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Recent numerical simulations have shown that the distribution of conductances P�g� in three-dimensional
strongly localized systems differs significantly from the expected log normal distribution. To understand the
origin of this difference analytically, we use a generalized Dorokhov-Mello-Pereyra-Kumar �DMPK� equation
for the joint probability distribution of the transmission eigenvalues which includes a phenomenological �dis-
order and dimensionality dependent� matrix K containing certain correlations of the transfer matrices. We first
of all examine the assumptions made in the derivation of the generalized DMPK equation and find that to a
good approximation they remain valid in three dimensions �3D�. We then evaluate the matrix K numerically for
various strengths of disorder and various system sizes. In the strong disorder limit we find that K can be
described by a simple model which, for a cubic system, depends on a single parameter. We use this phenom-
enological model to analytically evaluate the full distribution P�g� for Anderson insulators in 3D. The analytic
results allow us to develop an intuitive understanding of the entire distribution, which differs qualitatively from
the log-normal distribution of a Q1D wire. We also show that our method could be applicable in the critical
regime of the Anderson transition.
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I. INTRODUCTION

The full distribution of conductances P�g� for noninter-
acting electrons at zero temperature has recently been studied
in detail in quasi-one-dimension �Q1D� both analytically1

and numerically.2,3 Large mesoscopic fluctuations lead to
several remarkable features in the distribution, including a
highly asymmetric “one-sided” log-normal distribution at in-
termediate disorder between the metallic and insulating
limits,4,5 and a singularity in the distribution near the dimen-
sionless conductance g�1 in the insulating regime.6 While
some numerical studies exist for 3D finite size systems,7–11

there is no analytic method currently available to study the
full distribution P�g� in 3D, especially at strong disorder.
Theoretical work based on 2+� dimensions ���1�, where a
weak disorder approximation can be applied, has been used
to propose that the critical distribution at the Anderson tran-
sition point has a Gaussian center with power law tails,12,13

but this cannot be compared with numerical results in 3D
�Refs. 7 and 8� that show a highly nontrivial asymmetric
distribution similar to the one-sided log-normal form of
Q1D. It has not been possible so far to study analytically
even the simpler case of P�g� in the deeply insulating regime
in 3D, where numerical results point to nontrivial deviations
from the expected log-normal form.11

The P�g� in Q1D systems were studied analytically within
the transfer matrix approach.2 In this paper we use a recently
proposed generalization of the Q1D approach14 to obtain
analytically for the first time the full P�g� for strongly disor-
dered 3D systems. A brief account of the work has been
published earlier.15 In Secs. II and III we review briefly the
DMPK equation and its generalization, respectively. In Sec.
IV we analyze in detail the numerical data for 3D disordered
systems in all three transport regimes: metallic, insulating

and critical. Numerical data allow us to determine the free
parameters of a matrix K which appears in the generalized
DMPK equation. In Sec V we use them to formulate a simple
model for K, and solve the generalized DMPK equation ana-
lytically. In Sec. VI, an analytical formula for the conduc-
tance distribution P�g� is derived in detail. In our model, the
form of P�g� is determined by two parameters, �, which
measures the strength of the disorder, and �12, which deter-
mines the strength of the interaction term in the generalized
DMPK equation. �12�1 in the Q1D systems. The fact that
�12�1 in 3D makes the statistics of the conductance in 3D
different from that in Q1D. Although we introduced two new
disorder dependent parameters, they turn out to be related to
each other and we show that the present model is not in
contradiction with the single parameter scaling theory.16 In
Sec. VII we compare the analytical formula for the conduc-
tance distribution with the numerical data and analyze how
the distribution P�ln g� depends on the parameter �12. In the
limit �12→1, we recover the Q1D results. Section VIII dis-
cusses the possible extension of our solution to the critical
point. We show that our results describe the critical regime
qualitatively correctly, including the nonanalyticity of the
critical conductance distribution. Finally, summary and con-
clusions are given in Sec. IX.

II. THE TRANSFER MATRIX APPROACH

The distribution of conductances for noninteracting elec-
trons at zero temperature can be studied within the transfer
matrix approach. In this approach, a conductor of length Lz
and cross-section L�L is placed between two perfect leads;
the scattering states at the Fermi energy then define N�L2

channels. The 2N�2N transfer matrix M relates the flux
amplitudes on the right of the system to those on the left.17
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Flux conservation and time reversal symmetry �we consider
the case of unbroken time reversal symmetry only� restricts
the number of independent parameters of M to N�2N+1� and
M can be written in general as17,18

M = �u 0

0 u* ���1 + 	 �	
�	 �1 + 	

��v 0

0 v* � , �1�

where u, v are N�N unitary matrices, and 	 is a diagonal
matrix, with positive elements 	i , i=1,2 , . . . ,N. Microscopic
distribution of impurities will lead to a distribution
pLz

�M�d
�M� of the transfer matrices where d
�M� is an
invariant measure which we rewrite as

pLz
�M�d
�M� = pLz

�	,u,v�d
�	�d
�u�d
�v� . �2�

If we know the marginal distribution

p̄Lz
��	a	� =
 pLz

�	,u,v�d
�u�d
�v� , �3�

then the distribution of conductances P�g� can be written as

P�g� =
 ¯
 �
a=1

N

d	ap̄Lz
��	a	���g − �

a=1

N
1

1 + 	a
� , �4�

where

g = �
a=1

N
1

1 + 	a
�5�

is the Landauer conductance.19 A systematic approach to
evaluate the N-dimensional integral, based on a mapping to a
one-dimensional statistical mechanical problem, has been
developed,1 so the full distribution P�g� can be obtained if
the marginal distribution p̄Lz

��	a	� is known. Note that the
distribution of other transport variables which can be written
as �af��	a	�, e.g., shot noise power20 P=�a=1

N 	a / �1+	a�2�
or conductance of N-S �Normal metal-Superconductor�
microbridge21 G=�a=1

N 1/ �1+2	a�2�, can also be obtained in
the same way. The above approach is valid in principle for
all strengths of disorder, in all dimensions.

If we assume that the distribution pLz
�	 ,u ,v� is indepen-

dent of u ,v, then the evolution of the distribution with length
Lz can be obtained from a Fokker-Planck equation first de-
rived by Dorokhov and by Mello, Pereyra and Kumar 18

which has become known as the DMPK equation

�pLz
�	�

��Lz/��
=

2

N + 1

1

J
�

a

N
�

�	a
�	a�1 + 	a�J

�p

�	a
� ,

J � �
a�b

N

�	a − 	b��. �6�

Here � is the mean free path and the parameter � is equal to
1, 2 or 4 depending on orthogonal, unitary or symplectic
symmetry of the transfer matrices. We will consider only the
case with time-reversal symmetry, for which �=1. Although
the parameters 	a are not eigenvalues of M, it turns out that

they determine the eigenvalues of the matrix TT† �T is the
transmission matrix22�

TT† = v*�1 + 	�−1v �7�

which characterizes the conductance given by Eq. �5�, and
the matrix v contains the eigenvectors of TT†. So we will
loosely refer to these as the eigenvalues and the eigenvectors
in the text. Note that the parameter � determines the strength
of “level repulsion” between eigenvalues.

The assumption that pLz
�	 ,u ,v� is independent of u ,v

restricts the validity of the DMPK equation to quasi-one-
dimension �Q1D�. Quasi-1D means not only that LzL
where Lz is the direction of the current and L is the cross-
sectional dimension, but it also requires that �L, where � is
the localization length. In this limit, all channels become
“equivalent,” the matrices u and v become isotropic and the
distribution becomes independent of u or v. The distribution
of conductances P�g� for such Q1D systems has been studied
recently; it has many surprising features arising from large
mesoscopic fluctuations. These include a highly asymmetric
“one-sided” log-normal distribution at intermediate disorder
between the metallic and insulating limits,4,5 and a singular-
ity in the distribution near g�1 in the insulating regime.6 It
is not clear if these features persist in higher dimensions.

III. GENERALIZED DMPK EQUATION IN HIGHER
DIMENSIONS

To study 3D systems, a phenomenological generalization
of the DMPK equation has recently been proposed in which
the Q1D restriction is lifted in favor of an unknown matrix

Kab � �kab�L; kab � �
�=1

N

�va��2�vb��2, �8�

where the angular bracket represents an ensemble average. In
terms of this matrix, the marginal distribution p̄Lz

�	� satisfies
an evolution equation given by14

�p̄Lz
�	�

��Lz/��
=

1

J̄
�

a

N
�

�	a
�	a�1 + 	a�KaaJ̄

�p̄

�	a
� ,

J̄ � �
a�b

N

�	a − 	b��ab, �ab �
2Kab

Kaa
. �9�

In Q1D under the isotropy condition, the matrix K reduces to

Kab
Q1D =

1 + �ab

N + 1
, �ab

Q1D = 1, �10�

and one recovers the DMPK equation �with �=1�. In 3D, K
is not known analytically, and must be obtained from inde-
pendent numerical studies.

There are two major assumptions made in Ref. 14 in de-
riving Eq. �9�:

�i� the elements kab can be replaced by their mean values
Kab; and

�ii� the Lz-dependence of Kab is negligible.
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These assumptions need to be verified before the equation
can be used. Note that the matrix K depends on the choice of
representation. Since the assumptions are most natural in the
position representation, we will study the matrix in this rep-
resentation.

IV. NUMERICAL DATA

The generalized DMPK equation apparently introduces a
large number of new parameters, elements of the matrix Kab.
There is no theoretical prediction about how these param-
eters should depend on the size of the system or on disorder.
We only know that in the Q1D limit they should follow Eq.
�10�. Therefore our first goal is to study numerically various
3D and Q1D systems systematically in detail in order to
answer the following questions:
Q1: Are the assumptions �i� and �ii� discussed in Sec. III
valid at all strengths of disorder?
Q2: How do the elements Kab depend on disorder and on the
system size?
Q3: How do the elements Kab depend on the indices a and
b?
Q4: Given the size, disorder and index dependence of Kab, is
it possible to construct a simple model of K at all disorder
with only a small number of parameters?
We will address all of the above in this section, but let us first
briefly discuss the numerical procedure used to evaluate K.

We consider the tight binding Anderson model defined by
the Hamiltonian

H = W�
n

�ncn
†cn + �

nn��

tnn�cn
†cn�. �11�

In Eq. �11�, n= �xyz� counts sites on the simple cubic lattice
of the size L�L�Lz, and �n are random energies, uniformly
distributed in the interval − 1

2 , 1
2
�. The parameter W mea-

sures the strength of disorder. The Fermi energy is chosen as

EF=0.01. The hopping term tnn� between the nearest-
neighbor sites nn� is unity for hopping along the z direction
and tnn�= t for hopping in the x and y directions. Then the
dispersion relation is

E = 2 cos kz + 2t cos kx + 2t cos ky . �12�

For a given cross section of the sample: Lx=Ly =L, kx and ky
possess values � / �L+1��1,2 , . . . ,L �we consider hard wall
boundary conditions�. At fixed energy E, given values of kx
and ky determine the value of kz, which is either real �if
�cos kz��1� or imaginary. The latter case corresponds to
closed channels which do not transmit current in perfect
leads. To avoid these closed channels, which are not consid-
ered in the DMPK formulation, we use t=0.4. Then the
model Eq. �11� exhibits a metal-insulator transition23 at Wc
�9. To obtain transport properties, we use the transfer ma-
trix method of Ref. 24. The main difference from previous
works10,11 is that we also calculate eigenvectors of the matrix
TT†. Using Eq. �1�, we calculate numerically the matrix TT†.
Owing to Eq. �7�, diagonalizing TT† gives us 	 as well as all
elements of the matrix v.

Note that the eigenvectors depend on the representation.
In the original formulation of the DMPK approach, semi-
infinite leads consist of mutually independent and equivalent
1D wires. Therefore, the transfer matrix in the leads is diag-
onal in both channel and space representations. In numerical
work, we need to distinguish between these two, since the
transfer matrix is diagonal only in the channel representation.
We therefore calculate the matrix TT† in the channel repre-
sentation, find eigenvalues and eigenvectors, and transform
the latter back to the space representation to obtain the ma-
trix v. Elements of v are then used for the calculation of the
matrix K in the space representation.

We now go back and address the questions raised at the
beginning of this section.

FIG. 1. �Color online� Probability distribution of normalized kab

for Q1D systems. ��: a=b=1, �: a=1, b=2, �: a=b=2�. Full
symbols: W=2, L=10, Lz=16L; open symbols: W=2, L=10, Lz

=24L. Lines with symbols: W=2, L=14, Lz=8L. Data confirm that
the distribution becomes narrower when L increases. Inset shows
the same for W=4 and L=18, Lz=4L. As expected, distributions are
broader.

FIG. 2. �Color online� The distribution of normalized kab for 3D
systems with W=4 and various system sizes. �critical disorder Wc

�9.� Open symbols: a=b=1; full symbols: a=1, b=2. Inset shows
the L-dependence of �ab=�var kab /Kab which decreases when L
increases. Data confirm that distribution is self-averaging �it be-
comes narrower and �ab→0 when L increases� although it is
broader than in the Q1D case.
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A. Q1: Validity of assumptions (i) and (ii)

In order to check assumption �i�, i.e., if the elements kab
can be replaced by their average Kab in 3D, we analyze the
probability distribution P�kab�. We start with the weakly dis-
ordered metallic regime. Two values of disorder were used:
W=2 and W=4. More relevant than the actual strength of the
disorder is the mean free path � which can be estimated from
the mean conductance25

�g� =
N

Lz
� �13�

with N=L2. From the Lz dependence of �g� in Q1D systems
we estimate ��W=2��9.2 and ��W=4��1.8, in units of the
lattice spacing.

First, we test how assumption �i� is fulfilled in the weakly
disordered limit, where the DMPK equation is known to de-

scribe the universal features of transport statistics correctly.
We show in Fig. 1 the distribution P�kab� in the weakly dis-
ordered Q1D regime. As expected, the width of the distribu-
tion increases when W increases, but P�kab� is self-averaging
�it becomes narrower when L increases�. Figure 2 shows the
same distribution for 3D systems. The distribution is again
self-averaging, although much broader than in the Q1D case.

In the critical regime, the probability distribution P�kab� is
no longer self-averaging but tends to be L-independent in the
limit L→� �Fig. 3�. Although the distributions possess long
exponential tails, they have well defined sharp maxima,
which do not depend on the system size.

In the insulating regime, the distribution P�k11� becomes
narrower when L increases �Fig. 4�. However, on the basis of
our numerical data we conclude that the distribution is not
self-averaging. Although var k11 decreases when L→� �data
not shown�, the normalized width �11=�var k11/K11 �shown
in inset of Fig. 4� slightly increases when L increases. As K11
itself is nonzero in the limit L→� �Fig. 9�, �11 should con-
verge to an L-independent function for large L.

The distribution of off-diagonal elements P�k12� in the
insulating regime �not shown� is qualitatively the same as
that at the critical point.

We conclude that both in the critical and localized re-
gimes the distributions converge to L independent functions
with a well-defined peak, but the standard deviation is of the
same order of magnitude as the mean. We note that the most-
probable value of k11 is always very close to its mean value;
we therefore expect that replacing k11 by its mean value K11
is a reasonable approximation as long as one is interested in
qualitative results only. Thus, although to leading order as-
sumption �i� remains valid for all disorder, we have to keep
in mind that fluctuations of the elements kab in the strongly
disordered regime might become important if the final results
are sensitive to the exact values of these elements. We have
checked that the final distribution of conductances do not
change in any appreciable way if fluctuations of k11 are in-

FIG. 3. �Color online� Probability distribution of normalized
matrix elements kab. �a� P�kaa /Kaa� �a=1,2, and 3� at the critical
point W=Wc�9. Distribution is L-independent �apart from the ex-
ponential tail which is broader for larger L since mean value Kaa

�1/L�. Note the logarithmic scale on the y axis. �b� Distribution of
off-diagonal elements k12 and k23 possess sharp maxima close to
zero, and long exponential tails. Insets show standard deviations of
distributions as a function of mean values for 8�L�18. These data
also show the accuracy of our estimate of the critical point since we
expect both the mean and the standard deviation to be
L-independent at W=Wc. The distributions for Q1D systems L�L
�8L are almost identical to those for cubes �data not shown�.

FIG. 4. �Color online� Probability distribution P�k11� in the in-
sulating regime �W=16�. Although distribution becomes narrower
when system size L increases, it is not self-averaging. Inset shows
the size dependence of the �11=�var k11/K11 for W=16 and W
=20. �11 converges to a nonzero constant when L→�.
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cluded by overaging the conductance distribution over
P�k11�.

To check assumption �ii�, namely if the Lz dependence of
Kab is negligible, we studied the Lz /L dependence of K11 and
K12. Figure 5 confirms that for both critical and insulating
regimes the parameters K11 and K12 converge to nonzero
�although t-dependent� limits when the length of the system
increases. It shows that the properties of the matrix K depend
only slightly on the ratio Lz /L and reach Lz-independent lim-
iting values when Lz /L→� in all transport regimes. The
assumption �ii� is therefore reasonably well satisfied at all
disorder as long as Lz�L.

Thus we conclude from our numerical studies that to lead-
ing approximation the generalized DMPK equation �9� re-
mains qualitatively valid at all disorder in 3D, but the effect
of fluctuations of kab on the final results has to be evaluated
in more detail before a quantitative comparison with numeri-
cal results can be made.

B. Q2: Disorder and size dependence of Kab

We start with the weak disorder regime. To distinguish the
generic W dependence of K11 from finite size effects, we
analyzed in Fig. 6 the L dependence of the parameter

� = �N + 1�K11/2. �14�

As expected, � decreases when L increases. However, from
the analysis of Q1D systems �also shown in Fig. 6� we con-
clude that � converges to 1 only for very small values of
disorder. As shown in Fig. 6, ��1.36 for W=4. Thus, de-
viations from Eq. �10� already appear in the metallic limit,
probably due to the decrease of the mean free path.

In the next step we analyze how the matrix K changes
when the disorder increases. Typical results are given in Fig.
7. Our data show that the L dependence of the parameters
LK11 and �12 is different for different transport regimes.
While in the metallic regime LK11 decreases as �1/L and

FIG. 5. �Color online� At the critical point, which depends on
the anisotropy parameter t, both LK11 and LK12 converge to
Lz-independent values when Lz /L→�. The limiting value LK11 de-
pends on t. Shown are also data for the insulating regime W=20,
t=0.4. All data for K12 almost coincide so that they are not distin-
guishable in the figure.

FIG. 6. �Color online� 1/L2 dependence of �= �N+1�K11/2
�open symbols� and �N+1�K12 �full symbols� in the metallic re-
gime. Data confirms that � depends on L. This agrees with data in
Fig. 12. Also, 2K12 differs from K11 for small L. This agrees with
data in Fig. 13. To estimate limiting behavior of K11, we also con-
sidered Q1D systems L�L�4L. � is close to 1 only for very weak
disorder W=2. For W=4 we obtained ��1.36. As this value does
not depend on L for 8�L�18 ���, we expect that 3D data for
W=4 will converge to the same value when L→�.

FIG. 7. �Color online� Disorder dependence of K11 and �12 for
various system sizes. Note the common crossing point at W=Wc

�9. Note also that �12→1 for W�Wc and L→�, as expected from
DMPK, but �12 decreases with the system size for W�Wc.

CONDUCTANCE DISTRIBUTION IN STRONGLY… PHYSICAL REVIEW B 72, 125317 �2005�

125317-5



�12 converges to unity when L increases, qualitatively differ-
ent behavior is obtained at strong disorder. In the insulating
regime K11 converges to a nonzero L-independent constant
when L→� �Fig. 9� and K12 converges to zero as K12
�1/L �Fig. 10�. This means that �12�1/L in the insulating
regime �Fig. 8�.

Figures 7a,b also show that there exists a critical disorder
W=Wc where both LK11 and �12 are independent of L. Note
that �12�1 at W=Wc. We found that the critical value �12c
depends on the anisotropy �Fig. 5�. For the present case t
=0.4, �12c�0.28. The qualitative L dependence in different
transport regimes is summarized in Table I.

We observe that the disorder dependence of K11 is consis-
tent with K11�1/Lm, where m=2,1 ,0 in the metallic, critical
and insulating limits, respectively, in agreement with Ref. 26.
Note that in contrast, K11�1/L2 for all strengths of disorder
in Q1D. This is a major difference between Q1D and 3D.
One can understand qualitatively how the L dependence of
K11 changes in the weak and strong disorder limits on gen-
eral grounds. If all channels are equivalent, we expect the
column matrix v1a�1/�N, which satisfies the unitary condi-
tion �a=1

N �v1a�2=1. This leads to K11�1/N=1/L2 in the me-
tallic limit. On the other hand, if the localization length �
�1, then on any cross section at a given Lz, we expect only
a few sites on the back side of the sample to be “illuminated”
by an incoming wave, so we expect v1a��1a. This leads to
K11�1, independent of L. Similarly, since all K1a�1/L2 in
the metallic regime, we expect �12�1 in the metallic regime.
However, in the insulating regime, we have not found a
simple physical argument why K12�1/L and hence �12

�1/L. We also find numerically in the insulating regime
that for 1���L, K11�1/�. The structure of the eigenvector
v1a that gives rise to K11�1/� and K12�1/L in the region
1���L is highly nontrivial, and deserves further study.

Figure 9 confirms our claim that K11�0 in the insulating

regime. Its limiting value, K̃11=limL→� K11�L� can be used as
an order parameter for the scaling analysis of the Anderson

transition. It is evident that K̃11=0 for W�Wc and K̃11�0
for W�Wc. We show in Fig. 11 the L-dependence of LK11,
and of the mean conductance �g� for various strengths of
disorder. Similar behavior is shown in Fig. 8 for the param-
eter �12. One sees that all three parameters, �g�, LK11, and
�12, could be used for the estimation of the critical disorder
Wc, at which none of them depends on the system size.

C. Q3: Index dependence of Kab

Again we begin with weak disorder. To compare 3D and
Q1D systems, we show in Fig. 12 the parameters Kaa as a
function of the index a. It is clear that the 3D data differ
considerably from the DMPK value 2/ �N+1�. In Fig. 13 we
show the ratio �1a=2K1a /K11 for various L and compare it
with Q1D numerical data. It is evident that �1a converges to
1 when the system size increases, in spite of the fact that
both K1a and K11 differ from the DMPK values of Eq. �10�.
The convergence is much slower in 3D than in Q1D systems.
Also, �1a converges slower for larger a. We conclude that
although 3D metals are qualitatively similar to Q1D metals,
there are quantitative differences that need to be explored
further.

In the critical regime, Figs. 14 and 15 show that the a and
b dependence of the matrix elements Kab can be described by
simple functions: Kaa�K11/a1/2, �1a�1/La1/2. Although we
did not analyze all matrix elements in detail, we believe that
the data presented here support our expectation that all ma-

FIG. 8. �Color online� �12 as a function of the system size for
various strengths of disorder. In the metallic regime, �12 converges
to 1 when L→�. At the critical point, �12 is L-independent, and in
the insulating regime �12 decreases when L increases. Solid lines
are linear fits �12=a+b /L with a�10−3 for W�40.

FIG. 9. �Color online� System size dependence of K11 for vari-
ous values of disorder. Solid lines are linear fits. Data in legend

presents limiting values K̃11=limL→� K11�L�. Shown are also data
for the metallic regime �W=4� for which K11�1/L2 �Table I�.
While K̃11=0 in metal and at the critical point �W=9�, it is nonzero
in the insulating regime. Thus, it may be used as the order param-
eter of the Anderson transition.

TABLE I. Typical L-dependence of the parameters K11 and �12

in the metallic, critical, and localized regimes.

Disorder L�K11 �12

W�Wc �L−1 1-O�L−1�
Wc const const

WWc �L �L−1
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trix elements Kab can be expressed in terms of K11, K12 and
some simple function of the indices a and b.

In the insulating regime we find a simple a-dependence of
the difference

Kaa − K11 � − c�a �15�

with �c��0.04 �Fig. 16�. We also found �Fig. 17�, that for
a�N /4, �1a�1/�aL, very close to the value obtained at the
critical point.27

There is an interesting correspondence between the
a-dependence of Kaa and the a-dependence of the parameters
xa defined through the parameters2

	a = sinh2 xa �16�

which is summarized in Table II.
We find that the index dependence of Kaa can be ignored

in the metallic regime. The a-dependence is more pro-
nounced at the critical point and in the localized regime. On
the other hand, higher channels �a1� do not contribute to
the transport either at the critical point or in the localized
regime, so the actual values of Kab for large a and b are not
important. Therefore, we conclude that the weak index de-
pendence of the matrix elements Kab is less relevant for
transport properties compared to the dependence of the ma-
trix elements on disorder in the L→� limit.

It is also worth mentioning that since we are interested
only in L-independent quantities at the critical point, the
a-dependence of any parameter is relevant only for a�L.
When a becomes comparable to L, we cannot distinguish the
true a-dependence from finite size effects.

D. Q4: Simple model for K

Finally we ask the question if it is possible to construct a
simple model of Kab with only a small number of indepen-
dent parameters. We just concluded in the previous section

FIG. 11. �Color online� Estimation of the critical point from the
mean conductance �g� and from LK11. Both parameters �g� and
LK11 are L-independent at W=Wc. LK11�L ��1/L� in the insulat-
ing �metallic� regime, respectively. From data we conclude that 9
�Wc�9.5 and use Wc=9 throughout the paper.

FIG. 12. �Color online� a-dependence of Kaa� �N+1� /2 for 3D
and Q1D systems with W=2, �mean free path l�9.2� and for W
=4 �l�1.8�. Kaa are larger than is predicted by the DMPK theory.
Good agreement with DMPK is observed only for Q1D systems
with very small disorder �W=2�.

FIG. 10. �Color online� System size dependence of K12 for vari-
ous values of disorder in the insulating regime. Data confirm that
K12�1/L and that limL→� K12=0.

TABLE II. Index dependence of Kaa obtained in the present
work compared to xa �Ref. 28� in the metallic, critical, and insulat-
ing regimes.

Metal Critical point Insulator

xa ax1
�ax1 x1+c�a

Kaa K11 K11/�a K11−c /�a
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that the weak index dependence of the matrix at strong dis-
order is not very important. We expect that the crude ap-
proximations

Kaa � K11 and �ab � �12 �17�

capture the major qualitative features of the matrix K.
Approximation �17� introduces two new parameters, K11

and �12. We show that both parameters K11 and �12 are un-
ambiguous functions of the localization length. To do so, we
calculated the limiting values of K11 �Fig. 9� and of the pa-
rameter x1 �Fig. 18� and plot K11 versus � �Fig. 19�. We
observe that the � dependence of K11 depends also on the
anisotropy parameter t �data not shown�.

In the same way, we analyzed parameter �12. As was
shown in Fig. 8, we expect �12�L−1 in the localized regime.
Data in Figs. 9 and 10 support this assumption. To estimate
the disorder dependence of �12, we plot in Fig. 20 the quan-
tity

lim
L→�

L�12 = 2L
limL→� K12

limL→� K11
�18�

which indeed increases linearly with localization length in
the strongly localized regime.

V. SOLUTION OF THE GENERALIZED DMPK
EQUATION IN THE STRONG DISORDER LIMIT

While modeling the full �ab at the critical point needs
more careful numerical studies, the insulating limit is simpler
and provides a test case for the generalized DMPK equation
�8�. It predicts that the logarithmic interaction between the
transmission eigenvalues 	a vanishes as 1/L in the insulating
limit. In the rest of the paper we will test this prediction by
evaluating the full distribution of conductances in the insu-
lating limit for a 3D conductor as described by Eq. �8�, using
the simple approximate model for K suggested by our nu-
merical studies, namely,

Kaa � K11 and �ab � �12 � const
�

L
. �19�

It is useful to introduce another parameter,

� =
�

LzK11
�20�

and the ratio

�

�12
=

�

LzK11�12
=

L

Lz

�

2LK12
. �21�

��1/Lz�1 in the insulating regime, both in 3D �L=Lz� and
Q1D �LzL� systems. It measures the strength of the disor-
der. The ratio � /�12 reduces to � in the Q1D limit when
�12=1. For 3D �Lz=L� we see in Fig. 21 that � /�12

�L� /Lz varies smoothly between about 2� and3.5� when
disorder increases from Wc to infinity. Thus, the strength of
disorder is characterized predominantly by the parameter �.
For definiteness, we will use � /�12=2 appropriate for a cu-
bic system when needed for comparison with numerical
results.29

FIG. 13. �Color online� a-dependence of �1a for the metallic
regime �W=4�. Finite size effects are clearly visible so that �12=1
only in the limit of large system size. As expected, convergence is
better for Q1D systems than for cubes. Nevertheless, data confirm
that �1a converge to 1 in the limit L→� even when K11 and K12 do
not converge to values assumed by DMPK given in Eq. �10�.

FIG. 14. �Color online� Critical point: We plot La3/2Kaa to show
that LKaa�a−1/2 are L-independent for all a�20.

FIG. 15. �Color online� Critical point. From the linear depen-
dence �a3/2 /L��1a�a /N we conclude that �1a�1/a1/2L. �N=L2�.

MUTTALIB, MARKOŠ, AND WÖLFLE PHYSICAL REVIEW B 72, 125317 �2005�

125317-8



Note that fluctuations in kaa, ignored in the model, would
lead to fluctuations of � and �12 as well, but will not change
either the length or the disorder dependence of these param-
eters.

A brief description of the results has appeared in Ref. 15.
Here we provide many of the details.

We rewrite the generalized DMPK as14

�ps�x�
��Lz/��

=
1

4�
a

Kaa
�

�xa
� �p

�xa
+ p

��

�xa
� , �22�

where

� � − �
a�b

N

ln�sinh2 xb − sinh2 xa��ab − �
a=1

N

ln sinh 2xa.

�23�

We define P=e−�/2�. Then following Ref. 30, � satisfies
the imaginary time Schrödinger equation −�� /��Lz /��= �H
−U�� with

H = −
K11

4 �
a
� �2

�xa
2 +

1

sinh2 2xa
� + ��

a�b
� 1

sinh2�xa − xb�

+
1

sinh2�xa + xb�� , �24�

and U constant, where the strength of the interaction is given
by

� =
K11

4
�12��12 − 2� . �25�

The interaction term in Q1D vanishes for the unitary case,
when �12

Q1D=�=2. Note that the interaction also vanishes in
the limit �12→0. In the 3D insulating case, �12�� /2L�1,
and the interaction can be considered negligible, for all sym-
metries. We can therefore use the �12=2 solution of Ref. 30

for our 3D insulators. The solution in the insulating limit is
then given by30 P=e−H, with

H = − �
a�b

N

 1
2 ln�sinh2 xb − sinh2 xa��12 + ln�xb

2 − xa
2��

− �
a=1

N

 1
2 ln sinh 2xa + ln xa − �xa

2� . �26�

The replacement of �=2 in Ref. Ref. 30 by �12→0 in Eq.
�26� has the consequence that while all �xa�1 in the insu-
lating regime, the difference s= �xa+1−xa� is not of the same
order as �xa�. For example, if we keep only the first two
levels, the saddle-point solutions for x1 and x2 give �x1�
�Lz /� and �x2−x1�� �x1�. We therefore do not assume that
x2x1. However, we do make the simplifying approximation
that ln �sinh2 xa−sinh2 xb � � ln sinh2 xa and ln�xa

2−xb
2�� ln xa

2

for a�2 and a�b. Equation �26� then becomes

H � H1 + �
a=2

N

V�xa� − �12�a − 2�f�xa�� , �27�

where

H1 = − ln�x2
2 − x1

2� + �x1
2 − 1

2 ln sinh 2x1 − ln x1, �28�

V�x� = �x2 − 1
2 ln sinh 2x − ln x − �12 ln sinh x , �29�

f�x� = ln sinh x + k ln x, k =
2

�12
. �30�

We can now use the method developed in Refs. 1 and 4 to
obtain the full distribution P�g�.

VI. P„g… IN 3D IN THE INSULATING LIMIT

As in Refs. 1 and 4, we separate out the lowest level x1
and treat the rest as a continuum beginning at a point x2.
Then

FIG. 16. �Color online� Insulating regime: a-dependence of Kaa

for 3D systems with W=30. To see the a-dependence more clearly,
we plot the difference Kaa−K11��a which behaves as �−a for
small a. Solid line is a linear fit, from which we have Kaa=K11

+0.05−0.04/�a for L=18 and a�18 �K11=0.44�. Right inset pre-
sents data for L=14 and various strength of the disorder. Left inset
shows Kaa for L=18.

FIG. 17. �Color online� Insulating regime �W=30�:
a-dependence of �1a �L=6, 10, and 14�. Similar to the critical point,
data shows that a3/2 /L��12�a /N so that �1a�1/ ��aL�. Inset
shows data for L=14 and various strength of the disorder.
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H = H1 + 

x2

b

dx���x���V�x�� − �12f�x��

x2

x�
dx���x���

�31�

where we have used

�a − 2� = 

x2

x

dx���x�� . �32�

The density satisfies the normalization condition



x2

b

��x�dx = N − 1. �33�

P�g� can be obtained from H��xa	� as

P�g� =
 ¯
 �
a

dxae−H��g − �
a

sech2 xa� , �34�

where the �-function represents the Landauer formula for
conductance. It turns out that because of the nonlinear de-
pendence of the Hamiltonian on the density, the complex
delta function representation used in Refs. 1 and 4 is not
suitable for the present case. We therefore use a real repre-
sentation

��x − a� = lim
	→0

1

	��
e−�x − a�2/	2

. �35�

Following Refs. 1 and 4, P�g� may be expressed as

P�g� =
 D��x��

0

�

dx

x1

�

dx2e−F�x1,x2;��x��, �36�

where the free energy functional F is given by

F = H1 + 

x2

b

dx���x���V�x�� − �12f�x��

x2

x�
dx���x���

+
1

	2��g − h1� −
�

2
�2

, �37�

where

� � 2

x2

b

dx���x��h�x�� �38�

and

h�x� � sech2 x, h1 � sech2 x1. �39�

The saddle point density is to be obtained by minimizing F
with respect to ��x�, subject to the normalization condition.
We therefore define

FIG. 18. �Color online� Insulating regime: Estimation of the
localized length ��W� from the linear L dependence x1�L�=const
+L /�. 	1=sinh2�x1��. Values of � are given in the legend. g
�cosh−2 x1�exp−2L /�.

FIG. 19. �Color online� �a� shows how LK11 depends on x1 for
various disorder in the localized regime. Data confirm linear rela-
tion LK11�x1. �b� shows how limiting values of K11, obtained from
the L-dependence of K11�L� �Fig. 9�, depend on values of 1 /� �Fig.
18�. Data confirms that there is an unambiguous �-dependence of
K11.
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F � F − ��

x2

b

��x�dx − �N − 1�� �40�

and minimize F. It is useful to rewrite the free energy using
the normalization condition in a way that removes the upper
limit from the resulting equation. We use

�

��



x2

b

dx���x��f�x��

x2

x�
dx���x��

=
�

��



x2

b

dx���x��f�x����N − 1� − 

x�

b

dx���x���
= f�x�


x2

x

dx���x�� − 

x2

x

dx���x��f�x�� �41�

to obtain

Y�x� − � = �12� f�x�

x2

x

dx���x�� − 

x2

x

dx���x��f�x���
�42�

where we have defined

Y�x� � V�x� −
2

	2��g − h1� −
�

2
�h�x� . �43�

Equation �42� evaluated at x=x2 fixes �=Y�x2�. Taking a
derivative of Eq. �42� with respect to x �represented by a
prime� gives

Y��x� = �12f��x�

x2

x

��y�dy . �44�

Evaluated at x=x2, this fixes x2 as the beginning of the con-
tinuum

Y��x2� = 0. �45�

Taking another derivative with respect to x, it is now possible
to obtain the density

��x� =
1

�12
�Y��x�

f��x�
��

. �46�

We check that plugging ��x� in Eq. �46� back to Eqs. �42�
and �44� satisfy those equations. The density has the form

��x� = a1�x� −
1

	2a2�x� +
�

	2b�x� . �47�

Plugging this form in the definition of �, we obtain

� =

2

x2

b

h�x��a1�x� −
1

	2a2�x��dx

1 −
2

	2

x2

b

h�x�b�x�dx

�48�

which, expanded in powers of 	, is given by

� = 2�g − h1� + 	2
1 + O�	4� , �49�

where


1 �
1

�
− �1 + 2�g − h1�� �50�

and

�1 �
2

�12



x2

b

dx�V��x�
f��x�

��
h�x� ,

� �
2

�12



x2

b

dx�h��x�
f��x�

��
h�x� . �51�

Using the expansion for �, given by Eq. �48�, we obtain in
the limit 	→0 from Eq. �42�

Y�x� = V�x� + 
1h�x� . �52�

The free energy can then be written as

FIG. 20. �Color online� L�12 defined by Eq. �18� as a function of
�. Data confirms that there is an unambiguous �-dependence of �12.
This is important for the formulation of the single parameter scaling
theory. Dashed line is the linear dependence �12=� /2L, considered
in Ref. 15.

FIG. 21. Ratio � /�12=1/2LK12l, given by Eq. �21� for a cubic
system, as a function of disorder for 3D systems in the insulating
regime W�Wc.
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F�x1,x2� = H1 + 

x2

b

dx��x��V�x� − f�x�
Y��x�
f��x� � . �53�

There are two additional constraints that were not included in
the variational scheme and will be enforced directly,

��x2� � 0; x2 � x1. �54�

The conductance distribution now becomes

P�g� = 

0

b

dx1

x1

b

dx2e−F�x1,x2;g���Y��x2�� , �55�

with Eqs. �29�, �30�, �46�, and �52� defining V�x�, f�x�, ��x�,
and Y�x�, respectively.

A. The free energy

Let us write F�x1 ,x2�=H1�x1 ,x2�+F2�x2� and define

W�x� = Y��x�/f��x� . �56�

Then ��x�=W��x� /�12 and

F2 =
1

�12
�


x2

b

dxW��x�V�x� − 

x2

b

dxW��x�f�x�W�x�� .

�57�

On the other hand, defining

��x� = V�x� − f�x�W�x� �58�

and using partial integration, we get

F2 = −
1

�12



x2

b

dxW�x�V��x� − f��x�W�x� − f�x�W��x�� ,

�59�

where we have neglected an irrelevant term ��b�W�b� /�12

independent of x2 and we have used W�x2�=0. Using
f��x�W�x�=Y��x� and V��x�−Y��x�=−
1h��x�, we rewrite
the above as

F2 =

1

�12



x2

b

dxh��x�W�x� +
1

�12



x2

b

dxf�x�W��x�W�x� .

�60�

The two alternate expressions for F2 can now be combined to
obtain



x2

b

dxf�x�W��x�W�x� =
1

2



x2

b

dxW��x�V�x�

−

1

2



x2

b

dxh��x�W�x� + C , �61�

where C is a constant. Plugging this back to Eq. �60�, we
obtain

F2 =
1

2�12



x2

b

dxW��x�V�x� +

1

2�12



x2

b

dxh��x�W�x� .

�62�

We can again use partial integration to rewrite the first term
as an integral over V��x�W�x�, using again the fact that
W�x2�=0. Then the two terms can be combined to obtain

F2 = −
1

2�12



x2

b dx

f��x�
V�2�x� − 
1

2h�2�x�� . �63�

We define

J1 = 

x2

b

dx
V�2�x�
f��x�

, J2 = 

x2

b

dx
V��x�h��x�

f��x�
,

J3 = 

x2

b

dx
h�2�x�
f��x�

. �64�

Then

F2 = −
1

2�12
J1 − 
1

2J3�, 
1 = −
V��x2�
h��x2�

. �65�

B. The constraints

We already have one constraint Y��x2�=0. We also de-
mand ��x2��0 which requires

Y��x2� � 0. �66�

This defines x2min. Also, from Eq. �50�,

g − 1/cosh2 x1 = 1
2 ��1 + 
1�� � g0, �67�

or

x1 = cosh−1 1
�g − g0

. �68�

On the other hand defining W1�x�=V��x� / f��x� and W2�x�
=h��x� / f��x�, it is easy to see that

g0 = 

x2

b

dxh�x���x� . �69�

Using partial integration and the fact that Y��x2�=0, we can
also rewrite

g0 = −
1

�12
J2 + 
1J3� . �70�

C. Validity of the approximations

We started with the assumption that while �x1�1 in the
insulating regime, the difference �x2−x1�� �x1�. It is there-
fore important to estimate the difference from the above re-
sults. We will use saddle points of the free energy

F�x1,x2� � V�x1� − ln�x2
2 − x1

2� + F2�x2� ,
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V�x1� = �x1
2 − x1 − ln x1, �71�

where F2 is given in Eq. �63�. Let us define s=x2−x1 and
�=x1−1/2�. We assume s�x1 and ��x1. The saddle point
solutions for s and � are obtained from �F /��=0 and
�F /�s=0. Using chain rule to write the partial derivatives in
terms of �F /�x1 and �F /�x2 we obtain

V��x1� −
2

x2 + x1
+ F2��x2� = 0, −

1

s
−

1

x2 + x1
+ F2��x2� = 0,

�72�

where prime denotes derivatives with respect to the argu-
ments. Combining the two gives

− �s �
1

2�
, � � 1. �73�

From the definition of F2 we have

F2��x2� = −
1

2�12
� �J1

�x2
− 
1

2�J3

�x2
� +


1

�12

�
1

�x2
J3. �74�

The integrals J1 and J3 depend on x2 only via the lower limits
of the integrals. Derivatives w.r.t. x2 are simply the negatives
of the integrands evaluated at the lower limit. Using defini-
tion of 
1 this gives the first term in Eq. �74� equal to zero,
leaving F2��x2�= �
1 /�12���
1 /�x2�J3. Using h�x��4e−2x and
1/ f��x��x /k for x /k�1, we get

J3 �
1

k
16x2e−4x2 + 4e−4x2� . �75�

Then

F2��x2� � �2x2
3 − �3x2

2 + 1
4 �1 + �2�x2 + 9

16�1 + �1� , �76�

where �3=��1−3� /4�, �2=−6�+�2 /2� and �1=−� /3. We
neglect 1 / �x2+x1� compared to the other terms in F��s�=0
Eq. �72�� and expand F2��x2� in Taylor series around x2

=1/2�. The dominant term is 1
2 ��+s�2� where we have used

F2��x2=1/2��=�. Using �=−1/2�s, we finally obtain

�F

�s
�

1

8�s2 −
1

2
+

1

2
�s2 = 0. �77�

Therefore, the saddle point solutions are given by

s = − � =
1

�2�
. �78�

Since �x1��1/2�, we confirm our expectation that �x2−x1�
� �x1�. The results are also consistent with our assumption
that both s and � are much smaller than x1, so the free energy
calculations remain valid.

However, numerically we find that while �x1��1/2�, s
�1 independent of disorder. Thus our result s=1/�2�
� �x1� is only qualitatively correct. The fact that actual s is
much smaller than what we find is related to the inaccuracy
in our evaluation of the density. Indeed, we can obtain the
density directly from Eq. �46�. In the limit x1, �12�1 we
find

��x� �
1

�12
�2� −

k�2�k + 1�
�x + k�2 + 2V��x2�� x

x + k

−
k

2�x + k�2�e−2�x−x2�� , �79�

where we have used k=2/�12 Eq. �30��. In the limit x2�k
but x�x2, the density simplifies to

��x� � 2�x . �80�

The linear x-dependence as well as the � dependence agrees
with numerical results. However, the slope turns out to be
too large. This is possibly the consequence of our simplifi-
cation of the Hamiltonian Eqs. �26� and �27�, where all the
interaction terms were neglected except for the one between
the first and the second levels. As shown in Ref. 4, it should
be possible to obtain an integral equation for the saddle point
density which can then be solved at least approximately.

As we will show, the actual density of the levels play a
minor role in the distribution P�g�, which is dominated by
the first few levels. Therefore our results will be qualitatively
correct, although there would be quantitative discrepancies
due to the difference in the density.

Note that in the opposite limit x2k, xx2, the density
becomes

��x� � 2�/�12. �81�

This corresponds to a uniform average spacing s= �xa+1

−xa� of eigenvalues of order unity �L=Lz�, compared to the
uniform spacing s�Lz /� in Q1D. In contrast, 3D metals are
similar to Q1D metals having uniform ��x� extending down
to x=0 and s�Lz /L2. The opening of a gap in the spectrum
of Lyapunov exponents  n��xn� /Lz�1/� may be consid-
ered as the signature of the Anderson transition.

VII. RESULTS AND DISCUSSIONS

With the above caveat in mind, the saddle point free en-
ergy Fsp�x1 ,x2 ;g� has the form Eq. �53��

Fsp�x1,x2� = H1 −
1

2�12



x2

b dx

f��x�
V�2�x� − 
1

2h�2�x�� ,

�82�

where primes denote x-derivatives. Equation �55� can then be
rewritten as

P�ln g� � g

x2min

b

dx2e−Fsp�x1,x2;g�e−2�x2−x1�, �83�

where the integration over x1 is eliminated by a constraint
arising from the minimization of the free energy

x1 = cosh−11/�g − g0� ,
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g0 = −
1

�12



x2

b dx

f��x�
h��x�V��x� + 
1h��x�� . �84�

The lower limit x2min is the larger of the additional con-
straints imposed by the conditions ��x2��0 and x2�x1�0,
x1 real.

A. Analytical model

It is instructive to consider first a simple approximate so-
lution of Eq. �83�, which is dominated by the lower limit of
the integral. To a good approximation, g0 is negligible com-
pared to g in the insulating limit, and x1� 1

2 ln�4/g�. The
condition ��x2��0 or equivalently Y��x��0 gives x2min

from the condition Y��x2min�=0. This gives

x2min � �1 + � + �12�/2� �85�

and hence Fsp�H1. This immediately leads to

P�ln g� � �4x2min
2 − u2�e−��/4��1/�� + u�2

, u � ln�g/4� .

�86�

We do a saddle point analysis of Eq. �86� to obtain �ln g�
and var�ln g� as a function of �. In order to illustrate the
difference between Q1D and 3D insulators, we will keep the
general expressions without using the condition �12�1. The
free energy can be written as

Fapprox =
�

4
�x −

1

�
�2

− ln�2x2min − x�, x = ln�1/g� .

�87�

The saddle point solution of the mean xm��ln g� is obtained
from F��xm�=0 where the prime denotes derivative with re-
spect to x. Denoting

xm = 1/� − y �88�

this gives y�y−�12/��=2/�, leading to

y =
1

2
����12

�
�2

+
8

�
−
�12

�
� . �89�

The variance �x can be estimated from 1/F��xm�, giving

�x �
1

�

2
+
�2y2

4

. �90�

In the limit �12→0 appropriate for our 3D insulators, y
→�2/�. On the other hand in the Q1D limit �12

Q1D=1, y
→2. Thus compared to the Q1D result �ln g�Q1D�1/�, the
3D result is shifted by �2/�. Similarly, compared to the Q1D
result var�ln g�=2/�, the 3D insulators have a much sharper
distribution, with half the variance 1/�. Both results agree
with numerical data. Although our model is not in general
valid for �12→1 because of our neglect of the interaction
terms, in the insulating limit the interaction terms are negli-
gible and it is useful to see how the mean and the variance
changes with �12 as it is changed from the 3D limiting value

of zero to the Q1D limiting value of unity. Since �12
�� /2L, for a given disorder this will correspond to starting
from a cubic sample of width L=Lz� �where Lz is the
length� and decreasing the width to L�� to reach the Q1D
limit.

Figure 22 shows how the mean and the variance changes
with �12 according to Eqs. �88� and �90�

It is not possible to obtain a simple formula for the skew-
ness ��ln g− �ln g��3� / ��ln g− �ln g��2��3/2 except that in the
limit �→0 it approaches a number of order unity. Direct
evaluation of the quantity as a function of �12 is shown in
Fig. 23, which shows that for a given disorder, the skewness
starts from zero in the Q1D limit, as is well known, but
saturates to a finite value �depending on disorder� in the 3D
limit. It shows that the distribution is never log-normal for
3D insulators. It also shows that the distribution P�ln g� is
almost independent of �12 provided that both �12 and � are

FIG. 22. �Color online� Mean value �ln g� and variance var ln g
as a function of �12 in the strongly insulating regime, calculated
from analytical distribution �83�. As expected, var ln g�−�ln g� for
�12�1 but var ln g�−2�ln g� for �12=1. Note that both mean and
variance depends only weakly on �12 when �12 is small �which is
always the case when the system size L is large�.

FIG. 23. �Color online� Skewness as a function of �12 in the
strongly insulating regime. As expected, skewness is zero for �12

=1 �Q1D limit�.
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small. This explains why the distribution shown in Fig. 25
does not depend on the ratio � /�.

Finally, Fig. 24 shows how the entire distribution P�ln g�
changes as a function of �12, from a sharp, skewed form for
�12�1 to a broad Gaussian form for �12=1.

B. Comparison with numerical data

When comparing our theoretical prediction, Eq. �83�, with
numerical data, we distinguish two cases: �1� for 3D systems,
both � and �12 decreases �1/L, while the ratio � /�12 does
not depend on L. �2� for systems L2�Lz, ��1/Lz while
�12�1/L does not depend on Lz �see Fig. 5�. Therefore,
contrary to 3D geometry, � /�12�1 for LzL. This different
behavior of parameters � and �12 explains difference be-
tween the shape of p�ln g� in 3D and Q1D strongly disor-
dered systems, shown in Figs. 25 and 26.

Figure 25 shows Eq. �86� compared with the results from
direct integration of Eq. �83�, both compared with numerical
results based on Eq. �11�. For the analytic curves, we chose
�=0.063 and �12=� /2 to have the same �ln g� as in the
numerical case.29 Note that using the Q1D result �12

Q1D=1
gives x2 min�1/�, leading to a log-normal distribution �see
dotted line in Fig. 25�. As shown in Ref. 15, variance and
skewness calculated from direct integration of Eq. �83� com-
pares well with numerical results, consistent with saddle
point results from Eq. �86�.

Figure 26 compares theoretical formula, Eq. �83� with nu-
merical data for p�ln g� for insulating samples L2�Lz. While
� is small, decreasing as �1/Lz, �12 does not depend on Lz
and is constant for fixed L. Consequently, ratio �12/�
�Lz /L increases with increasing Lz.

Both Figs. 25 and 26 show qualitative agreement with
numerical data and theoretical model. Quantitative differ-
ences between Eq. �83� and numerical results have origin in
our simplified model Eq. �19�, which still overestimates the
strength of the interaction for higher channels.

It is important to note that in both Figs. 25 and 26 we
compared numerical data with theoretical model with the
same mean �ln g�. This is consistent with scaling theory of
localization since there is only one parameter, for instance

�ln g�, which determines p�ln g� completely. In order to make
sure that the analytical model has the same �ln g� as the
numerical data for a given disorder, we used � as a free
fitting parameter. Of course we could use Eq. �20� to obtain
� independently for a given disorder. However, in order to
do that we will need a good estimate of the mean free path �.
This is difficult in the strongly disordered regime because the
mean free path defined as the decay length of the single
particle Green’s function is actually smaller than the lattice
spacing in the strongly disordered regime,31 and our numeri-
cal model does not allow us to obtain such small lengths with
good accuracy. While independent calculations of the mean

FIG. 24. �Color online� P�ln g� obtained from analytical formu-
las Eqs. �82�–�84�� for �=0.03 and various values of �12.

FIG. 25. �Color online� Conductance distribution for 3D insula-
tors obtained from direct numerical simulation for W=16, L=26
�circles�, and from Eq. �83� for �=0.063 and �12=� /2 �solid line�.
Both have the same mean value �ln g��−10.6. Dashed and dotted
lines show Eq. �86� with x2 min=1/2�+3/4 and x2 min=1/�, respec-
tively, with �=0.063. Shown are also numerical data for W=26 and
L=10 �triangles�. Similar agreement is obtained for other values of
�ln g� if � is used as a free parameter; see Ref. 15 for the case
�ln g��−12.6 fitted with �=0.054 29�.

FIG. 26. �Color online� Conductance distribution for insulating
samples of the size L2�Lz �L=10� In contrast to 3D system �Fig.
25�, parameter � /�12�1. From numerical data, we have �=0.3,
�12=0.22 for W=16, and �=0.133�0.102�, �12=0.32�0.36� for sys-
tems with W=14 and Lz=30 �40�, respectively. Solid lines show
analytical result, Eq. �83� with �12 and �ln g� as given form numeri-
cal data.
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free path are available for cubic systems below critical
disorder31 �e.g., �=0.234 for W=15 in the isotropic case�,
there is no data available in the insulating regime. We there-
for use � as a free parameter. Nevertheless, as a consistency
check, we estimate � from a plot of K11L vs x1 Fig. 19�a��,
where the slope should give the mean free path �equivalently,
we could identify �−1 with numerical value of x1�. The re-
sults are plotted as the inset in Fig. 27 to show the mean free
path as a function of disorder. Using this result, we can es-
timate the value of � corresponding to the disorder W=16
used in Fig. 25. We find that ��W=16��0.48 and �=0.070,
which is close to the fitting value 0.063. This shows that
while we can not obtain � accurately enough in our present
numerical scheme, the fitted values are consistent with our
crude estimates. As a further consistency check, we use the
above estimate of the mean free path to plot in Fig. 27 the �
dependence of �ln g�. It shows that �ln g� is indeed an unam-
biguous function of �, as required by the theory.

Finally, we have checked the effects of fluctuations of k11
on P�ln g� by integrating the conductance distribution in Fig.
25 over the distribution P�k11� �Fig. 4�. We find that the
effects are negligible.

VIII. BEYOND THE INSULATING LIMIT

From numerical simulations7,8 we know that the critical
regime in 3D is also dominated by only a few eigenvalues
xi1. However, since �12 is neither 0 nor 2, it seems that we
may not be able to use the free fermion ��=0� solution of
Eq. �24� to obtain the distribution of the transmission levels.
However, as shown in Ref. 32, the solution is independent of
the strength of the interaction � in the strong disorder regime

characterized by xi1. This means that our solutions might
be used, albeit only qualitatively, even near the critical re-
gime. We show in Fig. 28 the distribution P�ln g� for ��1
which is expected to be near the critical regime. It agrees
qualitatively well with numerical results at the critical point,
including a discontinuity in the slope near g=1. It is known
from analysis of the Q1D systems6 that separating out an
additional level helps to study the nonanalyticity near g=1.
We therefore expect to obtain better results near the critical
regime by separating out an additional level.

Finally, we show in Fig. 29 the distribution P�g� for
��1 and for �12=1 which corresponds to the metallic re-
gime. Although we do not expect that our approximate for-
mula works quantitatively for the metallic regime, Eq. �83�
gives, for this choice of the parameters, a Gaussian distribu-
tion of the conductance. Also the width of the distribution
qualitatively agrees with the universal conductance
fluctuations33 in this regime. This shows that our simple
model already captures the essential qualitative features at all
strengths of disorder.

FIG. 27. �Color online� Mean value �ln g� as a function of 1/�.
Open symbols: analytical result, Eq. �83�. Data confirm linear de-
pendence �ln g��1/� for small � �strong disorder�. For smaller
disorder �larger �� analytical model is less accurate. Data confirm
that �ln g� does not depend on �12 provided that both � and �12 are
small. Full symbols: numerical data with �−1=LK11/�. We estimate
� for a given disorder using the mean free path � obtained from
data in Fig. 19�a� ��W� is shown in inset� and the relation K11L
=x1�. Numerical �ln g� is an unambiguous function of �, as re-
quired in the analytical model. Small deviations are due to finite
size effects which affect actual values of parameters x1 and K11.

FIG. 28. �Color online� �a� Probability distribution P�ln g� for
��1 where critical regime is expected. The distribution agrees
qualitatively with numerical data for the critical regime. �b� shows
detail of the distribution shown for �=0.35, �12=� /2 and for �
=0.6, �12=1. It shows that there is indeed a nonanalyticity in the
distribution close to ln g=0 with position of the nonanalyticity at
ln g�0, in agreement with analytical results �Ref. 6�.
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IX. SUMMARY AND CONCLUSION

We systematically analyzed the length and disorder de-
pendence of the matrix K to check if the generalized DMPK
equation proposed in Ref. 14 is valid in three-dimensional
systems at all strengths of disorder.

We studied the matrix K in detail. The goal was to test the
assumptions on which the generalized DMPK equation was
derived and to construct a simple analytically tractable
model for K which captures all the important qualitative fea-
tures. In particular, since Q1D systems have been studied in
great detail, we looked for any major qualitative differences
in the structure of K between Q1D and 3D systems.

We find that to a good approximation, the generalized
DMPK equation remains qualitatively valid for any disorder.
We also conclude that to a good approximation, we can use
only two parameters, Kaa�K11 and �ab��12, to characterize
the qualitative changes in transport at different strengths of
disorder in different dimensions. We find that although fluc-
tuations in k11 at strong disorder are large �non-self-
averaging�, the effect of these fluctuations on P�ln g� is neg-
ligible. More importantly, we do not have an independent
way to estimate the mean free path to obtain �=� / �LzK11�,
but all qualitative features of the entire distribution P�ln g� is
obtained correctly once an effective � is used as a free pa-
rameter. We also find how these parameters depend on dis-
order and show their unambiguous dependence on the local-
ization length. This is important since it indicates that the
introduction of new parameters does not necessarily invali-
date the single parameter scaling theory of localization.

We have also shown that the matrix K contains informa-
tion about the Anderson transition. The scaling of the param-
eters LK11 or �12 clearly identifies the critical point which
agrees with numerical results.

We then concentrate on the strong disorder limit where
our numerical results allowed us to construct a simple one-
parameter model of the matrix K, containing �=� /K11Lz and
�12=2K12/K11, with � /�12=2. By varying �12, we show how
one can go from a Q1D ��L� to a truly 3D ���L� system

in the insulating regime, which clearly shows the difference
between a Q1D and a 3D insulator. We then use the model to
obtain the full distribution P�g� which agrees qualitatively
with numerical results.

It is indeed remarkable that even though the generalized
DMPK equation �22� neglects fluctuations in kab and the
model Eq. �19� neglects the index dependence of Kab, the
theory still captures all the essential features of length, dis-
order as well as dimensionality dependence of the entire con-
ductance distribution and provides in particular a simple un-
derstanding of the 3D distribution at strong disorder, which
is qualitatively different from a log-normal distribution in
Q1D. At the same time, our numerical studies suggest that
having an independent estimate of the mean free path could
provide a more quantitative description of the conductance
distribution in 3D at all disorder.

We emphasize that there are large differences between
Q1D and higher dimensions. In Q1D defined in Refs. 4–6
and 18, disorder is always weak enough to assure that the
localization length �L where L is the transverse dimen-
sion. The Q1D insulator corresponds to the weakly disor-
dered systems of length Lz�. It is this length-induced in-
sulating behavior that is described by the DMPK equation.
This is different from localization in 3D which occurs at
strong disorder, where � is much less than both Lz and L.
This difference is clearly reflected in the matrix K, where
Table I summarizes how the scale dependence of K11 and �12
depend on disorder in 3D. In contrast, K in Q1D is indepen-
dent of disorder. Our model recovers all the peculiarities of
the 3D localized regime: we found that the distribution
P�ln g� is narrower than in Q1D and possesses nonzero
skewness.

Although we concentrated on 3D systems, general consid-
erations about the properties of the matrix K in the insulating
regime should be valid in any dimension d�2. In particular,
the assumption that K11 is a nonzero L-independent constant
in the localized regime is correct independent of dimension-
ality. Therefore, we expect that our theory of the insulating
regime is valid for any d�2. Consequently, the distribution

FIG. 30. �Color online� Typical form of the distribution p�ln g�
in 2D disordered systems compared with Gaussian distribution with
the same mean value and variance. �ln g�=−20.6, var ln g=23.5 and
skewness is 0.251. The figure indicates that the deviation from the
Gaussian distribution exists in 2D as well.

FIG. 29. �Color online� Analytic result for the metallic regime �
��1 and �12=1�. Data confirm that the distribution P�g� is Gauss-
ian with variance var g=0.064 for �=1.5 and var g=0.09 for �
=3.5 which is comparable to the UCF value.
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P�ln g� is not Gaussian in the localized regime in any d�2,
although the nature of the deviation from the Gaussian form
might be dimensionality dependent. In fact we expect P�ln g�
to be different from the Gaussian distribution even in 2D.11

This expectation is supported by Fig. 30 which shows
P�ln g� for a 2D square system obtained numerically using
Eq. �11�. As discussed in the paper, deviations from the
Gaussian form are due to the changes of the spectrum of
parameters x. Although the contribution of the first channel
to the conductance is dominant, higher channels do influence
the statistical properties of the smallest parameter, x1. This
effect was probably not considered in previous analytical
works which predict Gaussian distributions of ln g in the
insulating regimes in dimensions d=2+�.12

When applied to the critical regime, our theory recovers
typical properties of the conductance distribution, including
the nonanalyticity of the distribution in the vicinity of g=1.
Although our present results are only qualitatively correct in
the critical regime, we believe that the method developed in
the paper represents a good starting point for further devel-
opment of the theory of Anderson transition.
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