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sea ice is a multiscale composite 
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     brine
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  melt
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structured on many length scales - from tenths of mm’s to tens of km’s



What is this talk about?
 Using methods of statistical physics and composite materials to 
LINK SCALES in the sea ice system ... compute e�ective behavior.

1. Sea ice microphysics and �uid transport

2. EM transport, waves    

3. Fractals and Arctic melt ponds 

percolation theory

Stieltjes integrals, spectral measures 
random matrices, Anderson transitions

Take a tour of our sea ice methods relevant to optics and metamaterials
      �nd unexpected Anderson transition in composites along the way!

continuum percolation and the Ising model

HOMOGENIZATION



Linking Scales

mm
scale
brine
inclusions

Linking         Scales

meter
scale
snow
topography

km
scale
melt
ponds

km
scale
melt
ponds

basin scale -
grid scale
albedo

How do scales
interact in the
sea ice system?
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HOMOGENIZATION - Linking Scales in Composites
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 
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T. Maksym and T. Markus, 2008



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt
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p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster
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Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
Herglotz function



Stieltjes integral representation 
     for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
       from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 

links scales

Analytic Continuation Method
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  χΓχ    becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of χΓχ
     with inner product weights     α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures
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Spectral statistics for 2D random resistor network 



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions  ~ transitions in universal eigenvalue statistics.

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE
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TRANSITION

Spectral computations for Arctic melt ponds

uncorrelated level repulsion

Ben Murphy
Elena Cherkaev 
Ken Golden
2017

eigenvalue statistics 
for transport tend 
toward the 
UNIVERSAL 
Wigner-Dyson 
distribution 
as the “conducting” 
phase percolates



Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localizationhigh
disorder

low
disorder



Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”

PHYSICAL REVIEW B 90, 060205(R) (2014)

eigenvector localization and mobility edges



Localization properties of eigenvectors
in random resistor networks
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...



wave propagation in the marginal ice zone 
             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2018

           quasistatic assumption
low frequency, long wavelength

Two Layer Models

Viscoelastic �uid layer (Wang-Shen 2010)
E�ective Complex Viscosity

Viscous �uid layer (Keller 1998)
E�ective Viscosity 

Viscoelastic thin beam (Mosig et al. 2015)
E�ective Complex Shear Modulus 
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bounds on the e�ective complex viscoelasticity

Sampson, Murphy, Cherkaev, Golden 2018
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major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



thin silver �lm Arctic melt ponds

optical properties

(Davis, McKenzie, McPhedran, 1991)

microns kilometers

composite geometry -- area fraction of phases, connectedness, necks

(Perovich, 2005)

0.4 microns
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces



“melt ponds” are clusters of magnetic spins that align with the applied �eld

Ma, Sudakov, Strong, Golden 2018

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice         (spin down)

water     (spin up)

pond coveragemagnetization
(M + 1)

2

predictions of fractal transition, pond size exponent
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Ising model results

The lattice constant a must be small 
relative to the 10-20 m length scales 
prominent in sea ice and snow topography.
We set a=1 m as the length scale above 
which important spatially correlated 
�uctuations occur in the power spectrum 
of snow topography.

                    Melt ponds − 
metastable islands of like spins 
in our random �eld Ising model.

observed

model

pond size distribution 
               exponent

observed   -1.5
        (Perovich, et al 2002)
 
model          -1.58

Minimize Ising Hamiltonian energy

Random magnetic �eld represents 
snow topography; interaction term 
represents horizontal heat transfer.

order out of disorder



Conclusions

1. Summer Arctic sea ice is melting rapidly, and melt ponds and other
     processes must be accounted for in order to predict melting rates. 

2. Fluid �ow through sea ice mediates melt pond evolution and many 
     processes important to climate change and polar ecosystems.

3. Statistical physics and homogenization help link scales, provide 
     rigorous methods for �nding e�ective behavior, and advance how 
     sea ice is represented in climate models.

4. Random matrix theory and an unexpected Anderson transition arises
     in our studies of percolation in sea ice structures.  

5. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 



THANK YOU

Division of Mathematical Sciences
Division of Polar Programs

National Science Foundation

Buchanan Bay, Antarctica     Mertz Glacier Polynya Experiment    July 1999

Office of Naval Research
Arctic and Global Prediction Program
Applied and Computational Analysis Program


	eisenman_sea_ice_bifurcations_May_2014.pdf
	Sea ice bifurcations (3)




