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SEA  ICE  covers 7 - 10% of earth's ocean surface
boundary between ocean and atmosphere

indicator and agent of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  



NASA

NASA

polar ice caps critical to global climate 
 in reflecting incoming solar radiation

white snow and ice
              reflect

dark water and land
              absorb
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September 2012   --   3.4 million square kilometers
September 1980   --   7.8 million square kilometers

NORWAY

GREENLAND
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Change in Arctic Sea Ice Extent

Perovich
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ice-albedo
feedback



Stroeve et al., GRL, 2007

2007

September ice extent
Climate Model runs
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Ensemble SD

Arctic sea ice decline  -  faster than predicted by climate models

IPCC AR4 
  Models

Intergovernmental
  Panel on Climate 
    Change (IPCC)

Fourth Assessment 
         AR4, 2007



represent sea ice more rigorously in climate models

challenge

account for key processes

such as melt pond evolution

... and other sub-grid scale structures and processes 

linkage of scales

Impact of melt ponds on Arctic sea ice 
        simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

                 For simulations with ponds 
September ice volume is nearly 40% lower.



brine inclusions polycrystals
mm cm

brine channels

cm
horizontal vertical

dm m

pancake ice
dm m

0.1  millimeter

1 meter

             sea ice is a multiscale composite 
    displaying structure over 10 orders of magnitude
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1. Fluid �ow through sea ice, percolation
     
2. Homogenization for two phase composites
     remote sensing, inversion, spectral measures

3. Stieltjes representations for advection di�usion, 
     polycrystals, ocean waves in the marginal ice zone

4. Herglotz functions and the Ising model

5. Multiphase media and the polydisc   

6. Arctic and Antarctic �eld experiments    

What is this talk about?
Using the mathematics of composite materials and statistical physics to study 
  sea ice structures and processes ... to improve projections of climate change.

   A tour of Herglotz functions and how they arise 
in the study of composites, and sea ice in particular 



Global Climate Models
Climate models are systems of 
partial di�erential equations (PDE) 
derived from the basic laws of 
physics, chemistry, and �uid motion. 

NOAA

Randall et al., 2002

incorporating sub - grid scale processes

They describe the state of the ocean, ice, 
atmosphere, land, and their interactions. 

The equations are solved on 3-dimensional grids 
of the air-ice-ocean-land system (with horizontal  
grid size ~ 50 km), using very powerful computers.

key challenge :

linkage of scales



2.  Conservation of momentum, stress vs. strain relation  (Hibler 1979)

3.  Heat equation of sea ice and snow 

dynamics
+

thermodynamics

dynamics

thermodynamics

nonlinear PDE incorporating ice velocity �eld 
                                                    ice growth and melting 
                                             mechanical redistribution 
                                                       - ridging and opening

F = ma   for sea ice

    What are the key ingredients -- or governing equations
that need to be solved on grids using powerful computers? 

sea ice components of GCM’s

(Thorndike et al. 1975)

Haas 2003

1. Ice thickness distribution                        evolution equation

+    balance of radiative and 
thermal �uxes on interfaces 

(Maykut and Untersteiner 1971)



sea  ice  microphysics

�uid transport



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



sea  ice  ecosystem

                   sea ice algae
support life in the polar oceans



�uid permeability k of a porous medium

how much water
gets through the
sample per unit
time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION



pore space

period cell

grains

of volume fraction  p 

domain =

 Stokes equations for fluid velocity pressure force

microstructure

[ Keller '80, Tartar '80, Sanchez-Palencia '80, J. L. Lions '81, Allaire '89, '91,'97]

HOMOGENIZE

k

via two-scale expansion

MACROSCOPIC EQUATIONS  

Darcy's law k     effective fluid
    permeability 
    tensor

(x) =
(f = 0)

,

Ω



Darcy’s Law
pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T

0.05 0.10 0.15 0.20 0.25

brine volume fraction   φ  

φc

2 x 10
-10

3 x 10
-10

4 x 10
-10

1 x 10
-10

vertical fluid permeability  k  (m   )2

0

on - o�  switch  
for �uid �ow

o� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle                         Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



Why is the rule of �ves true?



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster



10 pp

1

infinite cluster densitycorrelation length

8P (p)(p) ~ ~ξ |          | p − pc
− ν β

characteristic scale 
 of connectedness

p − pc

   probability the origin
belongs to in�nte cluster

(          )
c

8P

order parameters in percolation theory

10 ppc

ξ

10 ppc

effective conductivity
 or fluid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

1 < t < 2  (for idealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

geometry transport



R

R

m

p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



-15 C,  = 0.033° -3 C,  = 0.143° -6 C,  = 0.075°

8 x 8 x 2  mm

brine connectivity (over cm scale)

X-ray tomography confirms percolation threshold
3-D images
pores and throats

3-D graph 
nodes and edges

analyze graph connectivity as function of temperature and sample size

φφ φ

use �nite size scaling techniques to con�rm rule of �ves

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009

order parameter data from a natural material 



k ( ) = k 2
0

 k   = 3 x 100
-8

m2

lattice and continuum percolation theories yield: 
 critical
exponent

exponent is UNIVERSAL lattice value                  

critical path analysis -- developed for electronic hopping
conduction -- yields scaling factor  k 0

sedimentary rocks like sandstones also exhibit universality

t

~~t 2.0

φ φ − 0.05(               )

-2.2 -2 -1.8 -1.6 -1.4 -1.2 -1
-15

-14

-13

-12

-11

-10

-9

-8

-7

x  =  log(     )

y = log k

theory :

statistical best fit:

y = 2 x - 7.5

y = 2.07 x - 7.45

φ − 0.05



σ σ σ1 2

HOMOGENIZATION
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

     e�ective
conductivity

widespread use of composites in late 20th century due in large part 
to advances in mathematically predicting their e�ective properties 

composite
  material



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of brine and ice

What are the e�ective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?

HOMOGENIZATION



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )



ocean swells propagating through a vast �eld of pancake ice 

HOMOGENIZATION: long wave sees an e�ective medium, not individual �oes



Analytic continuation method for bounding complex 
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Exploit analytic properties of 

complex h-plane
analytic off negative
         real axis

: UHP UHP



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)
                                                                                                           Theory of Composites, Milton (2002)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/

complex s-plane

0 1



Stieltjes integral representation

complex s-plane

0 1

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

/

separation of geometry         from parameters

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase



higher order bounds -- iterated fractional linear transformations

using the Stieltjes integral representation to obtain bounds

“linear programming”

linear functional

=  the set of positive Borel measures on [0,1], compact, convex

extremal values (bounds) are images of extreme points of 

Dirac point measures

Golden and Papanicolaou, CMP 1983

Baker 1969
Milton 1981
Bergman 1982
Felderhof 1984
Golden 1986



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



HUMAN BONE SEA ICE

Golden, Murphy, Cherkaev, J.  Biomechanics  2011

the math doesn’t care if it’s sea ice or bone!

      apply spectral measure analysis of brine connectivity and 
spectral inversion to electromagnetic monitoring osteoporosis
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(a) young healthy trabecular bone (b) old osteoporotic trabecular bone

bone volume fraction = 0.54
porosity = 0.46

bone volume fraction = 0.24
porosity = 0.76

λ

µ(λ) µ(λ)

(c) spectral measure - young (d) spectral measure - old
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!

reconstruction of spectral 
  measures from complex 
         permittivity data

using regularized 
inversion scheme

+

EM monitoring 
of osteoporosis

    loss of bone 
    connectivity



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

µ(λ)

young bone

old bone

       reconstruction of spectral measures 
from simulated complex permittivity data

Golden, Murphy, Cherkaev,  J. Biomech.  2011

regularized inversion scheme



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  χΓχ    becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of χΓχ
     with inner product weights     α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures



Spectral measures of

Resolvent representation of electric �eld

Integral representation Series representation

Τ Τ

Integro-di�erential projection operator

Point-wise indicator function

Projection matrix

Diagonal projection matrix

Series representation of electric �eld

Murphy, Hohenegger, Cherkaev, Golden
                Comm. Math. Sci. 2015

Continuum composite Discrete composite



p = 0.05 p = 0.2488p = 0.17

Murphy and Golden, J. Math. Phys. (2012)

Spectral Measures for Random Resistor Networks

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

0.5

0.2

0.4

0.6

0.8

1

0 0 0.2 0.4 0.6 0.8 1

Theory

1

2

3

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

0.5

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p = 0.1 p = 0.5p = 0.3

spectral gaps collapse at the percolation transitions

2-D

3-D

pc = 0.5

pc ≈ 0.2488



Spectral Measures for Sea Ice Structures:  Brine Inclusions
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TRANSITION

Spectral computations for Arctic melt ponds

uncorrelated level repulsion

Ben Murphy
Elena Cherkaev 
Ken Golden
2017

eigenvalue statistics 
for transport tend 
toward the 
UNIVERSAL 
Wigner-Dyson 
distribution 
as the “conducting” 
phase percolates



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions  ~ transitions in universal eigenvalue statistics.

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE



  Connectedness
Phase Transition

Poisson
Spectra

Picket
Fence

   GOE
Spectra

Completely
 Correlated

    Highly
Correlated

Uncorrelated

        LEVEL
REPULSION

Transition in Eigenvalue Correlations

Eigenvalue Spacing Distribution Eigenvalue Spacing Distribution

Wigner surmise
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Spectral computations for Arctic sea ice pack
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Spectral statistics for 2D random resistor network
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Spectral Measures

Log Electric Field 

p=0.3
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Murphy et al.  Comm. Math. Sci., 2015

Murphy, Cherkaev, Golden, 2016

Murphy and Golden, J. Math. Phys., 2012
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Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localization



Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”

PHYSICAL REVIEW B 90, 060205(R) (2014)

eigenvector localization and mobility edges



Localization properties of eigenvectors
in random resistor networks
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Murphy, Cherkaev, Golden, 2017



inhomogeneous 
medium

inhomogeneous 
medium

homogeneous 
medium

Homogenization for composite materials
e�ective

conductivity

Two-component 
composites

homogeneous 
medium

e�ective
conductivity

Polycrystalline 
media

Local conductivity

Homogenize

Homogenize

Conductivity of crystal directions

Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium



Mathematical formulation for composite materials
Two-component material

Polycrystalline material

Discrete composite

Discrete composite

Continuum composite

Continuum composite

Local conductivity

Local conductivity

Random Rotation Matrix



The e�ective conductivity is de�ned in terms of the system energy 

This de�nes a homogeneous medium which behaves macroscopically and energetically 
just like the given inhomogeneous medium. 

0 1

- plane
spectral measure of the 
self-adjoint operator
mass = average orientation 

higher moments depend 
on n -point correlations

Resolvent formula

Projection onto curl-free �elds:

Contrast parameter:

Integral representations for bulk transport coe�cients

Gully et al., Proc. Roy. Soc. A 2015
Murphy, Cherkaev, Golden 2016
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



Spectral measures for uniaxial polycrystalline media
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Random crystallographic orientations angles θ measured from 
        the vertical direction, uniformly distributed θ~U(-δπ/2,δπ/2)

Murphy, Cherkaev, Golden, 2017



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
tracers, buoys di�using in ocean eddies
  di�usion of pollutants in atmosphere
        salt and heat transport in ocean
heat transport in sea ice with convection

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, 2017



Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

= Peclet number
/

composites advection di�usion

Golden and Papanicolaou, CMP 1983

computations of spectral measures and 
e�ective di�usivity for model �ows          

rigorous bounds and computations 
on convection enhanced thermal 
conductivity of sea ice
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Liu, Hardenbrook, Kraitzman, Zhu, Murphy, Cherkaev, Golden, 2017



spectral measure of the 
self-adjoint operator

Resolvent formula

Projection onto curl-free �elds:

Steady flow:        Murphy, Cherkaev, Zhu, Xin, Golden 2017 
Dynamic f low:    Murphy, Cherkaev, Xin, Zhu, Golden 2017

Steady �ow Dynamic �ow



Spectral measures and eigenvalue spacings for cat’s eye �ow

 

ADE
GOE
GUE
Poisson

ADE
GOE
GUE
Poisson

ADE
GOE
GUE
Poisson

ADE
GOE
GUE
Poisson

H(x,y) = sin(x) sin(y) + A cos(x) cos(y),       A~U(-p,p)
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Thermal Conduction Enhanced with Convection

• Temperature on top surface driven by atmosphere conditions

• Bottom surface in contact with sea water

• Temperature field T governed by a nonlinear
convection-diffusion equation

ρc

(
∂T

∂t
+ u · ∇T

)
= ∇ · (κ(T )∇T )

with a Darcy velocity u

• Parameters:
• ρ = bulk density
• c = specific heat
• κ(T ) = temperature dependent thermal conductivity
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bounds on the e�ective thermal conductivity of 
          sea ice with convection (BC �ow model)

Hardenbrook, Kraitzman, Zhu, Murphy, Cherkaev, Golden



Storm-induced sea-ice breakup and the implications for ice extent
Kohout et al., Nature 2014

ice extent compared with signi�cant wave height

large waves break sea ice much farther from the ice edge than would be 
predicted by the commonly assumed exponential decay

during three large-wave events, signi�cant wave heights did not decay 
exponentially, enabling large waves to persist deep into the pack ice.

Waves have strong in�uence on both the �oe size distribution and ice extent.

growth season

melt season



wave propagation in the marginal ice zone 
Stieltjes integral representations 
 e�ective viscoelastic parameter;
     bounds, dispersion relations

Sampson, Cherkaev, Meylan, Golden



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

H

nearest neighbor Ising Hamiltonian

canonical partition function

free energy per site

applied 
magnetic
�eld



free energy 

                                     magnetization 
homogenized parameter like e�ective conductivity

Tc

M

T

            Curie point 
critical temperature

    magnetic 
susceptibility



1952

partition function order polynomial

with remarkable property:

Then



Stieltjes integral representation for magnetization

Herglotz

Baker  PRL 1968

and scaling relations for critical exponents 

supported in 

Baker’s inequalities

of higher derivatives of f



               via analogous Herglotz structure for transport in composites,
same critical analysis and scaling relations hold near percolation threshold  

Golden, J. Math. Phys. 1995 
                Phys Rev. Lett. 1997

(Chuck Newman)

Herglotz

e�ective conductivity 
of two phase composite
- lattice or continuum

spectral gap

lattices and continua obey same
scaling relations as in stat mech

Baker’s inequalities for transport



Ising model transport in composites

partition function

free energy

order parameter

Gri�ths, Hurst, Sherman JMP 1970

G.H.S. inequality

Golden, JMP 1995; PRL 1997



Lusilier

Multiphase Media

∗

2

1



Bounding the e�ective properties 
         of multiphase composites

polydisc representation formula 
(Herglotz function in several variables)

trajectory method (based on two phase, one variable theory)

�eld equation recursion method

Bergman, Phys. Rep. 1978, 1982, ...
Milton, 1981, ...

Golden and Papanicolaou, J. Stat. Phys. 1985
Golden, J. Mech. Phys. Solids 1986                                  

Milton, Comm. Math. Phys. (I and II) 1987

e�ective elasticity tensor

Ou, Complex Vars. Elliptic. Eqs. 2011

Milton, Theory of Composites, 2002 



polydisc representation formula

satisfying a Fourier condition (excludes point measures)

SUNSPOT THEOREM: 
Koranyi and Pukanszky, Am. Math. Soc. Trans. 1963
Vladimirov and Drozhzhinov, Mat. Zametki 1974
Golden and Papanicolaou, J. Stat. Phys. 1985



T 2

2π

2π

a

δa x dt 2

conjectured extremals yield bounds

set of extremal measures = ??



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK
2014    Arctic           Chukchi Sea

Arctic and Antarctic �eld experiments



measuring 
�uid permeability 
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2016



tracers flowing through inverted sea ice blocks 
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φbrine volume fraction φbrine volume fraction

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

cross-borehole
  tomography

cross-borehole tomography - electrical classification of sea ice layers 
Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2017



Conclusions

1. Summer Arctic sea ice is melting rapidly.

2. Fluid �ow through sea ice mediates many processes of importance to 
     understanding climate change and the response of polar ecosystems.

3. Homogenization and statistical physics help link scales and provide 
     rigorous methods for �nding e�ective behavior, and advance how 
     sea ice is represented in climate models.

4. Herglotz functions and Stieltjes integrals provide powerful methods
     of homogenization for sea ice structures and processes. 

5. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 
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