1. Calculate the following limits.

(a)
$$\lim_{n \to \infty} \left(\frac{n-1}{n}\right)^{2n}$$
 (b) $\lim_{x \to 0} x^x$ (c) $\lim_{x \to +\infty} x^{25} e^{-x}$

(b)
$$\lim_{x\to 0} x^x$$

(c)
$$\lim_{x \to +\infty} x^{25} e^{-x}$$

2. Calculate the following.

(a)
$$\frac{d}{dx} (\ln(\tanh x)),$$

(b)
$$\int \frac{z}{2z^2 + 8} dz$$
,

(a)
$$\frac{d}{dx}(\ln(\tanh x))$$
, (b) $\int \frac{z}{2z^2 + 8} dz$, (c) $\int \frac{\tan(\ln x)}{x} dx$, (d) $\int \frac{dx}{x(1-x)}$,

(d)
$$\int \frac{dx}{x(1-x)}$$

(e)
$$\frac{dy}{dx}$$
, $y = \frac{(x^2+3)^{2/3}(3x+2)^2}{\sqrt{x+1}}$ (use log. differentiation), (f) $\int \frac{e^x}{1+e^{2x}}$

- 3. Experiments show that the rate of change of the atmospheric pressure P(x) with altitude x is proportional to the pressure. Write down the resulting differential equation for P(x), and solve it, assuming that the pressure at 6000 meters is half its value P_0 at sea level.
- 4. p. 345, # 14
- 5. p. 335, # 32, 38
- 6. p. 350, # 2
- 7. Know how to solve the logistic equation.
- 8. Stewart wants to become a millionaire after 10 years by buying \$5,000 worth of a company's stock, which he wants to choose carefully. What must the sustained, annualized growth rate of the stock be in order to achieve his goal? Is Stewart being realistic?
- 9. Newton's law of cooling states that the rate at which an object cools is proportional to the difference between the temperature $\theta(t)$ of the object and the constant ambient temperature T,

$$\frac{d\theta}{dt} = -k(\theta - T),$$

where k > 0 is a constant depending on the object. A corpse is discovered at 2 pm, and its temperature is found to be 85°F, with the ambient air temperature being 68°F. Assuming $k = 0.5 \text{ hr}^{-1}$, find the time of death.