
18.03 PDE.1: Fourier’s Theory of Heat

1. Temperature Profile.

2. The Heat Equation.

3. Separation of Variables (the birth of Fourier series)

4. Superposition.

In this note we meet our first partial differential equation (PDE)

∂u

∂t
= k

∂2u

∂x2

This is the equation satisfied by the temperature u(x, t) at position x and time t of a bar
depicted as a segment,

0 ≤ x ≤ L, t ≥ 0

The constant k is the conductivity of the material the bar is made out of.

We will focus on one physical experiment. Suppose that the initial temperature is 1, and
then the ends of the bar are put in ice. We write this as

u(x, 0) = 1, 0 ≤ x ≤ L u(0, t) = 0, u(L, t) = 0, t > 0 .

The value(s) of u = 1 at t = 0 are called initial conditions. The values at the ends are called
endpoint or boundary conditions. We think of the initial and endpoint values of u as the
input, and the temperature u(x, t) for t > 0, 0 < x < L as the response. (For simplicity,
we assume that only the ends are exposed to the lower temperature. The rest of the bar
is insulated, not subject to any external change in temperature. Fourier’s techniques also
yield answers even when there is heat input over time at other points along the bar.)

As time passes, the temperature decreases as cooling from the ends spreads toward the
middle. At the midpoint, L/2, one finds Newton’s law of cooling,

u(L/2, t) ≈ ce−t/τ , t > τ

The so-called characteristic time τ is inversely proportional to the conductivity of the ma-
terial. If we choose units so that τ = 1 for copper, then according to Wikipedia,

τ ∼ 7 (cast iron); τ ∼ 7000 (dry snow)

The constant c, on the other hand, is universal:

c ≈ 1.3

It depends only on the fact that the shape is a bar (modeled as a line segment).

Fourier figured out not only how to explain c using differential equations, but the whole

temperature profile: u(x, t) ≈ e−t/τh(x); h(x) =
4

π
sin
(π
L
x
)
, t > τ.

The shape of h reflects how much faster the temperature drops near the ends than in the
middle. It’s natural that h should be some kind of hump, symmetric around L/2.

We looked at the heat equation applet to see this profile emerge as t increases. It’s
remarkable that a sine function emerges out of the input u(x, 0) = 1. There is no evident
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mechanism creating a sine function, no spring, no circle, no periodic input. The sine function
and the number 4/π arise naturally out of differential equations alone.

Deriving the heat equation. To explain the heat equation, we start with a thought
experiment. If we fix the temperature at the ends, u(0, t) = 0 and u(L, t) = T , what will
happen in the long term as t→∞? The answer is that

u(x, t)→ Usteady(x), t→∞

where Usteady is the steady, or equilbrium, temperature, and

Usteady(x) =
T

L
x (linear)

The temperature u(L/2, t) at the midpoint L/2 tends to the average of 0 and T , namely
T/2. At the point L/4, half way between 0 and L/2, the temperature tends to the average
of the temperature at 0 and T/2, and so forth.

At a very small scale, this same mechanism, the tendency of the temperature profile
toward a straight line equilibrium means that if u is concave down then the temperature in
the middle should decrease (so the profile becomes closer to being straight). If u is concave
up, then the temperature in the middle should increase (so that, once again, the profile
becomes closer to being straight). We write this as

∂2u

∂x2
< 0 =⇒ ∂u

∂t
< 0

∂2u

∂x2
> 0 =⇒ ∂u

∂t
> 0

The simplest relationship that reflects this is a linear (proportional) relationship,

∂u

∂t
= k

∂2u

∂x2
, k > 0

Fourier’s reasoning. Fourier introduced the heat equation, solved it, and confirmed in
many cases that it predicts correctly the behavior of temperature in experiments like the
one with the metal bar.

Actually, Fourier crushed the problem, figuring out the whole formula for u(x, t) and not
just when the initial value is u(x, 0) = 1, but also when the initial temperature varies with
x. His formula even predicts accurately what happens when 0 < t < τ .

Separation of Variables. For simplicity, take L = π and k = 1. The idea is not to try
to solve for what looks like the simplest initial condition namely u(x, 0) = 1, but instead to
look for solutions of the form

u(x, t) = v(x)w(t)

Plugging into the equation, we find

∂u

∂t
= v(x)ẇ(t),

∂2u

∂2x
= v′′(x)w(t)

Therefore, since k = 1,

v(x)ẇ(t) = v′′(x)w(t) =⇒ ẇ(t)

w(t)
=
v′′(x)

v(x)
= c (constant).
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This is the first key step. We divided by v(x) and w(t) to “separate” the variables. But
the function ẇ(t)/w(t) is independent of x, whereas v′′(x)/v(x) is indendent of t. And since
these are equal, this function depends neither on x nor on t, and must be a constant. Notice
also that the constant, which we are calling c for the time being, is the same constant in
two separate ordinary differential equations:

ẇ(t) = cw(t), v′′(x) = cv(x).

The best way to proceed is to remember the endpoint conditions

u(0, t) = u(π, 0) = 0 =⇒ v(0) = v(π) = 0.

We know what the solutions to v′′(x) = cv(x), v(0) = v(π) = 0 look like. They are

vn(x) = sinnx, n = 1, 2, 3, . . .

Moreover, v′′n(x) = −n2 sinnx = −n2vn(x), so that c = −n2. We now turn to the equation
for w, which becomes

ẇn(t) = −n2w(t) =⇒ wn(t) = e−n
2t.

(We may as well take w(0) = 1. We will be taking multiples later.) In summary, we have
found a large collection of solutions to the equation, namely,

un(x, t) = vn(x)wn(t) = e−n
2t sinnx

For these solutions, the endpoint condition un(0, t) = un(π, t) = 0 is satisfied, but the initial
condition is

un(x, 0) = vn(x) = sinnx .

This is where Fourier made an inspired step. What if we try to write the function u(x, 0) = 1
as a linear combination of vn(x) = sinnx?

On the face of it, expressing 1 as a sum of terms like sinnx makes no sense. We know
that sinnx is zero at the ends x = 0 and x = π. But something tricky should be happening
at the ends because the boundary conditions are discontinuous in time. At t = 0 we
had temperature 1 at the ends, then suddenly when we plunged the ends in ice, we had
temperature 0. So it’s not crazy that the endpoints should behave in a peculiar way.

If there is any chance to write

u(x, 0) = 1 =
∑

bn sinnx, 0 < x < π,

then it must be that the function is odd. In other words, we need to look at

f(x) =

{
1 0 < x < π

−1 −π < x < 0

Moreover, the function has to be periodic of period 2π. This is none other than the square
wave f(x) = Sq(x), the very first Fourier series we computed.

1 = Sq(x) =
4

π

(
sinx+

1

3
sin 3x+

1

5
sin 5x+

)
, 0 < x < π.

Now since initial conditions vn(x) yield the solution un(x, t), we can apply the

Principle of Superposition u(x, 0) =
∑

bn sinnx =⇒ u(x, t) =
∑

bne
−n2t sinnx
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In other words, if u(x, 0) = 1, 0 < x < π, then

u(x, t) =
4

π

(
e−t sinx+

1

3
e−3

2t sin 3x+
1

5
e−5

2t sin 5x+ · · ·
)

0 ≤ x ≤ π, t > 0.

The exact formula for the solution u to the heat equation is this series; it cannot be
expressed in any simpler form. But often one or two terms already give a good approx-
imation. Fourier series work as well, both numerically and conceptually, as any finite sum
of terms involving functions like e−t and sinx. Look at the Heat Equation applet to see the
first term (main hump) emerge, while the next term b3e

−9t sin 3x tends to zero much more
quickly. (The other terms are negligible after an even shorter time.)

For this example, the characteristic time is τ = 1, e−t/τ = e−t, and

u(x, t) =
4

π
e−t sinx+ smaller terms as t→∞.

To get an idea how small the smaller terms are, take an example.

Example. Fix t1 = ln 2, then e−t1 = 1/2, and

u(x, t1) =
4

π

(
1

2
sinx+

1

3 · 29
sin 3x+ · · ·

)
=

2

π
sinx± 10−3
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