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seaice is a multiscale composite

structured on many length scales - from tenths of mm’s to tens of km'’s
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What is this talk about?

Using methods of statistical physics and composite materials to
LINK SCALES in the sea ice system ... compute effective behavior.

Take a tour of our sea ice methods relevant to optics and metamaterials
find unexpected Anderson transition in composites along the way!

HOMOGENIZATION

1. Sea ice microphysics and fluid transport

percolation theory

2. EM transport, waves

Stieltjes integrals, spectral measures
random matrices, Anderson transitions

3. Fractals and Arctic melt ponds

continuum percolation and the Ising model



How do scales
interact in the
sea ice system?

km
scale
melt
ponds

mm
scale
brine
inclusions

/

Linking Scales

Linking ? Scales

basin scale -
grid scale

albedo

N

km
scale
melt
ponds

meter

scale

snow
topography



HOMOGENIZATION - Linking Scales in Composites
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find the homogeneous medium which
behaves macroscopically the same as
the inhomogeneous medium

Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities
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Critical behavior of fluid transport in sea ice
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percolation theory

probabilistic theory of connectedness
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open with probability p
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smallest p for which there is an infinite open cluster



Continuum percolation model for stealthy materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data on ice production and algal growth

dc = 5%  Golden, Ackley, Lytle, Science, 1998

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

sea ice compressed radar absorbing
powder composite

seaice is radar absorbing



Thermal evolution of permeability and microstructure in seaice  Golden, Eicken, Heaton, Miner, Pringle, Zhu

rigorous bounds
percolation theory
hierarchical model
network model

field data

X-ray tomography for

mlcro-scale brine inclusions
controls
unprecedented look
macro-scale at thermal evolution
f brine ph n
processes of brine phase and

its connectivity



INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Effective complex permittivity of a two phase composite
in the quasistatic (long wavelength) limit
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Analytic Continuation Method

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Stieltjes integral representation
for homogenized parameter
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forward and inverse bounds on the complex permittivity of sea ice

forward bounds

matrix particle

0<qg<l

Golden 1995, 1997
Bruno 1991

4.75 GHz data

inverse bounds and
recovery of brine porosity

Gully, Backstrom, Eicken, Golden
Physica B, 2007

inverse bounds

1.03

1.02 | q
min

1.01

0.99 | oo %
098 |
097 | o %
0.96 |

0.95

Computed mininum separation parameter g
pas
Red
3

0.93 L bd L L L
=25 =20 =15 -10 -5 0

Slab temperature °C

inversion for brine inclusion
separations in sea ice from
measurements of effective
complex permittivity £*
rigorous inverse bound
on spectral gap

construct algebraic curves which bound
admissible region in (p,q)-space

Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012



direct calculation of spectral measure

1. Discretization of composite microstructure gives
lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator yI'y becomes a random
matrix depending only on the composite geometry.

3. Compute the eigenvalues A ; and eigenvectors of yI'y
with inner product weights o,

n0) = T oy 8- 2)

Dirac point measure (Dirac delta)

ier studies of tral ) Day and Thorpe 1996
€arlier studies oT Spectralmeasures — Helsing, McPhedran, Milton 2011



Spectral statistics for 2D random resistor network
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Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT)
to describe quantized energy levels of heavy atomic nuclei.

[N] i~ N(O,1), A= (N+N")/2  Gaussian orthogonal ensemble (GOE)
[N]ij ~ N(0,1)+iN(0,1), A= (N+ NT)/Z Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

Spacing distributions of the first billion zeros of

the Riemann zeta function

Spacing distributions of energy levels for heavy atomic nuclei _ peanes neanber spasinas
1.0 T T T f“F-H‘&.
Polason |.r?|‘.ri$:r|::|n_r;s Hf, Ta, W,Re, Os,Ir (odd) = :'.-" H"-\-_. / G U E
o =] r'..'- H‘-\.
GOE 05~ I 4 .": -"‘-._:
(c) ",
o '_." \‘
1 1 & -
: 0 I 2 3 4 A T
X=5/D Lo

RMT used to characterize disorder-driven transitions in
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions ~ transitions in universal eigenvalue statistics.



Spectral computations for Arctic melt ponds

e 7
o r,‘ A o
. R
k2 I
Vong
N I
ACT INPA AN |
0.3 1.5
p=0.09 p=0.27 3 p=0.57
spectral = % 1 5
measures S 05 1
0 0 0
0 0.2 0.4)\0.6 0.8 1 0 0.2 0.4)\0.6 08 1 0 0.2 0.4)\0.6 0.8 1
1 1 1
. — p=0.09 — p=0.27 — p=0.57
eigenvalue 08 — coe | 98 — coe |98 — GOE
. N 06 — Poisson | 06 — Poisson | 06 — Poisson
5|.)aC|.ng . T o os 04
distributions | 0 -
0 0 0
0 1 2 = 3 4 0 1 2 = 3 4 0 1 2 z 3 4
uncorrelated =3 |evel repulsion

Ben Murphy
Elena Cherkaev
Ken Golden
2017

eigenvalue statistics
for transport tend
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as the “conducting”
phase percolates



o) extended

low
disorder °U°“UU°””'“”dd“"““f\m% metal / insulator transition  Anderson 1958
Mott 1949

high “Tapssocaized localization ;I‘:L(Lc;vesllzz e;;;;g%

disorder

Anderson transition in wave physics:
quantum, optics, acoustics, water waves, ...

we find a surprising analog

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal
eigenvalue statistics (GOE)
extended states, mobility edges

PERCOLATION 3
TRANSITION

-- but without wave interference or scattering effects ! --



eigenvector localization and mobility edges
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FIG. 4. (Color online) IPR for Anderson model in two dimen-
sions with x = 6.25 (w = 50) from exact diagonalization (solid line)
and from LDRG with different values of the cutoff my. LDRG data
are averaged over 100 runs of systems with 100 x 100 sites.

PHYSICAL REVIEW B 90, 060205(R) (2014)



Localization properties of eigenvectors
in random resistor networks
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Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation
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wave propagation in the marginal ice zone

Stieltjes integral representations
bounds on effective viscoelastic parameters

quasistatic assumption
low frequency, long wavelength

Sampson, Murphy, Cherkaev, Golden 2018

Two Layer Models

Viscous fluid layer (Keller 1998)
Effective Viscosity | v

Viscoelastic fluid layer (Wang-Shen 2010)
Effective Complex Viscosity [y, = v + i@ / pw

Viscoelastic thin beam (Mosig et al. 2015)
Effective Complex Shear Modulus| G, = G — iwpv




Stieltjes Integral Representation for Complex Viscoelasticity
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bounds on the effective complex viscoelasticity
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melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



thin silver film Arctic melt ponds

microns kilometers
(Davis, McKenzie, McPhedran, 1991) (Perovich, 2005)
optical properties

composite geometry -- area fraction of phases, connectedness, necks



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012
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Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



Ising model for ferromagnets —3> Ising model for melt ponds

N N +1 water  (spin up)
Hw:—JZS@'Sj—HZSi 812{1 1 :

— : 1ce spin down
<2,)> 1 ( p )

N —oo 2

magnetization M = lim % <Z 3j> pond coverage (M+1)
J

“melt ponds” are clusters of magnetic spins that align with the applied field

predictions of fractal transition, pond size exponent Ma, Sudakov, Strong, Golden 2018



Ising model results

Minimize Ising Hamiltonian energy pond size distribution

exponent

2 L

Random magnetic field represents
snow topography; interaction term
represents horizontal heat transfer.

observed

\

~ model observed -1.5

Melt ponds — (Perovich, et al 2002)
metastable islands of like spins 1= | | . -
in our random field Ising model. 1 OO 1 01 1 02 1 03 1 O4 model -1.58

A (Mm?)
order out of disorder

The lattice constant a must be small
relative to the 10-20 m length scales
prominent in sea ice and snow topography.
We set a=1 m as the length scale above
which important spatially correlated
fluctuations occur in the power spectrum
of snow topography.

period (m)



Conclusions

1. Summer Arctic sea ice is melting rapidly, and melt ponds and other
processes must be accounted for in order to predict melting rates.

2. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

3. Statistical physics and homogenization help link scales, provide
rigorous methods for finding effective behavior, and advance how
sea ice is represented in climate models.

4. Random matrix theory and an unexpected Anderson transition arises
in our studies of percolation in sea ice structures.

5. Our research will help to improve projections of climate change
and the fate of the Earth sea ice packs.
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