/ (n) ! ¢
rViy, (J0) = . (2.44)
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This formula is known now as the string (pre-string) equation [1] and can
be easily obtained by using integration by parts, the orthogonality property
of polynomials Pl(n)()\) and relations (2.29) and (2.38). By using (2.38) and

(2.44) we find the following recurrence relation

[
—= Ri[gi+ (R + R+ R), =R . (2.45)

Since g1 > 0, this relation immediately implies (2.30). Now, to prove (2.31)
we have to show that if

5" = R — RV

then

sup n|(5l(n)| < () < . (2.46)
o<i<n

Subtracting (2.45) from the same relation written for [ + 1 we find that 5l(n)
satisfies the linear equation

n n n n P n P n n 1
R+ )+ (200 2o = L
Iterating this equation we prove (2.31).

Thus the sequence {r,(xz)} _, defined in Theorem 2.2 is compact in
C10, 1] and in view of (2.45) any convergent sequence is a positive solution
of (2.45) in which

W = r? (gl + 31“2) ) (2.47)
Since g1 > 0, this equation has a unique positive solution. Theorem 2.3 is
proved.

Remark. According to [19], in the general polynomial case

W (r) = % : }fV’ (:c + 2—2) dz (2.48)

It is easy to see that for the monomial specified by (2.27) the latter formula
and general formula (2.32) imply (2.23)-(2.25) for o = 2p.

14



2.2 Integral Identity Approach

We outline here another method to compute the DOS (1.23). This method
was proposed in paper [15] and is applicable to polynomial potentials whose
coefficients can be negative. This method is based on the identity

E{$5(M) —ng(M)T'V'(M)B} =0 (2.49)
where ¢(M) is a differentiable scalar function of a matrix M,

dp(M) =lime™ [$(M + cB) — $(M)] , (2.50)

el0

and B is an arbitrary Hermitian matrix. Identity (2.49) can be obtained by
computing the derivative with respect to ¢ at ¢ = 0 of the e-independent
integral.

Zy = / e~ IVIM+B) (VT 1 BYAM | (2.51)

Applying (2.49) to

(M) = (=) = [(M —2)7] (2.52)
and choosing properly B we find the relation
E{g(2)} + V() E {ga(2)} + Qu(2) = 0 (2.53)
where
gn(2) =n"'Tr(M — 2)™!
and ]
Qul) = B Tr V(M) = V/()] (M = )7} (2.54)

(Qn(z) is a polynomial of degree 2p — 2 where 2p is the degree of V(z). It can
be written as

Qn(2) :/W E{N,(d\)} . (2.55)

Both formulas show that the coefficients of (),,(z) are linear combinations of
quantities (moments)

m{™ = / MNE{N,(d)\)} (2.56)

15



for l < p—2.

By using identity (2.49) in which ¢(M) is a properly chosen polynomial
of M}; we can prove that m?n) in (2.56) is bounded uniformly in n for [ > 2p.
Besides the general formula (2.11) imply that (cf(2.17))

E{lga(=) = E{gn} 17} < —

n|Im z|?
Therefore, standard compactness arguments imply that there exists a subse-
quence f, (z) of the sequence

(2.57)

fule) = Bga(e)} = [EURDL (2:59)

1

converging to a limit f(z) uniformly on compact sets of
Cy={z:4+Imz >0}, (2.59)

and corresponding subsequence K {Nn](z)} of measures converging weekly
to a limiting measure N(dA), such that

N(d\)

flz) = S Imz#0, (2.60)
P+ V() f(2)+ Q) =0, (2.61)

where
Q(z) = / w N(d)) . (2.62)

The quadratic equation (2.61) with V(z) = é corresponding to the Gaus-
sian case, i.e. to the semicircle law (2.21) for N(dA), was obtained for the first
time in [20] as an equation determining the Stieltjes transform of the IDS of
random matrices with independent or weakly dependent but not necessary
Gaussian distributed matrix elements.

According to (2.62) in the GUE case ) = 1 and equation (2.61) can
be easily solved in the class (2.34). In general case Q(z) is a nontrivial
polynomial whose coefficients are functionals of the IDS N(dA) (like the
Stieltjes transform f(z)) and all of them have to be found selfconsistently
from equations (2.60)-(2.62).

The next theorem demonstrates some properties of a solution of these
equations belonging to the class (2.34)-(2.35).

16



Theorem 2.4 Let V(A) in (1.1)-(1.2) be an even polynomial of degree 2p
with the real coefficients

P )\21
VI =X a5, %=1 (2.63)
=1
and f(z) be a solution of (2.60)-(2.62) satisfying (2.34)-(2.35). Then respec-
tive IDS N(dX) has the properties:
(i) N(dX) is absolutely continuous and its derivative p(x) (DOS) admits
the bound
pON) < 7 HQM[Y? (2.64)

(i1)  p(X) is a Holder continuous function;
(tii)  supp p(A) is a bounded set of R;
(tv)  p(A) satisfies the following singular integral equation:

A)dA
2][p)E _) o Vi), neo, o=supp p(A) (2.65)
Proof. Let us rewrite (2.61) as

flz) = - (2.66)

and denote R(z) = Re f(z), I(z) = Im f(z). According to (2.36)
p(\) =7 I(A+i0) >0, Ae&supp p (2.67)
if I(A) = I(X + 40) exists and is bounded. On the other hand, according to

(2.66)
Q(2)]
(2) = Hm V'(z)|
Since Im V'(A+:0) = 0, this inequality and (2.67) imply (2.64). Furthermore,
(2.66) yields for z = A 4 0

R QBEV) 19
f+ V)2 f+ V2

0 < 1) <17 < 7

(2.68)

17



The second relation implies that if A € supp p, then
Q)
|+ V2
It is easy to see that the converse statement is also true. Thus combining
(2.68) and (2.69) we obtain for A € supp p

V'Y
2 bl

(2.69)

R()) =

(2.70)

V2 (A
PO = QM) - B = Q) - (2.11)
Since V'(X) and () are polynomials of degrees 2p—1 and 2p—2 respectively,
it follows from (2.71) that supp p cannot be unbounded and that p(A) is a
Holder-continuous function. This allows us to use the classical Sokhotskii-
Plemelj formula [21] for the real part of the Cauchy integral and to present

(2.70) in the form (2.65). Theorem 2.4 is proved.

Remark. Relation (2.65) can be viewed as a singular integral equation
for the DOS p(A). This equation was considered for the first time by Wigner
[2][3] for the Gaussian case (2.9). Its general form (2.65) was introduced
in the important physical paper [22]. In both papers the authors used the
“steepest descent” arguments whose rigorous form was recently given in [23]
(see also Theorem 2.5) below.

In what follows we call supp p the spectrum. One of the important
implications of the above formulas is that they illustrate a property of the
spectrum which we have not seen before considering only potentials with
nonnegative coefficients. Namely, if some of the coefficients are negative, then
according to (2.62) Q(X) may be negative on some intervals and according to
(2.69)-(2.71) these intervals cannot belong to the spectrum. In other words,
the spectrum that corresponds to (2.63) with negative coeflicients may consist
of several intervals.

We demonstrate this property by using equation (2.65). Assume that
in (2.63) ¢¢ >0, [ =1,...p. Then Theorem 2.3 and Theorem 2.4 imply
that the spectrum is an interval (—a, a), a = 2r(1). According to [21], the
singular integral equation (2.65) with ¢ = (—a, a) has the unique bounded
solution

1 V() du
A) = — \/2—)\2f 2.72
oY) = o 1va ) 2.1

—a
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provided that
V'(p)dpe

In our case p(A) has also to satisfy the normalization condition

=0. (2.73)

/meA:1. (2.74)

[ea

Since V(A) defined in (2.63) is an even polynomial, condition (2.73) is trivial
and condition (2.74) determines the endpoints +a of the spectrum (—a, a).
It is easy to show that (2.72) and (2.73) are equivalent to (2.26), (2.32),
and (2.42). Consider now the case (2.43). Here the polynomial £3()\) in the
representation (2.26) is

2

I
:—(V+m+i

ta(N) o 5 ) . 3a*+4¢a* —16 =0 . (2.75)

We see that t3()) is strictly positive for [A| < a not only when ¢; > 0 but
also for g; > g£c) =-2. If g1 < g£c) then our one-interval ansatz (2.72) is
not correct and we have to try the two-interval ansatz, i.e. to assume that
o=(=b,—a)U(a,b), 0<a<b<oo. According to [21] in this case the

solution of the singular integral equation exists provided that

/EKQEEZ (2.76)

> VX(n)

where [ =0, 1 and X(\) = (b )‘2)(

The solution has the form

a?).
PN =5 /)V d“ (2.77)

o

The solvability condition (2.76) for [ = 0 is trivial because V'(y) is an odd
function and o is a symmetric set. The second condition (2.76) and the
normalization condition determines endpoints +a and +b.

Thus we have demonstrated a possibility for the DOS to have the support
consisting of several intervals provided that some coefficients of the potential
are negative and their magnitude is large enough.
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The two-interval formula (2.77) can also be obtained in the framework of
the approach based on a proper extension of (2.32) and on (2.44). In this
case, however, the latter approach is not unambiguous and requires additional
rigorous analysis [1], [24]. We can also tune the coefficient of the potential
to reach an “opposite” effect. Namely, it can be shown that if p in (2.63) is
an odd number then there exists a potential for which

pp(N) = ¢ (a = 22)" "2 (2.78)
Respective potentials [1]
L L 2p)(l—=1)!
Vo(A) =Y (=) 1 2P = DYy 2.79

are known as critical ones. They play the important role in constructing the
so-called “double-scaling limit” of the matrix models of QFT [1].

The results presented above were obtained from the integral equation
(2.65). One of the advantages of this approach is that for polynomial poten-
tials it provides a “closed form” of the DOS (cf. 2.26) and (2.77)

p(N) = taya() /X, (), Aeo (2.80)

2q
where X,(A) = J] |A — q;], and a;, j = 1,...,2q are the endpoints of the
j=1

spectrum o which consists of ¢ < p intervals. However, since the positivity
of the solution is not incorporated in a natural way in the theory of singular
integral equations, the procedure of the construction of (2.80) is partially
heuristic and does not result in general in the unique solution. Indeed it is
easy to check that if the potential is a polynomial of degree 6, then there
exists the one-parameter family of solutions (2.80) satisfying the normalizing
condition (2.74) and respective conditions having the form (2.76) with [ =
0,1,2. Thus, in the general case we have to take into account the imaginary
part of equation (2.61) as well (remember, that (2.65) is in fact the real part
of this equation). These questions require an additional study. We refer the
reader to the reviews [1, 24| for theoretical physics results and discussions.
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2.3 Statistical Mechanics Approach

This approach was introduced in the RMT by Wigner and Dyson (see [2, 3]).
It is based on the observation that the joint eigenvalue density (1.19) can be
written as the canonical Gibbs distribution

Py ) = Q exp {—nH, (\,..., \)} (2.81)
corresponding to a one-dimensional system of n “particles” with the Hamil-
tonian . |

Hy(Myeo ) =D V(A — = log(A — ) (2.82)

I=1 [y

at the temperature of n=!. The first term of the r.h.s. plays the role of the
energy of particles due to the external field V()X) and the second one plays
the role of the interaction (two-dimensional Coulomb) energy.

It is important that the Hamiltonian (2.82) contains explicitly the “num-
ber of particles” n. This allows us to regard (2.81) as an analogue of molecular
field models of statistical mechanics. This analogy was used in a number of
physical papers.

The rigorous treatment of the molecular field models of a rather general
form was given by several authors (see e.g. [25]). In particular, papers
[26, 27] contain the approach whose extension allows us to carry out a rigorous
analysis of Hamiltonian (2.82). The result of this analysis is as follows.

Theorem 2.5 Let an ensemble of random matrices be specified by (1.1)-
(1.2) where the function V() satisfies the condition of Theorem 2.1 and in
addition

|V()‘1) - V()‘Z)| < 00n5t|)‘1 - )\2|W ) |)‘1|7 |)\2| <L (2-83)

for some v >0 and L < oo. Then the normalized counting measure (1.4) of
this ensemble converges in probability to the nonrandom absolutely continuous
IDS N()X) whose density is uniquely determined by the conditions

p(A) =0, (2.84)

/QQMA=1, (2.85)



- /m A1 — Np(h)p(Ag)dAddg < oo | (2.86)

the function

u()) = /m A= N[p(\)dN — V(X) (2.87)
is bounded from above, and
supp p(A) C {)\ tu(A) = HI/\E,LXU()\/)} . (2.88)

Remarks. (i). The analogues of Theorem 2.5 for the orthogonal invariant
and symplectic ensembles (1.10) are also valid [23] if we introduce the factor
B in front of the integral of the r.h.s. of (2.87). The analogues of formula
(2.82) in these cases have the factor $ in front of the double sums, i.e. 3
plays the role of a coupling constant of the respective n-particle system.

(ii). Equation (2.88) is just the zero temperature case of the selfconsistent
equation for the particle density and well known in the molecular field theory.
Indeed, we have mentioned before that the large parameter n plays different
roles in formulas (2.81) and (2.82). In the former one n plays the role of
the inverse temperature while in the latter one the factor n=! allows us to
treat it as a molecular field type Hamiltonian. Thus, if the factor n in (2.81)
were replaced by the inverse temperature (k7')~!, then the arguments which
we used to prove Theorem 2.5 would lead to the standard molecular field
equation for the particle density

exp {=(kT) " u(N)}
[ exo{=(k1) " ul) } di

p(A) =

Now, if in this equation we perform the limiting transition 7' — 0 we obtain
(2.88).

Thus, from the statistical mechanics point of view, Theorem 2.5 asserts
that the zero temperature case of the molecular field equation for our model
can be obtained not only after subsequent limiting transitions n — oo and
then T — 0, but also as a result of simultaneous limiting transitions n —
oo, T'— 0, provided that the product nT" is fixed.

(iii). By the method of Theorem 2.5 one can also show that the ground
state energy of the statistical mechanics model, i.e. F = lim,_.,n ?InQ,
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has the following form:
E= B/1n|)\ NpWpON )X + [ pO0V()dA . (289)

where p(A) is given by Theorem 2.5. Moreover, in total agreement with
statistical mechanics, £/ can be obtained as the minimum value of the “elec-
trostatic” energy

E= m1n{——/ln|)\ N[v(d\)w +/V } (2.90)

of two dimensional (line) charges whose distribution on the real line is de-
scribed by the measure v(:), v(R) = 1. Then Theorem 2.5 implies that
under its conditions a minimizing measure has the density p()) satisfying
(2.84)—(2.88). This density is the unique solution of the extremum equation
of the variational problem

F / In|A = N[p(\)d(N) = V(A) + const , A E€supp p.  (2.91)
supp

If we differentiate (2.91) with respect to A, we obtain the singular integral
equation (2.65). However, now it is valid for any function V() satisfying
conditions of Theorem 2.5, while in Section 2.2 we proved this equation for
polynomial V’s. This equation has a simple electrostatic interpretation: it
is just the equilibrium condition for the continuously distributed charges of
strength 3'/2 subjected to the external electrostatic potential. (iv). Repeat-
ing almost literally the arguments which where used to prove Theorem 2.5
we can also prove analogous result for a more general ensemble of random
matrices with an unitary invariant density (cf.(1.10))

pa(M) = Z7 exp[=nVa(hay - M) | (2.92)
where the function V,, is
n n 1
i=1 k=2 ™" i1 F i R

with bounded, symmetric, and Holder continuous functions V¥, k=23, ...
satisfying the following condition. The functional
k

|
-3 E/V““)(Al, ) T e ds (2.94)
k=2 """

=1
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is convex in the space of smooth functions with compact supports.

Theorem 2.6 Let the ensemble of random matrices be specified by (2.92)
and (2.93) in which a real-valued function V() satisfies the condition (2.83).
Then the normalized eigenvalue counting measure corresponding to this en-
semble converges in probability to the nonrandom absolutely continuous IDS
whose density is uniquely determined by conditions (2.84), (2.86), and (2.88)

where now u(\) is

u()) = /ln A — N[p(\)dN — V(N)

=1
k=2 """ ;

and as before has to be bounded from above.

We mention here two examples where (2.94) is convex. The first one
corresponds to V) =0, k> 3, and V®()\;, \y) defining a positive operator
in the space Ly(—I, ), where [ is large enough. In particular, if F(\) € L1(R)
has a nonnegative Fourier transform, then we take V(Q)()\l, A2) = F(A1—Xq).

In the second example we take the sequence {V(k)}zo_:) to be a sequence

of moments of some random process £(A), A € R : VBN, ..., ) =
M), ... €Ak}, k = 2,3,... where the symbol M {...} denotes the

mathematical expectation with respect to this process. We assume that the

generating functional
M {eXp {/ f(A)c()\)d)\}}

exists for any smooth function ¢()\) with compact support.

The proof, discussion, and applications of Theorem 2.5 and Theorem 2.6
are given in [23]. In particular, Theorem 2.5 allows us to establish the unicity
of several-interval ansatzes for the solutio ns of (2.65) with polynomial Vs
which we discussed in Section 2.2 and extend the validity of (2.23) to the case
a € [0.1], which can not be treated by approaches discussed in the previous
sections. In the latter case p,(A) is unbounded at zero.
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2.4 Edge Behavior of the DOS
We start again from the GUE specified by (1.19) and (1.9). By using (2.61)

and the Plancherel-Rotah asymptotic formula for the Hermite polynomials
Hi(&), E=+V2l+1-chd, 0 < e < < oo, which differs from (2.20) by the

replacement sin with sh, we can derive the bound
pa(A) < Cin~texp {=Ca(e) - n (1A = 2)°} . (2.95)
This bound implies that
JLIEOP{HMHZZ—I'g}:O’ e=0 (2.96)

i.e. that maximum and minimum eigenvalues of the GUE matrices con-
verge in probability to the edges +2 of the DOS (2.21) support. Indeed,
the probability in the Lh.s. of (2.96) is equal to Pr{nN, (I.) > 1}, where
I. = R\ (=2 —¢,2+4¢). The latter probability in view of the Chebyshev

inequality does not exceed n/pn()\)d()\), or in view of (2.95)
I,

Pr{||Mn|| > 2+ ¢} < Cy(e)e= 2 (2.97)

This bound proves (2.96). Moreover, if we consider the infinite family Mg, j, k =
1,...,00, of the independent Gaussian variables defined on the same proba-
bility space and such that

E{M;:} =0, E{MjMy,} = 6;10km + 0;m0wn

then by using the Borel-Cantelli lemma and (2.97) we obtain that the num-
ber of eigenvalues of random matrix M, = {M]k}? w—; lying outside of the
interval |A| > 2 is bounded with probability 1 as n — oo.

Analogous results can be obtained for the ensembles specified by (2.22)
by using asymptotic formulas proven in [13, 14].

For the more general form of V(A) we only know that the probability
in the Lh.s. of (2.97) is exponentially small in n if ¢ is large enough [23].
Having established that p,()\) converges to a nonzero limit (2.21) for |A| < 2
and converges exponentially fast to zero for |A| > 2 it is natural to study the
“crossover” of these two asymptotic behaviors, i.e. to find a variable

t=rc,(A+2)n" (2.98)
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and a function A(t) such that

lim p,, (2 + (cl,n”)_lt) = A(t) (2.99)
and A(t) = (ZW)_I\/M (L+o(l)), t = —oo and A(¢) vanishes exponen-
tially fast as t — oo. In other words the asymptotic behavior of the crossover
function A(t) as t — +oo has to “match” the asymptotic form of p, () in
small (on the “initial” scale \) left and right neighborhoods of the DOS
support endpoint A = 2 (and the same for A = —2 by symmetry).

This asymptotic study for the GUE can be carried out by using the “turn-
ing point” asymptotic formula for the Hermite polynomials [10]

2

e TH(E) = A 2T ()22 (40 (—1372) + 0 (177)] (2.100)

€= (20 +1)Y2 4 2712 31/371/6y (2.101)
and Au(t) is the Airy function. It solves the Schrodinger equation
—u"(y) +yuly) =0, (2.102)

oscillates as y — —oo and decays exponentially as y — 4o00. Relations

(2.100), (2.101), and (2.13) yield for (2.98) and (2.99) [28]:
v=2/3, Alz)=-X[A(X))+[A"X)], X=—t" (2.103)

and a certain value for ¢,. The latter formula and asymptotics for the Airy
function [10] imply that

| X | cos (4|X|3/2/3) L0 (|X|_5/2) X & —oo

A(X) = T 47| X|
17T o 1) 3/2 /¢
%6 X exp (—4X /3) (140(1)) , X — 0.

(2.104)
According to the physical paper [29] the similar behavior of p,()) is the case
for an arbitrary polynomial potential provided that p,(A) has the square root
behavior near a given spectrum edge. The recent progress in the so-called
“double scaling limit” of two-dimensional quantum gravity in the frameworks
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of the matrix models (see review [1]) suggests the form of analogues of (2.102)
and (2.103) in the case of critical potentials (2.79) and the DOS (2.78). Set
a =2 in (2.78). Then the exponent that determines the crossover neighbor-
hood of the endpoint A = 2 is
2
v =
2p+ 1

(2.105)

and the crossover functions u,(y) that plays the role of the Airy function (i.e.
Ai(y) = ui(y)) is the solution of the Schrodinger equation (cf. (2.102))

—u"(y) + gu(y)u(y) = 0 (2.106)

which is bounded as y — +o00. The “potential” ¢,(¢) in (2.106) is the solution
of the equation

Hylg] =y (2.107)

where H,[q] is a certain polynomial of degree p with respect to ¢ and its
derivatives of the order at most p. In particular

1 1 1
H1:ZU7 H2:+Tq//+q27 HSZ_q//+_q/2+qq”+q3-
3 10 5
The polynomials H,[q] appear in a number of areas. In the spectral
theory t hey are coefficients in the semi-classical asymptotic expansion of the
Schrodinger operator resolvent

d2 -1 S

p=0

in the theory of integrable systems they are densities of the infinite system of
conservation laws for the Korteweg-de-Vries equation and are the Hamiltoni-
ans of the infinite hierarchy of all higher Korteveg-de-Vries equations written
in the Hamiltonian form

b _ 0 sl
87_( 1 dy v(y)

If we introduce the sequence R,[q| as



then R,[q] are the Gelfand-Dikii polynomials which can be found from the
recurrent relation

1 1
;-l-l:ZR;H_qR;_ﬁq/Rl’ Ro:—.

A heuristic explanation of the origin of above formulas, (2.106) in partic-
ular, is as follows. According to (2.32) the edge behavior of the DOS is due
to the behavior of r(z) near x = 1 or rl(n) for I = O(n). Thus, in addition to
(2.99) we have to set in (2.28) and (2.44)

p=n(1-2) R = e, R =
(recall that r(1) = 1), and P(X) = u,(y, t). Then in the limit n — oo,
(2.28) reduces to Schrodinger equation (2.106), and (2.44) reduces to the
equation (2.107) if v = 2;%. The formal derivation of the (2.106) and
(2.44) directly from (2.28) and (2.50) is rather tedious. Elegant and efficient
schemes of formal derivation of the above relations are proposed in [19, 30].

This study of the behavior of the DOS in the neighborhood of endpoints
of its support reveals important and interesting links of the RMT with the
theory of integrable systems. In the next section we discuss more links of
similar nature which appear in studies of other characteristics of the random
matrix eigenvalue statistics.

3 Spacing Distribution

3.1 Generalities and the GUE

We discuss now some results concerning the asymptotic behavior of proba-
bility (1.8) as n — oo. This quantity is important because it determines the
probability distribution of distances between the nearest neighbor eigenval-
ues of random matrices. Indeed, if A;,..., A, is a set of random variables
whose joint distribution has a symmetric density p,(A1,...,A,) and

(V) = pD(N) = /pn()\,)\g,...)\n)d)\g,...,d)\n,

Rn—1
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then for A = (a, b), A=R\A

=1 (a) / (@ Ay oo M)A, dNy (3.1)
Zn—l
is the conditional probability of the event {\;EA, ¢=1,...,n}, provided

that at the left endpoint a of A there is an eigenvalue. Since the probability
(1.8) is

Ru(A) = /pn()\l, A, (3.2)
<n
then the probability density p{ (b — a) of the conditional probability distri-
bution (3.1) is

1 0?
npn(a) dadb

P —a) = - R ((a, b)). (3.3)
Formulas (3.1)—(3.3) are valid for an arbitrary set of symmetrically dis-
tributed random values A{,...,A,. The simplest case corresponds to in-
dependent identically distributed (i.i.d.) A;’s with the common density p()).
Then obviously

PN = p(), Ra(d) = (1 -/ pu)cu) . (3.4)

Thus, if A is a n-independent interval, nh—>I£lo R,.(A) = 0. This simple fact is
of general nature because if the relations analogous to (1.23) and (2.17) are
valid (this is obvious in our case of i.i.d. A’s), then with probability close
to 1, A contains nN(A) ~ nAp(a) eigenvalues as n — oo. Thus to obtain
nontrivial asymptotic behaviors of R,(A) as n — oo we have to consider
intervals whose length is of the order of n™!, i.e. of the “typical” distance
[np(A)]~" between eigenvalues in the neighborhood of a given A € supp p.
That makes natural introducing the following variables

a=\, b=\t

¢y (3.5)

where s is the “scaling” variable, measuring the length of our interval (win-

1
dow) relative to the typical eigenvalue spacing in the O <—> -neighborhood
n
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of a given spectral point A\. Combining (3.4) and (3.5) we find that

S

r(s)=e*, p(s)=¢€e" (3.6)

is the scaling limit of probability (1.8) and

pa(s) = lim aiﬂas ((A At npj()\))) (38)

is the same limit for the spacing probability density, both expressed via the

where

scaled spacing (3.5).

We obtained the Poisson distribution for spacings. Notice that the r.h.s.
of (3.6) does not depend on A and p(\) provided that we use the scaled
spacing (3.5). This simple result can be interpreted as the limiting form of
the eigenvalue spacing distribution for diagonal random matrices. According
o [31] the same Poisson distribution is valid in the much less trivial case of
the discrete and continuous Schrodinger operator with a random potential.
The former operator is just a three-diagonal matrix with i.i.d. entries on the
principal diagonal and unities of the two nearest diagonals. Moreover, in all
these cases we have more general than (3.6) limiting relations:

Lok
J —sJ ‘
=I[%5e (3.9)
j=1 "7
where for any integer [ > 1,
§=068, 8§=0(a5B), j=1,..,1 (3.10)

is an ordered set of disjoint intervals such that

Q; 3,
a;=A+—1—, b=+ —2—, 3.11
= A (31D
k= {kj};zl where k; are integer numbers, s; = ; — «;, and
r(é6;k) = lim P{nN,(Ay) = k1,...,nN,(A) = ki }. (3.12)

n—oo
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In other words, in all these cases the random point process (the random point

(1) = nN, (()\,)\ + npj(A))) , >0 (3.13)

converges weakly (i.e. in the sense of convergence of all finite-dimensional
distributions) to the A-independent Poisson process. This allows us to intro-
duce the Poisson universality class of the spacing distributions which includes

measure)

diagonal random matrices with arbitrary i.i.d. random entries having contin-
uous probability density and three-diagonal (Jacobi) random matrices with
analogous entries on the principal diagonal.

Let us consider now the unitary invariant ensembles (1.1)-(1.2). Denote
by xa(A) the indicator of an interval A = (a, b). Then, according to (1.8)
and (2.11)

mﬂsz{ﬁu—xM&»}=1+§f}?-

/det s AN e dAas oo dA
A

The r.h.s. of this relation is the Fredholm determinant
R, (A) =det(l — k) (3.14)

of the integral operator defined on the interval A by degenerate (rank n)
kernel k, (A, p) specified by (2.7):

(L= k) F) ) = FO) = [ kX ) f()dpe , o€ A, (3.15)
A
Taking into account (2.7) and (3.5) we have to rewrite (3.15) in the form

(=) © = 1) = [ QP& mydn . 0<e<s

1 n—1
Q& n) = Sy (A ;¢ ) e (A + np:(A) ) (3.16)



Thus, as in the case of the DOS (see (2.14)), we reduced the problem of the
asymptotic study of R,(A) to a certain asymptotical problem for orthogonal
polynomials (2.1)-(2.3). The simplest case is again the GUE specified by

(1.9). In this case we can use the Plancherel-Rotah asymptotic formula
(2.19) for the Hermite polynomials and obtain that for A € (=2, 2) [3]

lim QV(&, n) = % = S(6—n) . (3.17)

By using this formula it is easy to prove that the determinant in the r.h.s.
of (3.14) converges to the Fredholm determinant of the integral operator ),
defined by kernel (3.17) on the interval (0, s). Thus for the GUE the quantity
(3.7) is

r(s) = det(l — Q). (3.18)

Numerous properties of this determinant are presented in [3]. We mention
here the small-s asymptotics of r(s)

nlst

36

r(s)=1—-s+ +0(s’), sl0 (3.19)

which implies the small-s asymptotics of (3.8) for the GUE:

2

p(s) = % s+0(s%), s10. (3.20)
This asymptotic behavior of the spacing probability density is a manifestation
of the property known as the repulsion of eigenvalues of random matrices,
i.e. strong short-range correlation between eigenvalues forbidding them to be
arbitrarily close. The asymptotic behavior O(s?) of the spacing probability
density for any finite n > 2 is evident from (1.15) and (1.19). It is important
however that this behavior remains true after the scaling limit (3.8).

In recent years numerous links of the Fredholm determinant (3.17), (3.18)
with exactly solvable models of statistical mechanisms, completely integrable
systems having the Painlevé property, the Painlevé transcendents or, more
generally, with the deformation equations of a compatible set of nonau-
tonomous Hamiltonian systems have been found and studied (see [3],[32]-[34]
and references therein).
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We conclude this section presenting additional probabilistic aspects of
results given above.
1). Consider marginal distributions (2.11) and set

i

Aj= A+ . 3.21
Then, according to (2.11), (2.14), (3.16), and (3.17)
Tim (npa (M)~ pM (A, - A1) = det [[S(& — &)L (3.22)

This formula is one more manifestation of strong correlations between eigen-
values in the scaling limit (3.21). In particular, the simplest correlation

function )

A O ) = 7 (O, da) [ Op(0)] T =1 (3.23)

has the following form in this limit

K = lim &V S . )
2 (&1, &2) nl_mo 2 ()\ t npn(A) AT npn(A)
- (M)
(& — &) .

Thus, the eigenvalues of the GUE are strongly correlated not only on short
distances (see repulsion property (3.20)), but also on long distances, because
the correlation function (3.24) decays as an inverse square of the distance

modulo oscillating numerator. By applying to (3.24) the smoothing proce-
s+6

dure 671 / . d(& — &) where s € § < 77! we find that the smoothed

(3.24)

S
correlation function for large s is

th 1 o
p?(A)SMOOM (5) = gz ST (3.25)
2). Regard the set of random eigenvalues A1, ...,... A, as a finite-dimensional

point process, i.e, random counting measure

a(A) = nN,(A) = {\ € A) (3.26)
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We can define this process either by the system of its marginal distributions
(2.10) or by the generating functional

B, [o] = E {eXp U a,o()\)z/n(d)\)]} , (3.27)

defined on a suitable space of test functions ¢(A), A € R. We use the simplest
case of bounded piece-wise functions with a compact support. Then the
arguments similar to those used in the derivation of (3.14) yield

0[] = det(1 — k[]) (3.28)
where k,[p] is the integral operator defined on the support of ¢ by the kernel
ka(X, ) (1—e?®) (3.29)

The scaling limit of all marginal densities is given by (3.22). To find the
same limit for the generating functional we have to use again the scaling
variables (3.21) allowing us to study neighborhoods of a given A (windows),
that contains finitely many eigenvalues as n — oo.

Besides we have to replace a test function ¢(X) by ¢.(¢) = ¢ ( f()\))
npPn
Then in the limit n — oo we obtain (cf.(3.18))

lim &, {p,} =det (1 —Q,) (3.30)

n—o0

where ), is the integral operator defined on the support o, of () by the
formula

(Quf) (€)= [ St —n) (1 =) f)dn, €€, (331)

These formulae contain in fact the same information as (3.22), saying that
in the case of the GUE the point process (3.13) converges weakly as n — oo
to the random process defined by (3.30) and (3.31) or by (3.22).

Comparing (3.18) and (3.30) we see that if p(¢) is the indicator xs(&) of
the interval 6 = [0, s] then

Qe = (1 —¢)Qs. (3.32)
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This relation makes natural introducing the parameter 7 in front of the in-
tegral operator (5 (3.18). Then we can rewrite (3.32) as

det (1 —Qy,) =det (1 —7Q5) |;=1. (3.33)
Consider now the probability
R, ({A)._) = PrinNy(A) =0, j=1,....1} (3.34)

that an ordered set of disjoint intervals (3.11) does not contain eigenvalues.
Then in the limit n = oo (3.34) is

r(6) = det (1 —Qs) (3.35)
where ()5 is the integral operator defined by the kernel S(£ —n) on the union
(3.10).

We can also introduce more general integral operator with the kernel

27X (E) S (€ = n)xs, (n) (3.36)

which is a natural analogue of the operator 7(); for the case of several in-
tervals. Then the family of probabilities for all ¢’s and k’s (3.12), that also
defines the limit point process for (3.13) is [32]

(—1For(ein)
kiR ork L onf

r(é; k) =
T1=..=71=1

where k = ky + ...+ k; and r(6; 7) is the Fredholm determinant of the kernel
(3.36).

The functional (3.30) resembles in parts the generating functional of the
Poisson point process and the generating functional of the square of the
Gaussian stationary process, whose correlation function is S(£). Indeed, if
we formally replace the kernel S(¢ — 7) in (3.30) by ¢é(z —y), ¢ > 0, then
we obtain the expression

exp |:c/ (1 — e“p(g)) df] (3.37)

¢
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coinciding with the generating functional of the Poisson point process with
density c. If we replace in (3.31) the factor (1 — ew(”)) by ¢(¢) itself, we
obtain the Fredholm determinant of the integral operator defined by the
kernel S(¢ — n)p(n) on the support of p(¢). This Fredholm determinant
is the generating functional of the random process g*(¢), where g(¢) is the
Gaussian stationary process with zero mean and the correlation function
S()

We can also consider another asymptotic regime, making "windows” in
O(1/n) — neighbourhoods of different spectral points, i.e. considering joint
probability distribution of the counting functions l//(\?)(tl), el V&Z)(tk) for dis-
tinct and n — independent Aq,...,\;. Take for simplicity & = 2. Then we
have to consider generating functional (3.27) on functions

@) = 1 (npa(M) (= M) + 2 (npa(A2)(p — Az)) (3.38)

Inserting this ¢(p) in (3.27) and using asymptotic formula (2.18) we obtain
that
lim @,[4] = 0g.]0[p], (3.39)

n—oo

where @[] is defined by (3.30). We see that in the scaling limit the "local”
statistics of eigenvalues lying in O(1/n) — neighbourhoods of district spectral
point are independent.

3.2 Other ensembles and the universality conjecture

Relations (3.7) and (3.8) that determine the eigenvalue spacing distribution
are valid for all unitary invariant ensembles of form (1.1) — (1.2). They allow
us to find the limiting form (3.7), (3.8) of this distribution provided that a
respective asymptotic formula for the orthogonal polynomials (2.2) is known.

Consider first the "toy” model corresponding to the Chebyshev polyno-
mials

Ti(\) = \/gcos [0, A =cos 0, (3.40)

and associated system of functions orthogonal on the interval [—1, 1]

Di(A) = wH(N)T(N) (3.41)
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which corresponds to the weight
w(z) = (1 —\2)7Y2, Al < 1.

By using (3.7) and (3.8) we can easily compute in this case the DOS (cf.
(2.21))
p(N) =711 =AH)72 <1 (3.42)

and the limiting kernel for (2.16) provided that the "reference” point A is
not an endpoint of the spectrum |[A| < 1. We find that the limiting kernel
for the Chebyshev polynomials coincides with respective kernel (3.17) for the
Hermite polynomials, i.e. for the GUE. We conclude that for the ”Cheby-
shev” ensemble the DOS (3.42) differs from the semicircle DOS (2.21) of the
GUE, while the probability distribution of spacings is the same. This result
is, in fact, just another form of the well known Dyson’s result, who intro-
duced and analyzed in great details the class of random matrix ensembles
known as the circular ensembles (see book [3] for results and references). The
simplest case of these ensembles is the circular unitary ensemble (CUE) con-
sisting of unitary matrices whose distribution is unitary invariant. Therefore
respective probability distribution coincides with the Haar measure on U(n)
and respective polynomials are orthogonal on the unit circle with the unit
weight. It is well known that the latter polynomials are closely related to the
Chebyshev ones [10].

The Chebyshev polynomials are simplest polynomials orthogonal on the
finite interval. Consider now more general case of polynomials which are
orthogonal on the finite interval (say [—1,1]) with respect to some n — in-
dependent weight w(A), |A\| < 1. Here we can use the classical asymptotic
formula by Bernstein- Szego- Akhiezer [10] which is valid under rather weak
conditions on the weight w(A) (the Lipshitz- Dini continuity, finitely many
zeroes and integrable singularities). The leading term of this asymptotic for-
mula coincide with the r.h.s. of (3.40) in which [O is replaces by 10 + v(0),
where the phase shift v(©) (the "scattering” phase) is uniquely determined
by the weight function w(X). This results in the same formulae (3.42) and
(3.17) for the DOS and the spacing distribution. Thus we can introduce one
more (in addition to the Poisson one) universality class of random matrix en-
sembles having the same probability spacing distribution (3.8), (3.18). This
class includes Hermitian matrices distributed according to the Gaussian law
(1.1), (1.9), ensembles defined by potential (2.22) for @ > 1 (in the latter
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case for a # 2,4,6 (3.18) is proven only for A = 0 [35]), the ensemble of
positive defined Hermitian matrices related to Laguerre polynomials [36, 28]
which is important in the solid state theory [7], and all ensembles related
to orthogonal polynomials whose weight has a compact support. This class
includes also the Dyson circular ensemble of unitary matrices and all similar
ensembles related to polynomials that are orthogonal on the unit circle with
a n — independent weight satisfying rather weak smoothness conditions (the
latter fact can be easily checked by using respective asymptotic formulae
from [10]). This class is known as the Wigner-Dyson universality class.

We conclude this section by the discussion of the universality conjecture
of the random matrix theory [3].

Given an ensemble of random n x n matrices whose eigenvalue set is

A, = (Aﬁ”), ..., Al")) Jet us consider some probabilistic characteristic A, of
the set A,, and assume that A, depends on k spectral parameters Ay, ..., Ag:
A, = An(A, o Ak). (3.43)

We say that (3.43) is in the global regime as n — oo (is a global quantity)
if k£ is an n — independent number and parameters Ay,...,A\; vary in an n
— independent domain, and we say that (3.43) is in the local regime (is a
local quantity) if A;, 7 =1,2,..., k are scaling variables specified by (3.21),
where p,()) is the mean density defined by (1.23) (we assume for simplicity
of the formulation that p, () exists).

The simplest example of the global quantity is p,()) itself. More gener-
ally, the joint probability distribution of N, (Aq),..., N.(4,), where N,(A)
is the NCM (1.4) and

Aj=(a;b;), j=1,....q (3.44)

are n — independent intervals of the spectral axis is in the global regime. The
role of spectral parameters A;,..., Ay play the endpoints a;,b;, 7 =1,...,¢q
of intervals (3.44).

The same joint probability distribution in the case when (a;, b;) are spec-
ified by (3.11) is in the local regime. In particular, the probability (1.8)
that defines the spacing distribution density (3.3) is a typical and impor-
tant example of a local quantity. The global regime for R, (A) is trivial (at
least in the leading order) because if A does not depend on n, then, as a
rule, N,(A) tends in probability to a nonzero limit as n — oo and thus
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lim, oo Rn(A) = 0. On the other hand, the local regime for R,(A) is rather
nontrivial and respective limiting form is given by (3.6) and (3.18) for the
Poisson and Wigner—Dyson classes respectively.

One more couple of examples is given by the joint probability density
(2.11). If A\1,..., A\x are n — independent variables then we are in the global
regime and according to (2.11)

Tim p{ (A, M) = pr(An) o pa () (3.45)
where
PN = p(A) = lim p (), (3.16)

n—0o0

provided that the latter limit exists (see e.g. [23] for the proof of (3.45) and
(3.46) in the case of the UE’s (2.92) — (2.94)). This is the global regime
answer.

The local regime answer, corresponding to A;’s of the form (3.21) is given
by (3.22) in the case of the GUE, and, in fact, for all ensembles which we
mentioned above as belonging to the Wigner — Dyson universality class.

As we have seen above for all ensembles studied so far the normalizing
counting measure (1.4) tends to a nonrandom limit as n — oo in probability
or even with probability 1 (see [18] and [37] for results and discussions of other
numerous cases). In all these cases global quantities describe probabilistic
properties of O(n) eigenvalues while local quantities describe properties of
finitely many eigenvalues.

The universality conjecture of the random matrix theory says that the
limiting form of a local quantity corresponding to a given ensemble of n x n
matrices for n — oo does not depend on the particular form of the ensemble
probability distribution (the potential V(X) in (1.1), probability distribu-
tions of matrix elements for ensembles of random Hermitian matrices with
independent for j < k matrix elements, etc.).

On the other hand the limiting form of global quantities depends as a
rule on the form of the ensemble distribution.

We have seen above a number of results supporting the validity of the
universal ity conjecture and other results demonstrating diversity of limiting
forms of global quantities, the DOS in particular. This allows us to finish
the paper by citing F.Dyson [38]: ”... there are two styles of science...,
unifying and diversifying. They are complementary, giving us two views of
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the universe which are both valid...”.

Dyson’s contribution to the random
matrix theory is well-known. These words, however, were written by Dyson
in much more general context of discussion of ”... the diversity of the natural
world and... the diversity of human reaction to it”. The author hopes very
much that the reader will not blame him too strongly for using these words
in the rather special and concrete context of the random matrix theory,
whose origins and developments were motivated by a number of branches
of mathematics and physics and which demonstrates numerous ideas and

results common for all these branches.
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