Anderson Transition in Metamaterials

Kenneth M. Golden Department of Mathematics University of Utah

sea ice is a multiscale composite

structured on many length scales - from tenths of mm's to tens of km's

millimeters

centimeters

pancakes

ice floes

meters

kilometers

What is this talk about?

Using methods of statistical physics and composite materials to LINK SCALES in the sea ice system ... compute effective behavior.

Take a tour of our sea ice methods relevant to optics and metamaterials find unexpected Anderson transition in composites along the way!

HOMOGENIZATION

1. Sea ice microphysics and fluid transport percolation theory

2. EM transport, waves

Stieltjes integrals, spectral measures random matrices, Anderson transitions

3. Fractals and Arctic melt ponds continuum percolation and the Ising model

How do scales interact in the sea ice system?

basin scale grid scale albedo

Linking Scales

km scale melt ponds

km scale melt ponds

Linking

mm scale brine inclusions

Scales

meter scale snow topography

HOMOGENIZATION - Linking Scales in Composites

inhomogeneous medium homogeneous medium

find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium

Maxwell 1873 : effective conductivity of a dilute suspension of spheres Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean **bounds** on effective conductivity Hashin and Shtrikman 1962 : variational **bounds** on effective conductivity

widespread use of composites in late 20th century due in large part to advances in mathematically predicting their effective properties

fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal communities

Antarctic surface flooding and snow-ice formation

evolution of salinity profiles
ocean-ice-air exchanges of heat, CO₂

Critical behavior of fluid transport in sea ice

RULE OF FIVES

Golden, Ackley, Lytle Science 1998Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

percolation theory

probabilistic theory of connectedness

bond \longrightarrow *open with probability p closed with probability 1-p*

percolation threshold $p_c = 1/2$ for d = 2

smallest *p* for which there is an infinite open cluster

Continuum percolation model for *stealthy* materials applied to sea ice microstructure explains **Rule of Fives** and Antarctic data on ice production and algal growth

 $\phi_c \approx 5\%$ Golden, Ackley, Lytle, *Science*, 1998

sea ice is radar absorbing

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu

rigorous bounds percolation theory hierarchical model network model

field data

X-ray tomography for brine inclusions

unprecedented look at thermal evolution of brine phase and its connectivity

controls

micro-scale

macro-scale processes

Remote sensing of sea ice

sea ice thickness ice concentration

INVERSE PROBLEM

Recover sea ice properties from electromagnetic (EM) data

8*

effective complex permittivity (dielectric constant, conductivity)

brine volume fraction brine inclusion connectivity Effective complex permittivity of a two phase composite in the quasistatic (long wavelength) limit

the components

$$\epsilon^* = \epsilon^* \left(\frac{\epsilon_1}{\epsilon_2} , \text{ composite geometry} \right)$$

Herglotz function

Analytic Continuation Method

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

 $\Gamma \chi$ links scales

Golden and Papanicolaou, Comm. Math. Phys. 1983

forward and inverse bounds on the complex permittivity of sea ice

0 < q < 1

Golden 1995, 1997 Bruno 1991

inverse bounds and recovery of brine porosity

Gully, Backstrom, Eicken, Golden *Physica B, 2007*

inversion for brine inclusion separations in sea ice from measurements of effective complex permittivity ϵ^*

rigorous inverse bound on spectral gap

construct algebraic curves which bound admissible region in (p,q)-space

Orum, Cherkaev, Golden *Proc. Roy. Soc. A, 2012*

direct calculation of spectral measure

- 1. Discretization of composite microstructure gives lattice of 1's and 0's (random resistor network).
- 2. The fundamental operator $\chi\Gamma\chi$ becomes a random matrix depending only on the composite geometry.
- 3. Compute the eigenvalues λ_i and eigenvectors of $\chi \Gamma \chi$ with inner product weights α_i

$$\mu(\lambda) = \sum_{i} \alpha_{i} \delta(\lambda - \lambda_{i})$$

Dirac point measure (Dirac delta)

earlier studies of spectral measures

Day and Thorpe 1996 Helsing, McPhedran, Milton 2011

Spectral statistics for 2D random resistor network

Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT) to describe quantized energy levels of heavy atomic nuclei.

 $\begin{bmatrix} \mathbf{N} \end{bmatrix}_{ij} \sim N(0,1), \qquad \mathbf{A} = (\mathbf{N} + \mathbf{N}^{\mathsf{T}})/2 \qquad \textbf{Gaussian orthogonal ensemble (GOE)}$ $\begin{bmatrix} \mathbf{N} \end{bmatrix}_{ij} \sim N(0,1) + iN(0,1), \quad \mathbf{A} = (\mathbf{N} + \mathbf{N}^{\dagger})/2 \qquad \textbf{Gaussian unitary ensemble (GUE)}$

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

RMT used to characterize **disorder-driven transitions** in mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions ~ transitions in universal eigenvalue statistics.

Spectral computations for Arctic melt ponds

Ben Murphy Elena Cherkaev Ken Golden 2017

eigenvalue statistics for transport tend toward the UNIVERSAL Wigner-Dyson distribution as the "conducting" phase percolates

metal / insulator transition localization

Anderson 1958 Mott 1949 Shklovshii et al 1993 Evangelou 1992

Anderson transition in wave physics: quantum, optics, acoustics, water waves, ...

we find a surprising analog

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal eigenvalue statistics (GOE) extended states, mobility edges

-- but without wave interference or scattering effects ! --

eigenvector localization and mobility edges

Inverse Participation Ratio:
$$I(\vec{v}_n) = \sum_{i=1}^N |(\vec{v}_n)_i|^4$$

Completely Localized: $I(\vec{e}_n) = 1$

Completely Extended: $I\left(\frac{1}{\sqrt{N}}\vec{1}\right) = \frac{1}{N}$

FIG. 4. (Color online) IPR for Anderson model in two dimensions with x = 6.25 (w = 50) from exact diagonalization (solid line) and from LDRG with different values of the cutoff m_0 . LDRG data are averaged over 100 runs of systems with 100 × 100 sites.

PHYSICAL REVIEW B 90, 060205(R) (2014)

Localization properties of eigenvectors in random resistor networks

$$I_n = \sum_i (\vec{v}_n)_i^4$$

Bounds on the complex permittivity of polycrystalline materials by analytic continuation

> Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

 Stieltjes integral representation for effective complex permittivity

Milton (1981, 2002), Barabash and Stroud (1999), ...

- Forward and inverse bounds
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society

A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

wave propagation in the marginal ice zone

Two Layer Models

Viscous fluid layer (Keller 1998) Effective Viscosity

Viscoelastic fluid layer (Wang-Shen 2010) Effective Complex Viscosity $\nu_e = \nu + iG/\rho\omega$

Viscoelastic thin beam (Mosig *et al.* 2015) Effective Complex Shear Modulus $G_v = G - i\omega\rho v_c$

Stieltjes Integral Representation for Complex Viscoelasticity

homogenized

$$\begin{cases}
\langle \sigma_{ij} \rangle = C_{ijkl}^* \langle \epsilon_{kl} \rangle \\
\text{local} \quad \nabla \cdot \sigma = 0 \qquad \sigma_{ij} = C_{ijkl} \epsilon_{kl} & \text{Strain Field} \\
C_{ijkl} = (\nu_1 \chi + (1 - \chi)\nu_2)\lambda_s \qquad \epsilon = \frac{1}{2} [\nabla u + (\nabla u)^T] = \nabla^s u \\
\nabla \cdot ((\nu_1 \chi + (1 - \chi)\nu_2)\lambda_s; \epsilon) = 0 \qquad \epsilon = \epsilon_0 + \epsilon_f \text{ where } \epsilon_f = \nabla^s \phi \\
s = \frac{1}{1 - \frac{\nu_1}{\nu_2}} & \text{Elasticity Tensor} \\
c_{ijkl}^* = \nu^* \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ij} \delta_{kl} \right) = \nu^* \lambda_s
\end{cases}$$
RESOLVENT
$$\epsilon = \left(1 - \frac{1}{s} \Gamma \chi \right)^{-1} \epsilon_0 \qquad \Gamma = \nabla^s (\nabla \cdot \nabla^s)^{-1} \nabla \cdot \epsilon_0 \text{ avg strain} \\
\chi^*$$

$$F(s) = 1 - \frac{v}{v_2} \qquad F(s) = \left\| \epsilon_0 \right\|^{-2} \int_{\Sigma} \frac{d\mu(n)}{s - \lambda}$$

bounds on the effective complex viscoelasticity

complex elementary bounds V_1 (fixed area fraction of floes) V_2

 $V_1 = 10^7 + i\,4875$ pancake ice

 $V_2 = 5 + i \, 0.0975$ slush / frazil

Sampson, Murphy, Cherkaev, Golden 2018

melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

numerical models of melt pond evolution, including topography, drainage (permeability), etc.

Lüthje, Feltham, Taylor, Worster 2006 Flocco, Feltham 2007 Skyllingstad, Paulson, Perovich 2009 Flocco, Feltham, Hunke 2012

Are there universal features of the evolution similar to phase transitions in statistical physics?

thin silver film

Arctic melt ponds

kilometers

(Perovich, 2005)

optical properties

composite geometry -- area fraction of phases, connectedness, necks

microns

(Davis, McKenzie, McPhedran, 1991)

Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

Continuum percolation model for melt pond evolution level sets of random surfaces

Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds

electronic transport in disordered media

diffusion in turbulent plasmas

Isichenko, Rev. Mod. Phys., 1992

"melt ponds" are clusters of magnetic spins that align with the applied field

predictions of fractal transition, pond size exponent Ma, Sudakov, Strong, Golden 2018

Ising model results

Minimize Ising Hamiltonian energy

Random magnetic field represents snow topography; interaction term represents horizontal heat transfer.

Melt ponds – metastable islands of like spins in our random field Ising model.

pond size distribution exponent

observed -1.5 (*Perovich, et al 2002*)

model -1.58

The lattice constant *a* must be small relative to the 10-20 m length scales prominent in sea ice and snow topography. We set a=1 m as the length scale above which important spatially correlated fluctuations occur in the power spectrum of snow topography.

Conclusions

- 1. Summer Arctic sea ice is **melting rapidly**, and **melt ponds** and other processes must be accounted for in order to predict melting rates.
- 2. Fluid flow through sea ice mediates melt pond evolution and many processes important to climate change and polar ecosystems.
- 3. Statistical physics and homogenization help *link scales*, provide rigorous methods for finding effective behavior, and advance how sea ice is represented in climate models.
- 4. Random matrix theory and an unexpected Anderson transition arises in our studies of percolation in sea ice structures.
- 5. Our research will help to improve projections of climate change and the fate of the Earth sea ice packs.

THANK YOU

National Science Foundation

Division of Mathematical Sciences Division of Polar Programs

Office of Naval Research

Arctic and Global Prediction Program Applied and Computational Analysis Program

Mathematics and Climate Research Network

Australian Government

Department of the Environment and Water Resources Australian Antarctic Division

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999