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Can studying sea ice and its role in climate help advance variational analysis?
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sea ice is a multiscale composite



multiscale structure of sea ice
Polycrystals

Brine Inclusions 

Arctic Melt Ponds Pack Ice
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Linking Scales

mm
scale
brine
inclusions
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How do scales
interact in the
sea ice system?



Addressing the problem of linking scales in Earth’s sea ice system  
                     MULTISCALE HOMOGENIZATION for SEA ICE
     drives advances in theory of Stieltjes integrals for transport.

A tour of variational problems in the mathematical 
analysis of sea ice and its role in the climate system.

Find unexpected Anderson transition in composites along the way!

What is this talk about?

1. Fluid �ow through sea ice, percolation
     
2. Analytic continuation for composites; BOUNDS
     remote sensing, inversion, spectral measures

3. Stieltjes representations for advection di�usion, 
     polycrystals, ocean waves in the sea ice pack

4. Arctic melt ponds, fractals, Ising model, Stieltjes integrals      

random matrix theory and Anderson transitions



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



pore space

period cell

grains

of volume fraction  p

domain =

 Stokes equations for fluid velocity pressure force
microstructure

[ Keller '80, Tartar '80, Sanchez-Palencia '80, J. L. Lions '81, Allaire '89, '91,'97]

HOMOGENIZE

k

via two-scale expansion

MACROSCOPIC EQUATIONS  

Darcy's law k     e�ective �uid
    permeability 
    tensor

(x) =
(f = 0)

,

Ω

�uid permeability of a porous medium
how much �uid gets through the sample per unit time?



PIPE BOUNDS on vertical �uid permeability k

vertical pipes 

 maximize k
�uid analog of arithmetic mean upper bound for 
e�ective conductivity of composites (Wiener 1912)

with appropriate radii

lab data  (20 points)
field data  (37 points)
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Golden, Heaton, Eicken, Lytle, Mech. Materials 2006
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007

inclusion cross sectional areas A lognormally distributed

   optimal coated 
cylinder geometry

brine

ice

get bounds through variational analyis of 
trapping constant  γ for di�usion process 
in pore space with absorbing BC

for any ergodic porous medium
(Torquato 2002, 2004)

ln(A) normally distributed, mean µ (increases with Τ) variance σ  (Gow and Perovich 96)2

Torquato and Pham, PRL 2004

Golden et al., Geophys. Res. Lett. 2007



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster



R

R

m

p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



10 pp

1

infinite cluster densitycorrelation length

8P (p)(p) ~ ~ξ |          | p − pc
− ν β

characteristic scale 
 of connectedness

p − pc

   probability the origin
belongs to in�nte cluster

(          )
c

8P

order parameters in percolation theory

10 ppc

ξ

10 ppc

effective conductivity
 or fluid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

1 < t < 2  (for idealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

geometry transport



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

hierarchical model
network model

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

agree closely
with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
Herglotz function



Analytic continuation method for bounding complex 
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Exploit analytic properties of 

complex h-plane
analytic off negative
         real axis

: UHP UHP



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)
                                                                                                           Theory of Composites, Milton (2002)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/

complex s-plane

0 1



Stieltjes integral representation

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 

links scales



higher order bounds -- iterated fractional linear transformations

using the Stieltjes integral representation to obtain bounds

“linear programming”

linear functional

=  the set of positive Borel measures on [0,1], compact, convex

extremal values (bounds) are images of extreme points of 

Dirac point measures

Golden and Papanicolaou, CMP 1983

Baker 1969
Milton 1981
Bergman 1982
Felderhof 1984
Golden 1986



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  χΓχ    becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of χΓχ
     with inner product weights     α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures



Surface Plasmon Resonances
collective oscillations of electrons on metal / dielectric interface 

Michael Faraday’s gold colloids - origins of nanoscience 1850s

suspension of
gold nanoparticles
absorbs green 
and blue light:

       WE SEE RED
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Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions  ~ transitions in universal eigenvalue statistics.

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE
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TRANSITION

Spectral computations for Arctic melt ponds

uncorrelated level repulsion

Ben Murphy
Elena Cherkaev 
Ken Golden
2017

eigenvalue statistics 
for transport tend 
toward the 
UNIVERSAL 
Wigner-Dyson 
distribution 
as the “conducting” 
phase percolates



0    0.2    0.4    0.6    0.8     1

φ=0.10 φ=0.45φ=0.06

0.3

0.2

0.1

0

0.4

0.5

0.6

0.6

0.4

0.2

0

0.8

1

0.6

0.4

0.2

0

0.8

1

3

2

1

0

4

Spectral computations for Arctic sea ice pack
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Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localizationhigh
disorder

low
disorder

SPR



Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”

PHYSICAL REVIEW B 90, 060205(R) (2014)

eigenvector localization and mobility edges



Localization properties of eigenvectors
in random resistor networks
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



Masters, 1989

advection enhanced di�usion

effective diffusivity
sea ice floes diffusing in ocean currents 
diffusion of pollutants in atmosphere  
salt and heat transport in ocean
heat transport in sea ice with convection

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

           effective diffusivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, 2018



[Murphy, Cherkaev, Zhu, Xin & Golden 2018]

[Murphy, Cherkaev, Xin, Zhu & Golden 2017]

κ∗ = κ

(
1 +

∫ ∞

−∞

dµ(τ)

κ2 + τ2

)
, F (κ

∫ ∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Diffusion

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

separation of material properties and �ow �eld
spectral measure calculations 
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RIGOROUS BOUNDS on convection - enhanced 
                    thermal conductivity of sea ice 

BC - �ow streamlines

H = B sinx - C siny     B = C

spectral 
masses

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Golden  2018

rigorous Pade bounds
from Stieltjes integral
+ analytical calculations
of moments of measure  
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Advection Enhanced Di�usion
in a Porous Medium

Kraitzman, Cherkaev, Golden, 2018



Spectral measures and eigenvalue spacings for cat’s eye �ow
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Storm-induced sea-ice breakup and the implications for ice extent
Kohout et al., Nature 2014

ice extent compared with signi�cant wave height

large waves break sea ice much farther from the ice edge than would be 
predicted by the commonly assumed exponential decay

during three large-wave events, signi�cant wave heights did not decay 
exponentially, enabling large waves to persist deep into the pack ice.

Waves have strong in�uence on both the �oe size distribution and ice extent.

growth season

melt season



Bottom

Ice

Ocean

Viscous �uid layer (Keller 1998)
E�ective Viscosity 

Two Layer Models and E�ective Parameters 

Viscoelastic �uid layer (Wang-Shen 2010)
E�ective Complex Viscosity

Viscoelastic thin beam (Mosig et al. 2015)
E�ective Complex Shear Modulus 

z=0

z=-H

z=h

Equations of 
motion:

Equations of 
motion

shear modulus pressure angular frequency velocity �eld

viscosity Poission ratio density gravity

Stieltjes integral representation 
for effective complex viscoelastic 
parameter; bounds

Sampson, Murphy, Cherkaev, Golden 2018 



wave propagation in the marginal ice zone 

             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2018

           quasistatic assumption
low frequency, long wavelength
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bounds on the e�ective complex viscoelasticity

Sampson, Murphy, Cherkaev, Golden 2018

complex elementary bounds
  (�xed area fraction of �oes)
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major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



Fr
ac

ta
l D

im
en

si
on

10 0 1 2 3 41010 10 10
5

10

Area  (m  )2

2

1

complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation
results on percolation threshold, correlation length, cluster behavior

Anthony Cheng (Hillcrest HS), Dylan Webb (Skyline HS), Court Strong, Ken Golden



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters de�ning random surface



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

H

nearest neighbor Ising Hamiltonian

canonical partition function

free energy per site

applied 
magnetic
�eld



free energy 

                                     magnetization 
homogenized parameter like e�ective conductivity

Tc

M

T

            Curie point 
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“melt ponds” are clusters of magnetic spins that align with the applied �eld

Ma, Sudakov, Strong, Golden 2018

Ising model for ferromagnets Ising model for melt ponds
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predictions of fractal transition, pond size exponent
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Ising model results

The lattice constant a must be small 
relative to the 10-20 m length scales 
prominent in sea ice and snow topography.
We set a=1 m as the length scale above 
which important spatially correlated 
�uctuations occur in the power spectrum
of snow topography.

Melt ponds −
metastable islands of like spins 
in our random �eld Ising model.

observed

model

pond size distribution 
               exponent

observed   -1.5
        (Perovich, et al 2002)

model          -1.58

Minimize Ising Hamiltonian energy

Random magnetic �eld represents 
snow topography; interaction term 
represents horizontal heat transfer.

order out of disorder



1952

partition function order polynomial

with remarkable property:

Then



Stieltjes integral representation for magnetization

Herglotz

Baker  PRL 1968

and scaling relations for critical exponents 

supported in 

Baker’s inequalities

of higher derivatives of f



               via analogous Herglotz structure for transport in composites,
same critical analysis and scaling relations hold near percolation threshold  

Golden, J. Math. Phys. 1995 
                Phys Rev. Lett. 1997

(Chuck Newman)

Herglotz

e�ective conductivity 
of two phase composite
- lattice or continuum

spectral gap

lattices and continua obey same
scaling relations as in stat mech

Baker’s inequalities for transport



Ising model transport in composites

partition function

free energy

order parameter

Gri�ths, Hurst, Sherman JMP 1970

G.H.S. inequality

Golden, JMP 1995; PRL 1997



no bloom bloom

        2011 massive
under-ice algal bloom

Arrigo et al., Science 2012

melt ponds act as

WINDOWS
  allowing light 
through sea ice

Have we crossed into a 
new ecological regime?
The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances, 2017

Horvat, Flocco, Rees Jones, Roach, Golden, 2018

The distribution of solar energy under 
ponded sea ice



C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

                 The Melt Pond Conundrum:  
How can ponds form on top of sea ice that is highly permeable?

2014  Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) 
aboard USCGC Healy

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res.  Oceans 2017



Conclusions

1.  Sea ice is a fascinating multiscale composite with structure
      similar to many other natural and man-made materials.    

2. Variational methods, Stieltjes integrals, bounds developed 
     for sea ice advance transport theory and variational analysis.  
      
3. Homogenization and statistical physics help link scales in sea ice 
      and composites; provide rigorous methods for �nding e�ective 
     behavior; advance sea ice representations in climate models. 

4. Sea ice modeling led to unexpected connections with 
     random matrix theory and Anderson transitions.

5. Our research will help to improve projections of climate change, 
     the fate of Earth’s sea ice packs, and the ecosystems they support. 
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