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We consider a class of rotationally invariant unitary random matrix ensembles where the eigenvalue density
falls off as an inverse power law. Under a scaling appropriate for such power-law densities �different from the
scaling required in Gaussian random matrix ensembles�, we calculate exactly the two-level kernel that deter-
mines all eigenvalue correlations. We show that such ensembles belong to the class of critical ensembles.
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I. INTRODUCTION

Gaussian random matrix ensembles, introduced by
Wigner and Dyson �1�, have been studied extensively over
half a century in the context of nuclear physics, atomic and
molecular physics, condensed matter physics, as well as par-
ticle physics �2�. The wide applicability results from the uni-
versal properties of the correlation functions of the eigenval-
ues, once they are appropriately scaled. Thus, e.g., the
correlation functions of the eigenvalues x of an ensemble of
N�N Hermitian matrices become, after proper scaling, in-
dependent of the size of the matrix or of the details of the
microscopic distribution from which the matrix elements are
drawn. For a Gaussian distribution, the density is a semi-
circle given by ��x�=�2N−x2 /�; this requires, for univer-
sality, the double scaling limit

N → �, x → 0, u � x�N finite, �1�

such that the density �̄�u�=const near the origin. This par-
ticular double scaling is required for all Gaussian random
matrix ensembles of different symmetry classes �3� in order
to have a universal large N limit. In particular, for Gaussian
unitary ensembles, after a second trivial scaling �=�2u /�
such that �̃���=1, it leads to the universal two-level kernel

KG��,�� =
sin���� − ���

��� − ��
�2�

independent of N, which gives rise to universal eigenvalue
correlations like the nearest-neighbor spacing distribution or
the number variance, commonly known as the Wigner distri-
butions.

Note that in the above double scaling limit, one is always
restricted to the eigenvalues far from the tails of the density.
This is a highly nontrivial feature of Gaussian random matrix
ensembles. Indeed, the eigenvalue correlations for Gaussian
ensembles are deeply related to the properties of Hermite
polynomials �3�, and the above scaling is dictated by the
asymptotic properties of Hermite polynomials of order N and
argument x in the large N limit for small x. Since Hermite

polynomials have a different asymptotic behavior for large x
in the large N limit �4�, a different scaling is dictated for the
Gaussian ensembles near the edge of the semi-circle spec-
trum. Here universality is recovered after a shift x�=x
−�2N+1, and a different double scaling limit near the new
origin, namely N→�, x�→0, with u�x�N1/6 remaining fi-
nite �5�. In this case one gets the so-called Airy kernel and
the density decreases exponentially for large u.

In a sense, the universality of the Gaussian random matrix
ensembles is a result of an underlying central limit theorem,
generalized to matrices �6�. Indeed, the universality requires
that the eigenvalues are confined “strongly enough” such that
the fluctuations remain bounded. For example, if the prob-
ability density P�H� for an N�N random Hamiltonian H is
given by

P�H� 	 exp�− 
 Tr V�H�� , �3�

then in a more general situation where the confining potential
V�H� is not a Gaussian, the density may not be the same near
the origin. Even then, one can “unfold” the spectrum by
choosing a variable in which the density is unity, and as long
as the confining potential is “strong enough,” the double
scaling given by Eq. �1� always leads to the same two-level
kernel and therefore the same universal correlations. This is
because for any such rotationally invariant ensemble de-
scribed by a confining potential, the two-level kernel can be
described in terms of polynomials orthogonal with respect to
a Freud-type weight function e−V�x�, with polynomial V, �just
as the Hermite polynomials arise for Gaussian ensembles
where the potential is V�x�=x2� �3�. Again, the eigenvalue
correlations are deeply related to the properties of those or-
thogonal polynomials. However, all Freud-type orthogonal
polynomials have qualitatively similar asymptotic behavior
in the large N limit. Therefore the same double scaling limit
leads to universality for all such different confining poten-
tials. Conversely, an arbitrary scaling �with, e.g., an arbitrary
power law for N� does not lead to a universal N-independent
kernel for rotationally invariant random matrix ensembles
associated with the classical orthogonal polynomials.

On the other hand, it is known that the universality does
break down if the confinement potential V�H� grows ex-
tremely slowly with H �7�, namely
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V�H� =
1

�
ln2 H, H � 1. �4�

This leads to the so-called “critical” ensembles �8�, charac-
terized by a one-parameter generalization of the Gaussian
two-level kernel, given by �7,9�

KC��,�;�� =
�

2�

sin���� − ���
sinh��� − ���/2�

, �  2�2. �5�

The eigenvalue correlations for such systems for various val-
ues of the parameter � have been studied in the context of
the Anderson transition in disordered quantum conductors
�10�. The density of the eigenvalues with the weak confine-
ment potential �4� turns out to be a constant independent of N
in the N→� limit, and the scaled variables are simply �
=x /�. Note that the critical ensembles tend to the Gaussian
ensembles in the limit �→0, in which case one is again
restricted to the correlations of the eigenvalues near the ori-
gin. However, the scaling does not involve N. This difference
in the scaling behavior is the reason why critical ensembles
could not be studied using the classical orthogonal polyno-
mials.

A second case where a different scaling beyond the scope
of the Freud-type orthogonal polynomials is required is when
the density of the eigenvalues x falls off as a power law for
large x. This indeed happens for a large class of random
matrix ensembles of recent interest, relevant for, e.g., finance
or scale free systems that require considering power-law dis-
tributions with fat tails �11,12�. In a pioneering study, Cizeau
and Bouchaud �CB� �6� introduced the so-called “Lévy ma-
trix ensembles” where the matrix elements are drawn from a
power-law distribution according to P�Hij� with

P�Hij� �
H0

�

�Hij�1+� , Hij � 1. �6�

Here H0 is of order Hij and the parameter ��0. The eigen-
value density in this case was shown to fall off with the same
exponent, as 1 /x1+�. In particular for 0���1, the distribu-
tion has diverging variance and hence the underlying central
limit theorem must now be modified according to the theo-
rems of Lévy and Gnedenko �13�. Indeed, several numerical
works have shown �13,14� that the universality of the Gauss-
ian ensembles does break down when the density of eigen-
values follows a power-law with exponent less than 2, the
signature of which is apparent in the numerically obtained
nearest-neighbor spacing distribution and the number vari-
ance. The eigenvalue densities for certain Lévy ensembles
have been obtained analytically �12�, but so far it has not
been possible to evaluate the two-level kernel which gives
the two or higher level eigenvalue correlations. Since the
universality requires “unfolding” where the density is made
uniform, it is obviously of more interest to obtain the two-
level kernel for a Lévy-like ensemble, specially where the
microscopic distribution leads to a power-law eigenvalue
density which falls off with an exponent less than 2.

Clearly, if the density of eigenvalues falls off with a
power law and we are interested in the properties of the large
eigenvalues in the tails, any possible universality of the as-

sociated random matrix ensembles cannot be expected in the
same double scaling limit used for the Gaussian ensembles,
either at the origin or near the semicircle edge. In �6�, CB
proposed a double scaling limit

N → �, x → �, u � x/N� finite, �7�

where ��0 is related to the power-law exponent, in which
the Lévy ensembles might become universal. We will call
this the CB scaling. As mentioned above, this scaling cannot
be obtained naturally within the scheme of classical or
Freud-type orthogonal polynomials. This means that the
most powerful approach to study eigenvalue correlations of
random matrix ensembles, namely the method of orthogonal
polynomials �3�, seems to be inapplicable for Lévy-type ran-
dom matrices. It is for this reason that progress has been
slow in detailed analytic studies of eigenvalue correlations of
random matrices with power-law densities.

On the other hand, although in most studies it has been
implicitly assumed that a power-law density of eigenvalues
requires choosing matrix elements from a power-law distri-
bution of the type �6�, we find that at least for the inverse
power law with exponent 1, this is not the case. Indeed, we
find that a weakly confined log-squared potential that gives
rise to the critical ensemble with a constant density for an
N-independent scaling also gives rise to a inverse power-law
density under the CB scaling. It turns out that the weakly
confined log-squared potential is exactly solvable even in the
new CB scaling regime and the two-level kernel in this scal-
ing regime has a well-defined limit as N→�.

II. MODEL

In the present work we use the solvability of the log
squared potential to obtain analytically, exactly, and explic-
itly, the two-level kernel for a random matrix ensemble with
density ��x�	1/x in the CB double scaling limit given in
Eq. �7� where � is an arbitrary positive parameter. Specifi-
cally, we use the model characterized by the confinement
potential

V��x�q� =
2

�ln q�
�ln�x + �1 + x2��2, �8�

where q is a parameter, 0�q�1. The joint probability dis-
tribution of the N eigenvalues can then be written as �3�

P�	x
� = CN�q��
i�j

N

�xi − xj�2�
i=1

N

e−V��x�q�, �9�

where CN�q� is a constant and the product �i�j
N �xi−xj�2 is the

standard Vandermonde factor for unitary ensembles. The or-
thogonal polynomials corresponding to the weight function

wH��x�q� = q1/8� − 2

� ln q
e−V��x�q� �10�

for the above confining potential, in terms of which the two-
level kernel can be written down exactly, are the Ismail-
Masson q−1-Hermite polynomials �15� first considered in the
context of random matrices in �7�, where only an
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N-independent scaling was considered. The reason for the
choice of the potential �8� is that a very general asymptotic
relation for the corresponding Ismail-Masson polynomials
has been obtained recently �16�, such that the new CB scal-
ing can be implemented explicitly without compromising the
solvability of the model. In particular, for

xn�t,u� =
1

2
�q−ntu − qnt/u� �11�

and 0� t�1/2 �17� it has been shown that the normalized

Ismail-Masson polynomials h̃n��xn�q� has the large n limit
given by

�wH�xn�h̃n�xn� =
�wH��sinh ln u�q�u2a

�− 1��m/2��q;q��
��q;q�n

qn/4qa2
��− u2q2a,q� .

�12�

Here �q ;q�n=�0
��1−qn�, m is an integer, and 0���1 has

been defined by the relation m+�=n�1−2t�. We have also
defined 2a=��m�+� where ��m� is 0�1� for m=even�odd�.
The function

��z,q� = �
n=−�

�

qn2
zn �13�

is defined for z�0 for any complex z.
Let us define

q � e−�, � � 0. �14�

Note that for N→� and large u, we can choose the param-
eters � and t to satisfy the CB scaling for arbitrary �. The
choice

�Nt = � ln N , �15�

when used in Eq. �11�, gives precisely the CB scaling u
=x /N�. Note that while for finite 0� t�1/2 the above con-
dition requires �=2� ln�N� /N→0 or equivalently q→1, we
are free to choose t� ln�N� /N such that the scaling relation
can be satisfied for finite �. In the following, we will outline
the derivation of the two-level kernel for ��2.

III. TWO-LEVEL KERNEL

The two-level Ismail-Masson kernel defined in terms of

the orthonormal polynomials h̃n��x�q� is given by KN�x ,y�
=�wH�xN�wH�yN��k=0

N−1h̃k��x�q�h̃k��y�q�. For large N it can be
written, using the Christoffel-Darbeau formula, as

KN�x,y� = �wH�xN�wH�yN�

�
kN

kN−1

h̃N��xN�q�h̃N−1��yN�q� − h̃N��yN�q�h̃N−1��xN�q�
x − y

,

�16�

where kN is the coefficient of the term xN in the polynomial
of order N. In Eq. �16� we can replace N by N−1 to obtain
the asymptotic expression for the normalized polynomials

h̃N−1��xN−1�q�. However, the Christoffel-Darbeaux formula

involves h̃N−1��xN�q�. Similarly, we need expression for the
weight factor wH��xN−1�q� in terms of wH��xN�q�. We obtain
these results by exploiting the scaling relation

xN−1�t,q−tu� = xN�t,u� , �17�

which follows from Eq. �11�. This gives, in terms of the
scaled variables v=y /N�,

�wH�yN�h̃N−1�yN� =
�wH��sinh ln�q−tv��q�

�− 1��m�/2��q;q��
��q;q�N−1

��q−tv�2b+2tq�N−1�/4q�b + t�2
��− v2q2b,q� ,

�18�

where m�+��= �N−1��1−2t� and we have defined 2b
=��m��+��−2t.

The functions ��z ,q� appearing in the above equations
cannot be evaluated easily. However, for q near 1 �or �
�2� which is the region we would be interested in �this
allows us to go to the Gaussian limit q→1�, we can use the
imaginary transformation �18�

��w,q� =��

�
eln2 w/4���e� ln w/i�,p�; p = e−�2/�.

�19�

In this case the series in powers of p=e−�2/� converges rap-
idly for ��2 and can be approximated quite well by keep-
ing only the dominant term. The transformation allows us to
rewrite the kernel as

�x − y�K�x,y� = A�q�ei�/� ln�uv� �
k1,k2

pk1
2+k2

2−k1−k2�pz1�k1�pz2�k2

��1 − e−i2��a−b��k1−k2�� , �20�

where pz1=ei2��a−1/� ln u�, pz2=ei2��b−1/� ln v�, and A�q� is a
constant independent of u ,v. We now make our first approxi-
mation, namely that we keep only the two terms k1=0 ,k2
=1 and k1=1 ,k2=0 in the double sum in Eq. �20�. This ne-
glects terms of order p2 or higher powers of p. Using the fact
that the product �−1��m/2�+�m�/2�sin���a−b��=1 for all a ,b, we
finally obtain

K�x,y� = K0qnt
sin��

� lnu
v�

u − v
, �21�

where

K0 =� 2

��

2�

�
q−1/8e−�2/2�

�q;q��
3 . �22�

In order to estimate K0, we use the Euler identity �19�
�q ;q��=�n=1

� �1−qn�=�n=−�
� �−1�nqn�3n+1�/2. The sum can be

evaluated using the Poisson summation formula to yield
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�q;q�� =�2�

3�
e�/24 �

k=−�

�

e−�2/6��2k + 1�2−i�/6�2k+1�. �23�

Again we use the fact that ��2 and approximate the series
by keeping only the k=0 and 1 terms. This gives �q ;q��

�2�
� q−1/24e−�2/6�. This then leads to K0=1/�.

IV. RESULTS AND DISCUSSION

In terms of the scaled variables u=x /N�, v=y /N�, the
two-level kernel in the large N limit is given by

KP�u,v;�� =
1

�

sin��
� lnu

v�
u − v

, 0 � �  �2 �24�

with density

��u� � KP�u,u� =
1

�u
. �25�

Thus the kernel is not universal and depends on one param-
eter that cannot be scaled out. Surprisingly, once unfolded by
changing variables to

� =
1

�
ln u, � =

1

�
ln v �26�

such that the density becomes unity, �̄���=1, the scaled ker-
nel becomes identical to the critical kernel of Eq. �5�,

K̄P��,�;�� �
KP��,�;��

�KP��,�;��KP��,�;��
= KC��,�;�� .

�27�

Thus it shows that rotationally invariant random matrix en-
sembles with inverse power law density ��x�	1/x belong to
the class of critical ensembles, albeit after a logarithmic vari-
able transformation.

It is important to emphasize that although the current
model belongs to the same class of critical ensembles, it
differs from the N-independent scaling model in two impor-
tant ways. First, the N-dependent scaling introduces non-
trivial N-dependent logarithmic potential in addition to the
log-squared potential of the N-independent scaling model.
Second, the logarithmic variable transformation changes the
interaction between the eigenvalues. It is therefore not obvi-
ous that the present model should lead to a critical ensemble.
In the variable where both models have weakly confining
log-squared potential, the kernels for the CB scaling and the
N-independent scaling are given by Eqs. �24� and �5�, respec-
tively.

It has been conjectured before �20� that an inverse power-
law density in a rotationally invariant random matrix en-
semble approaches the same behavior as that for a weakly
confined log-squared potential considered here. In this work
we show explicitly by calculating exactly the two-level ker-
nel that the inverse power case is a critical ensemble under
the CB scaling. However, it differs from the case of the
weakly confined log-squared potential with N-independent
scaling in important ways; in the variable where the present
kernel becomes identical to that for N-independent scaling,
the confining potential is in fact Gaussian.

The Ismail-Masson polynomials go back to the classical
orthogonal polynomials in the limit q→1. One can therefore
hope to implement the scaling for the Ismail-Masson poly-
nomials and then take the q→1 limit to obtain the corre-
sponding scaling for the Gaussian ensembles. It turns out
that the inverse power density ��u�	1/u is very special and
exists only for q�1. The unfolded kernel with constant den-
sity of course has a well-defined q→1 limit which is just the
sine kernel of the Gaussian ensemble. It should be possible
to obtain the two-level kernel for arbitrary density power law
with CB type scaling within our scheme, but it is not clear if
a well-defined N→� limit exists for the resulting kernel.
Here we presented only the inverse power density case,
which we show to be critical.
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