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Elements of the climate system known as tipping elements1 
— which could pass a tipping point this century and undergo 
a qualitative change in state within this millennium — include 

the Atlantic thermohaline circulation (THC), West Antarctic ice 
sheet, Greenland ice sheet, Amazon rainforest, boreal forests, West 
African monsoon, Indian summer monsoon, and El Niño/Southern 
Oscillation (ENSO). Passing a tipping point (defined in Box 1) is 
typically viewed as a ‘high-impact low-probability’ event. However, 
recent (re)assessments give an increased likelihood of ‘large-scale 
discontinuities’ in the climate system under a given level of global 
warming2, such that unmitigated climate change could result in 
some becoming ‘high-impact high-probability’ events1,3, demand-
ing early warning capability4.

Early warning can take several forms, ranging from the 
knowledge that an event could occur, through qualitative assessment 
that it is becoming more likely, to a forecast of its timing. Recently, 
there has been growing interest in generic early warning signals5 
for critical transitions in complex systems, especially slowing 
down6 as a bifurcation is approached. Furthermore, slowing down 
has been found in climate-model output7–12 and palaeoclimate 
data9,10,12 approaching abrupt transitions. This suggests probabilistic 
forecasting of some conceivable future climate tipping points may 
be feasible1, especially if such statistical early warning indicators 
can be combined with dynamical modelling. However, critics have 
questioned the statistical robustness of proposed early warning 
signals13, and have noted that some types of abrupt transition carry 
no early warning signals13,14. These potential problems are not 
unique to climate tipping points.

For several rapid-onset natural hazards, for example, hurricanes15 
and tsunamis16, quite sophisticated early warning systems are 
already in place17, whereas for some slower-onset hazards, for 
example, drought18 and malaria outbreaks19, seasonal climate-
forecasting skill is beginning to be used in early warning. The United 
Nations has called for the development of a globally integrated early 
warning system for all natural hazards20,21. This should include 
climate tipping points, because they present significant risks in 
themselves, and they will affect shorter-term hazards. A tipping 
point can be seen as a nonlinear shift in the shape or location of 
the frequency distribution of events that represent the climate, in 
the tails of which are extreme events. For example, tipping of the 
Greenland or West Antarctic ice sheets would accelerate sea-level 
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rise, in turn increasing the impact of hurricane-driven storm surges 
or tsunamis. Dieback of the Amazon or boreal forests would cause 
increased wildfires. Disruption of the West African monsoon would 
affect drought in the Sahel. 

If early warning can be achieved for climate tipping points, it 
could have considerable value for societies, as hinted at by the value 
of shorter-term, seasonal, climate forecasting to agriculture22–24. 
For example, if El Niño increases in amplitude in a warming 
world, as some forecasts suggest25, the resultant annual damages to 
the agricultural sector could exceed $1 billion (ref.  26), but these 
damages could be greatly reduced by effective response to seasonal 
early warning of El Niño26. Even earlier warning of, for example, 
potential future El Niño ‘regime shifts’ would add further value to 
adaptation efforts. 

Here, recent scientific progress on the early warning of climate 
tipping points is reviewed, noting that successful early warning 
systems would rely on social and technological factors as well as 
on scientific capability17,20,21. In the first section, recent estimates of 
the proximity of climate tipping points are summarized, including a 
discussion of the structural weaknesses of present models. This leads 
to a focus on statistical methods of forecasting, as a complement 
to model-based approaches. In the second section, generic early 
warning indicators of approaching bifurcations are introduced and 
contrasted with the lack of forewarning of purely noise-induced 
transitions. The third section reviews recent tests of bifurcation 
early warning methods on climate model output and palaeoclimate 
data. The fourth section discusses the limitations of early warning 
methods, including false alarms and missed alarms. Finally, the 
research needed to improve scientific early warning capability and 
translate it into effective risk reduction is identified.

Proximity of tipping points
The proximity of different climate tipping points has been estimated 
from a variety of sources including process-based understanding, 
model projections and analysis of palaeoclimate data1,27. For those 
tipping points that can be related (albeit indirectly) to global mean 
temperature change, estimates of individual threshold levels differ 
and range1 across 0.5 to 6 °C of global warming (above 1980–1999). 
Recent estimates of the corresponding aggregate risk of ‘dangerous 
anthropogenic interference with the climate system’ (due specifically 
to the crossing of large-scale thresholds) lie mostly in the range 
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of 1–4  °C of global warming2,28–30. Given the large uncertainties, 
expert elicitation1,3,31,32 has also been used to quantify and combine 
the subjective judgements of experts regarding the proximity of 
different climate tipping points. Even with the most conservative 
assumptions, the results3 suggest it is more likely than not that at 
least one of five tipping points considered will be passed in a >4 °C 
warmer world. 

So, can the proximity of individual thresholds be more accurately 
tied down? Without a precise past analogue of future climate change, 
predictive models are needed. However, weaknesses of recent global 
climate models limit their usefulness in this context. First, some 
potential tipping elements, for example, large ice sheets, have been 
missing from global coupled models. Second, even specific models 
of, for example, ice sheets, have been missing key processes and 
feedbacks that could generate nonlinear dynamics33. Third, at the 
regional scales of interest here, global models have been poor at 
capturing some tipping elements, for example, the West African 
monsoon34, and even among those few models that have captured 
its present pattern, future predictions diverge in sign34 (let alone 
magnitude). Fourth, for some well-studied tipping elements, for 
example, the Atlantic THC, models seem to be systematically 
biased with respect to data regarding its stability regime35. Also, 
where the joint uncertainties of a model and data have been 
formally combined, for example, for the Atlantic THC, the resulting 

uncertainty in tipping threshold (or lack of it) is large36. Finally, no 
model used for future projection has yet been able to simulate the 
most abrupt shifts in the palaeoclimate record. Although several of 
these issues are being addressed, given the current limitations of 
climate models, interest has grown in statistically based methods of 
directly diagnosing proximity to a tipping point.

Predictability and early warnings
The trigger of any future climate tipping point is likely to involve 
some combination of natural variability on top of an underlying 
forcing due to human activities. This suggests a probabilistic 
approach to forecasting is most appropriate, based on a paradigm 
where short-term variability in the climate system is characterized 
as a stochastic process (‘noise’) interacting with longer-term 
deterministic dynamics37. For a given abrupt change, the balance 
of deterministic and stochastic (random) processes driving it will 
determine its predictability. This can be highlighted by the following 
two, idealized, limiting cases (Fig.  1), although in reality, steady 
forcing and noise are both likely to play a role in tipping  phenomena.

Bifurcations. Slow forcing past a bifurcation point (Fig. 1a) fits the 
definition1 of a tipping point (Box 1) and shows greatest promise 
for early warning. In general (and nearly universally38), as a system 
approaches a bifurcation point where its current state (or mode of 
variability) becomes unstable, and it switches to some other state 
(or mode), one can expect to see it become more sluggish in its 
response to small perturbations5,6,8,39,40. This can be visualized for a 
system in a potential well that is getting shallower as it approaches 
a saddle-node bifurcation (Fig.  2); the ball representing the pre-
sent state of the system, rolls back ever slower from perturbations, 
as bifurcation is approached. Mathematically, for systems that are 
gradually approaching a bifurcation point in their equilibrium 
solutions, the leading eigenvalue tends towards zero, indicating 
a tendency towards infinitely slow recovery from perturbations. 
This phenomenon — termed ‘critical slowing down’ in dynamical 
systems theory  — is widely known6,41, but has only recently been 
applied to climate dynamics7,8. 

Slowing down causes the intrinsic rates of change in a system 
to decrease, and therefore the state of the system at any given 
moment should become more like its past state. This increase in 
memory can be measured in a variety of ways. As slowing down 
occurs, time-series data becomes more correlated with itself 
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Figure 1 | Two sources of abrupt change. a, Bifurcation, where a small 
change in forcing (δρ) past a critical threshold ρcrit causes a large, nonlinear 
change in system state (ΔF) (thus meeting the tipping point definition in 
Box 1). b, Noise-induced transition, where internal short-term variability 
(δF) passing an unstable steady state Fcrit causes a large, nonlinear change 
in system state (ΔF) without any change in forcing control (ρ). Solid lines 
are stable steady states, dashed lines are unstable steady states.

The phrase ‘tipping point’ captures the colloquial notion that ‘little 
things can make a big difference’81, that is, at a particular moment 
in time, a small change can have large, long-term consequences 
for a system. The term ‘tipping element’ was introduced1 to 
describe large-scale subsystems (or components) of the Earth 
system that can be switched — under certain circumstances — 
into a qualitatively different state by small perturbations. These 
must be at least sub-continental in scale (length scale of order 
~1,000  km). The tipping point is the corresponding critical 
point — in forcing and a feature of the system — at which the 
future state of the system is qualitatively altered. To define this, 
it must be possible to identify a single control parameter (ρ), for 
which there exists a critical control value (ρcrit), from which a 
small perturbation (δρ > 0) leads to a qualitative change (F̂) in 
a crucial feature of the system (F), after some observation time 
(T > 0). The actual change (ΔF) is measured with respect to a 
reference state of the feature at the critical value:

In this definition, the critical threshold (ρcrit) is the tipping 
point, beyond which a qualitative change occurs, and the change 
may occur immediately after the cause or much later.

The subset of ‘policy-relevant’ tipping elements is defined1 by 
the following (additional) conditions. (1) Human activities are 
interfering with the system such that decisions taken within a 
‘political time horizon’ (TP ~100 years) can determine whether 
the tipping point (ρcrit) is crossed. If it is crossed, (2) the time 
to observe a qualitative change (including the time to trigger 
it) lies within an ‘ethical time horizon’ (TE ~1,000 years). (3) A 
significant number of people care about the fate of the system 
because either it contributes significantly to the overall mode of 
operation of the Earth system, or it contributes significantly to 
human welfare, or it has great value in itself as a unique feature 
of the biosphere.

Box 1 | Defining climate tipping points

  F(ρ ≥ ρcrit + δρ T) – F(ρcrit T) ≥ F > 0∆F = 
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from one point to the next, and this is measured by the (lag-1) 
autocorrelation function (ACF)8,10. Correlations over longer 
timescales also increase and this can be measured by de-trended 
fluctuation analysis (DFA)9, which picks up the same slowing 
down signal as ACF (and is also sensitive to data becoming non-
stationary and tending towards a random walk, for example, as a 
phase transition is approached). In the spectral (that is, frequency) 
domain, critical slowing down is expected to cause a shift of 
power to lower frequencies7, meaning slower fluctuations of 
increased amplitude. Closely related phenomena are ‘small-signal 
amplification’41 and ‘noise amplification’42, in which small periodic 
perturbations or noise are amplified at particular frequencies that 
depend on the type of bifurcation being approached. Amplification 
occurs because of the decrease of damping and strengthening of 
positive feedback (or ‘gain’) in a system, just before bifurcation, 
which can lead to unlimited growth of fluctuations. 

Other early warning indicators of approaching bifurcation have 
been suggested. First, for a given perturbation, a system will move 
further in a shallower potential well (Fig.  2), causing increased 
variance in data as a bifurcation point is approached13,43–45. Second, 
a system approaching a bifurcation may undergo greater amplitude 
deviations in the direction of the state it is destined to shift to, 
than in the opposite direction, with a trend that should show up 
as increasing skewness in its responses44–46. The spatial equivalents 
of increasing correlation47, variance16,17 and skewness48 have also 
been proposed as early warning indicators of thresholds in systems 
where spatial information is available47–49. Finally, in systems with 
spatial patterning, for example, semi-arid vegetation, the nature of 
the pattern may change as a bifurcation is approached50. However, 
this can be an ambiguous indicator of change51, and it is unclear 
how to make it quantitative.

Potentially the most robust early warning indicator of 
approaching bifurcation will be some combination of different 
statistical properties of the data13. Theory suggests that, for the 
simplest case at least, the ratio of variance to correlation time is 
a constant (determined by the noise amplitude) as a bifurcation 
point is approached13. Other studies have combined different 
indicators in pursuit of a robust early warning signal48,52, but these 
combinations tend to be ad hoc and a  posteriori (that is, once 
one knows a tipping point has been passed). What is needed is a 
generic a priori early warning indicator. Hence the recent focus on 
critical slowing down. 

Noise-induced transitions. Purely noise-induced transitions 
between existing stable states (or modes) of a system (Fig. 1b), can 
also be described as tipping points13, although they don’t fit a defini-
tion1 of forced changes (Box 1). The abrupt warming events during 
the last ice age, known as Dansgaard–Oeschger events, provide a 
likely real-world example13. In contrast to approaching bifurcations, 
noise-induced transitions are fundamentally unpredictable13,14 and 
should show none of the early warning signals noted above, because 
there is no systematic change in the shape of the underlying poten-
tial13. However, if the slowest decay rate in a system can be diagnosed, 
this still provides some indicator of the (in this case, unchanging) 
stability of the present state. When combined with a diagnosis of the 
noise amplitude (for example, using wavelet de-noising), this can 
give some indication of the vulnerability of a system state to noise-
induced transitions53. For systems experiencing a sufficient degree of 
noise — such that they are spending time in different states — given 
a long enough time window of data, one can build up a picture of the 
number and stability (or otherwise) of the underlying states, based 
on the frequency distribution of the data54. Furthermore, if a long 
time window is moved through an even longer time series, changes 
in the number and stability of states over time can be detected55,56. 
In cases where the number of states is increasing, ‘flickering’ may 
occur — representing sampling of a new state — before it becomes 

stable5,56,57. Corresponding changes in the frequency distribution 
of the data could be translated into an early warning signal of the 
emergence of a new state56. However, from society’s point of view, 
the individual noise-induced switches between states would remain 
a key concern, and the timing of these individual events (in models 
at least) remains unpredictable, so one has to resort to vulnerability 
indicators (such as, a ‘one-in-x-year’ event).

Other types of tipping point. Whether a tipping point exists 
should be considered in a time-dependent fashion1 (Box  1), and 
there are potentially several other types, including reversible1 and 
rate-dependent58,59 tipping points. Strongly nonlinear but reversible 
transitions are expected to resemble bifurcation-type behaviour1 so 
may carry similar early warnings, including slowing down. For rate-
dependent tipping, rate of forcing and magnitude of noise should 
indicate vulnerability.

Tests of early warning indicators
At present, the best prospects for early warning are for bifurcation-type 
tipping points, even though noise will usually cause a system to exit 
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Figure 2 | Heuristic basis for early warning of an approaching bifurcation 
point. The valleys or potential wells represent stable attractors and the 
ball represents the state of the system. Under gradual forcing, the right 
potential well becomes shallower and finally vanishes (bifurcation) causing 
the ball to role abruptly to the left. Picture the system being nudged around 
by a short-term stochastic process (noise). The radius of the potential 
well is directly related to the system’s response time to such small 
perturbations, which tends towards infinity as bifurcation is approached, 
that is, the system becomes more sluggish in response to perturbations 
(‘critical slowing down’). Larger fluctuations are also expected as 
bifurcation is approached. 
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its present state before a bifurcation is reached. Some of the proposed 
early warning indicators of bifurcation have been tested in climate 
models of varying complexity and in palaeoclimate data approaching 
abrupt transitions (Table 1, Figs 3 and 4). The absolute values of the 
indicators considered (Figs 3 and 4) are affected by the frequency of 
sampling; hence it is just any upwards trend that provides an early 
warning signal. The Kendall tau rank correlation coefficient is used 
here (insets in Figs 3 and 4) to measure the strength of the tendency of 
an indicator to increase (positive values) or decrease (negative values) 
with time, against the null hypothesis of randomness for a sequence of 
measurements against time60 (value approximately zero).

Model tests. Climate model tests have shown that early warn-
ing methods based on detecting critical slowing down work in 
principle, in simple7,10, intermediate complexity8,9,12 (Fig. 3a) and 
fully three-dimensional (3D)11,12 (Fig. 3b) models. Rising variance 
also provides early warning in intermediate complexity models12 
approaching thresholds (Fig. 3a), but is less clear in a 3D model12 
(Fig. 3b). Existing model tests focus largely on the example of a 
slowly forced collapse of the Atlantic THC, in which freshwater 
input to the North Atlantic Ocean is steadily increased by chang-
ing a forcing parameter. Either imposed white noise (Fig. 3a) or 
internal short-term variability (Fig. 3b) are used to diagnose decay 
rates in the model systems. The 3D model example (Fig.  3b) is 
most instructive for what may happen in real-world applications, 
as it couples dynamical components with very different internal 
timescales; the atmosphere and ocean. There is large interannual 
variability in overturning strength in the model ocean (as there 

is in observational data61), which primarily reflects coupling to 
the overlying atmosphere. If one inadvertently samples corre-
sponding rapid decay modes that are not pertinent to bifurcation 
detection (for example, by de-trending with a short filtering band-
width before examining autocorrelation), these actually speed 
up in the example, leading to a ‘missed alarm’12 (Fig. 3b, middle 
panel inset). However, consistent with the short memory of the 
atmosphere, using either a longer filtering bandwidth or aggre-
gating data to a longer (for example, decadal) timescale is suffi-
cient to reveal underlying slowing down in ocean dynamics12. This 
shows the importance of carefully selecting the parameters for 
statistical analysis.

Palaeorecord tests. Palaeoclimate data tests show mixed but 
encouraging results. Initial tests9 detected critical slowing down dur-
ing the ending of the last ice age in ice-core data from the Greenland 
Ice Sheet Project 2 (GISP2). Subsequent work10 showed increas-
ing autocorrelation in eight palaeoclimate time series’ approach-
ing transitions. However, there are no signs of slowing down or 
increased variability in North Greenland Ice Core Project (NGRIP) 
data approaching individual Dansgaard–Oeschger events during 
the last ice age13. The glacial Greenland climate can be character-
ized54 by a stable, cold (stadial) climate state and a marginally stable, 
warm (interstadial) state, with the Dansgaard–Oeschger events rep-
resenting unpredictable noise-induced switches between them13,55. 
However, the cold state became progressively more stable, and the 
warm state less stable, as the ice age progressed, until sometime 
before ~25  kyr bp the warm state passed a bifurcation point and 

Table 1 | Early warning indicators of approaching bifurcation points and tests thereof.

Phenomenon Indicator System Data Source Signal  Reference(s)
Critical slowing down Increasing autocorrelation, AR(1) 

coefficient 
Climate 

Ecological

Models
Palaeorecord

Models

+
+
0
+

8, 10, 12, 53
10, 12, 53
12, 13
44

Increasing return time from 
perturbations

Ecological Models
Lab experiments

+
+

39, 40, 45, 51
6, 52

Increasing DFA exponent Climate Models
Palaeorecord

+
+
−

9, 11, 12
9, 12
12

Spectral reddening Climate
Ecological

Models
Model

+
0

7
79

Increasing spatial correlation Ecological Models
Lab experiments

+
+

47
52

Increased variability Increasing variance Climate Models

Palaeorecord

+
0
+

12
12
12

0 13
− 12

Ecological Models + 43–45, 79
Lab experiments + 52

Increasing spatial variance Ecological Model
Data
Lab experiments

+
+
+

48
49
52

Skewed responses Increasing skewness

Increasing spatial skewness

Climate
Ecological

Ecological

Palaeodata
Model
Lab experiments
Model

0
+
+
+

46
44–46
52
48

'+' means indicator increased as expected; '−' means indicator decreased, contrary to expectation; '0' means there was no significant change in the indicator.
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lost its stability55. During deglaciation, the warm state reappeared, 
but there is some disagreement over whether the Bølling–Allerød 
warming (Dansgaard–Oeschger event 1) in Greenland was pre-
ceded by slowing down10 or not13. There is a weak signal12 in GISP2 
ice-core data, where variance is also increasing12, but neither sig-
nal13 appears in higher resolution NGRIP data. Slowing down in 
Antarctic (Vostok) ice-core data approaching the last glacial ter-
mination is ambiguous12, as is any trend in variance12 (Fig.  4a). 
However, robust signals12 of critical slowing down are found in 
tropical Atlantic sediment-core data before the end of the Younger 
Dryas period (Fig. 4b), suggesting a bifurcation may underlie this 
transition (although variance robustly declines12). In the Holocene, 
a search for increased skewness46 in data before Sahara desertifica-
tion ~5 kyr bp showed no convincing signal (and the data are insuf-
ficient to test for critical slowing down). 

Limitations of early warning
Existing tests show promise for early warning of bifurcation-type 
climate tipping points, but there are potential limitations of ‘false 
alarms’ (false positives) and ‘missed alarms’ (false negatives). 

These problems are common to other natural hazard early warning 
systems, and can undermine confidence in them62,63. However, 
societies can be quite tolerant of false alarms and still respond when 
a true alarm occurs62.
 
False alarms. False alarms can arise because signals interpreted as 
indicative of approaching bifurcation are not statistically robust or 
have other causes13. Comparison of early warning methods being 
applied by different groups is limited44,52, and some uncertainty 
remains over their sensitivity to parameter choices used in the sta-
tistical analyses (such as filtering bandwidth and sliding-window 
length), which can affect the significance, and even the sign, of any 
trend10 (Figs 3 and 4). 

A few guidelines can help guard against false alarms12. Before 
trying to extract warning indicators, where data is of sufficiently 
high temporal resolution to be sampling fast decay modes in the 
system in question, it can be aggregated such that the resulting time 
step is longer than the time it takes non-critical modes to decay, but 
still short enough to sample the slow decay of the critical mode8,12. 
Next the data should be de-trended, with a filtering bandwidth and 
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Figure 3 | Tests of early warning indicators in climate models. Slowly forced collapse of the Atlantic thermohaline circulation (data are maximum 
meridional overturning circulation (MOC)) in a, the GENIE-1 model (n = 37,600) and b, the GENIE-2 model (n = 5,270). Top: data (analysis stops at 
vertical dashed line before transition). Middle: example slowing down indicators from ACF (solid line) or DFA (dotted line). Bottom: example variance 
indicator. Insets: contour plots show Kendall rank correlation coefficient (τ) for the ACF indicator (middle) and variance (bottom) as a function of 
bandwidth used in Gaussian filtering to de-trend the original data, and sliding-window length (white dots correspond to example indicators). The Kendall 
τ coefficient measures the strength of the tendency of an indicator to increase (positive values) or decrease (negative values) with time, against the null 
hypothesis of randomness for a sequence of measurements against time (value approximately zero).
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sliding-window length carefully chosen (see insets in Figs 3 and 4) 
to remove any long-term trends whilst retaining the fluctuations 
pertinent to diagnosing slowing down. These method parameters 
should ideally be chosen based on theoretical guidelines8,53 and the 
physics of the climate subsystem under consideration. Bandwidth 
should be much shorter than the time it takes the forcing parameter(s) 
to change, and much longer than the time it takes (initially) for 
small perturbations to decay8,53. The sliding-window length, when 
multiplied by the time step, should also be much shorter than the 
time it takes the forcing parameter(s) to change8,53. For the example 
of modelled Atlantic THC collapse (for example, Figure  3b), this 
means filtering bandwidth and window length should both be of the 
order of 1,000 yr. When analysing real data (for example, Fig. 4), the 
challenge is to estimate (or extract) the pertinent rates of forcing and 
decay in the system in question. Instead, some existing studies have 
come up with empirical guidelines, for example, a sliding-window 
length of half of the series10. In others, a wide range of values for 
bandwidth and window length have been experimented with to see 
how they affect the results12 (Figs 3 and 4). Clearly more research 
is warranted to formulate and apply solid rules for the choice of 
method parameters.

Once one has a signal, for example, of rising autocorrelation, it 
could still be due to processes other than approaching bifurcation. 
To help guard against this, applying two different methods of 
detecting critical slowing down, can provide a useful cross-check12. 
In most examples12 (Figs 3 and 4b), ACF and DFA methods give a 
similar signal, but in the case of Vostok ice-core data approaching 
the last glacial termination (Fig.  4a) the indicators give opposite 
trends, suggesting the signal is not robust. Alternatively, looking 
for rising variance as well as autocorrelation as a cross-check13 
works well in intermediate complexity models12 (Fig. 3a). However, 
autocorrelation and variance may diverge, as seen in a 3D 
model known to be approaching a bifurcation12 (Fig.  3b), and in 
palaeodata12 (Fig.  4). This divergence can occur if slowing down 
causes fluctuations to decay more slowly, such that it reduces the 
ability of a system to track variable forcing, and thus reduces the 
variance (V. Dakos, personal communication). Alternatively, 
variance may decline in response to other drivers in the climate 
system, for example, the cold climate of the Younger Dryas (Fig. 4b) 
slowed Northern Hemisphere ice-sheet melt and this may have 
reduced the amplitude of freshwater fluctuations perturbing the 
Atlantic THC.
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Figure 4 | Tests of early warning indicators in palaeoclimate data approaching abrupt transitions. a, Vostok ice-core deuterium proxy (‰) for 
local temperature 58.8–17 kyr bp (n = 513).  b, Cariaco basin core PL07-58PC greyscale proxy (0–225) for local productivity in the tropical Atlantic, 
12.5–11.6 kyr bp (n = 2,111).  Top: data (analysis stops at vertical dashed line). Middle: example indicators from ACF (solid line) or DFA (dotted line). 
Bottom: example variance indicator. Insets: contour plots show Kendall rank correlation coefficient (τ) for the ACF indicator (middle) and variance 
(bottom) as a function of bandwidth used to de-trend the data, and sliding-window length (white dots correspond to example indicators). The Kendall τ 
coefficient is as described in Fig. 3.
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Missed alarms. Missed alarms can occur if abrupt transitions 
happen without underlying bifurcation (for example, noise-
induced transitions13), but they can also occur even when bifurca-
tion is approaching, for several reasons. First, to achieve an early 
warning, the time it takes to find out proximity to a threshold 
must be shorter than the time in which noise would be expected to 
cause a system to change state (the ‘mean first exit time’7). Hence 
where internal variability in a system is high, it may exit its present 
state well before a bifurcation point is reached. The noise level can 
be taken account of, and early warning estimates adjusted accord-
ingly53. However, in the worst case, a high noise level could pre-
vent the detection of any early warning signals. Second, existing 
tests of bifurcation early warning (Table 1) are generally based on 
very gradual forcing of the systems in question, whereas human 
activities are forcing certain ‘slow’ parts of the climate system, 
for example, the ocean, ice sheets and biomes, faster than their 
internal dynamics allow them to respond. Hence they will be lag-
ging their equilibrium solutions and may be committed to much 
greater changes than are observed at present64. This means a 
dynamical model simulating transient behaviour will be needed to 
establish proximity to a threshold. Also, for such ‘slow’ systems, a 
long record of their natural behaviour is needed to ascertain their 
slowest response timescale, but this demands longer palaeorecords 
than are available for, for example, the Atlantic THC. 

Towards early warning systems
Despite these limitations, scientific tests show early warning sig-
nals exist for at least some climate tipping points, suggesting 
there is merit in building on them. Early warning systems should 
ultimately combine risk assessment, scientific prediction, careful 
warning formulation, effective communication and an appropriate 
response capability17,20. Here the research needed on risk assess-
ment, improving scientific prediction and assessing response strate-
gies is considered.

Risk assessment. The overall objective of any early warning sys-
tem is to reduce risk20, so the first step is to identify risks and assess 
their (relative) magnitude. Technically, risk is the product of the 
likelihood (or probability) of something happening and its nega-
tive impact (the magnitude of the potential loss). The focus above 
has been on improving information on the likelihood of passing 
a given tipping point, but ignorance regarding the correspond-
ing impacts is arguably greater, and research on this is urgently 
needed65. Passing a climate tipping point is generally expected 
to have large negative impacts, but these have only begun to be 
quantified for some elements and scenarios66, notably a collapse of 
the Atlantic THC67–69. The translation into societal impacts typi-
cally involves several intervening steps and variables, and under-
estimation problems arise because studies tend to only consider a 
subset of consequences or impacted sectors (for example, insur-
ance66). For a collapse of the Atlantic THC67,68, the magnitude and 
even sign of impacts has been contested69, as have questionable 
extrapolations70 to national security concerns71. Such disagree-
ment68–71 is to be expected, as impacts depend on human responses 
and are thus more epistemologically contested than assigning like-
lihoods to events72. 

With these caveats in mind, a ‘straw man’ tipping-point 
risk matrix is presented (Fig.  5). This illustrates some familiar 
dilemmas for the would-be risk manager: relatively high-impact 
low-probability events, such as West African monsoon shift, come 
out with a similar risk to relatively lower-impact high-probability 
events, such as Arctic summer sea-ice loss. However, what stands 
out are the high-impact high-probability scenarios as a priority for 
risk management effort — in this example, Greenland ice-sheet 
meltdown and West Antarctic ice-sheet collapse. To get a more 
scientifically credible and socially legitimate assessment of the 

risks, a wider team of experts and relevant stakeholders should be 
engaged72, including those likely to be most impacted, as well as 
those responsible for formulating and implementing policy. Such 
an assessment could then be used as a guide in prioritizing where to 
develop and deploy early warning systems. 

Improving scientific prediction. The targets for early warning 
systems should also be guided by scientific considerations. In prin-
ciple, the best prospects for bifurcation early warning should exist 
for relatively ‘fast’ systems with little internal memory, for exam-
ple, monsoons, because anthropogenic forcing is slow relative to 
their internal timescales, and only relatively short records of their 
past behaviour should be needed. However, they demand relatively 
higher resolution data, which must reveal the underlying dynamics 
of the system. Models can be used to help identify direct indica-
tors of vulnerability to tipping behaviour for specific systems (for 
example, indicators of bi-stability of the Atlantic THC35), which can 
then be sought in data. Also, models can be used to identify which 
variables already being monitored are best related to early warn-
ing indicators65. Where the connection is weak, theory could guide 
what data should be collected and where. In many cases, the dura-
tion and/or resolution of past data records will need to be improved. 
Real-time monitoring systems may also need to be improved (fol-
lowing the example of monitoring61 of the Atlantic meridional over-
turning circulation at 26.5° N). 

Generic early warning indicators warrant further development. 
Tests on ecological models47 suggest it would be worth looking 
for increasing spatial correlation as an early warning indicator in 
climate data and models. Indicators that make combined use of 

Figure 5 | A ‘straw-man’ risk matrix for climate tipping points. Relative 
likelihoods and impacts are assessed on a five-point scale: low, low-
medium, medium, medium-high and high. Likelihood information comes 
from review of the literature1,27,80 and expert elicitation3 (feint rings indicate 
systems not considered in expert elicitation3). Impacts are based on limited 
research66 and subjective judgment, and are relative to the one system 
(bold ring) with multiple impacts studies66–69. Impacts are considered on 
the full ‘ethical time horizon’ of 1,000 years (ref. 1; Box 1), assuming minimal 
discounting of impacts on future generations. (Note that most tipping point 
impacts would be high if placed on an absolute scale, compared with other 
climate eventualities.)
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spatial as well as temporal data should also be considered. Tests 
on both model output and palaeodata65 should be extended, 
considering a larger variety of tipping points, with short response 
timescales as well as long ones. Independent evaluation of the 
statistical robustness of proposed methods is recommended, and if 
and when confidence is established, early warning methods should 
be applied to observational climate data leading up to the present. 
Future projections from the latest coupled models could also be 
systematically analysed for tipping behaviour, but there remain 
several critical model weaknesses.

An outstanding scientific challenge is to combine the generic 
statistical methods that have been the focus of this review, with 
process-based models, to produce a probabilistic forecasting 
framework. The fundamental issue remains whether current models 
are able to reproduce tipping behaviour, for example, as observed 
in the palaeorecord. But where the tipping element in question is at 
least represented in models, and data analysis reveals information 
on its stability and any underlying trends, then this should be 
used to improve the models. For example, the recently discovered 
systematic bias regarding the stability regime of the Atlantic THC in 
models35 should inspire model revision.

Responding to early warnings. If an early warning can be 
obtained and effectively communicated, the challenge becomes 
to translate it into effective risk reduction, either by trying to 
minimize the likelihood of passing a tipping point or by trying 
to minimize the impacts of passing it. Corresponding risk-reduc-
tion strategies need to be evaluated65. For many tipping elements, 
warning is unlikely to be early enough to allow aversive action 
by mitigation of long-lived greenhouse gases, notably carbon 
dioxide. It is conceivable that faster climate intervention meth-
ods, such as mitigation of short-lived radiative forcing agents73 
or geoengineering to reduce incoming sunlight74, could be more 
effective. However, the multiple sources of inertia in the climate 
system, and in human response systems, make this questionable. 
An analogous problem of avoiding an approaching tipping point 
in an ecological system such as a fishery44 shows that once there 
is a reliable early warning of an approaching tipping point, it is 
too late for slow intervention methods to avoid it. Even when a 
tipping point is unavoidable, mitigation action may still help. For 
example, the rate of Greenland ice-sheet melt (and corresponding 
impacts through sea-level rise), even when committed to irrevers-
ible meltdown, depends on the extent to which this threshold has 
been exceeded75. 

When faced with most tipping point early warnings, adaptation 
to minimize impacts may be the most effective response, although 
maladaptive responses cannot be ruled out4. Appropriate adaptation 
action needs research and will depend on the particular tipping 
point, but always relies on the recipients of the warnings being 
empowered to act effectively on the information76. Deliberate efforts 
to counter tipping in ecological systems can also be envisaged, for 
example, reforestation in West Canadian boreal forests currently 
suffering mountain pine beetle infestation77,78.

Conclusion
Early warning of climate tipping points may be feasible, at a level 
that could provide useful information to help manage the risks that 
they pose. Better assessments are needed of those risks, particularly 
of the impacts of crossing different tipping points, and of the 
response options available in reaction to early warning signals. 
Improvements to early warning methods should start with the 
formulation and application of objective guidelines for the choice 
of method parameters. Even if further research shows that early 
warning is unachievable in practice, it could still provide valuable 
information on the vulnerability of various tipping elements to 
noise-induced changes. 
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