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PROJECT SUMMARY

Overview:

Page A

Extensive research is currently underway across the University of Utah on the prediction,
modeling, synthesis and characterization of a variety of material platforms that are both
intellectually challenging and important to society. These studies include materials that
are of particular relevance for applications in electrochemistry, high-speed computing and
communications, and optics. Researchers from seven academic departments and three colleges
on campus, as well as three researchers from other institutions, have already been working
collaboratively. Far greater synergy can be realized if a MRSEC is established, bringing together
related research and education activities under an umbrella that is broad enough in scope
to include a number of diverse research activities, yet focused enough to offer a unifying
theme. Formalizing these collaborative efforts will enable a greater contribution to the broader
educational and outreach objectives of the University of Utah, the flagship university of
the State of Utah, and to its role in the surrounding community as a leader and facilitator
of advanced learning.

Intellectual Merit :
The intellectual merit of the proposed MRSEC lies in the novelty of the proposed research,
with IRG leaders who have proven expertise in their respective research areas. IRG 1 will
investigate hierarchical electroactive materials that allow for high conductivity, multiscale
porosity for mass transport and large surface areas in electrochemical cells. The proposed
collaborative IRG will utilize a combination of multiscale modeling and state-of-the-art experimental
techniques to provide a fundamental understanding of the underlying correlations between structural,
dynamical and electrochemical properties and phenomena operating in hierarchical electroactive
structures. IRG 2 will investigate 2D and 3D Dirac materials beyond graphene. These materials
exhibit high mobilities, excellent conductivity, a gapless band structure with linear dispersion
and potential for high Fermi velocities, which are extremely well-suited for terahertz applications.
The proposed collaborative effort will use a combination theory, synthesis and characterization
of both new and currently known Dirac materials, with a special focus on topological and Weyl
semimetals. IRG 3 will investigate gain-loss metamaterials and devices to optimally design
PT symmetric systems, random lasers and digital metamaterials by building on powerful theories
of composite materials. The proposed collaborative effort will bring to bear the mathematics
of composites and nonlinear optimization to the analysis, design, characterization and fabrication
of optimal gain-loss structures.

Broader Impacts :
The broader impacts lie in the new fundamental science and applications addressed by this
MRSEC and its unique role in training post-doctoral fellows, graduate and undergraduate students
as tomorrow?s scientists and engineers in the emerging areas of the three IRGs. Applications
developed from this work will include next-generation electrochemical devices, technologies
for high-speed computing and communications, integrated photonics and cancer detection. Outside
the laboratory, we propose a holistic education and outreach program that extends from K-12
students to post-doctoral fellows. We intend to continue and expand some of our most successful
programs from the current Center, while also introducing new programs designed to increase
our overall impact. Existing programs include Science Olympiad and the REFUGES program that
introduces refugees to research, while new programs include teacher training and K-12 outreach
to under-represented groups through the Sorenson Multicultural Center. The Center has a strong
commitment to diversity as demonstrated through gains made over the last five years in the
current MRSEC. With continued emphasis on attracting well-qualified women and under-represented
minorities, we expect greater diversity at all levels. The University of Utah administration
and State of Utah are fully committed to the MRSEC program. In fact, the NSF 4th year review
panel highlighted the extraordinary support given by the University of Utah administration.
Working with the State of Utah, they provided an additional $9.5M in funds to support the
current center, of which $6.5M was given for the purchase of shared facilities that included
a scanning TEM, dual beam FIB, and high power THz time-domain spectroscopy system. Those shared
facilities, as well as anticipated university funds for additional equipment purchases, are
of critical importance to the work proposed here.
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A. List of Participating Senior Investigators 
Name Organization Department Title MRSEC Role 
Ajay Nahata Univ. of Utah Electrical Eng. Professor MRSEC 

Director 
Jeff Bates Univ. of Utah Material Sci. & Eng. Asst. Professor EO&D Director 
Shelley Minteer Univ. of Utah Chemistry,  

Material Sci. & Eng. 
Professor PI, IRG 1 

Scott Anderson Univ. of Utah Chemistry Distinguished 
Professor 

IRG 1 Sr. Invest. 

Dmitry Bedrov Univ. of Utah Material Sci. & Eng. Assoc. Professor IRG 1 Sr. Invest. 
Luca Dal Negro Boston Univ. Electrical Eng. Assoc. Professor IRG 1 Sr. Invest. 
Joel Harris Univ. of Utah Chemistry Distinguished 

Professor 
IRG 1 Sr. Invest. 

R. Michael Kirby Univ. of Utah School of Computing Professor IRG 1 Sr. Invest. 
Valeria Molinero Univ. of Utah Chemistry Professor IRG 1 Sr. Invest. 
Adri van Duin Penn State 

Univ. 
Mechanical Eng., 
Nuclear Eng., Chem. 
Eng. 

Professor IRG 1 Sr. Invest. 

Anil Virkar Univ. of Utah Material Sci. & Eng. Distinguished 
Professor 

IRG 1 Sr. Invest. 

Henry White Univ. of Utah Chemistry Distinguished 
Professor 

IRG 1 Sr. Invest. 

Ilya Zharov Univ. of Utah Chemistry Assoc. Professor IRG 1 Sr. Invest. 
Feng Liu Univ. of Utah Material Sci. & Eng. Professor PI, IRG 2 
Vikram Deshpande Univ. of Utah Physics Asst. Professor IRG 2 Sr. Invest. 
Michael Free Univ. of Utah Metallurgical Eng. Professor IRG 2 Sr. Invest. 
Janis Louie Univ. of Utah Chemistry Professor IRG 2 Sr. Invest. 
Ajay Nahata Univ. of Utah Electrical Eng. Professor IRG 2 Sr. Invest. 
Dmytro Pesin Univ. of Utah Physics Asst. Professor IRG 2&3 Sr. 

Invest. 
Michael Scarpulla Univ. of Utah Electrical Eng., 

Material Sci. & Eng. 
Assoc. Professor IRG 2 Sr. Invest. 

Berardi Sensale-
Rodriguez 

Univ. of Utah Electrical Eng. Asst. Professor IRG 2 Sr. Invest. 

Taylor Sparks Univ. of Utah Material Sci. & Eng. Asst. Professor IRG 2 Sr. Invest. 
Luisa Whittaker-
Brooks 

Univ. of Utah Chemistry Asst. Professor IRG 2 Sr. Invest. 

Heayoung Yoon Univ. of Utah Electrical Eng. Asst. Professor IRG 2 Sr. Invest. 
Ken Golden Univ. of Utah. Mathematics Professor PI, IRG 3 
Fernando Guevara 
Vasquez 

Univ. of Utah Mathematics Asst. Professor IRG 3 Sr. Invest. 

Tsampikos Kottos Wesleyan Univ. Physics Professor IRG 3 Sr. Invest. 
Yan (Sarah) Li Univ. of Utah. Physics Asst. Professor IRG 3 Sr. Invest. 
Rajesh Menon Univ. of Utah Electrical Eng. Assoc. Professor IRG 3 Sr. Invest. 
Keunhan (Kay) 
Park 

Univ. of Utah Mechanical Eng. Asst. Professor IRG 3 Sr. Invest. 

Mikhail Raikh Univ. of Utah Physics Professor IRG 3 Sr. Invest. 
Valy Vardeny Univ. of Utah Physics Distinguished 

Professor 
IRG 3 Sr. Invest. 
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B. Achievements under Recent NSF Support 
 
NSF Award number DMR-1121252 
Title: “MRSEC: Next-Generation Materials for Plasmonics and Organic Spintronics” 
Principal Investigators: Ajay Nahata, Steve Blair and Ashutosh Tiwari 
Total support: $12,000,000; Period: 09/15/2011 – 09/14/2017  
Number of journal publications acknowledging this NSF award: 210  
The center consists of two IRGs and an Education, Outreach and Diversity effort. In addition to the NSF 
funding, the center is supported by nearly $9.5M from the University of Utah and the State of Utah. 

Intellectual Merit: Over the last five years, IRG1 has made significant achievements through 
collaborative research in THz and UV plasmonics. A theme of the former topic involved the exploration of 
unconventional materials for terahertz (THz) plasmonics and metamaterials. For example, we showed 
that liquid metals could be used to create reconfigurable plasmonic metamaterials by injecting eutectic 
gallium indium (EGaIn) into appropriately designed microfluidic molds [1] and then reconfigured using a 
variety of different techniques [2-4]. We fabricated solid metal free-standing three-dimensional 
metamaterials [5], by injecting liquid Ga into microfluidic molds and solidifying the metal by bringing it into 
contact with solid gallium at room temperature. The mold halves could then be peeled away, yielding a 
free-standing solid gallium structure. We used inkjet printing to create two-dimensional plasmonic and 
metamaterial structures in which the conductivity could be varied spatially using a combination of silver 
and carbon inks [6], which was used to develop unique THz filters [7] and hide images within a visually 
“flat” metasurface pattern [8]. We also demonstrated improved THz modulator performance using hybrid 
metamaterial/graphene structures [9], in which the filter resonance frequency could be adjusted by 
varying the graphene conductivity or number of stacked graphene layers. By introducing disorder into 
plasmonic structures, we demonstrated Anderson localization in the THz spectral range [10]. This 
observation was significant, because material losses in this spectral range have prevented studies of 
localization in the THz spectral range. In the UV spectral range, Al is typically the metal of choice for 
plasmonics. The general theme of the UV plasmonics effort has been the development of alternate 
materials that exhibit attractive properties for UV applications. We showed that Mg is well-suited for this 
spectral range and exhibits the largest localized plasmon figure of merit (FOM) in the mid- to near-UV [11]. 
With the introduction of an Al seed layer, Mg could be deposited with finer grain sizes, yielding smoother 
films. We also characterized a wide range of metal alloys and found that Mg-Al alloys exhibit a 
significantly improved FOM over both Mg and Al near 266 nm [12]. Ga is also known to be an appealing 
material for UV plasmonics efforts, but conventional vacuum deposition techniques do not allow for the 
creation of thin continuous films. We developed a novel method for producing continuous Ga alloy thin 
films that effectively match the plasmonic properties of pure Ga. The approach utilizes a standard 
cleanroom sputtering system and a focused ion beam machine to create UV plasmonic structures [13]. To 
enable UV spectroscopic applications, large area arrays of antenna structures are needed. We developed 
a new method for based on self-assembly and directional deposition for fabricating plasmonic 
nanocrescents using Al [14]. Work is ongoing to extend this capability to Mg and metal alloys. 

Over the last five years, IRG2 has made significant achievements through collaborative research in 
organic spintronics. In the area of spin injection, we solved the problem of impedance mismatch that is 
encountered in traditional magnetic-electrode based injection methods [15,16]. We introduced a novel 
approach for generating significant inverse spin Hall effect (ISHE) signals in organic semiconductors 
using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger 
compared to continuous-wave excitation, enabling measurements in polymers that have weak spin-orbit 
coupling [16]. In the area of spin detection, we used the ISHE to design efficient all-electrical spin 
detectors [17]. Non-local Hanle devices were fabricated for manipulating spin of the carriers and used to 
estimate the spin lifetime of the carriers [17]. A theoretical model was developed to explain how the shape 
of the Hanle curve evolves upon application of an alternating current (AC) drive and its dependence upon 
the magnetic field magnitude and frequency [18]. We observed photocurrent enhancement in organic 
photovoltaic cells based on low bandgap polymer/fullerene blends by radical additives. The magnetic 
field-induced spin-mixing among the charge-transfer exciton spin sublevels within these devices occurred 
in fields up to at least 8.5 Tesla [19]. We showed how interparticle spin–spin interactions (magnetic-
dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of 
spin-Rabi oscillations [20]. We investigated the spintronic properties of organic materials that were 
previously not investigated for this application, as evidenced by our report of large magneto-photocurrent, 
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magneto-electroluminescence and magneto-photoluminescence responses response in perovskite solar 
cells [21]. The amplitude and shape of the responses could be correlated to one another through the 
electron–hole lifetime. We also demonstrated an organic magnetic resonance-based magnetometer that 
employed spin-dependent electronic transitions in an organic diode. The device never requires calibration, 
operates over large temperature and magnetic field ranges, is robust against material degradation and 
allows for absolute sensitivities of <50 nT Hz-1/2 [22]. Finally, we developed state-of-the-art 
instrumentation to perform these studies, including a scanning probe microscope for electrostatic force-
based single spin detection [23].  

Broader Impacts: The education and outreach effort has been extremely successful in engaging 
students and faculty in education, outreach and research; generating enthusiasm for science and 
engineering in K-12 students; and in training more undergraduate students, graduate students and 
postdoctoral fellows in research and developing professional skills. Broader impact has occurred at the 
campus level through the Center’s support of a number of key programs designed to enhance diversity. 
As a result of Center outreach, 5634 K-12 students (3191 female, 2343 under-represented minority 
(URM)) participated in our programs in year five alone. The Center effort has been leveraged via 
collaboration with local organizations that have grown from two in the first year to 42 in the fifth year. 
Through the award period, our partnerships have included three local chapters of The Boys and Girls 
Clubs of Greater Salt Lake, elementary schools, junior high schools, high schools, three local museums, 
and community organizations. We partnered with the United Way and worked with our Student Advisory 
Committee to develop an after-school program for women, called Young and WISE (Women in Science 
and Engineering).  This program not only introduces female high school students to materials-related 
science principles and applications, but also provides a mentorship component where the graduate 
students answer questions about applying to college and discuss issues about the workplace 
environment in STEM disciplines. The state of Utah had a well-established Science Olympiad program, 
which was on the verge of being discontinued.  The Center resuscitated this program in 2011 and now 
coordinates both the event and volunteers. The program hosts 600-800 middle and high school students 
(380 female, 54 URM in 2016) each year and awards internships at the University of Utah Nanofab to the 
top materials science event winners. The Center also runs a week-long teacher training program each 
year (ASM Materials Camp) that brings approximately 25 middle school teachers onto campus during the 
summer to learn about materials-related topics that are relevant to middle and high school students, 
thereby increasing our overall impact. In addition to growing the number of programs and expanding the 
number of students reached each year, our REU program has become increasingly diverse and gained 
more visibility. The number of REU applications increased from 58 in our third year to 102 in the fifth year. 
In the latest applicant pool (Summer 2016), 38% of the applicants were female and 33% were URM. We 
made 12 offers from this applicant pool (58% females, 25% URM) with eight acceptances.  This increase 
is due to a directed advertising campaign targeting faculty, advisors and professional organizations 
serving higher numbers of women and underrepresented minority students.  Due to this targeted 
advertising, we have increased the number of qualified diverse applicants, thereby increasing the overall 
diversity of students admitted to the program. 

The current Center has worked hard to improve diversity at all levels. Over the last five years, 46 
faculty, 25 postdoctoral fellows, 63 graduate students and 26 undergraduate students, not including REU 
students, have been supported. The overall diversity among MRSEC participants in 2015-2016 included 
28 tenure-track faculty (21% female, 7% URM), 10 post-docs (30% female, 0% URM), 34 graduate 
students (44% female, 6% URM) and seven undergraduate students (43% female, 14% URM). In many 
categories, this represents a significant gain. As an example, four of the 17 graduate students were 
women in year one, while 15 of the 34 graduate students were women in year five. Similarly, one of the 
four post-doctoral fellows was a woman in year one, while four out of the 10 post-doctoral fellows were 
women in year five. Also, four of the 22 faculty members were women in year one (no URM faculty), while 
six of the 28 faculty members were women (with two URM faculty) in year five. 

Of the $9.5M in funds given by the University administration and the State of Utah, $6.5M was given 
for the purchase of shared facilities, including a scanning TEM, dual beam FIB and high power THz time-
domain spectroscopy system. The equipment is managed by the University of Utah Nanofab and is 
accessible to the larger university and business community. Three faculty positions were also given to the 
Center and filled, in an effort to increase expertise and diversity – Luisa Whittaker Brooks (Chemistry), 
Berardi Sensale Rodriguez (ECE) and Heayoung Yoon (ECE) – as well as funds to augment the seed 
program and encourage external collaborations. 
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C. Introduction 
The vision of the University of Utah MRSEC is to be a world-class research center that is internationally 
recognized in the cutting-edge research areas defined by the IRGs and a national leader in education and 
outreach in transmitting obtained knowledge to the broadest possible segments of society. In achieving 
these goals, we will train the next generation of scientists and engineers, broaden the participation of 
members of under-represented groups and interact with industry and transition our research into useful 
technology. The Center is composed of three IRGs that have clear and specific scientific goals and share 
common education, outreach and diversity goals. Each of the IRGs is composed of researchers with 
proven scientific track records in their respective areas. Under the auspices of the MRSEC, ongoing 
collaborations among the faculty will be strengthened and new collaborations will naturally emerge due to 
the interdisciplinary nature of the proposed research. The overall structure and operation of the Center 
will continue the most successful aspects of the existing MRSEC and incorporate new ideas, as 
highlighted in the proposal. The goals of the individual components of the Center are discussed below. 
Controlled Hierarchical Electroactive Structures (IRG1): Next-generation electrochemical devices will 
demand electrodes that stably support high current densities, resulting from materials that combine facile 
transport of molecules, ions and electrons and high electrochemically active surface areas. Therefore, 
hierarchical electroactive materials are needed for most electrochemical cells that require high 
conductivity, multiscale porosity for mass transport and large surface areas. We will rely on strongly 
coupled multiscale modeling and state-of-the-art experimental techniques to provide a fundamental 
understanding of the underlying correlations between structural, dynamical and electrochemical 
properties and phenomena operating in hierarchical electroactive structures.  
Dirac Materials Beyond Graphene for Terahertz Optoelectronics (IRG2): Next-generation technology 
for computing and communications will require materials that allow for control of THz radiation and enable 
new functionalities. 2D and 3D Dirac materials beyond graphene are ideally suited for this application 
given their high mobilities, excellent conductivity, gapless band structure with linear dispersion and 
potential for high Fermi velocities.  The goal of this IRG is to understand the properties and full potential 
of these materials for THz optoelectronics. We will achieve this through a concerted collaborative effort 
involving theory, synthesis and characterization of both new and currently known Dirac materials, with a 
special focus on topological and Weyl semimetals.  
Gain-Loss Metamaterials and Devices (IRG3): Nanostructured materials where patterns of gain and 
loss can be manipulated to control wave behavior are involved in critical application areas as diverse as 
cancer detection and integrated photonics. The objective of this IRG is to focus on Gain-Loss 
Metamaterials and use the power of mathematics of composites and nonlinear optimization for their 
analysis, design, characterization and fabrication. By building on powerful theories of composite materials, 
we will explore the optimal design of gain-loss structures in three closely related areas: (1) PT symmetric 
systems, (2) Random Lasers and (3) Digital Metamaterials, where the distributions of “pixels” of gain or 
loss in the composite nanostructure are designed, for example, to select chirality.  
Education and Outreach: The mission of our Education and Outreach effort is to (1) engage students 
and faculty in education, outreach and research, (2) generate enthusiasm for science and engineering in 
K-12 students and (3) help prepare the next generation of students and postdoctoral fellows. To 
accomplish this mission, we intend to continue and expand some of our most successful programs, while 
also introducing new programs designed to increase our overall impact. Examples of these new programs 
include working with the Sorenson Multicultural Center in Salt Lake City to offer community education 
classes and services to a broad range of underrepresented groups in the Salt Lake Valley, teaching a 
course on Engineering Education in conjunction with the University of Utah’s Center for Science and 
Mathematics Education and creating a new high school student research opportunity that integrates 
students into the high-level research problems that are currently being investigated within MRSEC. 
Diversity: Over the past five years, the existing MRSEC has made notable gains in increasing diversity. 
Nevertheless, room for improvement exists. Over the next six years, the Center is committed to making 
further gains in diversity at all levels, particularly with URMs. At the faculty and postdoctoral fellow level, 
this will be accomplished through targeted hiring. At the graduate level, we will focus on using the REU 
program to encourage undergraduate students to continue their graduate studies here. Finally, at the 
undergraduate level, we have the potential to have the largest impact. The Salt Lake Valley is home to a 
large Native American population, the largest Pacific Islander population in the continental US and a 
rapidly growing Latino population. We will work with local community centers to interact with families in 
these communities, so they will know how to help their children prepare for college.  
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D.1. IRG 1: Controlled Hierarchical Electroactive Structures 
IRG Lead: Shelley Minteer (Materials Science & Chemistry) 
Senior Investigators: Anil Virkar (Materials Science), Scott Anderson (Chemistry), Ilya Zharov 
(Chemistry), Joel Harris (Chemistry), Mike Kirby (School of Computing), Luca dal Negro (Electrical 
Engineering, Boston University), Adri van Duin (Nuclear Engineering, Penn State), Dmitry Bedrov 
(Materials Science), Henry White (Chemistry), Valeria Molinero (Chemistry) 
Other Personnel: 1 post-doctoral fellow, 10 graduate students and 5 undergraduate students 
NSF Core Areas: CMMT and SSMC 

 
Next-generation electrochemical devices will demand 

electrodes that stably support high current densities. High 
currents result from materials that combine facile transport 
of molecules, ions and electrons and high 
electrochemically-active surface areas. Therefore, 
hierarchical electroactive structures are needed for most 
electrochemical cells, including capacitors, batteries, fuel 
cells and electrolysis cells. These hierarchical material 
structures require high conductivity, multiscale porosity for 
mass transport and large surface areas. However, most 
electroactive structures are developed via a combinatorial 
approach of varying preparation conditions and studying 
the effects on the conductivity, transport, electrochemically active surface area and electrochemical 
response. In this IRG, we will rely on multiscale modeling and state-of-the-art experimental techniques to 
provide a fundamental understanding of the underlying correlations between structural, dynamical and 
electrochemical properties and phenomena operating in hierarchical electroactive structures. Guided by 
rigorous uncertainty quantification (UQ) efforts, a strongly coupled modeling-experimental approach will 
predict and formulate novel strategies/design rules needed for the development of controlled hierarchical 
electroactive structures.  

This IRG will include the three Focus Research Groups (FRGs). FRG1 will focus on the design and 
synthesis of hierarchical carbon-based support structures with desired morphology and size distribution of 
pores. These novel materials will be incorporated into FRG 2 and 3 to fabricate next-generation electrode 
materials. FRG2 will focus on developing design rules for size/activity and size/stability relationships for 
electrocatalytic nanoparticles as well as the study of photo-assisted electrocatalysis via the use of 
plasmonics. FRG3 will focus on understanding molecular processes occurring at charged electrode 
interfaces as well as understanding and fabricating optimal three-phase boundaries for electrochemical 
gas evolution and consumption. This knowledge will be combined with the materials design of catalysts 
obtained in FRG2 and the support structures of FRG1 to develop next-generation electrodes. 

The Team.  A highly interdisciplinary team of established experimentalists and modelers with 
expertise in Chemistry, Materials Science & Engineering (MSE), Electrical Engineering (EE), Nuclear 
Engineering (NE) and Computer Science (CS) has been assembled. Each FRG has an equal balance of 
modelers and experimentalists, most of whom already have an excellent track record of collaboration (20 
joint publications) and extensive experience in multidisciplinary teams.  

Computationally-Driven Materials-by-Design. To make significant advances in electrochemically-
active interfaces, the experimental design of materials must be informed by fundamental understanding of 
the phenomena and processes that govern their performance. Furthermore, the nanoscale properties of 
materials and the quantum mechanical nature of matter enable new macroscopic properties. Where 
controlling the remarkable properties of matter emerging from complex correlations of the atomic and 
electronic constituents leads to new functionalities, modeling and simulations can provide crucial insight 
into these issues at a variety of scales. Our team has recently demonstrated how modeling can provide 
crucial guidance toward the design of advanced materials, including a rigorous inverse design method to 
engineer the shape of plasmonic particles [24], pathways to increase energy storage in supercapacitors 
by introduction of vacancy defects and doping with metals to recover the metallic character of graphene-
based electrodes [25] and by tuning the design of nanostructured/nanoporous electrodes (pore 
dimensions, atomic scale surface roughness, etc.) to be commensurate with the chemical structure of the 
electrolyte [26-28] and the design of optimal processing conditions for the synthesis of carbon nanotubes 
[29].  
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The complexity and multiscale nature of phenomena governing the behavior of electrochemical 
systems often means that utilization of a single modeling technique is insufficient. The material properties 
and performance are often defined by a convoluted interplay between phenomena with time scales 
ranging from femtoseconds to seconds and length scales from Å to µm. Existing simulation and modeling 
approaches are incapable of accessing such broad length and time scales with fidelity at all scales. 
Therefore, multiscale modeling and simulation approaches that combine ab-initio calculations, molecular 
simulations, mesoscopic and continuum level modeling have to be integrated and applied to these 
systems. To make the multiscale modeling-guided design of complex materials a reality, the 
computational framework must integrate methods for uncertainty quantification (UQ) and validation and 
verification (V&V) with efficient parallel computations. For most of these areas, our understanding of the 
underlying physics is not sufficient to know a priori what phenomena, properties and scales are key in 
defining the material's/system's behavior and hence need to be captured in the multiscale modeling 
design. Our team has extensive experience (Molinero, Kirby, van Duin, Bedrov, Dal Negro) in 
development and application of this multiscale modeling approach to materials design for several 
complex systems including electrochemical applications.  
FRG1:  Controlling Hierarchical Support Structures.  
Ilya Zharov (Chemistry – FRG1 Lead), Dmitry Bedrov (MSE), Shelley Minteer (MSE/Chemistry), Luca dal 
Negro (EE) and Mike Kirby (SoC) 

Nanoporous carbons constitute one of the most important classes of conductive materials used in 
electrochemical devices, including fuel cells, electrolyzers and capacitors. They provide support of the 
catalytic moieties, allow for mass transport in electrochemical devices and control many of the electrical 
double layer properties in supercapacitors. The nanostructure of such materials plays a critical role in 
their performance. Therefore, the focus of FRG 1 is on novel hierarchical nanoporous carbon materials 
via experimental and computational design, preparation using templating approaches and experimental 
and computational characterization. We will prepare both ordered and disordered nanoporous carbon 
structures. The preparation of the ordered structures will be based on templating silica colloidal crystals, 
which will provide nanoporous materials with inverse opal structures. Utilization of nanostructured 
templating structures opens the possibility of introducing multiscale patterns into the designed electrode 
structures. The key aspect of the described approach is the precise control of the surface characteristics, 
morphology and composition of the carbon materials. We will also modify the surface of the nanoporous 
materials with amines to serve three purposes: increasing hydrophilicity of the materials for the tailoring of 
interfaces in FRG3, depositing metal nanoparticles for the catalytic materials studied in FRG2 and 
growing surface-immobilized ionomers that will introduce novel electric double layer properties studied in 
FRG3. The second type of nanoporous carbon material will be carbon nanofiber mats. While these 
materials lack order, their surface area and porosity can be controlled by the preparation conditions and 
their preparation from electrospun polymer fibers is a well-established process [30,31] used by the Dal 
Negro group. These materials will be further surface-modified to produce catalytic nanostructures for 
FRG2. The voids in the carbon mats will be filled with ionomers in FRG3. The above experimental work 
will be guided by modeling. Specifically, we will (1) perform coarse-grained simulations of colloidal 
particles distributions to determine how particle size of the template affects the resulting hierarchical 
nanostructures and (2) use ReaxFF to model the carbonization process in nanopores in order to predict 
the nanoscale features that can be obtained. 
FRG2: Controlling Activity, Selectivity and Stability of Nanoelectrocatalysts.  
Anil Virkar (MSE – FRG2 Lead), Scott Anderson (Chemistry), Shelley Minteer (MSE/Chemistry), Joel 
Harris (Chemistry), Mike Kirby (SoC), Luca dal Negro (EE), Adri van Duin (NE), Dmitry Bedrov (MSE), 
Henry White (Chemistry) 

The focus of FRG2 is on materials factors that affect electrocatalyst activity, selectivity and stability. 
We will investigate the relationship between catalyst size and activity. Generally, activity per mass 
increases with decreasing particle size due to increasing surface area/volume ratio, but the relationship is 
complex and system dependent, because of the metal electronic structure and distribution of active sites 
[32]. The Anderson group will synthesize electrodes with size-selected atomic clusters, by mass selective 
deposition in ultra-high vacuum.  In a recent study, Ptn clusters deposited on electrodes [33] showed that 
activity increased with size from Pt1 to Pt4, then decreased from Pt4 to Pt8 and then again increased from 
Pt8 to Pt14. We will utilize this novel synthesis tool to investigate catalytic activity and stability of single 
metal clusters, bimetallic clusters, core-shell catalysts containing non-noble metal as core and platinum 
group metal (PGM) as shell. To further increase their catalytic performance, we will develop and 
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implement molecular modeling tools to study these processes. We will rely on reactive molecular 
simulations using the ReaxFF approach. Building on the molecular and atomic scale insight, a systematic 
modeling and experimental study will be conducted to obtain correlations between nanostructure and 
electrocatalytic activity. Finally, to enable fully-reactive simulations of these electrocatalysts, we will 
extend the ReaxFF description of hydrocarbon catalytic reactions on metal surfaces to C/H/O species, 
focusing on reactions relevant to alcohol and carbohydrate oxidation catalysis. In addition, we will extend 
a recently developed explicit-electron concept, e-ReaxFF, to solid-state surface reactions that will enable 
us to include electron-transfer events within metal-surface catalysis simulations.  

Loss of activity of catalysts occurs by particle growth, when there is a coupled transport of metal ions 
from smaller particles through liquid to larger particles with electron transport through the conducting 
support (e.g. carbon) [34,35]. We will investigate the effect of particle size distribution on the growth 
kinetics. Work by Popescu et al. [36] on Aun clusters showed that size-selected clusters grow much 
slower than poly-dispersed clusters and the Anderson group has shown exceptional stability for their Ptn 
clusters. We will experimentally and theoretically investigate the effect of catalyst size distribution on the 
growth kinetics, using the techniques described above and in-situ electrochemical TEM. Modeling of the 
coarsening kinetics will take into account the transient problem that the quasi-steady state models do not 
apply. This modeling and experiments will develop design rules for size/stability relationships in 
electrocatalytic materials. 

The study of plasmonic metal nanomaterials, due to their ability to manipulate light at the nanometer 
scale using the phenomenon of surface plasmon resonance, has become popular. Recently, it was 
shown by the Minteer, Harris and Dal Negro groups that plasmonic properties can be utilized in 
electrocatalysis to enhance electrocatalytic selectivity and decrease catalyst passivation [37,38]. 
Therefore, the use of plasmonic materials as electrocatalysts provides a promising new avenue for 
tailoring the stability and selectivity of electrocatalysis. However, little is known about the mechanism. The 
current proposal aims to integrate both computational and innovative experimental synthesis and 
characterization in order to provide detailed understanding of the catalytic processes based on the 
utilization of plasmonic materials and to explore materials designs that will enable their applications.  
FRG3: Nanostructure-Transport Relationships at Interfaces.  
Valeria Molinero (Chemistry – FRG3 Lead), Scott Anderson (Chemistry), Dmitry Bedrov (MSE), Shelley 
Minteer (MSE/Chemistry), Adri van Duin (NE), Henry White (Chemistry). 

FRG3 focuses on the fundamental studies of non-classical interfacial structure in complex ion- and 
electron-transfer processes. Specifically, the role of three-phase interfaces (gas/solid/liquid) in 
determining the rate of electrocatalytic reactions is at the center of these studies, in addition to ion 
transport in complex nanostructured architectures. Electrocatalytic reactions that generate or consume 
gases are the fundamental basis for many energy conversion and storage technologies [39,40]. 
Production of gas nanobubbles hinders H2 and O2 synthesis in electrolysis and disrupts electrode 
processes in batteries and fuel cells. Ion- and electron-transfer occurring at the three-phase boundary of 
individual nanobubbles of H2, CO2 and N2 will be investigated by experimental and computational 
modeling [41-44]. Using an approach developed by the White group, single stationary nanobubbles can 
be maintained at disk-shaped nanoelectrodes via electrogeneration of gas at the three-phase boundary.  
Fundamental insights into gas nucleation and ion/electron transfer at the bubble interface will be 
investigated by the van Duin and Molinero groups using their expertise in ReaxFF simulations of 
interfacial reactions and coarse-grain simulations of nucleation phenomena [45-52]. Recent studies from 
the White group suggest that the critical nucleus of a stable bubble comprises ~1000 gas molecules. To 
study gas nucleation in this limit, the Anderson group will prepare electrodes decorated by size-selected 
Pt catalytic clusters containing with 1-60 atoms [53-55]. Air-breathing cathodes require O2 delivery to the 
cathode by diffusion from a three-phase boundary [56,57]. The Minteer group will design ionomer 
membrane structures for forming the three-phase boundary for both biological electrocatalysts (i.e., 
laccase enzymes) as well as metal electrocatalysts for O2 (FRG2) deposited on mesoporous carbon 
architectures (FRG1). The Molinero and Bedrov groups will develop high-resolution coarse-grained 
molecular models of materials synthesized and investigate the relationship between transport and the 
nanostructure of the three-phase boundary. These models correctly represent hydrophobic and water-
mediated interactions [58-60], including hydrophobic hydration and attraction [58,60-64], as well as 
capillary condensation [49,62,65,66] FRG3 will also focus on the coupling of ion transport and structural 
correlations at electrolyte/electrode interfaces developed in FRG1 for energy storage and conversion.  
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D.2. IRG 2: Dirac Materials beyond Graphene for Terahertz Optoelectronics 
IRG Director: Feng Liu (MSE).  
Senior Investigators: Vikram Deshpande (Physics), Michael Free (Metallurgy), Feng Liu (MSE), Janis 
Louie (Chemistry), Ajay Nahata (ECE) Dmytro Pesin (Physics), Berardi Sensale-Rodriguez (ECE), 
Michael Scarpulla (ECE/MSE), Taylor Sparks (MSE), Luisa Whitaker-Brooks (Chemistry) and Heayoung 
Yoon (ECE) 
Other Personnel: 1 postdoctoral fellow, 10 graduate students and 5 undergraduate students 
DMR Core Areas: EPM, CMP and CMMT 
 

Since the discovery of radio waves in 1887, electromagnetics has played a major role in almost every 
aspect of our lives. For example, computing and communications have transformed science, technology, 
productivity and the way that we interact with one another. Such advancements have depended critically 
on the creation of new materials and a deep understanding of their properties. Despite this great progress, 
the desire for new materials remains unabated based on anticipated needs in the coming years. To 
understand this, we need only to look at advances in operating speeds for these two broad classes of 
technology over the last several decades and predictions for where they are headed. The terahertz (THz) 
spectral range, extending from 100 GHz to 10 THz [67], is increasingly viewed as important for these 
technologies and, yet, it is still often referred to as “the last frontier in the electromagnetic spectrum.” The 
primary reason for this lies in difficulties in creating devices that operate efficiently in this spectral range; it 
is too high in frequency for electronics-based approaches and too low in frequency for optics-based 
approaches. However, the development of new materials has the potential to deepen the impact of THz 
technology. A well-studied example of this is graphene, whose 
excellent THz properties have captured the interest of the THz 
community for devices that enable generation, detection and 
modulation of THz waves [68-74].  

However, graphene is just one member of a wider class of 
largely unexplored terahertz materials that can also lead to 
excellent electromagnetic properties as well as rich 
unconventional physical phenomena. Over the past fifteen years, 
there has been growing interest in a novel class of materials, 
whose low-energy-excitation spectrum is characterized by point 
or line Dirac nodes with linear band dispersion [75], somewhat 
similar to graphene. In this IRG, we have designed a 
multifaceted research program that will study the interactions 
between THz waves and Dirac materials beyond graphene, with 
the goal of understanding and applying their properties to 
advance the state of the art in THz technology and overcome the 
practical materials-challenges still faced in graphene.  

This IRG has three main features that make it unique:  
i) It brings together a diverse and highly collaborative group 

of junior and senior faculty from three separate colleges, who are recognized experts in all areas of 
materials research that are relevant to the proposed work – theory, materials synthesis, 
structural/electrical characterization, THz spectroscopy and device fabrication – as noted in the 
synergistic research plan shown in Figure 1. 

ii) The main goal of the IRG is to study topological insulators and Dirac & Weyl semimetals for their 
applications to THz optoelectronics. The program contains efforts in prediction, synthesis and 
characterization of new materials, as well as development of growth techniques for large area crystals of 
established materials systems. Basic science will be advanced through theoretical and experimental THz 
studies of transport and optical properties of 2D and 3D Dirac materials, with a special emphasis on their 
unique phenomenology. Thus, the proposed research encompasses great breadth and depth. 

iii) The proposed work is founded on a strong basis created by the research efforts carried out by one 
of the IRGs in the current MRSEC, which explored the field of THz plasmonics using conventional and 
unconventional metals [1-8,10,76-91], including emerging materials, such as graphene [9,92-97].  All of 
the necessary equipment and capabilities, including significant shared facilities, are already in place. 

 

Figure 1. Synergistic research plan for 
the proposed IRG. 
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Figure 2. (a) Ball-&-stick model and (b) 
band structure of Ni3C12S12 showing 
topological edge state. (c) Precursors 
of M3C12N12H12. (d) TEM image of 
Ni3C12N12H12. 
 

In order to maintain efficiency and flexibility to adjust the research 
endeavors for a project of this size, we have divided the effort into 
three major tasks (Fig. 1), as discussed below. 
I. New Dirac Materials: Prediction, Synthesis & 
Characterization (Deshpande, Liu and Louie) Extensive first-
principles computations will be carried out to guide experiments 
by predicting new 2D/3D Dirac and topological materials and to 
help explain experiments and phenomena via the development of 
new theoretical approaches. One outstanding example is our 
recent prediction of 2D organic topological insulators (OTIs) [98-
101], which led to the synthesis and preliminary characterization 
of a coordination polymer (Ni3C12S12) as shown in Fig. 2 that has 
been identified to exhibit nontrivial topological edge states in a 
Dirac band [102] as well as three new 2D coordination polymers 
made of π-conjugated M3(hexaaminobenzene)2 with a chemical 
formula M3C12N12H12 (M = Ni, Cu, Co). These metal-organic 
frameworks (MOFs) are synthetically straightforward and, 
importantly allow for easy modification and tunability of both the 
metal and the ligand components. All of the materials prepared to-
date display uniform thickness and are some of the thinnest 
synthesized MOFs known (~12 nm as measured by AFM). We propose a theory guided collaborative 
experimental effort towards realization of OTIs, with a special focus on studying their plasmonic properties 
associated with Dirac bands, calculation of the collective plasmon excitations and analysis of electron 
energy loss spectra (EELS) [103]. We will also systematically investigate the plasmonic properties of 
other 2D/3D Dirac and topological materials, in terms of band dispersion, orbital symmetry and band 
degeneracy. The choices of new material systems predicted will be determined in close collaboration with 
synthesis and characterization experiments. In addition to predicting intrinsic materials properties, we will 
also suggest theoretical ways to modify materials properties that are desirable for THz plasmonic 
applications. For example, using Bi(111) bilayer as a model system, we have shown that chemical edge 
modification can significantly increase the Fermi velocity of topological edge states of 2D TIs by one order 
of magnitude [104]. We will carry out similar theoretical studies of edge/surface modification for the new 
2D/3D topological materials, including OTIs, to be tested experimentally. 
II. Enabling THz Optoelectronics through Large Area Dirac Materials Synthesis. Free, Scarpulla, 
Sparks, Whittaker-Brooks and Yoon 
In order to study THz interactions with the 
intrinsic band structure of Dirac and Weyl 
materials and to realize novel and high-
performance THz device functionalities, 
samples of high quality with well-defined 
crystallographic alignment are required. Thus, 
methods of producing uniformity over the 
interrogated volume in terms of purity, phase 
and crystallographic orientation are required.  
This task will focus on growth methods to 
produce single-crystalline, oriented thin film, or 
nanowire array samples over areas sufficiently 
large to be probed either with free-space 
beams or with the use of antenna structures (Fig. 3).  The team has already synthesized many of the 
topological insulators (Pb1-xSnxSe, Bi2Te3), topological semimetals (TaSb2) and Dirac & Weyl semimetals 
(TaP, BiSbTeSe2 and Cd3As2, which was grown from a Cd solution - see Fig. 3). We will address the 
challenge of synthesizing materials with suitable dimension and orientation by conventional deposition 
and growth methods for single crystals, crystallographically-textured polycrystalline thin films and 
nanowire arrays as well as adapting novel methods such as the so-called thin film VLS [105] which can 
yield lateral grain sizes of hundreds of µm.  Strong emphasis on characterization of the compositional, 
structural and electrical properties of the materials will be maintained through the project.  Modifications 

Figure 3. SEM images of (left) Aligned array of Bi2Te3 
nanowires grown by vapor transport.  (center) Single 
crystalline BiSbTeSe2 platelet grown by vertical Bridgeman.  
(right inset) THz antenna coupled sample (scale bar 40 µm). 
(right) 4.5mm single crystal of Cd3As2. 
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through doping and surface adsorption will be performed to modify the THz properties and optimize the 
behavior of Dirac materials for a variety of applications.  
III. Terahertz Spectroscopy, Novel Phenomena and Device 
Characterization. Deshpande, Nahata, Pesin and Sensale-
Rodriguez 
The unique band properties of Dirac materials can give rise to a wide 
range of novel phenomena that are important not only for fundamental 
science, but also a wide variety of device applications.  We discuss 
three specific sub-topics that address this. 
THz Spectroscopy: In order to understand the behavior of charge 
carriers in these materials, we propose to use a combination of linear 
and time-resolved THz spectroscopy [106-108]. THz spectroscopy 
offers two important capabilities that are not easily available with other 
approaches: (i) it allows for direct measurement of the received THz 
electric field, yielding both amplitude and phase information, thereby 
obviating the need for Kramers-Kronig transformations [109,110] and 
(ii) it allows for (time-resolved) measurement of transport properties 
without the need for electrical contacts. Such measurements can give 
information about relaxation dynamics, carrier momentum scattering rates and carrier densities. In the 
case of 3D TIs, THz spectroscopy can be used to separate the contribution of the surface from the bulk. 
Real TIs are often far from ideal, because of the influence of both unintentional dopants and defects. THz 
measurements as a function of thickness should yield a thickness independent Drude contribution and a 
surface term. In Fig. 4, we show a preliminary optical pump – THz probe measurement for one specific 
thickness of Bi2Se3, a well-known TI, at low temperature. Further measurements are currently underway 
with this and other associated materials. In the presence of a magnetic field, Dirac materials show a 
range of rich phenomena [111-115]. We propose to incorporate both cryogenic temperatures and high 
magnetic fields into our THz spectroscopy capabilities. Finally, many of the Dirac materials discussed 
here are still relatively small in size. Nevertheless, we can perform both linear and time-resolved THz 
spectroscopy using transmission line embodiments of the system [116,117], using picosecond electrical 
pulses that are generated and coherently detected in close proximity. This approach only requires that 
crystals be larger than ~10µm x 10µm and can be deposited onto the device. 
Novel Phenomena: Dirac and Weyl semimetals exhibit topological properties that manifest themselves 
through low-energy electron dynamics in the Dirac bands. Conventional optical experiments cannot 
resolve these dynamics, while the THz range is ideally suited for such studies. The best-known example 
of this involves Cd3As2. Early optical experiments in the visible-mid-infrared range placed it among 
conventional narrow-gap semiconductors in the 1960’s, though it is now known to be a Dirac semimetal 
from recent ARPES [118] and transport [119] studies. On the practical side, Dirac semimetals are known 
to have large (metallic) Fermi velocities and high mobilities [120], making them well-suited for THz 
devices. Some of our focused topics include: (i) THz tests of relativistic particle dynamics in Dirac and 
Weyl systems: Weyl semimetals, as well as Dirac semimetals with mass terms forbidden by 
crystallographic symmetry, represent 3D analogs of graphene, since they possess 3D relativistic-like 
spectra. We propose to perform THz tests of relativistic dynamics in these materials; (ii) Nonlinear optical 
effects in Dirac and Weyl systems: Low doping levels and high mobility of Dirac semimetals, combined 
with symmetry requirements for their stability, create vast possibilities for nonlinear current responses; (iii) 
Nonlocal electrodynamics of Weyl metals: Weyl phases require breaking of either time reversal or spatial 
inversion symmetries, which makes them natural candidates for studies of optical activity in metallic 
systems [120]; and (iv) THz studies of collective modes in Dirac systems: Being multi-band systems, 
these materials can be viewed as a multi-component Fermi liquid and host many branches of collective 
excitations. Importantly, in Weyl semimetals, even in the absence of inter-valley scattering, different 
valleys are coupled to each other in the presence of a magnetic field due to the so-called chiral anomaly. 
This has important consequences for the observability of zero-sound-type neutral collective modes. 
THz Devices: The long-term goal of investigating Dirac materials beyond graphene is to develop new 
device capabilities relevant to THz technology. In the case of graphene, we have significant expertise in 
THz device development, including amplitude modulators [121-124], phase shifters [9,92] and various 
metamaterials [94,125,126].  Similar device concepts will be explored for all the proposed classes of 
materials.   

Figure 4. Normalized change in 
the THz electric field vs. the delay 
between the optical pump and 
THz probe for Bi2Se3.  
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Figure 5. Clockwise from top: binary 
nanostructure of a Digital Metamaterial; PT 
Bragg grating - red and blue domains 
denote regions of optical gain and loss; 
Random Lasing spectrum in organic film. 

D.3. IRG-3: Gain-Loss Metamaterials and Devices   
IRG Director: Kenneth M. Golden (Mathematics) 
Senior Investigators: Fernando Guevara-Vasquez (Mathematics), Sarah Li (Physics), Rajesh Menon 
(ECE), Keunhan Park (Mechanical Engineering), Dmytro Pesin (Physics), Mikhail Raikh (Physics), Z. Valy 
Vardeny (Physics) and Tsampikos Kottos (Physics, Wesleyan) 
Other Personnel: 1 post-doctoral fellow, 10 graduate students and 5 undergraduate students 
DMR Core Areas: EPM and CMP 
      
During the 20th century the use of composites or metamaterials made from two or more component 
materials rose dramatically. They can have effective properties not normally found in nature or which can 
exceed the properties of the constituents. A major factor in this rise was the development of mathematical 
theories of composites [127,128] yielding rigorous bounds on effective electromagnetic, thermal or 
mechanical properties, showing exactly what is possible given 
information about the mixture geometry and constituent properties. 
Moreover, such theories often suggest how to design 
microstructures, which can attain extremal properties. Notable 
benchmarks include major advances in optimal design, 
tomography and inversion for medical applications, photonic 
crystals, stealth capabilities, cloaking, and the engineering of 
aircraft and buildings. 
       The objective of this IRG is to bring to bear the mathematics 
of composites and nonlinear optimization to Gain-Loss 
Metamaterials (GLM), which will enable novel applications in 
areas as diverse as cancer detection and integrated photonics. In 
particular, we focus on analyzing, designing, characterizing and 
fabricating materials and devices where patterns of gain and loss 
are manipulated to achieve extraordinary wave propagation 
characteristics. By building on powerful theories of composites, we 
will explore the optimal design of gain-loss structures in three 
closely intertwined areas of application: (1) Parity-Time symmetric 
(PT) systems, where gain and loss must be locally balanced, (2) 
Random Lasers (RL) where gain and loss in random 
microstructures - at the critical intensity threshold - are balanced on average, or statistically PT symmetric, 
and (3) active Digital Metamaterials (DM), where we apply insights from PT and RL to enable ultra-
compact active nanophotonic devices. Developing unified theoretical approaches will be facilitated by a 
similar Schrödinger equation formulation for both RL and PT systems. Theoretical and numerical insights 
will drive the design of completely novel, yet manufacturable nanophotonic devices.  
      Guided by the mathematics of composites, we will develop rigorous treatments of this new class of 
materials - GLM. Some of the exciting possible applications of our proposed work include optical diodes, 
PT symmetry in magnonics, high resolution random lasing tomography for early tumor detection, and DM-
based chiral polarization selectors and on/off switches that drastically increase network bandwidth and 
power efficiency of data centers in a cost-effective and manufacturable manner. Random lasing using 
chiral molecules and PT systems with chiral chromophores will also be explored.    
       One of the distinguishing features of this IRG is the pairing of leading engineers and physicists who 
focus more on the experimental aspects of photonic materials and devices, with leading mathematicians 
who specialize in composite materials, interactions of EM waves with complex media, and optimal design 
of microstructures. Infusing this type of expertise will lead to investigations such as rigorous bounds on 
output under constraints on gain-loss nanostructure, spectral representations for output in terms of gain-
loss geometry, and transitions in photonic behavior at a percolation threshold for the gain phase. 
FRG 1. PT symmetric materials and structures. Vardeny, Golden, Guevara-Vasquez, Li, Pesin and 
Kottos 
Introduction: Parity-Time (PT) symmetric structures in optics are devices composed of materials that 
may be engineered into structures having equal amount of optical gain and optical loss, based on EM 
wave propagation and interaction between the two parts [129]. The interplay of EM gain and loss may be 
designed to yield unusual optical devices [130-134] such as unidirectional optical structures, or optical 
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diodes (see Fig. 5), laser mode manipulation in optical cavities, threshold excitation control for lasing, etc. 
However this concept has not been studied for magnonic propagation in ferromagnetic (FM) structures. 
Research goals: This FRG is focused on: fabricating unusual PT structures in optics based on materials 
with large optical gain such as quantum dots, hybrid organic-inorganic perovskites and π-conjugated 
polymers (Golden, Li, Vardeny) that we already have in our arsenal; investigating PT symmetry in chiral 
media having optical gain (Li, Pesin, Vardeny); launching a research study of novel PT symmetry 
properties in magnonics (carried by spin-waves or magnons) (Kottos, Pesin, Vardeny); developing a 
theory as well as realizations of partially PT symmetric materials (Golden, Guevara-Vasquez, Pesin, 
Vardeny).  

Research studies: In optics we will use three different structures 
based on materials with large, balanced gain and loss, namely PT 
symmetric waveguide pairs (Vardeny); PT symmetric pairs of laser 
resonators (Li); and PT symmetric nonlinear optics (Kottos). We 
will also study PT symmetric materials and devices based on chiral 
media, where the optical gain and loss depend on the sense of 
circular polarization. To achieve PT symmetry in magnonics, we 
first need to study magnetic materials and nanostructures that 
have magnetic PT symmetry properties, namely the equivalent of 
optical gain and loss, with control over the corresponding wave 
amplitude and phase. Subsequently, we will design, fabricate and 
characterize active structures based on the interplay between 
magnetic gain and loss with PT symmetric spin-wave propagation 
(Vardeny) based on trilayer structures [135] (FM/metal/FM), see 
Fig. 6. Another line of inquiry is focused on relaxing the full PT 
symmetry conditions and examining what happens when the 
system is only partially PT symmetric. 
Research plan: We plan to study a variety of optical and magnetic 

PT materials, choose the most suitable for engineering, then fabricate and study PT symmetric structures. 
In particular, for gain in magnonics we will use three techniques of launching spin-waves in FM structures. 
These are ps pulsed excitations that generate magnons via “electron heating” (Li); microwave pulsed 
excitations using FM resonance (FMR) in an external magnetic field (Vardeny); and spin-torque devices 
where spin-waves are generated from spin aligned carriers in metals with large spin-orbit coupling 
(Vardeny). 
FRG 2.  Interplay of gain and loss in random lasing. Raikh, Vardeny, Golden, Pesin and Li 
Introduction: Random lasers (RL) produce coherent laser emission without a traditional engineered cavity [137-
138], which has been observed in solid-state disordered media [139-141], dye in cancerous tissue [142] and 
bones [143], etc. RL with resonant feedback was demonstrated in ZnO powder [144] and π-conjugated films 
by Vardeny’s group [145]. The inset in Fig. 1 shows a typical RL spectrum in a film of π-conjugated polymers 
[145].  
Research goals: The aims of this FRG are four-fold:  (i) Study RL near the threshold excitation (Golden, 
Raikh, Pesin); (ii) explore RL in gain media mixed with mirror-like scatterers that form predetermined laser 
resonators (Vardeny & Raikh); (iii) implement RL tomography based on the relation between the spatial 
ensemble-averaged RL spectra and malignant tumor morphology (Vardeny), see Fig. 3; (iv) study RL 
based on chiral chromophores with preferential circular polarization gain (Li, Raikh).  
Research studies: (i) The spatially distributed optical gain and loss for diffusive light propagation near 
the RL threshold are balanced on average, and the photon density satisfies a reaction-diffusion equation. 
Here the spatial average of optical gain is equal to the spatial average of optical loss, but there is no local 
balance between them. The universality of near-threshold RL behavior manifests itself via a statistical 
description.  An appropriate mathematical formulation should yield the eigenvalue distribution of the 
above equation when balanced, where the positive eigenvalues correspond to lasing conditions. In fact 
the eigenvalue set would fully characterize the optical response of the gain-loss system to an external 
excitation, treating the medium with tools borrowed from transport in polycrystalline and other composite 
media.  
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Figure 6. The damping factor in FMR of 
trilayers of Co/Pt/NiFe with various Pt 
interlayer thicknesses shows FM and 
anti-FM coupling caused by RKKY 
interaction [136] (unpublished).  
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Research plan: (ii) A random arrangement of nanosized mirror-like 
structures may lead to microcavities. The scatterers have flat 
boundaries that specularly reflect light, if their size exceeds the RL 
wavelength. When mixing such scatterers in gain media, closed 
loops would occur, with light trapped while travelling in loops much 
smaller than the light mean free path; these may serve as high-
quality resonators and hence reduce RL threshold and simplify its 
spectrum. We plan to theoretically study and fabricate such media 
by mixing scatterers in a film of organic chromophores with high 
optical gain.     
(iii) We previously established that the spatial average of the power 
Fourier transforms of RL spectra reveals the sizes of the underlying 
natural microcavities (Fig. 7) [146]. Importantly, the RL spectra 
based on benign human tissue impregnated with optical gain are 
very different than those based on cancerous tissue [144]. This may 
lead to an interesting application of RL in tomography, with the 
potential to map tumors in the human body with 1 mm2 spatial 
resolution.  We plan to develop this tomography in collaboration with an MD, representing the first 
application of RL to be commercialized. 
(iv) We also plan to study RL in chiral media having gain that depends on the circular polarization sense; 
this is terra incognita in the RL field. This research will be based on organic chiral chromophores that we 
already have in our arsenal. We anticipate discovering myriad new phenomena rich in physics.    
FRG 3. Active digital metamaterials for ultra-compact integrated photonics. Menon, Guevara-
Vasquez, Park and Vardeny 
Introduction: The aim of FRG3 is to exploit fundamental advances in metamaterials, optimization theory, 
PT symmetry and random lasing to analyze, design, fabricate and characterize active integrated 
photonics devices. Subwavelength control of dielectric structures has enabled novel photonic phenomena 
such as anomalous refraction and reflection, optical cloaking, pseudo-perfect lensing, etc. [147,148]. 
Recent advances in topological optimization that exploit nanofabrication have resulted in the smallest 
integrated passive devices ever 
built (Fig. 8a) [149-153].  
Research goals: We will gain 
fundamental insights into the 
topology of digital metamaterials 
(DM). Further, by exploiting 
insights from PT and RL, we can 
expand the repertoire of DM to 
active or programmable 
integrated photonics.  
Research studies: We will 
explore two types of exemplary 
devices. Each device (Fig. 8b) is 
enabled by a unique DM 
designed to minimize the device area. The first is the photonic switch or modulator and the second is a 
chiral polarization selector that actively selects the left-circular polarized light from its right-circular 
polarized counterpart, and vice-versa based on an active input. Both devices will be comprised of 
elementary “pixels,” which contain gain or loss, whose overall distribution will be selected to maintain PT 
symmetry. Optimization of both devices should yield the world’s smallest version of both devices, while 
maximizing transmission efficiency and the ON-OFF contrast ratio.   
Research plan: Guevara-Vasquez will address the theoretical question of finding bounds on the possible 
responses of active DM. This is innovative because most existing bounds assume passivity and ignore 
gain and loss phenomena. This theoretical work may also suggest novel applications to be explored by 
this FRG. Guevara-Vasquez will tailor optimization techniques to design such devices in an efficient and 
systematic manner, using gradient-based methods where possible. Menon and Guevara-Vasquez will 
collaborate to generate the appropriate designs, while Vardeny will provide inputs from PT symmetric 
concepts. Park and Menon will fabricate the devices, and Menon will characterize them. 

Figure 8. (a) An example of a passive DM that splits the 2 orthogonal 
polarizations. (b) Schematic of an active DM that can be used as a switch 
(ON/OFF) or a chiral polarization selector (LCP/RCP). 

Figure 7. Average power Fourier 
transform (PFT) of RL emission spectra 
in DOO-PPV polymer film revealing 
equidistant cavity modes due to 
random resonators in the gain medium. 
The increased average is for 25 
successive PFTs. The inset 
accentuates the cavity modes 
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E. Other Significant Activities 
 
1. Education and Outreach 
The mission of our Education and Outreach effort is to (1) engage students and faculty in education, 
outreach and research, (2) generate enthusiasm for science and engineering in K-12 students and (3) 
help prepare the next generation of students and postdoctoral fellows. Over the last five years, the 
success of the current Center in fulfilling this mission can be attributed to the strong participation of faculty, 
students, industrial partners, community partners and even REU students. In the next cycle, we intend to 
continue and expand some of our most successful programs, while also introducing new programs 
designed to increase our overall impact. 
Community Outreach Overview: In order to maximize our contribution in community outreach, we have 
partnered with a number of organizations throughout the Salt Lake Valley. Examples of just a few of these 
partnerships include a science and engineering program offered through the University of Utah’s School 
of Medicine, a Summer Science Festival, organized and funded by the Center and held at a local 
children’s museum and a program called Phun with Physics, hosted by the Natural History Museum of 
Utah. We intend to continue these partnerships and maintain our presence in these excellent community 
outreach programs. We also propose to begin working with the Sorenson Multicultural Center in Salt Lake 
City in establishing a new program. The Center offers community education classes and services to a 
broad range of underrepresented groups in the Salt Lake Valley. The Salt Lake Valley is home to a large 
Native American population, the largest Pacific Islander population in the continental US and a growing 
Latino population. We plan to establish a summer program at the Center that introduces students from 
these communities to STEM concepts, specifically related to materials-related topics. At the end of the 
program, we will host a parent education night where we discuss topics including preparing and paying 
for college and choosing a major. There is significant existing research that shows that the earlier 
students and their families begin to consider college as an option, the more likely students will end up 
pursuing a higher education. By maintaining an ongoing presence in the Sorenson Center, we will work to 
encourage parents to help their children prepare to enter majors in science and engineering disciplines. 
K-12 Outreach Overview: Our programs in K-12 outreach have been extremely well received. These 
include an after-school program at several local Boys and Girls Clubs with more than 50% under-
represented minority students, the Utah Science Olympiad and teacher education programs. In addition 
to our active participation, we have developed modules specific to the Utah MRSEC for each of these 
events. During the most recent academic year, 5634 students were impacted directly by our programs at 
42 different schools, including 3191 females and 2343 students from underrepresented minority groups. 
In terms of our direct interaction with K-12 students, there are two important benefits that we have 
observed. First, K-12 students learn well from our undergraduate and graduate students when they go 
into their classrooms, since our students help validate concepts that have already been taught in class. 
Second, while we believe that this interaction is of benefit for the K-12 students, it is also invaluable for 
our postdoctoral fellows and students. However, in many cases, our presence is not sustained. Therefore, 
we have also made impact through teacher education. By empowering teachers with the ability to answer 
questions related to science and engineering topics, we have greater impact. This will help K-12 students 
gain a deeper knowledge about the topics and is likely to have a more lasting impact on them. 

With this in mind, we propose creating an additional program for teachers. In conjunction with the 
University of Utah’s Center for Science and Mathematics Education (CSME), we will begin teaching a 
course on Engineering Education. The CSME has strong roots in the Colleges of Science and Mines and 
Earth Sciences and offers a Master of Science for Secondary School Teachers degree program. This 
program includes coursework in physics, math, chemistry, geology, geophysics and atmospheric science, 
but does not include any coursework in engineering. We propose adding an elective course to the 
program where teachers learn how engineering applies to concepts in science and consequently inspire 
high school students to choose materials-related majors. Such a course can highlight research topics in 
the Utah MRSEC, creating opportunities for faculty to interact with the teachers.  

In addition to these programs, we propose to add a new high school student research opportunity to 
the Utah MRSEC. Over the years, a number of high school students have worked in MRSEC labs year-
round and have been co-authors on high-impact publications. We propose to formalize and expand the 
process, with the goal of shaping how high school students think of science and engineering and getting 
them to consider a career in research. The program will also enable students to submit their work to 
national-level competitions, such as the Siemens Competition and the Regeneron Science Talent Search. 
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We intend to make a concerted effort to advertise the program to high schools across the Salt Lake 
Valley, with heavy emphasis on schools with high numbers of under-represented minority students. 
Unlike the REU program, this program would run year round. This program would place high school 
students in MRSEC labs with faculty and student mentors for 10 hours per week during the school year 
and full time during the summer. 

Finally, we intend to continue managing the Utah Science Olympiad program. The Center took over 
management of the program in 2011, when it lost its previous sponsor and moved it to the University of 
Utah. The 2016 competition hosted approximately 600 middle and high school students from 63 schools 
across the state. The two gold medalists in the Materials Science event were each offered a summer 
internship in the University of Utah Nanofab, co-sponsored by the Center.  
Undergraduate Education Overview: Our main focus for undergraduate students will be in further 
increasing the visibility of our REU program and on placing current University of Utah undergraduate 
students into MRSEC research labs. Our REU program supports approximately 10 students each year. 
The program has become increasingly diverse with increased visibility. We have been successful in 
increasing the number of quality REU applications from 58 in our 3rd year to 102 in the 5th year through 
strategic recruitment (all from outside the University of Utah). Of the 102 total applicants, 38% were 
female and 33% URM. Twelve total offers were made (58% females, 25% URM), resulting in eight 
acceptances. Notably, a number of these students have applied and elected to pursue graduate studies 
at the University of Utah each year. We will work to encourage more REU students to continue their 
graduate studies here.  

We have supported a research program for female students in the College of Science called the 
ACCESS program. This program is available to freshmen women who are planning to major in STEM 
disciplines. In the current Center, we have funded and placed two to three ACCESS students into 
MRSEC labs each year. We propose to create a similar research program in the College of Engineering, 
funded at the same level as the ACCESS program in the College of Science, enabling new 
undergraduate research opportunities in MRSEC labs. 

Over the past several years, we have been involved in the REFUGES (Refugees Exploring the 
Foundations of Undergraduate Education in Science) program administered by the Center for Science 
and Math Education. We are in the process of expanding Center involvement with this program. With 
renewed funding, Utah MRSEC can coordinate faculty to lead workshops on a number of different 
science and engineering topics and organize and fund training sessions in the University of Utah 
NanoFab for the cohort. We intend to host at least four students per academic year in MRSEC research 
labs. 
Graduate Education Overview: We created a Student Advisory Committee (SAC) with the goal of 
ensuring that postdoctoral fellows and students have a formal voice in the operation and long-term 
success of the Center. The SAC has three members who are elected through an open election, in which 
all postdoctoral fellows, graduate students and undergraduate students are encouraged to vote. All three 
members are invited to all Executive Committee meetings and are asked for their input on all matters that 
come before the committee. Currently, the SAC consists of two graduate students and one 
undergraduate student. The SAC has been involved in a wide array of different programs, including: (1) 
running monthly student/post-doc meetings, which allows participants to discuss their research and bring 
in outside speakers who talk about topics important to them, such as professional development (2) getting 
student volunteers involved in Center-related outreach activities, such the Utah Science Olympiad, 
among others and (3) proposing and running their own activities, including a social event (Speed 
“Dating”), in which students and post-docs cycle through short one-on-one meetings with all participants 
and discuss their research and ideas for collaborations and an after-school program for high school girls 
(Young & WISE) that is run solely by the female graduate students in the Center. The SAC has also been 
charged with inviting high-profile scientists from the US and abroad to give seminars. The process of 
deciding whom they would like to invite has generated significant interest within the group. The SAC 
activities are funded based on their annual needs. They have expressed a strong interest in bringing in 
more guest speakers from industry, national labs and other institutions.  

Mentoring is a critically important part of the educational process. It can be used as a means for 
enhancing the professional development of postdoctoral fellows and graduate students by providing 
opportunities for them to mentor others. We propose to create a mentoring program where postdoctoral 
fellows will be asked to formally mentor small cohorts of graduate students and graduate students will be 



     16 

asked to formally mentor specific undergraduate and, potentially, high school students that are part of the 
high school research opportunity program. 
 
2. Diversity Strategic Plan 
The current Center has worked hard to improve diversity at all levels. Diversity statistics for this last year 
are given in the “Broader Impacts within the Accomplishments of Recent Funding” section. At the faculty 
level, we improved diversity by hiring three new faculty members (Berardi Sensale Rodriguez, Heayoung 
Yoon and Luisa Whittaker Brooks) through positions that were given to the Center. All three faculty 
members are part of the “Dirac Materials beyond Graphene” IRG. At the postdoctoral fellow and graduate 
student level, we improved diversity through ongoing discussions with faculty about the need for greater 
diversity. At the undergraduate level, we improved diversity through greater visibility of our REU program 
at institutions with higher percentages of underrepresented minority students. As demonstrated from last 
year’s diversity statistics, we have made encouraging gains in attracting women to join the Center, 
although significant room for improvement still exists. Far greater attention needs to be given to increase 
participation of under-represented minorities at all levels.  

The MRSEC diversity plan for the next six years will work to address these issues. We look forward to 
receiving several additional faculty positions that will be dedicated to the Center and will be used to 
further enhance diversity. At the postdoctoral fellow level, we will actively recruit at major materials-related 
conferences as a means for attracting motivated graduates students to consider the University of Utah as 
a step in their career plans. For graduate students, MRSEC does not make admissions decisions directly. 
Therefore, we will focus on using the REU program to encourage undergraduate students to continue 
their graduate studies here. At the undergraduate level, we have the potential to have the largest impact. 
To expand opportunities for both college attendance and STEM majors to these diverse populations, we 
propose to establish programs in geographical areas where both the students and their parents can learn 
about opportunities for higher education. First-generation students face cultural barriers and many 
parents do not know how to help. Often, they are unaware of opportunities for both attendance and 
funding and students may have to leave their communities for the time they are in college. To mitigate 
these barriers, the focus of our outreach will not only emphasize STEM majors, but also provide 
information to families, so they will know how to help their children. This will be done through many of the 
programs listed in both the community and K-12 outreach sections.  
 
3. Collaborations with Industry, National Laboratories and Other Sectors 
Industry  
• L-3 Communications, Salt Lake City, UT – Expertise in microwave communications systems with 

strong interest in developing THz communications 
• Lumos Imaging, San Diego, CA – Start-up founded by MRSEC investigator Rajesh Menon that is 

commercializing computational image sensors for mobile multi-spectral imaging using metamaterials. 
• Materials and Systems Research, Inc., Salt Lake City, UT – Expertise in high temperature materials  
• Revalesio, Inc., Tacoma, WA – Collaboration to study the nucleation and stability of electrochemically 

generated nanobubbles 
• Simpetus Inc., San Francisco, CA – Expertise in cloud computing for electromagnetic simulations 
 
National Laboratories 
• Army Research Laboratory – Collaboration on multi-scale modeling studies 
• Center for Nanoscale Integrated Technologies (CINT), Albuquerque, NM – Collaboration to study 

local carrier dynamics in nanowires 
• National Institute for Standards and Technology, Gaithersburg, MD – Collaborations in device 

fabrication, analysis of localized optoelectronic properties of materials and pump-probe spectroscopy 
 
International Collaborations 
• Tata Institute for Fundamental Research, India – Sushil Majumdar and S. Prabhu 
• Technion, Israel – Boris Shapiro 
• Tsinghua University, China – Qikun Xue 
• Shanghai Jiaotong University, China – Jinfeng Jia 
• University of Tokyo, Japan – Hiroshi Nishihara 



     17 

• University of Twente, Netherlands – Detlef Lohse (student visiting University of Utah for 6 months) 
 
4. Leadership, Administration and Management of the Center 
Ajay Nahata (ECE) will be the MRSEC Director with overall responsibility for leadership, administration 
and management of the Center. He will seek counsel from President David Pershing, Provost Ruth 
Watkins, Vice-President for Research Thomas Parks and Associate Vice President for Research Cynthia 
Furse on all aspects of the Center, particularly the broader vision and implementation of the Center 
objectives at the institutional level. The university administration has been extraordinarily supportive of the 

Center, as was highlighted in the NSF 
fourth year review.  

The Executive Committee will consist 
of the Director, three IRG leaders – Ken 
Golden (Math), Feng Liu (MSE) and 
Shelley Minteer (MSE & Chemistry) – the 
Director of Education, Outreach & 
Diversity (EO&D), Jeff Bates (MSE), a 
rotating MSREC faculty member with a 
two-year appointment and the chair of the 
Student Advisory Council. The Committee 
will have authority over all matters related 
to the operation of the Center. However, 
coordination of research efforts at the IRG 
level will primarily be the responsibility of 
the individual IRG leaders. 

Alice Bishop will continue as the Administrative Officer for the MRSEC and oversee administrative 
and financial aspects of its operation. Jeff Bates will continue to work with Chelsey Short to coordinate the 
Education and Outreach effort. The proposed Center expects to utilize research equipment from across 
campus, including the significant facilities purchased by the current Center. Ian Harvey, the Associate 
Director of the University of Utah Nanofab, will continue as the Director of Shared Facilities. 

We expect to have four committees that report directly to the Executive Committee: (1) the Scientific 
Advisory Committee, whose charge is to determine future research directions for the Center and oversee 
the MRSEC seed program, (2) the Faculty Search Committee, whose charge is to conduct searches for 
faculty positions given to the Center, (3) the Student Advisory Committee, which provides a formal voice 
for postdoctoral fellows and students in the Center and (4) the Industrial Outreach Committee, whose 
charge is to seek collaborative research opportunities, as well as help MRSEC participants look for 
commercialization opportunities for the research developed in the Center. All four committees have 
played an important role in the current Center. Shared governance is important to the success of such an 
endeavor. Therefore, members of the Executive Committee will not serve as chairs of these committees. 
Based on needs of the MRSEC, other committees will be created if necessary. 

Each of the IRGs will hold regular monthly meetings for all participants to discuss research, exchange 
ideas and look for collaboration opportunities. A Center-wide meeting will be held every three months to 
discuss issues relevant to all MRSEC participants and to ensure transparency in all processes. We intend 
to convene a new External Advisory Board (EAB). The EAB will meet annually to critically assess the 
MRSEC objectives, research productivity and progress towards educational, scholarship and outreach 
goals, as well as the management of the Center. Their recommendations will be critically assessed and 
implemented. 

An important aspect of MRSEC operation is the seed program. The Scientific Advisory Committee will 
oversee the seed announcement, review and selection process. We propose to follow the same general 
process used in the current Center. Specifically, we will fund at least three individual seed projects per 
year for the first three years, with each project receiving approximately $33k in direct funds for one year. 
Junior faculty and those from underrepresented groups (women and URMs) will be especially 
encouraged to apply. In years 4-6, we will gradually shift towards encouraging group proposals, where 
each project can receive up to $50k in direct funds for one year, with a goal of creating teams that can 
develop into new IRGs. All funded programs will be eligible to be competitively renewed. Proposals will be 
judged on a number of factors, including potential for high impact (high risk, high reward), novelty of 
research and potential for external funding.  
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