
Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )



Analytic continuation method for bounding complex 
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Exploit analytic properties of 

complex h-plane
analytic off negative
         real axis

: UHP UHP



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/

complex s-plane

0 1



Stieltjes integral representation

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separation of geometry         from parameters

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

parameters



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin
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(a) young healthy trabecular bone (b) old osteoporotic trabecular bone

bone volume fraction = 0.54
porosity = 0.46

bone volume fraction = 0.24
porosity = 0.76
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!

reconstruction of spectral 
  measures from complex 
         permittivity data

using regularized 
inversion scheme

+

EM monitoring 
of osteoporosis

    loss of bone 
    connectivity
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       reconstruction of spectral measures 
from simulated complex permittivity data

Golden, Murphy, Cherkaev,  J. Biomech.  2011

regularized inversion scheme



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  χΓχ    becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of χΓχ
     with inner product weights     α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)



Spectral measures of

Resolvent representation of electric �eld

Integral representation Series representation

Τ Τ

Integro-di�erential projection operator

Point-wise indicator function

Projection matrix

Diagonal projection matrix

Series representation of electric �eld

Murphy, Hohenegger, Cherkaev, Golden
                Comm. Math. Sci. 2015

Continuum composite Discrete composite



p = 0.05 p = 0.2488p = 0.17

Murphy and Golden, J. Math. Phys. (2012)

Spectral Measures for Random Resistor Networks
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spectral gaps collapse at the percolation transitions
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pc = 0.5

pc ≈ 0.2488



Spectral Measures for Sea Ice Structures:  Brine Inclusions

0        0.2       0.4        0.6       0.8         1

2.5

1.5

0.5

0 0        0.2       0.4        0.6       0.8         1 0        0.2       0.4        0.6       0.8         1

φ=0.505 φ=0.698φ=0.120

N. B. Murphy, C. Hohenegger, C. S. Sampson, D. K. Perovich, H. Eicken, E. Cherkaev, B. Alali, and K. M. Golden

0        0.2       0.4        0.6       0.8         1 0        0.2       0.4        0.6       0.8         1 0        0.2       0.4        0.6       0.8         1

 

0.3

0.2

0.1

0

 

 

 

 

 

 

 

 

2.5

1.5

0.5

0

2.5

1.5

0.5

0

2.5

1.5

0.5

0

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4



0     0.2   0.4    0.6    0.8     1

p=0.27 p=0.57p=0.09
0.3

0.2

0.1

0 0     0.2   0.4    0.6    0.8     1

1.5

1

0.5

0 0     0.2   0.4    0.6    0.8     1

3

2

1

0

0.6

0.4

0.2

0

0.8

1

GOE
Poisson

p=0.27
GOE
Poisson

p=0.09
GOE
Poisson

p=0.57

0         1          2         3         4

0.6

0.4

0.2

0

0.8

1

0         1          2         3         4

0.6

0.4

0.2

0

0.8

1

0         1          2         3         4

spectral
measures

eigenvalue
spacing
distributions

TRANSITION

Spectral computations for Arctic melt ponds

uncorrelated level repulsion

Ben Murphy
Elena Cherkaev
Ken Golden
2016



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

GOE
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Poisson
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Short range correlations Long range correlations measure the sti�ness of the spectrum

RMT has since been used to characterize disorder driven transitions in mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions of such a physical system may be characterized by transitions in universal eigenvalue statistics.

GOE
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GOE
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eigenvalue repulsion



Random matrix theory has been successful in describing 
universal features of many disordered systems

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

Spacing distributions of energy levels for quantum chaos

GUE

chaoticnon-chaotic



  Connectedness
Phase Transition

Poisson
Spectra

Picket
Fence

   GOE
Spectra

Completely
 Correlated

    Highly
Correlated

Uncorrelated

        LEVEL
REPULSION

Transition in Eigenvalue Correlations

Eigenvalue Spacing Distribution Eigenvalue Spacing Distribution

Wigner surmise
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Spectral computations for Arctic sea ice pack
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Spectral statistics for 2D random resistor network
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Spectral Measures

Log Electric Field 

p=0.3
p=0.7 p=0.5

p=0.1
p=0.9

Murphy et al.  Comm. Math. Sci., 2015

Murphy, Cherkaev, Golden, 2016

Murphy and Golden, J. Math. Phys., 2012
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Eigenvector Localization and Random Matrix Theory

Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”
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Anderson localization in quantum systems

low disorder

high disorder

metal / insulator transition at critical disorder

potential  V(x)

GOE

wavefunctions

Poisson
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energy spacings

classical 
analogue
of Anderson
localization

Murphy
Cherkaev 
Golden 2016

Anderson, 1958
Shklovshii et al, 1993
Evangelou, 1992

transition to localized states
mobility edges



Localization properties of eigenvectors
in random resistor networks
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inhomogeneous 
medium

inhomogeneous 
medium

homogeneous 
medium

Homogenization for composite materials
e�ective

conductivity

Two-component 
composites

homogeneous 
medium

e�ective
conductivity

Polycrystalline 
media

Local conductivity

Homogenize

Homogenize

Conductivity of crystal directions

Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium



Mathematical formulation for composite materials
Two-component material

Polycrystalline material

Discrete composite

Discrete composite

Continuum composite

Continuum composite

Local conductivity

Local conductivity

Random Rotation Matrix



The e�ective conductivity is de�ned in terms of the system energy 

This de�nes a homogeneous medium which behaves macroscopically and energetically 
just like the given inhomogeneous medium. 

0 1

- plane
spectral measure of the 
self-adjoint operator
mass = average orientation 

higher moments depend 
on n -point correlations

Resolvent formula

Projection onto curl-free �elds:

Contrast parameter:

Integral representations for bulk transport coe�cients

Gully et al., Proc. Roy. Soc. A 2015
Murphy, Cherkaev, Golden 2016
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



Spectral measures for uniaxial polycrystalline media
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Random crystallographic orientations angles θ measured from 
        the vertical direction, uniformly distributed θ~U(-δπ/2,δπ/2)

Murphy, Cherkaev, Golden, 2016
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Ice in the Greenland Sea (77.5° N, 9° W), NASA, 2014

O� the northeastern coast of Greenland, NASA, 2006

Sea of Okhotsk, NASA, 2009

Advection-di�usion plays a key role in 
the transport of pack ice by atmospheric 
and oceanic �ows.



Masters, 1989

advection enhanced di�usion

e�ective di�usivity

tracers, buoys di�using in ocean eddies
  di�usion of pollutants in atmosphere
        salt and heat transport in ocean

homogenize

e�ective di�usivity

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

Stieltjes integral for         with spectral measure
Avellaneda and Majda, PRL 89, CMP 91

analytic function
of Peclet number



spectral measure of the 
self-adjoint operator

Resolvent formula

Projection onto curl-free �elds:

Steady �ow:        Murphy, Cherkaev, Zhu, Xin, Golden 2016
Dynamic �ow:    Murphy, Cherkaev, Xin, Zhu, Golden 2016

Steady �ow Dynamic �ow



Spectral measures and eigenvalue spacings for cat’s eye �ow
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Thermal Conduction Enhanced with Convection

• Temperature on top surface driven by atmosphere conditions

• Bottom surface in contact with sea water

• Temperature field T governed by a nonlinear
convection-diffusion equation

ρc

(
∂T

∂t
+ u · ∇T

)
= ∇ · (κ(T )∇T )

with a Darcy velocity u

• Parameters:
• ρ = bulk density
• c = specific heat
• κ(T ) = temperature dependent thermal conductivity
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data
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Avellaneda-Majda bound

convection enhanced thermal conductivity of sea ice for shear �ow

Wang, Zhu, Golden, 2016

numerical solution of advection di�usion equation, rigorous bounds
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Are sea ice algae and bacteria proxies 
for life on extraterrestrial, icy bodies?

(Thomas, Dieckmann,  Science, 2002)

EUROPA - believed covered by deep
    briny ocean, with thick icy crust

What about �uid �ow, thermal transport,
  and convective processes in the porous
   microstructure of “sea ice” on Europa?



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK
2014    Arctic           Chukchi Sea

Arctic and Antarctic �eld experiments



measuring 
�uid permeability 
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2016
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SIPEX II
Percolation Theory

SIPEX II  vertical permeability data

data above threshold

    higher threshold in granular ice predicted with 
percolation theory by Golden, et al. (Science, 1998)

not con�rmed experimentally until SIPEX I (2007) and SIPEX II (2012)

same universal
critical exponent
as lattice models
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Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2016

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

cross-borehole
  tomography

cross-borehole tomography - electrical classi�cation of sea ice layers 



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



S. Lovejoy, Science, 1982 

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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                    small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation

results on percolation threshold, cluster behavior

Anthony Cheng (Hillcrest HS), Bacim Alali, Ken Golden



P. Nicklen

C. Lydersen P. McGowan

High connectivity of meltpond networks allows vast expanses of meltwater 
to drain down seal holes, thaw holes, and into leads in the ice

NPEO

meted.ucar.edu



drainage vortex

melt pond evolution depends also on large-scale “pores” in ice cover  
photos courtesy of C. Polashenski and D. Perovich



Network modeling of Arctic melt ponds

develop algorithms to map
images of melt ponds onto

edge conductance ~ neck width

Barjatia, Tasdizen, Song, Sampson, Golden
  Cold Regions Science and Tecnology, 2016 

random resistor networks

graphs of nodes and edges
   with edge conductances

           compute e�ective 
horizontal �uid conductivity



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              (Isichenko, Rev. Mod. Phys., 1992)

Brady Bowen, Court Strong, Ken Golden, 2016

random Fourier series representation of surface topography



simple stochastic growth model of melt pond evolution

Rebecca Nickerson (West HS, Salt Lake City) and Ken Golden 

a square is more likely to melt 
if its neighbors have melted
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“melt ponds” are clusters of magnetic spins that align with the applied �eld

Ma, Sudakov, Strong, Golden 2016

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice         (spin down)

water     (spin up)

pond coveragemagnetization
(M + 1)

2



Melt Pond Ising Model
Minimize an Ising Hamiltonian  
random magnetic �eld represents the initial ice topography
interaction term represents horizontal heat transfer

Ice-albedo feedback incorporated by taking coupling constant
in interaction term to depend on the pond coverage
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    fractal
dimension

predicted fractal transition  70 m    vs.   86 m    observed2 2

predicted pond size distribution exponent  1.75  
                                                                             vs.   1.75   observed



Conclusions

1. Summer Arctic sea ice is melting rapidly.

2. Low order (toy) models help us understand tipping point phenomena.

3. Fluid �ow through sea ice mediates many processes of importance to 
     understanding climate change and the response of polar ecosystems.

4. Homogenization and statistical physics help link scales and provide 
     rigorous methods for �nding e�ective behavior, and advance how 
     sea ice is represented in climate models.

5. Critical behavior (in many forms) is inherent in the climate system.

6. Field experiments are essential to developing relevant mathematics. 

7. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 
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