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SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  

polar ice caps critical
to climate in re�ecting
sunlight during summer

hosts rich ecosystem   
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What is this talk about?
   Using methods of statistical physics and composite materials to 
LINK SCALES in the sea ice system ... rigorously compute e�ective 
                               behavior and improve climate models.

1. Sea ice microphysics and �uid transport

2. EM monitoring of sea ice, analytic continuation method    

3. Extension of ACM to polycrystals, waves in sea ice 

homogenization and percolation theory

random matrix theory and Anderson transitions

Stieltjes integral representations, spectral measures

HOMOGENIZATION

4. Light in sea ice, melt ponds 

Tour wave phenomena in sea ice 
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HOMOGENIZATION - Linking Scales in Composites
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties



Linking Scales
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How do scales
interact in the
sea ice system?
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sea  ice  microphysics

�uid transport



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 
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T. Maksym and T. Markus, 2008



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt
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-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =
-4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine phase in sea ice                        Golden, Eicken, et al., Geophysical Research Letters 2007

PERCOLATION THRESHOLD 

p = 1/3 p = 2/3
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 compressed powdersea ice

φc ~~ 5 % Golden, Ackley, Lytle, Science 1998

lattice percolation continuum percolation

Kusy, Turner
Nature 1971



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

hierarchical model
network model

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

agree closely
with �eld data
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Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



HUMAN BONESEA ICE

Golden, Murphy, Cherkaev, J.  Biomechanics  2011

the math doesn’t care if it’s sea ice or bone!

       apply spectral measure analysis of brine connectivity and 
spectral inversion to electromagnetic monitoring of osteoporosis

 young healthy trabecular bone  old osteoporotic trabecular bone

P. Hansma

 reconstruct spectral measures 
from complex permittivity data

use regularized inversion scheme

spectral characterization 
of porous microstructures 
in human bone 
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direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

ANDERSON TRANSITION
uncorrelated level repulsion

Murphy, Cherkaev, Golden 
Phys. Rev. Lett. 2017

UNIVERSAL 
Wigner-Dyson 
distribution 



Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localization



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
              to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Universal eigenvalue statistics arise in a broad  range  of “unrelated” problems!

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE



  Connectedness
Phase Transition

Poisson
Spectra

Picket
Fence

   GOE
Spectra

Completely
 Correlated

    Highly
Correlated

Uncorrelated

        LEVEL
REPULSION

Transition in Eigenvalue Correlations

Eigenvalue Spacing Distribution Eigenvalue Spacing Distribution

Wigner surmise



Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”

PHYSICAL REVIEW B 90, 060205(R) (2014)

eigenvector localization and mobility edges



Localization properties of eigenvectors
in random resistor networks
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2019



Rigorous bounds on the complex permittivity tensor of sea ice 
    with polycrystalline anisotropy within the horizontal plane

McKenzie McLean, Elena Cherkaev, Ken Golden 2019

motivated by Weeks and Gow, JGR 1979: c-axis alignment in Arctic fast ice off Barrow 
Golden and Ackley, JGR 1981: radar propagation model in aligned sea ice  

CRREL

input: orientation statistics output: bounds

3%

Re(     )ε∗

Im(     )ε∗

3.5%
4%

isotropic within
horizontal plane

anisotropic within
horizontal plane



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice
heat transport in sea ice with convection
sea ice �oes in winds and ocean currents
tracers, buoys di�using in ocean eddies
di�usion of pollutants in atmosphere

homogenize

e�ective di�usivity

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

Stieltjes integral for         with spectral measure
Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019

Wells et al. 2011



κ∗ = κ

(
1 +

∫ ∞

−∞

dµ(τ)

κ2 + τ2

)
, F (κ

∫ ∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Diffusion

                                         Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

separation of material properties and �ow �eld
spectral measure calculations 
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cat’s eye flow model for 
  brine convec�on cells 

rigorous Pade bounds from S�eltjes integral + 
analy�cal calcula�ons of moments of measure

‘

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Strong, Golden 2019

Rigorous bounds on convec�on enhanced thermal conduc�vity of sea ice

data 
Trodahl 
et al. 2001

similar bounds 
for shear �ows 

rigorous bounds assuming information
          on �ow �eld INSIDE inclusions

        Kraitzman, Cherkaev, Golden
SIAM J. Appl. Math (in revision), 2019



wave propagation in the marginal ice zone 

             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2019

           quasistatic assumption 
           long wavelength



Bottom

Ice

Ocean

Viscous �uid layer (Keller 1998)
E�ective Viscosity 

Two Layer Models and Effective Rheological Parameters 

Viscoelastic �uid layer (Wang-Shen 2010)
E�ective Complex Viscosity

Viscoelastic thin beam (Mosig et al. 2015)
E�ective Complex Shear Modulus 

z=0

z=-H

z=h

Equations of 
motion:

Equations of 
motion

shear modulus pressure angular frequency velocity �eld

viscosity Poission ratio density gravity

Stieltjes integral representation 
for effective complex viscoelastic 
parameter; bounds

Sampson, Murphy, Cherkaev, Golden 2019 
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bounds on the effec�ve complex viscoelas�city

Sampson, Murphy, Cherkaev, Golden 2019

complex elementary bounds
 (fixed area frac�on of floes)
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thin silver �lm Arctic melt ponds

optical properties

(Davis, McKenzie, McPhedran, 1991)

microns kilometers

composite geometry -- area fraction of phases, connectedness, necks

(Perovich, 2005)

0.4 microns

Interaction of light with sea ice 



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces



100 101 102 103 104

D

A (m2 )

1

2

observed

model

pond size distribution 
exponent

observed   -1.5

model        -1.58

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys.  2019

= { +1

−1 ice         (spin down)

water     (spin up)

pond coveragemagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

Melt ponds are metastable islands of like spins.

only nearest neighbor 
patches interact



no bloom bloom

        2011 massive
under-ice algal bloom

Arrigo et al., Science 2012

melt ponds act as

WINDOWS
  allowing light 
through sea ice

Have we crossed into a 
new ecological regime?
The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances, 2017

The distribution of solar energy under 
ponded sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, 2019

(2015 AMS MRC)



The distribution of solar energy 
 under ponded �rst-year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, in revision, 2019

Model for 3D light �eld under ponded sea ice. 

Distribution of solar energy at depth in�uenced by shape 
and connectivity of melt ponds, as well as area fraction.

Pond geometry a�ects the ecology of the Arctic Ocean.

Aggregate properties of the sub-ice light �eld, such as a signi�cant 
enhancement of available solar energy under the ice, are controlled 
by parameter closely related to pond fractal geometry.

Model and analysis explain how melt pond geometry homogenizes
under-ice light �eld, a�ecting habitability.



Conclusions

1. Wave phenomena arise naturally in the sea ice system.

2. Homogenization and statistical physics help link scales and provide 
     rigorous methods for �nding e�ective behavior, and advance how 
     sea ice is represented in climate models.

3. Herglotz functions and Stieltjes integrals provide powerful methods
     of homogenization for wave phenomena in sea ice structures. 

4. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 
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�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity
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