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seaice is a multiscale composite

structured on many length scales - from tenths of mm’s to tens of km'’s
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What s this talk about? HOMOGENIZATION

Using methods of statistical physics and composite materials to
LINK SCALES in the sea ice system ... rigorously compute effective
behavior and improve climate models.

Find unexpected Anderson transition in composites along the way!

1. Sea ice microphysics and fluid transport

homogenization and percolation theory

2. EM monitoring of sea ice, analytic continuation method

random matrix theory and Anderson transitions

3. Extension of ACM to advection diffusion, waves in sea ice

Stieltjes integral representations, spectral measures
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sea ice microphysics

fluid transport



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

C.Haas

K. Golden

Antarctic surface flooding

September - evolution of salinity profiles
show-ice

estimates - ocean-ice-air exchanges of heat, CO,
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T. Maksym and T. Markus, 2008



Darcy s Law for slow viscous flow in a porous medium

averaged pressure
fluid velocity gradient
Y
V=—7YV
n VP
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VISCOsity

k = fluid permeability tensor
example of homogenization

mathematics for analyzing effective behavior of heterogeneous systems

e.g. transport properties of composites - electrical conductivity, thermal conductivity, etc.



Critical behavior of fluid transport in sea ice
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percolation theory

probabilistic theory of connectedness

impermeable permeable
[ ] -
— | . \open
- I_I__ | cluster ——>
B _
1 |
p=1/3 p=2/3

open with probability p
closed with probability 1-p

percolation threshold
p.=1/2 for d=2

smallest p for which there is an infinite open cluster



order parameters in percolation theory

geometry transport
correlation length infinite cluster density effective conductivity
characteristic scale probability the origin or fluid permeability
of connectedness belongs to infinte cluster
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Continuum percolation model for stealthy materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data on ice production and algal growth

dc = 5%  Golden, Ackley, Lytle, Science, 1998

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

sea ice compressed radar absorbing
powder composite

seaice is radar absorbing



Thermal evolution of permeability and microstructure in seaice  Golden, Eicken, Heaton, Miner, Pringle, Zhu

rigorous bounds
percolation theory
hierarchical model
network model

field data

X-ray tomography for

mlcro-scale brine inclusions
controls
unprecedented look
macro-scale at thermal evolution
f brine ph n
processes of brine phase and

its connectivity



brine connectivity (over cm scale)

8X8x2 mm

-15°C, (¢=0.033 6°C, ($=0.075 3°C, (0=0.143
X-ray tomography confirms percolation threshold

3-D images
pores and throats

3-D graph
nodes and edges

-

analyze graph connectivity as function of temperature and sample size

® use finite size scaling techniques to confirm rule of fives
® order parameter data from a natural material

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009



INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Effective complex permittivity of a two phase composite
in the quasistatic (long wavelength) limit

D =¢ck
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P1, P2 = volume fractions of
the components
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Herglotz function



Theory of Effective Electromagnetic Behavior of Composites
analytic continuation method

Forward Homogenization Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)
Theory of Composites, Milton (2002)

composite geometry

%
(spectral measure ) 3 &

integral representations, rigorous bounds, approximations, etc.
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Inverse Homogenization Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

composite geometry

k

recover brine volume fraction, connectivity, etc.



Stieltjes integral representation

separates geometry from parameters

eometr
o [l
0 S— X
\ material parameters
@ spectral measure of I = V(— A)_lv-

/ self adjoint operator ['X
(b — @ mass=Dj

@® higher moments depend |
on n-point correlations E = (S + FX)_ ek

X = characteristic function
of the brine phase

| X : microscale — macroscale

1'X links scales

Golden and Papanicolaou, Comm. Math. Phys. 1983



forward and inverse bounds on the complex permittivity of sea ice

forward bounds

matrix particle

0<qg<l

Golden 1995, 1997
Bruno 1991

4.75 GHz data

inverse bounds and
recovery of brine porosity

Gully, Backstrom, Eicken, Golden
Physica B, 2007

inverse bounds
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inversion for brine inclusion
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rigorous inverse bound
on spectral gap

construct algebraic curves which bound
admissible region in (p,q)-space

Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012



SEA ICE

spectral characterization
of porous microstructures
in human bone

reconstruct spectral measures
from complex permittivity data

02
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*'I' X young bone

_I'\
of old bone

0.2 04 06 038 1

use regularized inversion scheme

apply spectral measure analysis of brine connectivity and
spectral inversion to electromagnetic monitoring of osteoporosis

Golden, Murphy, Cherkaev, J. Biomechanics 2011
the math doesn’t care if it’s sea ice or bone!



direct calculation of spectral measure

1. Discretization of composite microstructure gives
lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator yI'y becomes a random
matrix depending only on the composite geometry.

3. Compute the eigenvalues A ; and eigenvectors of yI'y
with inner product weights o,

n0) = T oy 8- 2)

Dirac point measure (Dirac delta)

ier studies of tral ) Day and Thorpe 1996
€arlier studies oT Spectralmeasures — Helsing, McPhedran, Milton 2011



Spectral statistics for 2D random resistor network
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Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT)
to describe quantized energy levels of heavy atomic nuclei.

[N] i~ N(O,1), A= (N+N")/2  Gaussian orthogonal ensemble (GOE)
[N]ij ~ N(0,1)+iN(0,1), A= (N+ NT)/Z Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

Spacing distributions of the first billion zeros of

the Riemann zeta function

Spacing distributions of energy levels for heavy atomic nuclei _ peanes neanber spasinas
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RMT used to characterize disorder-driven transitions in
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions ~ transitions in universal eigenvalue statistics.



Spectral computations for Arctic melt ponds
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for transport tend

toward the
UNIVERSAL
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distribution

as the “conducting”
phase percolates



o) extended

low
disorder °U°“UU°””'“”dd“"““f\m% metal / insulator transition  Anderson 1958
Mott 1949

high “Tapssocaized localization ;I‘:L(Lc;vesllzz e;;;;g%

disorder

Anderson transition in wave physics:
quantum, optics, acoustics, water waves, ...

we find a surprising analog

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal
eigenvalue statistics (GOE)
extended states, mobility edges

PERCOLATION 3
TRANSITION

-- but without wave interference or scattering effects ! --



eigenvector localization and mobility edges
N
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FIG. 4. (Color online) IPR for Anderson model in two dimen-
sions with x = 6.25 (w = 50) from exact diagonalization (solid line)
and from LDRG with different values of the cutoff my. LDRG data
are averaged over 100 runs of systems with 100 x 100 sites.

PHYSICAL REVIEW B 90, 060205(R) (2014)



Localization properties of eigenvectors
in random resistor networks
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Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation
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@® Stieltjes integral representation for

effective complex permittivity
Milton (1981, 2002), Barabash and Stroud (1999), ...

® Forward and inverse bounds
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advection enhanced diffusion

effective diffusivity

sea ice floes diffusing in ocean currents
diffusion of pollutants in atmosphere
salt and heat transport in ocean

heat transport in sea ice with convection

advection diffusion equation with a velocity field

oT -
¥ +u - VT = kAT
V-i=0
homogenize
oT _
— =k AT
or

k" effective diffusivity

Murphy, Cherkaev, Zhu, Xin, Golden, 2018
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Spectral measures and eigenvalue spacings for cat’s eye flow
H(x,y) = sin(x) sin(y) + A cos(x) cos(y), A~U(-p,p)
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Storm-induced sea-ice breakup and the implications for ice extent

Kohout et al., Nature 2014

@ during three large-wave events, significant wave heights did not decay
exponentially, enabling large waves to persist deep into the pack ice.

@® large waves break sea ice much farther from the ice edge than would be
predicted by the commonly assumed exponential decay

melt season

growth season

ice extent compared with significant wave height

Waves have strong influence on both the floe size distribution and ice extent.



Two Layer Models and Effective Parameters

z=h
lce
2
z=0
Ocean
Bottom
z=-H

Viscous fluid layer (Keller 1998)
Effective Viscosity | v

Equations of OU

1 2
motion: E = —;VP—l— vV<U + g

Viscoelastic fluid layer (Wang-Shen 2010)
Effective Complex Viscosity |y, = v + iG / pw

Equations of OU

1 2
motion ot _EVP_H/GV Uty

Viscoelastic thin beam (Mosig et al. 2015)

Effective Complex Shear Modulus| G, = G — iwpr

Stieltjes integral representation
for effective complex viscoelastic

Gshear modulus pressure angular frequency velocity field parameter; bounds
w U

P

viscosity Poission ratio density gravity
1 A P g

Sampson, Murphy, Cherkaev, Golden 2018



wave propagation in the marginal ice zone

Stieltjes integral representations
bounds on effective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2018

quasistatic assumption
low frequency, long wavelength



Stieltjes Integral Representation for Complex Viscoelasticity
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bounds on the effective complex viscoelasticity
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Conclusions

1. Summer Arctic sea ice is melting rapidly, and melt ponds and other
processes must be accounted for in order to predict melting rates.

2. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

3. Statistical physics and homogenization help link scales, provide
rigorous methods for finding effective behavior, and advance how
sea ice is represented in climate models.

4. Random matrix theory and an unexpected Anderson transition arises
in our studies of percolation in sea ice structures.

5. Our research will help to improve projections of climate change
and the fate of the Earth sea ice packs.
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