
J. Pbys: Condens. Maner 5 (1993) 17’-190. Printed in the UK 

Metallic and insulating behaviour in an exactly solvable 
random matrix model 

Y Chent, M E H Jsmailf and K A Muttalibg 
t Department of Mathematics, Imperial Collegq 180 Queen’s Gate, London SW7 ZBZ 
LK 
t Depamenl of Mathematirs, University of Sonth Florida, Ismpa, FL 33620, USA 
5 Dcpanment of Physics, Uniwrsily of Florida, GainesviUe, FL 32611, USA 

Received 15 July 19% in 6nal b rm 8 OMber 1592 

A b s b c i  We propose a novel random transfer malrb model for quantum transpon m 
disordered systems. The model b maiy mbable in the smsc that arbitrary npoint 
“elation functions of the eigenvalues can be obtained in ems of I” Mhogonal 
polpomials, and the mnduaanee is a simple linear sfatistic of these eigenvalues The 
model exhibits qualitative dwiations fmm the univenal puperties normally d t e d  
Hith random matrices, and wc observe that such deviations may M~UIXIIY describe the 
Merences in the distribution of mnductance in the metallic versus insulating regimes. 
In pticular, bj varying a single parameter q, we recover the metallic regime mth 
Ohm’s law and Udmmal mnduaance fluctuation in the limit q = 1, and the well lmom 
log-normal disvibution of mnductance for onedimensional insulators in the opposite 
limit q a 1. We argue that in this model the metabinsulator transition is related to the 
qualitative change in the eigenvalue densily and the ag~ciated opening of a @p in the 
density at the origin. 

1. Introduction 

In a recent letter [l], we proposed an exactly solvable random matrix model for 
electronic transport in disordered quantum conductors. The model is based on 
the maximumentropy unsalz for random transfer matrices that describe quantum 
transport in disordered mesoscopic systems [Z]. This model is motivated by hown 
exact resuln in one dimension as well as recent numerical studies [3] that m n h  the 
general validity of such an m a & ,  where the eigenvalues of a certain combination of 
the transfer matrices repel each other logarithmically, but remain bounded by a single- 
particle confining potential whose functional form is quite insensitive to disorder, size 
or dimension. Distribution of physically observable conductance is then related to the 
distribution of eigenvalues of the abovementioned random matrices. Such a mapping, 
if it exists, will allow us to address the issue of how the distribution of conductance 
changes as one goes from the metallic to the insulating side of a system (e.g. by 
increasing the disorder), as opposed to considering the average of conductance only, 
which is known to be insufficient for mesoscopic systems [2]. We showed that for a 
qualnatkely realistic model, n-point correlation functions of the eigenvalues can be 
witten down exactly (in terms of known orthogonal polynomials), which would not 
be possible in a conventional approach to quantum transport [4]. 
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While random matrix models have been extensively studied in nuclear physics [SI 
and string theories [q, they have the common feature that the eigenvalues (real) are 
extended from -CO M +CO and the confining potential is a polynomial (related to 
Gaussian distribution of random matrix elements of the HamiItonian of a complex 
nucleus, or discretization of random surfaces in a string theory). Similar models 
have been suggested for the Hamiltonian of disordered systems as well [A. This 
is essentially on the basis of the universality of the conductance fluctuations in the 
metallic regime, which is very similar to the fluctuations in the energy levels of 
complex nuclei and these are well described within the standard random matrix 
models. All such models are known to have some universal properties, namely 
that the density of eigenvalues at the origin (small eigendues) scales with the 
number of eigenvalues, and the distribution of the spacing between nearest-neighbour 
eigenvalues follow the 'Wigner surmise' [s], a power-law behaviour for small spacings. 

The problem of quantum transport in disordered systems, described in terms 
of transfer matrices, has led us on the other hand to consider a random matrix 
model where the eigenvalues are positive semidefinite and the confining potential 
behaves as a square of logarithm for large eigenvalues. Such a random matrix model 
has not been considered before. In our short note we reported considering an 
exactly solvable model of this type which seems to have interesting deviations from 
the universal properties normally associated with random-matrices, and observed 
that such deviations may naturally describe the differences in the distribution of 
conductance in the metallic versus insulating regimes. Although the model we chose 
may be an oversimplification of the actual model that might describe the problem 
of metal-insulator transition in a real physical system, it is nevertheless interesting 
to investigate such an exactly solvable model in some detail in order to understand 
certain qualitative features of how the conductance distribution evolves from metallic 
to insulating behaviour. 

However, although the a-point correlation functions for the eigenvalues for our 
model can be written down explicitly in terms of a family of orthogonal polynomials 
as in the standard random matrix approach, the polynomials turn out to be the baric 
or socalled q-laguerre polynomials of Hahn [SI, and are not familiar in the physics 
community. In fact these have been investigated in some detail only recently [9], 
and many properties, including the asymptotic behaviours are either not hown yet, 
or have only recently been obtained in connection with our present work [lo]. We 
therefore present in this paper some details of the derivation of our results reported 
earlier [l]. We include in appendix A a complete asymptotic series for the generalized 
q-Laguexe polynomials of large degree that was not available before. 

2. Description of the framework 

An Nchannel conductor can be described by a 2N x 2N transfer matrix T which 
relates the left-hand flux to the right-hand flux. The doubly degenerate eigenvalues 
I; (0 < M, i = 0,. . . N - 1,) of the matrix X = {[TtT + (TtT)-' - 211 are 
then related to the two-probe conductance g as [l l]  
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Note that a large density of small eigenvalues will correspond to a metal, while 
exponentially large eigenvalues will characterize an insulator. The number of 
eigenvalues N depends on the cross-sectional area of the conductor, so that 
N a Ld-‘ for a conductor of size Ld in d dimensions. 

The fundamental notion of the random matrix approach is that the ensemble of 
all random X matrices consistent with given symmetries (current consemtion, time 
reversal etc) subect to some physical constraint (e.g. given average conductance) has 
a distriiution of eigenvalues that can be written quite generally in the form [Z] 

N-1 N-1 

p { z O ? ,  , . 3 zN-l) = n 1.m - znlB ~ [ - v ( z k ) l *  (2) 
m<=,0 k d  

The distribution of conductance g can be obtained from P { q }  as follows: 

Here p is a symmetry parameter and is equal to 1,2 or 4 for orthogonal, unitary and 
symplectic symmetries [5] respectively. The average is 

((. . .)) = Z - l l m .  ../- (x dzi)P{zo.. .z,.,.-’}(. ..) (4) 
i=O 0 

and the partition function 

Wr Simplicity we will consider p = 2 only, which corresponds to the case where a 
magnetic field is present, thereby breaking the time reversal symmetry. 

We can think of equation (2) for the joint probability distribution as an exponential 
of some effective Wamiltonian’ for the eigenvalues [SI. The first product term will 
then correspond to a logwithmic repulsion between the eigenvalues, which will hy to 
separate them as far as possible, while the second product term will correspond to a 
single-particle ‘confining potential’ which keeps them from moving out to infinity. 

3. Description of the model 

The single-particle potential V ( r )  defined in equation (2) was studied numerically in 
[3] in 2 and 3 dimensions for various sample sizes and disorders, and it vas  found that 
its functional form was essentially universal. In particular, a good fit was obtained by 
a function of the form 

V ( z )  = aInZ(l + b r )  (6) 
where a and b depend on system parameters. This is a very unusual potential for 
which the associated random matrix model cannot be solved analytically for arbitrary 
n-point correlation functions. But this form for V is not at all surprising. It is 
known in one dimension [E] that, due to the multiplicative nature of the transfer 
matrices, the resistance distribution is log-normal. Since there is only one eigenvalue 
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in one dimension, the potential term entirely dexribes the distribution, and therefore 
must be of the form [In%]* for hrge x. In higher dimensions, the insulating regime 
will be qualitatively similar to the onedimensional case and we arpect the same 
functional form for V ( z )  for large x. In the metallic regime (Le. small eigenvalues) 
the fluctuation of the eigenvalues are known to obey Wigner-Dyson-Mehta statistics 
151, so the potential must be of the usual polynomial form. Therefore such a potential 
arises quite naturally for transfer matrices related to disordered conductors 

It is clear that the [In .I2 potential is only weakly confining compared to a hear 
or quadratic p e r  law used in random matrix models, and it is plausible that the 
eigenvalue density as well as higher-order correlation functions may have features 
qualitatively different from the universal random matrix results mentioned in the 
introduction. In particular, because metallic behaviour is associated with well confrned 
(small) eigenvalues and insulating behaviour with poorly conlined ones, this opens 
up the possibility that the distribution of eigenvalues changes qualitatively from the 
metallic to the insulating regime, obtained by simply changing the parameters a and 
b in equation (6). It is therefore important to try to obtain predictions of such a 
model withiin our random matrix approach, especially for strong disorder. It should 
be possible to calculate, within a 1/N expansion [5,q, at least some of the low-order 
moments of the distribution of eigenvalues. On the other ban4 potential (6) is only an 
approximate two-parameter fit to numerical results 131 (more parameters could make 
the fit better), and there seem to be weak but subtle dimensiondependent corrections 
which apparently may not be obtained quantitatively within such a single-particle 
potential. It is not clear how important such corrections are for qualitative description 
of correlation functions in two or three dimensions. It is therefore important to obtain 
the consequences of a [Inrl2 potential (for large I) as accurately as possible, in order 
to understand any limitations of a single-particle model. We therefore choose to 
consider a qualitatively similar, though apparently more complicated, potential which 
is exactly solvable. Approximate calculations for more realistic models can then be 
tested against these exact solutions. 

Consider the potential, 

V(Z) = - W 4 z ; n ) l  0 

4 z ; q )  = 1/(-(1 - q)x;dm O < q < l  (8) 

where 

and we have wed the (conventmnal) notation 

(a;q), = (1- a ) ( l -  a q ) .  . .(l-aq--1) (a;q), = U ( 1 -  aq'). (9) 
R=O 

(In [l] w ( z ; q )  was defined with an extra factor la, Q > -1. The model remains 
exactly solvable, but we will consider only the special case Q = 0 here to avoid 
unnecessary complexity.) Using the identity 

known as the q-binomial theorem [13], w can be represented as a power series in I. 
Note that as q + 1-, w + e-=. We have explicitly k t t e n  1- because the limit of 
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q = 1 has to be taken from below. In the following, we will always mean this limit 
when we consider q = 1. For sufficiently large z and small q, V( r; q) [h 212. One 
simple way to see this would be to use an identity known as Jacobi's triple-product 
identity [I3]: 

Ey identirying 

Z = [ ( l - q ) / q q T  (12) 

and considering the limit q < (1 - q) r  where the Erst and last factors in the triple 
product are of 0(1), the left-hand side of (11) can be identitied with the inlinite 
product of (8). ?he infinite sum on the right-hand side can be approximated by 
an integral using the Euler approximation to get the above behaviour. Thus the 
one-prameter potential V is qualitatively similar to (9, where q can be taken as a 
parameter such that decreasing q corresponds to increasing disorder. One can also 
introduce a scale factor t which multiplies z in the definition of w in equation (8). In 
this case, q = 1 means w = e-rz, Le. V = tr, while at q = 0, V = h(1 + tr). The 
linear potential V(z;l)  is hown to describe the metallic regime very well [2,14], 
witb t as a disorderdependent parameter. We will ignore the parameter t in the 
potential for simplicity, and include its effect at the end by appropriately scaling r 
in the definition of the conductance g, equation (1). The metallic region will then 
correspond to the case q = 1. 

A family of o~thogonal polynomials P,, ( T) can be defined with respect to a given 
measure 1151 w: 

It is then possible to express the eigenvalue density as well as higher-point correlation 
functions in terms of these polynomials 151. Our model is solvable because for our 
particular choice (8) of w the polynomials are known explicitly. These are the q- 
Laguerre polynomials investigated by Moak [9]: 

h, = W l / d / ( l -  dqR.  

In terms of these polynomials the eigenvalue density is given as 

with the o b ~ o u s  normalization 

l m d x u N ( z ; q )  = N .  
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4 The metallic regime 

In the limit Q -+ 1-, LN(r;p) reduces to the ordinary laguerre polynomials, 
mrrespondmg to the measure e-z. In this limit, one finds 

C N ( z ; 1 )  = Ne-2[LN(z)L',-1(z) - LN-l(z)Lh(z)] (17) 
where we have used the Christoffel-Darboux formula [14] 

N-1 
(19 P,,(x)P~(Y) - k ~ - I  ~ N ( + ) ~ N - I ( Y )  - P N - I ( ~ ) ~ N ( Y )  = l%=O h* - kNhN-1 X - Y  

(kN is the coefficient of zN), and have taken the limit z -+ y to anive at 
equation (17) from equation (15). Using an asymptotic arpansion of the Laguerre 
polynomials 1151 (valid for I > 0), namely 

the eigenvalue density becomes 

where N* = N &t.$ and J,(x) are the Bessel functions. We observe that in spite 
of the asymptotic form used, the normalization condition is fulfilled. Using this form 
for the eigenvalue distribution, the mean conductance (g) can now be determined 

where 

I,(I) - e Z / G ) { 1  - ( 4 2  - I)/SZ + . . .} (I B I) (22) 

and 

x,(z) - ~ e - " { 1 + ( 4 ~ * - l ) / S z + . . . )  (zB1) (23) 

are the modified Bessel functions. From the asymptotic forms of I,(z) and K,(r) 
one finds, for N t  > 1, 

( g ) / N  - 1 - f exp { -& (J" - Ji;l)} [ ( N -  / N + l 1 l 4  + ( N + / N -  (24) 

We can check that for t i 00, all eigenvalues are compressed at the origin g k h g  
(9) = N ,  which is the ballistic limit It is to be expected that in general, t will depend 
on physical parameters such as disorder, size and dimension. In the large N limit 
and for N t  B 1, 

(9)  - N (  I - e-m) (25) 
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where a = m. For a < 1, without violating N > 1 and N t  > 1, the exponential 
can be expanded to give the leading term Na, which suggests that we identify 
a = 1/L, where 1 is the mean free path, thus reproducing Ohm's law given by 

go = N(I/L). (26) 
This identification agrees with an earlier saddle point calculation for the most 
probable conductance 1141. The next term is proportional to az, and it is tempting 
to identi$ it with the leading quantum Correction to the conductance [4] 6g/g,, = 
-i( l /L) in three dimensions, due to weak localization, where N t  > 1 is well 
satisfied. In two dimensions, in order to see the logarithmic size dependence, one 
needs to be in a limit where In(L/l) < N l / L ,  N 0: L. This is outside ow large-N 
limit However, even in 3D, since we have restricted ourselves to the case p = 2, valid 
in a finite magnetic field, we should also identify a magnetic kngtb in the problem. In 
order to be able to do that, we need to evaluate the average conductance for p = 1 
(the case without a magnetic field) in term of the same parameter and compare. 
The calculation for p = 1 involves somewhat more complicated 'skew' orthogonal 
polynomials [5], and constitutes a separate problem by itself. We plan to study it in 
the near future. 

Note that for Laguerre polynomials the variance of g is known to be independent 
of N or t ,  giving rise to the universal conductance fluctuation [2]. l l i s  v a s  the 
original motive for considering random matrix models for mesmcopic conductors. 

5. The insulating regime 

For q < 1, on the other hand, the quatitative features of the eigenvalue density 
changes dramatically. First of all, since ~ ( 0 ;  q )  = 1, we get, from (15) 

u N ( o ; q  < 1) = (1 - qN)/ln(l/s). 

aN(O; q = 1) = N. 

(271 

(B) 

Compare this with the result for q = 1: 

For large but linite N, the density at the origin drops from N to a value of order 1 
as q changes from 1 to a value of order 1/N. In the thermodynamic limit N -+ CO, 

the density at the origin drops to a value independent of N as soon as q is less than 
the critical value 1. In other words, for q = 1, increasing the number of eigenvalues 
corresponds to packing more of them at the origin, which, according to equation (l), 
may lead to a metal in the thermodynamic limit For a given q < 1, density at the 
origin no longer scales with N ,  a feature qualitatively different from the standard 
random matrix ensembles 1161. This means that the conductance in this m e  will be 
at least a factor N less than the q = 1 m e ,  which will make it non-metallic. Where 
do the eigenvalues go in this case as we increase N ?  We do not have an analytic 
solution yet for the eigenvalue density uN(z;  q 5 1). In the fol!owing we show that 
for q < 1, the density has a gap from the origin up to order l / q  in the limit N + CO. 

Thus for exponentially small q, according to equation (1). this will correspond to an 
insulator. It is clear that a metal to insulator transition, if it is describable in the 
present model, would be associated with the sharp change in the scaling behaviour of 
the eigenvalue density near the origin at the critical value q = 1, and the associated 
opening of a gap. 
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In general, the q-Laguerre polynomials appearing in (14) for q < 1 have an 
asymptotic expansion (see appendix A) qualitatively different ttom (19) for q = 1. 
It is known in dassical moment problems [17] that the measure w defined in (8) is 
not unique for q < 1, in the sense that there exist equivalent measures with exactly 
the same moments. Moak [9] has constructed a family of discrete (extreme, L2- 
complete) measures supported at zem of an entire function, which is equivalent to 
our measure (8). It is considerably simpler to consider one such discrete measure, 
given by 

Therefore, in contrast to the q = 1 case, in the large-N limit the eigenvalue 
distribution depends in a rather sensitive way on the locations of the zeroes. From 
our previous discussion on the behaviour of the eigenvalue density at the origin, one 
could anticipate the qualitatively different behaviour of the density for q = 1 and 
q < 1 near the origin. It is clear that um(r;q) must have almost no support (a gap, 
starting from the origin) up to the first zero of L$)( I; q). In appendix B we obtain 
the asymptotic form for Lg)(x; 4) for saciently small p and large enough E such 
that E( 1 - q )  B 4, from which it follows that the zeroes are located at 

Tn = 1/(1- q)42"+' n = 0,1,2.. . . (34) 
This agrees with Moa!& observation that the zeroes are very well separated. In order 
to proceed further we shall employ a parametric representation of the 6 function, 

m 

S ( E ) = - ~ /  T O  d t c o s z t  (35) 

and approximate the sum over the zeroes in (33) by an integral to give 
m 

dt{UIS[z(l- Q)qt ]a ( t )  -I- Sin[.( 1 - q)qt]Si(t)} 

(36) 
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where lm:. (37) 
eo dt 
r t  

0 

* ( z )= - -J  -mt s i (=)=-  -smt. 

u,(z;q) = 1 - q  

The eigenvalue density is found to be 
4 1  - 4)  < l /q 

4 1  - n)  > l i n  (38) { m  
which explicitly shows the gap up to z = l /q(l  - q), and we have used p (not 
to be confused with the symmetry parameter defined in equation (2)) defined as in 
appendix B equation (65), 

From the definition of (9). an elementaly quadrature gives 
u-(z;q) - 1 - q l n [ l + ( e - P - e - Z P ) t ] E 3 - - e  -B p>1.  

1 +  4 - 202 2PZ 
(s)(q) = Jmdz 0 

q = e-P O<p<m. (39) 

(40) 
Indeed by idenwig  p = L/c ,  where can be identified with the localization length, 
we see that the conductance obtained in this regime describes an Anderson insulator. 

We can try to understand the dramatic change between results for q = 1 and 
q < 1 in a qualitative way by considering the potential (7) in thee two regimes. 
For q = 1 the potential is linear, which b well confining in the sense that it will 
always 'win' at sufficiently large distances over the logarithmic repulsion term in (2). 
For q << 1, the [hzI2 potential for large z is only barely confining, allowing the 
eigenvalues to spread out to the point where it becomes discrete near the origin even 
in the thermodynamic limit, such that the smallest eigenvalue sirs at an exponentially 
hrge &tan=. In order to convince the reader that the discreteness and hence 
the gap is necessarily a mnsequence of the [lnzl2 potential for large z and not a 
mnsequence of the discrete measure (29) chosen for convenience, we consider as an 
example the potential V associated with the loenomal measure, 

1UJG-d = (l/d=) a p ( - ( I n z ) 2 / w / 9 2 ) ) .  (41) 
The associated polynomials (U) in this case are the Stieltjes-Wigert polynomials [lq, 

q k 2 ( - q l / 2 z ) b .  (42) 

In a saddle-point-type calculation 1141, the eigenvalue distribution is found by 
summing over the zeroes A, of the Stieltjes-Wigert polynomials; 

N / 2 t 1 / 4  N - l  

(q;q)? k=O E ( q ; q ) k ( q ; ' ? ) N - k  
S,(+;q) = (-1)NQ 

N 

k=l 
We use the summation formula of Gauss 1131, namely 

in (42) and find that the zeroes are located at 

Wr sufficiently large N, the eigenvalue density again has no support up to l / q  @as a 
gap), and can be shown to decrease as 1/z thereafter. These considerations mnfirm 
the characteristic features of a [In .I2 potential. 

A , = l / q k  k = l , 2 , 3  ..., N .  (45) 
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6. The limit of one dimension 

The resistance distribution P ( p ; q ) ,  for the onedimensional problem (N = 1, i.e. 
with only one operating channel) in the large resistance Wit, is simply 

The large-resistance limit of P(e;q)  can be found from the triple-product formula 
of Jacobi 1131, 

by identifying 

Ex q Q (1- q)&, the first and last factors in the triple product are of O(1). We use 
the Euler approximation (equation (63), appendix B) to approximate the summation 
in the right-hand side by an integral to obtain 

P(e;q)  - (I/&GF) e x p - 1 1 ~ 1 -  q)ei + 1n(q-"2)1~/4ln(q-'/z)~ 

z = [(I - q ) / q " 2 ] p t .  (48) 

(49) 

in the region where In( 1 - q)z = In[q-'IZ) B 1. With the identilication h(q-'/') 0: 
LIE as before where L is the length and < is the localization length of the system 
and by setting the scale factor t o( q (note that this does not affect our identification 
of the same parameter in the metallic regime, where q = l), one remvers the log- 
normal distribution derived by Melhikov [E] from a heat equation in the hyperbolic 
plane. 

At this point we should like to mention that although the discrete measure 
wdir(z;q) defined in ('29) is quite distinct from the mntinuum measure w defined 
in (8), their asymptotics are in fact essentialIy the same. ?his can be seen from an 
explicit calculation of wdir. The weight factor (32) of the discrete measure can be 
rewritten in the following form: 

The asymptotic condition, I( 1 - q )  B 4 B q3l2, allows us tn employ equation (61), 
appendix A, for the asymptotic expansion under the derivative. Approximating the 
sum over zeroes by an integral, we arrive at 

wdir(+;q) - (1/4-) exp{-[ln(l- q)z + ln(q-'/2)12/41n(4-i'*)}. (51) 

Therefore both the discrete and the continuum measures give the same resistance 
distribution in the stated asymptotic regions. 

The momen& of the resistance distribution may also be determined easily from 
either measure wdir or w, 

w,' = W ( 1 -  q ) l { ( d / d ~ ) [ L ~ ) ( ~ / q ; q ) ~ ~ ' ( ~ ; q ~ l ~ = = ~ " .  (50) 

(52) - q-n(ntW2(q. ) / ( I  - q)n ~ en(ntW/E (4 < 1). * q  n - 
Although the exact forms of the moments are hown, the distribution function cannot 
be uniquely reconstructed 111. 
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7. Summary and mndusion 

We have proposed a solvable random matrix model for disordered conductors. The 
model is based on the assumption that a single-particle confining potential for the 
eigenvalues describes the relevant physical correlations at least qualitatively well. 
Physical as well as numerical considerations lead us to consider a novel kind of 
potential, where the associated random matrix properties show important deviations 
from known universal features of standard random matrix ensembles. We show that 
the density at the origin, which scales with the number of eigenvalues N for Q = 1 as 
in the standard models, becomes essentially independent of N for large N when the 
disorder-related parameter Q becomes less than unity. In the N -+ 00 limit, we show 
that this leads to the opening up of a gap in the eigenvalue density at the origin, 
of size l /q.  We calculate the average conductance in the two regimes which allows 
us to identify this qualitative change in the eigenvalue density with the transition 
from metallic to insulating behaviour. (Note that in a Hamiltonian formulation, 
such transitions show up only at the density-density or current-current correlation 
functions, and the density of states does not show any aitical behaviour; but in 
the transfer-matrix formulation the conductance is directly related to the eigenvalue 
density by equation (2).) However, a proper evaluation of the properties near the 
critical region Q - 1 will have to wait till the large-N asymptotics of the q-Laguerre 
polynomials in this limit are known. 

The dimension dependence in the present model comes entirely via the dimension 
dependence of the parameters t and q, perhaps through their dependence on N, 
namely N o( Ld-’. On the insulating side, q is essentially independent of N, so 
insulators in all dimensions behave essentially in the same way. On the metallic side, 
the identification of t guarantees the correct dimension dependence of the Bolmann 
conductance [14]. However, because these identifications are made in our p = 2 case 
without any reference to a magnetic length, and because there may be a subtle, 
though weakdimension dependence not included in the single-particle potential as 
seen in the numerical evaluation of the variance of conductance [3], further work 
is necessary m understand whether the model includes dimension dependences in a 

We have not yet evaluated the two-point correlation function or the associated 
level-spacing distribution, but certain qualitative statements can be made For q = 1, 
the two-point correlation function decreases as a power law with the separation 
between the eigenvalues, for large separations. Fbr q < 1, in the N -+ 00 limit, the 
positions of the eigenvalues are fixed, at the zeroes of some entire function, as is 
most easily seen from the discrete measure (29). Therefore we expect the two-point 
correlation function to go to a constant or oscillate at large distances, showing a 
long-range order. This should be a common characteristic of all such q-polynomials. 
Prelimina~y calculations on a q-Hermite measure, where much more is known about 
the associated polynomials [20], support this argument [21]. 

MtUral way. 
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Appendix A. A mmplete asymptotic series for qdeformed generalized Laperre 
polynomials 

Recall that the generalized q-Laguerre polynomials are 

(55) 
Now we use the q-binomial theorem [13] to get 

(57) 
The above series s an explicit series and is also an asymptotic series. It gives the 
mmplete asymptotic expansions, 

Therefore, 
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where 

is an entire function of I. 

Appendix B. Zeroes of Lg(z;  q )  

We can obtain an estimate of the locations of the zeroes of L!$(z;q) for sufficiently 
small q and large enough I such that I( 1 - q )  > A, using the asymptotic expansion 
of the q-Bessel function [IO], 

for Q = 0. We keep only the fvst term in the expansion and use the following 
triple-product formula of Jacobi [13], 

with the choice z* = & i * / 2 d m ,  and notice that in the region of interest the 
first and last factors m the aiple product are both of O(1). l 3 r  q << 1, we may use 
the M e r  approximation 

to approximate the summation over n in the right-hand side of the triple-product 
formula to arrive at the following asymptotics 

@(z; q)  - "S(XY/P) W[(Y*- r 2 / 4 ) / P l  

q = e- O < P < C o  y =  $ l n [ x ( l - q ) ] .  (65) 

(64) 

where 

In this estimate the zeroes are found to coincide with the zeroes of c o s ( r y / p ) ,  and 
are at 

T n n l / ( 1 - q ) q 2 n + l  n = 0 , 1 , 2  .... (66) 
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