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Abstract. We propose a novel random transfer matrix model for quantum transport in
disordered systems. The model is exactly solvable in the sense that arbitrary n-point
correlation functions of the eigenvaiues can be obtained in terms of known orthogonal
polynomials, and the conductance is a simple linear statistic of these eigenvalues, The
model exhibits qualitative deviations from the universal properties normally associated
with random matrices, and we observe that such deviations may naturally describe the
differences in the distribution of conductance in the metallic versus insulating regimes.
In particular, by varying 2 single parameter g, we recover the metallic regime with
Ohm's law and universal conductance fluctuation in the limit ¢ = 1, and the well known
log-normat distribution of conductance for one-dimensional insulators in the opposite
IEmit g <€ 1. We argue that in this model the metal-insulator transition is refated to the
qualitative change in the eigenvalue density and the associated opening of a gap in the
density at the origin.

1. Introduction

In a recent letter [1), we proposed an exactly solvable random matrix model for
electronic transport in disordered quantum conductors. The model is based on
the maximum-entropy anseiz for random transfer matrices that describe quantum
transport in disordered mesoscopic systems [2]. This model is motivated by known
exact results in one dimension as well as recent numerical studies [3] that confirm the
general validity of such an ansatz, where the eigenvalues of a certain combination of
the transfer matrices repel each other logarithmically, but remain bounded by a single-
particle confining potential whose functional form is quite imsensitive to disorder, size
or dimension. Distribution of physically observable conductance is then related to the
distribution of eigenvalues of the above-mentioned random matrices. Such a mapping,
if it exists, will allow us to address the issue of how the distribution of conductance
changes as one goes from the metallic to the insulating side of a system (e.g. by
increasing the disorder), as opposed to considering the average of conductance only,
which is known to be insufficient for mesoscopic systems [2]. We showed that for a
qualitatively realistic model, n-point correlation functions of the eigenvalues can be
written down exactly (in terms of known orthogonal polyromials), which would not
be possible in a conventional approach to quantum transport [4].
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While random matrix models have been extensively studied in nuclear physics 5]
and string theories [6], they have the common feature that the eigenvalues (real) are
extended from —co t0 +oo and the confining potential is a polynomial (related to
Gaussian distribution of random matrix elements of the Hamiltoniar of a compiex
nucleus, or discretization of random surfaces in a string theosy). Similar models
have been suggested for the Hamiltonian of disordered systems as well [7]. This
is essentially on the basis of the universality of the conductance fluctuations in the
metallic regime, which is very similar to the fluctuations in the emergy levels of
complex nuclei and these are well described within the standard random matrix
models. All such models are known to have some universal properties, namely
that the density of eigenvalues at the origin (small eigenvalues) scales with the
number of eigenvaiues, and the distribution of the spacing between nearest-neighbour
eigenvalues follow the ‘Wigner surmise’ [5], a power-law behaviour for small spacings.

The problem of quantum transport in disordered systems, described in terms
of transfer matrices, has led us on the other hand to consider a random matrix
mode] where the eigenvaiues are positive semi-definite and the confining potential
behaves as a square of logarithm for Jarge eigenvalues. Such a random matrix model
has not been considered before. In our short note we reported considering an
exactly solvable model of this type which seems to have interesting deviations from
the universal properties normally associated with random-matrices, and observed
that such deviations may naturally describe the differences in the distribution of
conductance in the metallic versus insulating regimes. Although the model we chose
may be an oversimplification of the actual model that might describe the problem
of metal-insulator transition in a real physical system, it is nevertheless interesting
to investigate such an exactly solvable model in some detail in order to understand
certain qualitative features of how the conductance distribution evolves from metallic
to insulating behaviour.

However, although the n-point correlation functions for the eigenvalues for our
mode! can be written down explicitly in terms of a family of orthogonal polynomials
as in the standard random matrix approach, the polynomials turn out to be the basic
or so-called g-Laguerre polynomials of Hahn [8], and are not familiar in the physics
community. In fact these have been investigated in some detail only recently [9],
and many properties, including the asympitotic behaviours are either not known yet,
or have only recently been obtained in connection with our present work [10]. We
therefore present in this paper some details of the derivation of our results reported
earlier [1]. We include in appendix A a compiete asymptotic series for the generalized
g-Laguerre polynomials of large degree that was not available before.

2. Description of the framework

An N-channel conductor can be desctibed by a 2N x 2N transfer matrix T which
relates the left-hand flux to the right-hand flux. The doubly degenerate cigenvalues
z; (0 z; o0, i=0,...N —1,) of the matrix X = 3[TT 4 (TIT)~1 - 21] are
then reiated to the two-probe conductance g as [11]

N-1 1
9=,§1+%- 1)
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Note that a large density of small eigenvalues will correspond to a metal, while
exponentially large eigenvalues will characterize an insulator. The number of
eigenvalues N depends on the cross-sectional area of the conductor, so that
N o« L*-1 for a conductor of size L? in d dimensions.

The fundamental notion of the random matrix approach is that the ensemble of
all random X matrices consistent with given symmetries (current conservation, time
reversal etc) subect to some physical constraint (e.g. given average condactance) has
a distribution of eigenvalues that can be written quite generally in the form [2]

N-1 N-1
P{‘"o: ey sN-—I} = H lwm - xnlﬂ H exp["“v(xk)]' %)
m<n,h k=0

The distribution of conductance g can be obtained from P{z;} as follows:
N-1
o= (s(s- £ )

Here 3 is a symmetry parameter and is equal to 1, 2 or 4 for orthogonal, unitary and
symplectic symmetries [5] respectively. The average is

(.. = z-ljﬂw...j: ﬁ:f dz,-)P{:zn...a:N_i}(...) @

i=0

and the partition function
. g N=1

=] e
z=/ jf \H dxi)P{zn...mN_l}. (3)
0 0 i=0
For simplicity we will consider 8 = 2 only, which corresponds to the case where a
magnetic field is present, thereby breaking the time reversal symmetry.

We can think of equation (2) for the joint probability distribution as an exponential
of some effective ‘Hamiltonian® for the eigenvalues [5]. The first product term will
then correspond to a Jogarithmic repulsion between the eigenvalues, which will try to
separate them as far as possible, while the second product term will correspond to a
single-particle ‘confining potential’ which keeps them from moving out to infinity.

3. Description of the model

The single-particle potential V' {«) defined in equation (2) was studied numerically in
[3] in 2 and 3 dimensions for various sample sizes and disorders, and it was found that
its functional form was essentially universal. In particular, a good fit was obtained by
a function of the form

V(z) = aln’(1 + bx) (6)

where a and b depend on system parameters. This is a very unusual potential for
which the associated random matrix model cannot be solved analytically for arbitrary
n-point correlation functions. But this form for V' is not at all surprising. It is
known in one dimension [12] that, due to the multiplicative nature of the transfer
matrices, the resistance distribution is log-normal. Since there is only one eigenvalue
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in one dimension, the potential term entirely describes the distribution, and therefore
must be of the form [In z}? for large . In higher dimensions, the insulating regime
will be qualitatively similar to the one-dimensional case and we expect the same
functional form for V() for large z. In the metallic regime (i.e. small eigenvalues)
the fluctuation of the eigenvalues are known to obey Wigner-Dyson-Mehta statistics
[5], so the potential must be of the usual polynomial form. Therefore such a potential
arises quite natuerally for transfer matrices related to disordered conductors.

It is clear that the [In x| potential is only weakly confining compared to a linear
or gquadratic power law used in random matrix models, and it is plausible that the
cigenvalue density as well as higher-order correlation functions may have features
qualitatively different from the universal random matrix results mentioned in the
introduction. In particular, because metallic behaviour is associated with well confined
(small) eigenvalues and insulating behaviour with poorly confined ones, this opens
up the possibility that the distribution of eigenvalues changes qualitatively from the
metallic to the insulating regime, obtained by simply changing the parameters a and
b in equation (6). It is therefore important to try to obtain predictions of such a
model within our random matrix approach, especially for strong disorder. It should
be possible to calculate, within a 1/N expansion [5, 6], at least some of the low-order
moments of the distribution of eigenvalues. On the other hand, potential (6) is only an
approximate two-parameter fit to numerical results [3] (more parameters could make
the fit better), and there seem to be weak but subtle dimension-dependent corrections
which apparently may not be obtained quantitatively within such a single-particle
potential. It is not clear how important such corrections are for qualitative description
of correlation functions in two or three dimensions. It is therefore important to obtain
the consequences of a [In z]? potential (for large «) as accurately as possible, in order
to understand any Jimitations of a single-particle model. We therefore choose to
consider a qualitatively similar, though apparently more complicated, potential which
is exactly solvable. Approximate calculations for more realistic models can then be
tested against these exact solutions.

Consider the potential,

V{z) = —n[w(=;q)] 0
where
w(z;g) = 1/(—(1-¢)z:9) o 0<g<1 (8)

and we have used the (comventional) notation
=0}

(6;0), =(1-a)(1-aqg)...(1~ag" ) (aiQ)e = [](1-ag™). ©)
n=>0

(In [1] w(x; ¢) was defined with an extra factor =%, @ > —1. The model remains
exactly solvable, but we will consider only the special case & = 0 here to avoid
unnecessary complexity.) Using the identity

(a9 o _ (0239)cs
E (%), (2390 19

n=0

known as the g-binomial theorem [13], w can be represented as a power series in .
Note that as ¢ — 17, w — e~*. We have explicitly written 1~ because the Jimit of
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g = 1 has to be taken from below. In the following, we will always mean this limit
when we consider g = 1. For sufficiently large = and small ¢, V(z;¢) ~ {ln z]>. One
simple way to see this would be to use an identity known as Jacobi’s triple-product
identity [13]:

172 +o0
(29)0 (—2¢"% @)oo (q_—z;q) = Y g¥/%m, (11)

By identifying
z=[(1-g)/q"= (12

and considering the limit ¢ < (1 — g)z where the first and last factors in the wiple
product are of O(1), the left-hand side of (11) can be identified with the finite
product of (8). The infinite sum on the right-hand side can be approximated by
an integral using the Euler approximation to get the above behaviour. Thus the
one-parameter potential V is qualitatively similar to (6), where ¢ can be taken as a
parameter such that decreasing g corresponds to increasing disorder. One can aiso
introduce a scale factor ¢ which multiplies = in the definition of w in equation (8). In
this case, ¢ = 1 means w = ¢~**, i.e. V = tz, while at ¢ =0, V = In{1 + #z). The
linear potential V{(z;1) is known to describe the metallic regime very well [2, 14],
with ¢ as a disorder-dependent parameter. We will ignore the parameter ¢ in the
potential for simplicity, and include its effect at the end by appropriately scaling =
in the definition of the conductance g, equation (1). The metallic region will then
correspond to the case ¢ = 1.

A family of orthogonal polynomials F, () can be defined with respect to a given
measure [15] w:

fn " e w(z;q) Py (2) Py (<) = 6, h... 13

It is then possible to express the eigenvalue density as well as higher-point correlation
functions in terms of these polynomials [5]. Our model is solvable because for our
particular choice (8) of w the polynomials are known explicitly. These are the g-
Laguerre polynomials investigated by Moak [9]:

)= LO(z:q) = - (q_n;‘I)qu(k_l)/z(l— q)k(qn+1x)k
P,(z)= L;*(z;q) kgu TaaT
h, =n(1/q)/(1~q)q". "

In terms of these polynomials the eigenvalue density is given as

N=1p 700/, 312
on(z;q) = w(ziq) Y E"—-‘%—’-ﬁ- (15)
k=0

with the obvious normalization

./‘;wd:caN(m;q) = N. (16)



182 ¥ Chen et al
4, The metallic regime

In the limit ¢ — 1, Lp(2;q) reduces to the ordinary Laguerre polynomials,
corresponding to the measure =%, In this limit, one finds

on(z31) = Ne*[Lyy() Kiy_y(%) = Ly_y(®) ()] a7
where we have used the Christoffel-Darboux formula [14]

N-1
) Pn(ngn(y) _ kﬁ?:::_l PN(m)PNq(Vi - 5N_1($)PN(9) a8)

n=0

(ky is the coefficient of =™), and have taken the limit x — y to arrive at
equation (17) from equation (15). Using an asymptotic expansion of the Laguerre
polynomials [15] (valid for = > 0), namely

Ln(z) =123, (2 (N + Dz ) + 0414 a9

the eigenvalue density becomes

-"NEN—”;I) = (Vo) {\/Nods (\J4N_z) 7 (4N, 2)
~ JN_% (faN, =) 4 ({/4N_2) + o (N-32)} (20)

where N, = N £ and J,(z) are the Bessel functions. We observe that in spite
of the asymptotic form used, the normalization condition is fulfilled. Using this form
for the eigenvalue distribution, the mean conductance (g} can now be determined:

o) _ fuw dx W = 1-/aN_1 (\JaN ) K, ((JatN,)

RN AT A AN @1
where

I(z)~ ”/VZW::){]—MVZ-— 1)/8z+...} (z>1) (22)
and

K, (z) ~ /(7 [22)e {1+ (47~ 1} /8= + .. .} (z>»1) (23

are the modified Bessel functions. From the asymptotic forms of [,(z) and K, (=)
one finds, for Nt » 1, ‘

(93/N ~ 1~ bexp{—vat (\/N, - \[N_)H(N_/N )V + (N NV @4)

We can check that for ¢ — co, all eigenvalues are compressed at the origin giving
{g) = N, which is the bailistic limjt. It is to be expected that in general, ¢ will depend
on physical parameters such as disorder, size and dimension. In the large N limit
and for Nt >» 1,

{g) ~N(1-e"*%) (25)
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where e = /1/N. For a < 1, without violating N > 1 and Nt >» 1, the exponential
can be expanded to give the leading term Na, which suggests that we identify
e = /L, where [ is the mean free path, thus reprodacing Ohm’s law given by

g0 = N(I/L). (26)

This identification agrees with an earlier saddle point calculation for the most
probable conductance [i14]. The next term is proportional to &2, and it is tempting
to identify it with the leading quantum correction to the conductance [4] 6g/gy =
—1(1/L) in three dimensions, due to weak localization, where Nt > 1 is well
satisfied. In two dimensions, in order to see the logarithmic size dependence, one
needs to be in a limit where In(L /1) < NI/L, N « L. This is outside our large-V
limit. However, even in 3D, since we have restricted ourselves to the case 8 = 2, valid
in a finite magnetic field, we should alko identify a mapgnetic length in the problem. In
order to be able to do that, we need to evaluate the average conductance for 5 =1
(the case without a magnetic fieid) in terms of the same parameter and compare.
The calculation for 8 = 1 involves somewhat more complicated ‘skew’ orthogonal
polynomials {5], and constitutes a separate problem by itself. We plan to study it in
the near future.

Note that for Laguerre polynomials the variance of g is known to be independent
of N or t, giving rise to the universal conductance fluctuation [2]. This was the
original motive for considering random matrix medels for mesoscopic conductors.

3. The insulating regime

For ¢ < 1, on the other hand, the qualitative features of the eigenvalue density
changes dramatically. First of all, since w(0;¢g) = 1, we get, from (15}

on(03q <1) = (1-¢")/In(1/q). @7
Compare this with the resuit for ¢ = 1:
on(0;g=1)=N. (28)

For large but finite N, the density at the origin drops from N to a value of order 1
3s ¢ changes from 1 to a value of order 1/N. In the thermodynamic limit N — oo,
the density at the origin drops to a value independent of IV as soon as g is less than
the critical value 1. In other words, for ¢ = 1, increasing the number of eigenvalues
corresponds to packing more of them at the origin, which, according to equation (1),
may lead to a metal in the thermodynamic imit. For a given g < 1, demsity at the
origin no longer scales with N, a feature qualitatively different from the standard
random matrix ensembles [16]. This means that the conductance in this case will be
at least a factor N less than the ¢ = 1 case, which will make it non-metallic. Where
do the eigenvalues go in this case as we increase N? We do not have an analytic
solution vet for the eigenvalue density o (z;¢ < 1). In the following we show that
for ¢ < 1, the density has a gap from the origin up to order 1/g in the limit N — oo.
Thus for exponeatially small g, according to equation (1), this will correspond to an
insulator. It is clear that a metal to insulator tramsition, if it is describable in the
present model, would be associated with the sharp change in the scaling behaviour of
the eigenvalue density near the origin at the critical value ¢ = 1, and the associated
openiag of a gap.
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In general, the g-Laguerre polynomials appearing in (14) for ¢ < 1 have an
asymptotic expansion (see appendix A) qualitatively different from (19) for ¢ = L
It is known in classical moment problems [17] that the measure w defined in (8) is
not unique for ¢ < 1, in the sense that there exist equivalent measures with exactly
the same moments. Moak [9] has constructed a family of discrete (extreme, L~
complete) measures supported at zeroes of an entire function, which is equivalent to
our measure (8). It is considerably simpler to consider one such discrete measure,
given by

o>
wy(239) = ané(a:—rn) (29
n=0
where 7, are the zeroes of LY (3q), w, = w(r, ) and

== O oF
n=0

w(x)

= LO(z;9)(d/dz) (« LY (25 ) - 2L (w5 ¢)(4/d=) LY (z30).  (30)

One may also use

L& x;q) — LS (2g;q) = —2(1 - q)g* 1 LE ) (wg; q) (1)
to show that '
1w, = [1/(1- QLY (/g ) [(4/dz) L (z; Q)] o=r, - (32)

By applying the above considerations to the eigenvalue density one finds
) 1- q oo
5 = lim I, = T E é ™ Tm ] 33
aoo(z Q) Nevoo aN( q) lll(llq) ~ (-’.B T ) ( )

Therefore, in contrast to the ¢ = 1 case, in the large-V limit the eigenvalue
distribution depends in a rather sensitive way on the locations of the zeroes. From
our previous discussion on the behaviour of the eigenvalue density at the origin, one
could anticipate the qualitatively different behaviour of the density for ¢ = 1 and
g < 1 near the origin. It is clear that o, (z;¢) must have almost no support (a gap,

starting from the origin) up to the first zero of Lf,?,)(a:;q). In appendix B we obtain

the asymptotic form for L(,,g)( x; g) for sufficiently small ¢ and large enough » such
that z(1 - ¢) > /g, from which it follows that the zeroes are located at

r,21/(1- )@  n=0,1,2.... 34)

This agrees with Moak’s observation that the zeroes are very well separated. In order
to proceed further we shall employ a parametric representation of the § function,

1 00
&z)= ~—] dt cos =t (35)
* Jo
and approximate the sum over the zeroes in (33) by an integral to give

— o, (2 )'—-(I;Q)2— mdt a i 1 Si
w(530) = goprrisera [ dt{eosln(1 - )gtCI(2) + sinfe(1 - Q)qtlSi(1)}

(36)
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‘where - -
Ci(z) = —f (i—tcmt Si(z) = —f %sint. 37
The eigenvalue density is found to be :
0 z(1-q) < 1/q
og.(zg) =4 1~ 38
»ED=E a1-9> Y (’

which explicitly shows the gap up 0 z = 1/¢(1 ~ ¢), and we have used S (not
to be confused with the symmetry parameter defined in equation (2)) defined as in
appendix B equation (65),

g=e"F 0< 8 < co. (39)
From the definition of (g}, an ¢lementary quadrature gives

(g)(q) = fu ” e ’Ti”%‘f) = 12;24 o[l + (e —e~28)] » z%vﬂ 8> 1.
(40)

Indeed by identifying 8 = L /&, where £ can be identified with the Iocalization length,
we see that the conductance obtained in this regime describes an Anderson insulator.

We can try to understand the dramatic change between results for ¢ = 1 and
g € 1 in a qualitative way by considering the potential (7) in these two regimes.
For g = 1 the potential is linear, which is well confining in the sense that it wili
always ‘win’ at sufficiently large distances over the logarithmic repulsion term in (2).
For ¢ < 1, the [inz}* potential for large = is only barely confining, allowing the
eigenvalues to spread out to the point where it becomes discrete near the origin even
in the thermodynamic limit, such that the smallest eigenvalue sits at an exponentially
Iarge distance. In order to convince the reader that the discreteness and hence
the gap is mecessarily a consequence of the [Inz)? potential for large = and not a
consequence of the discrete measure (29) chosen for convenience, we consider as an
example the potential V' associated with the log—normal measure,

w,(ai9) = (1/y/7 001/ @) ep(~(m2)/ 1/ ). @1
The associated polynomials (13) in this case are the Stieltjes—Wigert polynomials [15],
Nf24+1/4 N1 ()N

g (—g%=)*. 42)

q
Sn(zig) = (-)V
e (g;0)° = (GG DN
In a saddle-point-type calculation [14], the eigenvalue distribution is found by

summing over the zeroes A, of the Stieltjes-Wigert polynomials;

N
o (z9) =Y 8(z - A). 43)
k=1
We use the summation formula of Gauss [13], namely
N N
CHAN k(k+1/2) k k
- - 1- T 44
kzﬂ, (GO Drr (=2) :!;'[1( ) “
in (42) and find that the zeroes are located at
Ak-—-llqk k=11273"-:N' (45)

For sufficiently iarge N, the eigenvalue density again has no support up to 1/g (has a
gap), and can be shown io decrease as 1/x thereafter. These considerations confirm
the characteristic features of a [In z]? potential.
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6. The limit of one dimension

The resistance distribution P(p;q), for the one-dimensional problem (N = 1, ie.
with only one operating channel) in the large resistance limit, is simply

Pai)= [ dowizis(Z-a). 9)

The large-resistance limit of P(g;q) can be found from the triple-product formula
of Jacobi [13],

142 oo
(60)o(~24"% 0)es (-q:;;q) = > ¢ " @7)
by identifying
z={(1-g)/q"*]et. (48)

For g < (1— q)pt, the first and last factors in the tripie product are of O(1). We use
the Euler approximation (equation (63), appendix B) to approximate the summation
in the right-hand side by an integral to obtain

Po;q) ~ (1/ 1n(<:"’2)) exp—{[In(1~ q)ot + In(g~V})/aln(¢™?)}  (49)

in the region where In(1— ¢)z =~ In(¢~'?) > 1. With the identification In(¢~"/?) x
L/t as before where L is the length and £ is the localization length of the system
and by setting the scale factor ¢ o« ¢ (note that this does not affect our identification
of the same parameter in the metailic regime, where ¢ = 1), one recovers the log-
normal distribution derived by Mel'rikov [12] from a heat equation in the hyperbolic
plane.

At this point we should like to mention that although the discrete measure
wg(;¢) defined in (29) is quite distinct from the continuum measure w defined
in (8), their asymptotics are in fact essentially the same. This can be seen from an
explicit calculation of wy,. The weight factor (32) of the discrete measure can be
rewritten in the following form:

wil = [1/(1 - PH/4) LD (=/ 3 ) EQ(23 )} emr, - 0)

The asymptotic condition, (1- q) 3> /g 3> ¢*/?, allows us to employ equation (61),
appendix A, for the asymptotic expansion under the derivative. Approximating the
sum over zeroes by an integral, we arrive at

wae(54) ~ (1f ln(q-lﬂ)) exp{=[n(1 - g}z + In(q"Y*)P/4In(g"¥?)}.  (51)

Therefore both the discrete and the continuum measures give the same resistance
distribution in the stated asymptotic regions.

The moments of the resistance distribution may also be determined easily from
either measure wy;, or w,

{e™) =/Dmdee"w(g;q)/fumdew(e;q)z/:o dee"wa(e;q)/j;mdewﬂ(e;q)

- q—n(n+1)/2(q;q)n/(1 —q)" ~ n{nt1)L/E (g<l). (52)

Although the exact forms of the moments are known, the distribution function cannot
be uniquely reconstructed [17].
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7. Summary and conclusion

We have proposed a solvable random matrix model for disordered conductors. The
model is based on the assumption that a single-particle confining potential for the
eigenvalues describes the relevant physical correlations at least qualitatively well
Physical as well as numerical considerations lead us to comsider a novel kind of
potential, where the associated random matrix properties show important deviations
from known universal features of standard random matrix ensembles. We show that
the density at the origin, which scales with the number of eigenvalues N for ¢ = 1 as
in the standard models, becomes essentially independent of N for large N when the
disorder-related parameter g becomes less than unity. In the N — co limit, we show
that this leads to the opening up of a gap in the eigenvalue density at the origin,
of size 1/¢g. We calculate the average conductance in the two regimes which allows
us to identify this qualitative change in the eigenvalue density with the transition
from metallic to insulating behaviour. (Note that in a Hamiltonian formulation,
such transitions show up only at the density—density or current—current correlation
functions, and the density of states does not show any critical behaviour; but in
the transfer-matrix formulation the conductance is directly related to the eigenvalue
density by equation (2).) However, a proper evaluation of the properties near the
critical region g ~ 1 will have to wait till the large-N asymptotics of the g-Laguerre
polynomials in this limit are known.

The dimension dependence in the present model comes entirely via the dimension
dependence of the parameters ¢ and g, perhaps through their dependence on N,
namely N « L%l On the insulating side, ¢ is essentially independent of N, so
insulators in all dimensions behave essentially in the same way. On the metallic side,
the identification of ¢ guarantees the correct dimension dependence of the Boltzmann
conductance [14). However, because these identifications are made in our @ = 2 case
without any reference to a magnetic length, and because there may be a subtle,
though weak-dimension dependence not included in the single-particie potential as
seen in the numerical evaluation of the variance of conductance [3], further work
is necessary to understand whether the model includes dimension dependences in a
patural way.

We have not yet evaluated the two-point correlation function or the associated
level-spacing distribution, but certain qualitative statements can be made. For ¢ = 1,
the two-point correlation function decreases as a power law with the separation
between the eigenvalues, for large separations. For ¢ < 1, in the N — oo limit, the
positions of the eigenvalues are fixed, at the zeroes of some entire function, as is
most easily seen from the discrete measure {29). Therefore we expect the two-point
correlation function to go to a constant or oscillate at Jarge distances, showing a
long-range order. This should be a common characteristic of all such g-polynomiais.
Preliminary calculations on 2 g-Hermite measure, where much more is known about
the associated polynomials [20], support this argument [21].
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Appendix A. A complete asymptotic series for g-deformed genmeralized Laguerre
polynomials

Recall that the generalized g-Laguerre polynomials are
a+l; his -n, E(E-DI2101 — g)pg>trtl)k
Lﬁ(m; ‘I) = (q Q)n Z (Q’ Q)kq [( Q) q ] . (53)
k=0

(g:0), (a5 ) (3 9)k
But
(6% = (A=) ... (1-g ™) = (g7 —1)... (¢"7*¥! — 1)g(-7nHe-D)
= (=1)*[(g;9), /(@ @) n_p]g*F-D/2-kn (54)
Thus, using (¢%*%q), = (¢°¥1;0)o /(g5 q),, we get
(°0)e 1~ (g39) gk ek k
L2z q) = % z{g—1
2(#9 = (T g (w2 (a1 (@0, o~
k=0
n k41, k(k4a)
- a1, (q »Q)mq -1 3:.
(e ’Q)“'kz:ﬂ,(q;q)m(q“""“;q)m(q;q)k(q““;q)k[x(q )
(55)
Now we use the g-binomial theorem [13] to get
(qn—k+1;q) o0 (q—k—a;q)j (abnil)i
o atn . ]
(g2t7t; g}, g (#:9); ? 9
Thus
—k=cx

(q*Hq) (g7%"*q); ; [z(¢g — D]*
L3(ziq) = o (etn+1)i Sh(kta) .
(mq) = —=2= ? ¢ (39} (g*t50);

(q;Q)oo 05kgn, 20 (q;Q)_T
67)

The above series is an explicit series and js also an asymptotic series. It gives the
complete asymptotic expansions,
gilatl+n) (g=F—=; q); gk(k+e)

c(gra) = Do
Lama) = (9o 2 (g:9); 2.

—~  (mah (¢°tha)

[=(q—1)I*. (58)

i=0
Therefore,
(¢*+4q) { o (2(g — 1))F g*(¥+e)
Le(x;q9) = =
(=:9) (59 L (Gr(a*Ha);

qa+n+1 oo (l_q—a—k)qk(k+a) . 2 }
-1 n
=7 2« (@@, oD+

= L2 (x59) + [¢*FH /(1 - @) L2 (z; ¢)
- [ /(1 - 1L%(z/q; ) + O(g™) (59

+
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where

9o iqk Hek(1- gyk(—z)F
(9',«;1}cm = (sai(e*ak

= [2(1- )72 IP 2V =(1 - q)i4] (60)

is an entire function of .

L)z q) =

Appendix B. Zeroes of L (x; q)

We can obtain an estimate of the locations of the zeroes of LES)(::; q) for sufficiently
small g and large enough = such that z(1—¢) » ./q, using the asymptotic expansion
of the ¢-Bessel function [10],

1)~ (3) SED = (ig(e 41120241,

(qa+1f2 Q)kq
X pyar (q; q);(igle+1/D/2z [2: g1/2), + {(z — —x)] (61)

for @ = 0. We keep only the first term in the expansion and use the following
triple-product formula of Jacobi [13],

[+5]

1/4
@ s, (Ld) = ¥ o @)

n=—00

with the choice z, = e*i"/2,/x(1 ~ ¢), and notice that in the region of interest the
first and Jast factors in the triple product are both of O(1). For ¢ < 1, we may use
the Euler approximation

oo
Z F(n) ~ / dzF(z) 63)

n=—o0a

to approximate the summation over n in the right-hand side of the triple-product
formula to arrive at the following asymptotics

LO(x;q) ~ /A ] B cos(xy/B) exp[(v* — =2/4) /8] (64)
where
g=e?  0<fA<oo y=ik[z(1-g)]. (65)

In this estimate the zeroes are found to coincide with the zeroes of cos(wy/8), and
are at

T, 11—} n=0,1,2.... (66)
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