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Abstract We propose a random transfer m a t d  model for disordered systems which 
describes the distribution of mnductance in the metallic as well as insulating regimes. 
The n-point mrrelalion [unction of the eigenvalues can be obtained in terms of a 
known bmily of orthogonal polynomials. ?he model gives the well-known log-normal 
distribution of conductance in one dimension. and the universal conductance fluctuation 
in the metallic regime. Ihe metal-insulator transition in this model is related to he  
opening of a gap in the density of eigenvalues near the origin, as a function of one 
parameter. 

Since the discovery of universal conductance fluctuation in mesoscopic conductors [l], 
it has become clear that conductance is not a self-averaging quantity and therefore 
the transport properties of a disordered system should be described in terms of 
the probability distribution of conductance rather than its ensemble average. In 
particular, the disorder-induced Anderson transition from a metal to an insulator 
has been discussed so far only in terms of the ensemble averaged conductance [Z], 
and needs to be re-examined in the presence of these fluctuations. One approach 
which provides a possible framework for such a description is based on models of 
random transfer matrices [3]. In these models a disordered conductor (of length L 
and cross sectional area Ld-’ in d dimensions) attached to perfectly ordered leads 
with N propagating channels is characterized by a 2 N x 2 N  multip’licative transfer 
matrix T which gives the flux amplitudes to the right OC the conductor in terms of the 
incoming and outgoing fluxes on the left. The conductance can be directly related to 
the N non-degenerate eigenvalues 2, > 0 of the matrix X = $( TtT Jr (TtT)-’- Z), 
and the distribution of the eigenvalues for given symmetries of the matrices X can 
be calculated using theories of random matrices [4]. Such models provide a simple 
explanation of universal conductance fluctuation in terms of the well-known spectral 
rigidity characteristic of random matrix ensembles [SI. The approach is especially 
appealing because it incorporates the effect of change in symmetries due to the 
presence of magnetic field or spin-orbit scattering in a simple way. 

A critical quantitative test of the validity of the random transfer matrix approach 
in the weak disorder regime was recently carried out [6] by “paring exact analytic 
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calculation of the two-point eigenvalue correlation function for a given finite-size sys- 
tem, within the random matrix model, with a completely independent numerical eval- 
uation of the Same correlation function using the tight-binding Anderson model. The 
excellent overall agreement shows the general validity of the random matrix model. 
This confirms the hypothesis that the only interacting term in the eigenvalue distribu- 
tion is a logarithmic repulsion between eigenvalues which is universal and arises from 
symmetry considerations alone. The eigenvalues are bounded by a single-particle con- 
fining potential which might be thought of as a Lagrange multiplier function arising 
from some additional constraints, e.g. the given mean value of the conductance, and 
depends on system parameters. However, from numerical investigations 161, the func- 
tional form of the potential is found to be quite insensitive to changes in disorder, size 
or dimension. Although this single-particle potential is not known from any micro- 
scopic considerations, attempts have been made [3,7 to consider simple potentials 
suggested by numerical studies in restricted regimes. For example it is now well- 
known that a linear confining potential (with a possible logarithmic repulsion from 
the origin) with disorder-dependent slope describes the metallic regime (small eigen- 
values) very well [3] where eigenvalue correlations provided by the strong confining 
term results in universal conductance fluctuation. On the other hand, in the insulating 
regime, one can check for the potential by considering a system in lD, where there 
is only one eigenvalue, and thc distribution of conductance is entirely determined by 
the potential term. Since the conductance in ID is known to have a log-normal distri- 
bution [SI, it is clear that the confining potential for exponentially large eigenvalues 
which describes the insulating regime must behave as a square of a logarithm. We ex- 
pect insulators in higher dimensions to be qualitatively similar. This behaviour for the 
potential at large eigenvalues is also well supported by extensive numerical studies 16). 
Thus, a potential that might describe a system on both sides of the metal-insulator 
transition is unfortunately not a simple polynomial, and so far it has not been possible 
to address the problem of the transition itself in such random matrix models. It is 
therefore of great interest to investigate whether an analytically tractable model can 
be constructed with a single-particle potential term which has the desirable qualitative 
features stated above. One can then study the eigenvalue density and higher-order 
correlation functions to address the nature of metal-insulator transition in that model. 

In the present work we consider the simplest one-parameter potential (with an- 
other hidden parameter that defines the scale and relates the eigenvalues to the con- 
ductance) which has the required limiting forms stated above, and is exactly solvable. 
The distribution of the eigenvalues for this model can be calculated exactly in the 
entire parameter range in terms of a hown family of orthogonal polynomials. In one 
limit of the parameter the potential becomes linear and therefore [3] describes the 
metallic regime and the associated universal conductance fluctuation. We calculate 
explicitly the eigenvalue density in this regime, which is large near the origin (small 
eigenvalues contribute more to the conductance) and falls off as an inverse power. 
As a check, we evaluate the mean conductance taking into account the scale factor 
mentioned above and identify the scale factor with physical parameters by demanding 
that Ohm's law be obeyed in this regime. This agrees with the previous saddle-point 
calculation for the most probable conductance [7]. In the opposite limit, we find 
that a gap appears in the density of the eigenvalues whose width is a function of the 
parameter of the potential, giving rise to an insulator. Clearly the metal-insulator 
transition in this model is associated with the opening of the gap in the density of 
eigenvalues as a function of the parameter. We also show that the model recovers 
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the well-known log-normal distribution [SI for conductance in one dimension. 
We define the random transfer matrix model with N eigenvalues 0 < I, < CO, 

= 0, 1, . . , N - 1, whose distribution according to the maximum entropy hypothesis 
[3] can be written as 

N-l N- l  

~ { ~ O > ~ > ~ h L l }  = fl 1% - % I @  fl ""P(-V(Ik)) (1) 
m<lZ,O k = O  

where p is the symmetry parameter and is equal to 1, 2 or 4 for the case with no 
magnetic field, in the presence of magnetic field, and in the presence of spin-orbit 
scattering, respectively. For technical simplicity, we will restrict ourselves to the case 
of 0 = 2 only. (We will assume that the magnetic field is sufficiently small so that 
we are not in the quantum Hall regime.) The two-probe conductance g is related to 
the eigenvalues by the relation [9] 

N-1 

9 = 1/(1+ 4. (2) 
n=O 

While the 0-dependent product term (which becomes a logarithmically repulsive 
interaction term when written as an exponential) arises from symmetry considerations 
alone, the single-particle potential V( I) depends on various physical parameters, and 
is model-dependent. 

As stated earlier, on the basis of physical as well as numerical considerations, 
we wish to consider a potential which is linear in I for small I, with a possible 
logarithmic repulsion near the origin, and behaves as (In I)' for large I. We consider 
the potential given by 

"(I; q)  E e-"(=,q) = 1"/(-(1 - q ) t z ;  q), (3) 
where 0 < q < 1, a > -1, and we have used the conventional notation 

m 

( a ; q ) ,  = n(1- aqn). (4) 
7l=O 

It can be shown using the q-binomial theorem [lo] that V(I; q)  has a power series 
expansion in I for small I, and a = 0. On the other hand for sufficiently large I 
and small q, one an show using the Jacobi triple-product identity [IO] that V(z; q )  - 
(In I)'. Thus the oneparameter potential V satisfies the criteria stated above. 
Although we will show later that the log-normal distribution in one dimension as 
given by Mel'nikov [SI is recovered for a = 1, we will calculate the eigenvalue 
density and the mean conductance for a = 0 only. This is because firstly, numerical 
investigations have not, so far, indicated a non-zero a for two and three dimensions, 
so one possibility is that a = 1/N (note that N o( Ld-'). Secondly, all our qualitative 
results including in particular the appearance of the gap in the density are determined 
by the parameter q, and the a = 0 case will illustrate that. We also obselve that the 
q 1-, w - e-fs, and such a linear potential is !mown to describe the metallic 
regime very well 13.71, with t as a disorder-dependent parameter. However, since 
t is only a scale factor, we can ignore it in the potential for simplicity, and include 
its effect at the end by appropriately scaling I in the definition of the conductance 
g in (2). We shall therefore evaluate the eigenvalue density for a = 0 and t = 1, 
although we will describe the formulation for general a. 

' 
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Given W ,  we wish to calculate the corresponding eigenvalue density, which will 
give us the mean conductance. We define a family of orthogonal polynomials P,(s; 4 )  
with w as the measure such that 

dxw(x;q)P,P, = Smnh,. r 
It is then possible to express the eigenvalue density as well as higher point correlation 
functions in term5 of these polynomials [4]. Our model is solvable because for the 
choice of w given in (3) the polynomials are known explicitly for the entire parameter 
range. They are the q-Laguerre polynomials L ? ) ( z ; q )  introduced by Hahn and 
more recently investigated by Moak [12]. In the limit q - 1- and for 01 = 0, 
Lho)(x; q )  reduces to the ordinary Laguerre polynomials. In this limit, the confining 
potential dominates at large x over the logarithmic interaction term, thereby pushing 
the eigenvalues towards the origin. Using an asymptotic expansion of the Laguerre 
polynomials for large N Ill], we obtain the eigenvalue density 

( 5 )  
where N ,  = N i 1/2, I ,  = 1N,x, and J , (+)  are the Bessel functions. For .T = 
0, a N ( z ) / N  = 1. For I 2~ 1 / N ,  (5 )  falls off as 1/1. The mean conductance (9) 
can now be determined, with the  appropriate scale factor t included. For t 3 00, 

all eigenvalues are compressed at the origin giving ( 9 )  = N, which is the ballistic 
limit. In general, 1 will depend on physical parameters such as disorder, size and 
dimension. In the large N limit and for N t  2P 1 ,  (9) - N ( l  - e - @ ) .  For 
i / N  << 1 ,  the leading term is m, which suggests we identify t = N ( / / L ) 2 ,  which 
reproduces Ohm's law, go = N l / L .  This identification agrees with an earlier saddle- 
point calculation for the most probable conductance 171. (The leading correction in 
this limit is given by Sg/go = / / ( 2 L ) ,  and it is tempting to identify it with the 
leading quantum correction in 3D, due to weak localization 121, where N t  2P 1 is well 
satisfied. In ZD, in order to see the logarithmic size dependence, one needs to be in a 
limit where In( L / l )  << N l / L ,  and where N o( L. This is outside our large-N limit. 
We mention that a logarithmic size dependence is obtained in the limit A't < 1, 
using (5).  However, since we only restricted ourselva to the case /3 = 2, valid in a 
finite magnetic field, we should also identify a magnetic length in thc problem. The 
proper way to identify these weak localization effects is to calculate g for the case p 
= 1 as well.) It is also known [3] that for Laguerre polynomials, the variance of g 
is independent of iV or 1, giving rise to the universal conductance fluctuation. Thus 
the case q = 1 describes the metallic regime quite well. 

On the other hand, for q << 1, the large-z potential is only very weakly confining. 
We therefore expect the logarithmic rcpulsion to push the eigenvalues away from the 
origin, thereby depressing the density there. In fact the q-Lagucrre polynomials have 
an asymptotic expansion [13] qualitatively different from that of q = 1: 

where 
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is an entire function in 5.  Here J ? ' ( r ; q )  is the qSessel function [lo]. It is, in 
principle, possible to evaluate the eigenvalue density in the same way as for the case 
q = 1 using these asymptotic expressions, but we will follow a simpler way which 
exploits the fact that for q < 1, the measure w is not unique [12]. In this case there 
exist many different but equivalent measures (with the same moments, giving the 
Same polynomials), and we will choose the one that allows us to calculate the density 
most easily. It is well known from the classical moment problem that the extreme 
measure in such cases is discrete and is supported at the zeros of an entire function 
[14]. Moak has oonstructed a family of equivalent discrete measures for the present 
problem, the explicit form for a representative one is 

m 

where rn are the zeros of L k ) ( n ;  4). We evaluate the density for 01 = 0 using the 
measure, which gives 

One a n  now anticipate the qualitatively different behaviour of the density for q = 
1 and q < 1. It is clear that g,(z; q )  can have only exponentially small support up 
to the first zero of L!$(T; 4). For sufficiently small q and large enough 2 such that 
z(1 - q )  > ,,Gj >> q3/2 ,  we use the asymptotic expansion of the q-Bessel function 
[U] in (7) to obtain 

L ~ ) ( Z ;  9) - m C O S ( w / P ) e x p [ ( y Z  - r 2 / 4 ) / P ]  (10) 

where we have defined p (not to be confused with the symmetry parameter in (1)) 
and y as q = e-0,  y = $ln[z(l - q)q" ] .  Thus the zeros of L e ) ( * ;  q )  are found to 
be the zeros of c o s ( r y / p ) ,  and are given by r,, = ((1 -q)q"qZnt')-', which agrees 
with the known fact that the zeros are very well separated [12]. Using a parametric 
representation of the delta function and the Euler approximation for the sum, the 
eigenvalue density for a = 0 can now be evaluated 

The appearance of the gap in the density is a clear signature of an insulator. Indeed 
from the definition of (g), an elementary quadrature gives (g ) (q )  2: ( 1 / 2 P 2 ) e - @ ,  
p >> 1 so that the mean conductance is exponentially small. Wc can now identify the 
parameter p as p = L / t ,  i.e. q = Thus as the localization length becomes 
smaller than the system size, q changes from 1 to a value smaller than 1 and the 
eigenvalue density at the origin gets depressed. At sufiiciently small q, a gap opens 
up, indicating a metal to insulator transition. 

In the insulating regime essentially only the first eigenvalue contributes, and the 
channel number N which goes as Ld-'  in d dimensions does not appear in the expo- 
nent. We therefore expect the fluctuations in this regime to be qualitatively similar to 
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that in a ID insulator, where N = 1. (We remark at this point that going from one U, 
higher dimensions is highly non-trivial, as seen from the presence of the long-range 
logarithmic interaction between eigenvalues representing different channels in higher 
dimensions.) The distribution of resistance (the inverse of conductance) P ( p ;  q )  for 
the ID problem in the large resistance limit, p - x / f  can be simply written as 

CD 

P ( P ; ~ )  = 1 d r w d x ;  q ) 6 ( x l f  - PI. 

For a = 1, we get 

which is the log-normal distribution of Mcl’nikov [8] with our previous identification 
q = e  - L / c .  Note that for a = 0, the ln2(p) dependence of the exponent is correctly 
reproduced, but the mean is shifted. Let us point out that although the discrete 
measure wdie is quite distinct from the continuum measure tu, their asymptotics in fact 
are essentially the same, and both give identical results for the resistance distribution. 
The moments of the resistance distribution may also be determined easily from either 
measure whr or w, and for 01 = 0, ( p ” )  - e x p [ n ( n +  1)L/[] ( q  < 1,n > 1). 
Thus the distribution function itself cannot be uniquely reconstructed from the given 
moments because of the non-uniqueness of the measure. 

In summary, we propose a solvable random transfer matrix model with a par- 
ticular choice of the single-particle confining potential which describes the known 
features  of the conductance distribution both in the metallic and in the insulating 
regimes. The metal-insulator transition in this approach is shown to be rclared to 
the appearance of a gap in the density of eigenvalues, which is very different from 
the conventional Hamiltonian formulation where the transition shows up only at the 
level of a two-point correlation function. Various higher-order correlation functions 
in the present model can be investigated in detail (e.g. if the transition is associated 
with a change in the level spacing distribution from the known Wigner-type [3] in the 
metallic regime to an uncorrelated Poisson-type distribution in the insulating side) in 
terms of the same parameters and the same known family of orthogonal polynomials, 
which we leave for future studies. 
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