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INTRODUCTION 

 

“Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, 

nor does lightning travel in a straight line.” 

        -Benoit Mandelbrot 

 

Fractal geometry is a subject that has enjoyed substantial growth over the past decade or so, and has 

established connections with many areas of mathematics (including harmonic analysis, potential 

theory, partial differential equations, probability theory, operator algebra, number theory and 

dynamical systems). 

   It is also intrinsically a cross-disciplinary subject, with motivations from and applications to 

physics, biology, geology, economics, and even some artistic fields, like painting and music.  

  Most physical systems of nature and many human artefacts are not regular geometric shapes of the 

standard geometry derived from Euclid. Fractal geometry offers almost unlimited ways of describing, 

measuring and predicting these natural phenomena.  

Many people are fascinated by beautiful images of fractals. Extending beyond the typical perception 

of mathematics as a body of complicated, boring formulas, fractal geometry mixes art with 

mathematics to demonstrate that equations are more than just a collection of numbers. What makes 

fractals even more interesting is that they are best existing mathematical descriptions of many natural 

forms, such as coastlines, mountains or parts of living organisms. 

This project is a brief study about fractal geometry and its applications that is spanned over three 

major chapters. From a note of observations about the occurrence of fractals in nature, we come to 

the mathematical representation of fractals and basic concepts of fractal geometry. We also discuss a 

few examples like Cantor set, Sierpiński triangle, and Koch curve before analysing some applications 

of fractals. 
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CHAPTER 1 

FRACTALS IN NATURE 

 

Fractals are typically self-similar patterns that show up everywhere around us in nature and biology. 

The term "fractal" was first used by mathematician Benoit Mandelbrot in 1975 and used it to extend 

the concept of theoretical fractional dimensions to geometric patterns in nature. 

A fractal is a pattern that the laws of nature repeat at different scales. Examples are everywhere in the 

forest. Trees are natural fractals, patterns that repeat smaller and smaller copies of themselves to 

create the biodiversity of a forest. Each tree branch, from the trunk to the tips, is a copy of the one 

that came before it. This is a basic principle that we see over and over again in the fractal structure of 

organic life forms throughout the natural world. Trees are perfect examples of fractals in nature. You 

will find fractals at every level of the forest ecosystem from seeds and pinecones, to branches and 

leaves, and to the self-similar replication of trees, ferns, and plants throughout the ecosystem. 

Something as simple as a leaf can have fractals in it, like the one below, a macro shot of the leaf 

shows the veins forming an irregular, recurrent pattern. 

  

Fig 1.1 Fractal structure at different levels of forest  

 Fractals are found all over nature, spanning a huge range of scales. Self-similarity is ubiquitous in 

nature. We see self-similarity in a fern leaf, a snowflake, our lung structure, the path of a forest fire, 

villi in our intestines, the Internet, temporal processes such as music, social behaviors, and many 

other patterns in nature. Many of nature's patterns depend on the principle of self-similarity to 

function properly. A good example is the human lung. We find the same patterns again and again, 

from the tiny branching of our blood vessels and neurons to the branching of trees, lightning bolts, 

and river networks. Regardless of scale, these patterns are all formed by repeating a simple branching 

process. Fractal patterns are also observed on a cellular and sub-cellular level in the lungs and other 
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tissues. The alveolar surface, including the cell membranes of individual cells, can be considered 

fractal; if these structures are examined at increasing magnification, increasing levels of detail and 

complexity can be observed. The same concept can also be applied to the membranes of sub-cellular 

organelles, such as those of the mitochondria, nucleus, and endoplasmic reticulum. The concept of 

fractional Brownian motion has been also applied to DNA sequence leading to the discovery of the 

long-range correlation in DNA sequence. 

 

                     

            Fig 1.2 Some fractal patterns observed in biological sub-structures 

Biologists have traditionally modeled nature using Euclidean representations of natural objects or 

series. They represented heartbeats as sine waves, conifer trees as cones, animal habitats as simple 

areas, and cell membranes as curves or simple surfaces. However, scientists have come to recognize 

that many natural constructs are better characterized using fractal geometry. Biological systems and 

processes are typically characterized by many levels of substructure, with the same general pattern 

repeated in an ever-decreasing cascade. Scientists discovered that the basic architecture of a 

chromosome is tree-like; every chromosome consists of many 'mini-chromosomes', and therefore can 

be treated as fractal. 

Neurons from the human cortex: The branching of our brain cells creates the incredibly complex 

network that is responsible for all we perceive, imagine, and remember. Our lungs are branching 

fractals with a surface area. The similarity to a tree is significant, as lungs and trees both use their 

large surface areas to exchange oxygen and CO2. 

Fractals can also be classified according to their self-similarity. There are three types of self-similarity 

found in fractals: 

▪ Exact self-similarity: This is the strongest type of self-similarity; the fractal appears 

identical at different scales. Fractals defined by iterated function systems often display 

exact self-similarity. 
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▪ Quasi-self-similarity: This is a loose form of self-similarity; the fractal appears 

approximately (but not exactly) identical at different scales. Quasi-self-similar fractals 

contain small copies of the entire fractal in distorted and degenerate forms. Fractals 

defined by recurrence relations are usually quasi-self-similar but not exactly self-similar. 

▪ Statistical self-similarity:  This is the weakest type of self-similarity; the fractal has 

numerical or statistical measures which are preserved across scales. Most reasonable 

definitions of "fractal" trivially imply some form of statistical self-similarity. (Fractal 

dimension itself is a numerical measure which is preserved across scales.) Random 

fractals are examples of fractals which are statistically self-similar, but neither exactly nor 

quasi-self-similar. 

Here are some examples of fractal patterns in nature: 

1.1 River Deltas 

Rivers flow downhill with their power derived from gravity. The direction can involve all directions 

of the compass and can be a complex meandering path. 

Rivers flowing downhill, from river source to river mouth, do not necessarily take the shortest path. 

For alluvial streams, straight and braided rivers have very low sinuosity and flow directly downhill, 

while meandering rivers flow from side to side across a valley. Bedrock Rivers typically flow in either 

a fractal pattern, or a pattern that is determined by weaknesses in the bedrock, such 

as faults, fractures, or more erodible layers. 

                        

              Fig 1.3 Fractal dimension of the river delta as branched structures 

1.2 Flowers and Fruits 

One of the beautiful creations of nature – flowers – can be fractals as well, and they add another 

dimension to the whole landscape. In a bunch of flowers, each bunch has the same pattern and so 

does every tiny flower. The repetitive patterns are also found in fruits and vegetables, and are often 
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overlooked.  Pineapple and Bitter Gourd are fine examples of Fractals. Broccoli is another vegetable 

displaying spiral patterns of fractal geometry. A geometric pattern that is repeated at ever smaller (or 

larger) scales to produce self-similar or irregular shapes and surfaces. Fractals are hyper-efficient in 

their construction and this allows plants to maximize their exposure to sunlight and also efficiently 

transport nutritious throughout their cellular structure. These fractal patterns of growth have a 

mathematical, as well as physical beauty. 

          

                           Fig 1.4 Fractal patterns observed in Botanical Structures 

1.3Animals and Birds 

Fractal geometry techniques are particularly suitable for addressing intricate, complex and 

heterogeneous patterns. An interesting example of self-organization in nature is the problem of 

understanding how spots and stripes appear on the skins of some animals. Such patterns often serve 

as camouflage and so have definite survival value. Since leopard spots are not arranged in identical 

patterns from one individual to the next, there must be some amount of randomness involved, and yet 

the patterns of leopards are certainly distinguishable from those of tigers, so there must be some 

mechanism which differs across species. Leopards and ladybirds are spotted; angelfish and zebras are 

striped. The young leopards and ladybirds, inheriting genes that somehow create spottiness, survive.       

       

   Fig 1.5 Occurrence of fractal patterns as spots and stripes on animals 

https://fractalenlightenment.com/wp-content/uploads/2010/10/fractal-in-nature-lotus.jpg
https://fractalenlightenment.com/wp-content/uploads/2010/10/bitter-gourd-fractal-design.jpg


6 
 

1.4 Mountains and Rivers 

Mountains are the result of tectonic forces pushing them up and weathering breaking them down. 

Little surprise they are well-described by fractals. Rivers are also good examples of natural fractals, 

because of their tributary networks (branches off branches off branches) and their complicated 

winding paths. 

          

                   Fig 1.6 Fractal patterns visible in mountains 

Another type of fractal pattern we see in nature is the spiral: spirals in some types of mollusk shells, 

octopus, spirals in star formations and the shapes of galaxies, and hurricanes are spiral-shaped. 

Each chamber of its shell is an approximate copy of the next one, scaled by a constant factor and 

arranged in a logarithmic spiral. A growth spiral can be seen as a special case of self-similarity. All 

fractals are formed by simple repetition, and combining expansion and rotation is enough to generate 

the ubiquitous spiral. 

Plant spirals can be seen in phyllotaxis, the arrangement of leaves on a stem, and in the arrangement 

of other parts as in composite flower heads and seed heads like the sunflower or fruit structures like 

the pineapple and snake fruit, as well as in the pattern of scales in pine cones, where multiple spirals 

run both clockwise and anticlockwise. In disc phyllotaxis as in the sunflower and daisy, the florets 

are arranged in Fermat's spiral with Fibonacci numbering; at least when the flower head is mature so 

all the elements are the same size. Ammonites are extinct relatives of the nautilus. The sutures where 

the internal chamber walls meet the outer shell are fractal curves. A spiral galaxy is the largest natural 

spiral comprising hundreds of billions of stars.  A hurricane is a self-organizing spiral in the 

atmosphere, driven by the evaporation and condensation of sea water.   
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      Fig 1.7 Fractals as spirals 

 

Fractal geometry is a product of fractal theory, a mathematical approach that describes the way space 

is filled by figures or objects. Every pattern visible in nature reflects the fractal pattern in different 

scales. Apart from these examples; on analysing each and every pattern in nature, it eventually tends 

to follow a fractal pattern. The fractal patterns are found all over the nature spanning a wide range of 

scales. 
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CHAPTER 2 

FRACTAL GEOMETRY 

The word fractal from the Latin word ‘Frangere’ which means to break, was coined by Benoit 

Mandelbrot in 1975. 

“Fractal objects contain structures nested within one another. Each smaller structure is a miniature, 

though not necessarily identical, version of the larger form (Peterson,1988,pp.114-115).” In other 

words, one part of the object is a scaled down version of the entire object. The Koch curve and the 

Sierpiński gasket are classic, yet simple, examples of self-similar objects. 

2.1 Geometry of Fractal 

• Most of the fractals are self-similar geometrical objects. 

• Several parts of a fractal look similar as the entire image. 

• It is possible to copy the fractal several times on itself. 

• Examples are clouds, forests, galaxies, leaves, feathers, carpets, bricks etc. 

• They are complex at your first sight, while in fact can be described by a simple algorithm. 

• They can be generated by repeated self copy or partial self copy. 

• Therefore, the redundancy is very high. 

 2.2 Examples Of fractals 

 

                           

Fig 2.1: Sierpiński Triangle 
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Fig 2.2 Sierpiński Carpet          Fig 2.3 Pentagonal Carpet

                                      

                   Fig 2.4 Koch curve                                                       Fig 2.5 Koch Snowflake  

 

Fig 2.6 Some more examples 

2.3 Transformation between Fractals 
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• Imagine a special type of photocopying machine that reduces the image to be copied by a half 

and reproduces it three times on the copy. 

 

                            Fig 2.7 Transformation 

• All the copies seem to be converging to the same final Image. 

• We call the final image the attractor of the copy machine. 

• Because the copying machine reduces the input image, any initial image will be reduced to a 

point as we repeated run the machine. 

• Thus, the initial image placed on the copying machine does not affect the Final Attractor. 

• In fact, it is only the position and the orientation of the copies that determines what the final 

image will look like. 

• We only describe these transformations. 

• Different transformations lead to different Attractors. 

• The transformations must be Contractive. 

• In practice, Affine transformations are rich enough and yield interesting set of Attractors. 

ti  
𝒙
𝒚 =  [

𝑎𝑖 𝑏𝑖

𝑐𝑖 𝑑𝑖
]  

𝒙
𝒚  +  

𝑒𝑖

𝑓𝑖
        

Each Affine transformation can skew, stretch, scale and translate an input image. 

 

 

Fig 2.8 Example by Affine Transformation 
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Fig 2.9 Examples by Affine Transformation 

• Each Affine transformation ti is defined by 6 numbers ai, bi, di, ei and fi. 

• Storing images as collections of transformation leads to image. 

 

2.4 Contractive Affine Transformation 

A transformation f is said to be Contractive if for any two points p1, p2, the distance 

                                         d (f (p1), f(p2)) < s d (p1, p2), for some s<1 

where d (p1, p2) = √(𝒙𝟏 − 𝒙𝟐)𝟐 + (𝒚𝟏 − 𝒚𝟐)𝟐 

Let pf be the fixed point of contractive transformations t. 

Then for any input point pt, 

                     𝐥𝐢𝐦
𝒏→∞

𝒕𝒏(𝒑) = 𝒑𝒇 

• Consider the grey-scale images 

{ (x1, y1, z1) | z1 = f( xi, yi ) is the grey-level at position(xi, yi) } 

ti  

𝒙
𝒚
𝒛

 = 

𝑎𝑖 𝑏𝑖 𝟎
𝑐𝑖 𝑑𝑖 𝟎
𝟎 𝟎 𝑠𝑖

       

𝒙
𝒚
𝒛

  + 

𝑒𝑖

𝑓𝑖

0𝑖

 

where si controls the contrast and 0i the brightness of the transformation. 

• Contractive transformations can send any input points to a particular fixed-point property 

of contractive transformation. 
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2.5 Dimensions 

                   Dimension is a property of a mathematical object that refers to the extent it occupies the 

space in which it is embedded. There are many formal definitions of dimension, if the definition 

allows non-integer values (a fraction), it is a Fractal dimension. The box-counting dimension are 

defined over a vector space, but there is also the packing dimension, compass dimension etc. 

2.5.1 Regular dimensions 

D=1                                                                                                                             Magnify by R =2  

                                                                                                                                    Get N= 2 copies 

                                                                                                                                     N=R1 

2D (D=2)                                                                                                                 

                                                                                                                        Magnify by R = 3 

                                                                                                                                    Get N = 9 copies 

                      N= 32 = R2 

                                                                                                          

2.5.2 General rule for Dimensions 

• A figure is in D dimensions 

• If I magnify the length by R, then I would get RD copies  

• N = RD                    

2.5.3 The dimension formula 

Define R as the magnifying factor, 

Define N as the number of identical(“self-duplicating”) copies. 

Then the dimension of a figure is: 

                                                D =
𝒍𝒐𝒈(𝑵)

𝒍𝒐𝒈(𝑹)
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2.6 Fractal 

          A Fractal is a never- ending patters. Fractals are infinitely complex patterns that are self-similar 

across different scales. 

Fractals are considered to be important because they define images that are otherwise cannot be 

defined by Euclidean geometry. 

2.6.1 Self-Similar Objects and Fractal Dimensions 

• Fractal dimension is a measure of how “complicated” a self-similar figure is. 

• i.e., to measure the fractal Dimension, the picture must be self-similar. 

• Self-similar regular shapes: Line, Plane, Cube 

• Self-similar irregular shapes: cauliflower, Galaxy, Coast Line. 

2.6.2 Scaling Factor 

We can divide the object in N self-similar pieces then, how to get original object from size of these 

N pieces? 

Scaling Factor: If we want to get original object from any part of self-similar then we 

have to scale the object using scaling factor. 

For example: 

If we divide the line in 2 equal pieces then SF is 4 

If we divide the plane in 4 equal pieces then SF is 2 

Mandelbrot defined a fractal to be a set with Hausdroff dimension strictly greater than its topological 

dimension. (The topological dimension of a set is always an integer and is 0 if it is totally 

disconnected. If each point has arbitrarily small neighbourhoods with boundary of dimension 0 and 

so on.)  

The Hausdroff dimension, more specifically, is a further dimensional number associated 

with a given set, where the distances between all members of that set are defined. Such a 

set is termed a metric space. The dimension is drawn from the extended real numbers, R, 

as opposed to more intuitive notion of dimension, which is not associated to general metric 

spaces, and only takes values in the non-negative integers. 

2.7 Fractal Dimension (Or Non-integer dimension) 

Input: 

• No of self-similar pieces 
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• Scaling Factor 

         Fractal Dimension=log (No. Self-Similar Object)/log (Scaling Factor) 

Dimension for the plane=2 

Dimensions for the cube=3 

While the Hausdroff dimension of a single point is zero, that of a line segment is 1,of a square is 

2,and of a cube is 3,for fractals such as this, the object can have a non-integer dimension. 

Example of non-integer dimensions: 

Division of certain sets into four parts. The parts are similar to the whole with ratios: 

1. 
1

4
 for line segment 

2. 
1

2
 for square 

3. 
1

9
 for middle third Cantor set 

4. 
1

3
 for von Koch curve 

These dimensions indicate how they reflect scaling properties and self-similarity. 

Dimension for Cantor set  𝐷 =
𝑙𝑜𝑔2

𝑙𝑜𝑔3
= 0.631 

Dimension for the Koch curve 𝐷 =
𝑙𝑜𝑔4

𝑙𝑜𝑔3
= 1.26 

Dimension for Sierpiński triangle 𝐷 =
𝑙𝑜𝑔3

𝑙𝑜𝑔2
= 1.585 
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2.8 Cantor Set 

The Cantor ternary set is created by iteratively deleting the open middle third from a set of line 

segments. 

Choose a particular portion say between two points 0 and 1. 

Let F0 = [0,1]. 

We first remove the open middle third segment ( 
1

3
, 

2

3
 ) of [0,1]. Then define F1 as  

F1 = [0, 
1

3
 ] ∪ [ 

2

3
 , 1] 

Next, we remove the open middle third of each of the two closed intervals in F1 to obtain the set F2 

F2 = [ 0, 
1

9
 ] ∪ [ 

2

9
 , 

3

9
 ] ∪ [ 

6

9
 , 

7

9
 ] ∪ [ 

8

9
 , 1 ] 

We see that F2 is the union of 22 = 4 closed intervals each of which is of the form [ k / 32 , (k+1) / 32 

] each having length 1/32 . 

Next, we remove the open middle thirds of each of the sets to get F3. Then F3 is the union of 23 = 8 

closed intervals of length 1/33 .  

Continuing this way, we obtain a sequence of closed sets Fn such that  

• F1 ⊃  F2 ⊃ F3 ⊃ … 

• Fn is the union of 2n interval of the form [ k/ 3n , (k+1) / 3n ] each of length 1/3n 

• Fn+1 is obtained from Fn by removing the open middle third of each of the intervals in Fn . 

The set F = ∩n∈N  Fn  is called the Cantor set. The Cantor ternary set contains all points in the interval 

[0,1] that are not deleted at any step in this infinite process.  

 

Fig 2.10 Cantor Set 
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2.9 The Sierpiński triangle 

The Sierpiński triangle is a fractal described in 1915 by Waclaw Sierpiński. It is a self-similar 

structure that occurs at different levels of iterations, or magnifications. It is one of the simplest fractal 

shapes in existence. 

2.9.1 Construction 

In the Sierpiński triangle a pattern is begun by finding the midpoints of the line segments of the largest 

triangle. Then, by connecting these midpoints smaller triangles are created. This pattern is then 

repeated for the smaller triangles, and essentially has infinitely many possible iterations.  

 

    Fig 2.11: First five iterations of Sierpiński triangle. 

 

2.9.2 Non – Integer Dimension 

 

Using this fractal as an example, we can prove that the fractal dimensions is not an integer. Looking 

at the picture of the first step in building the Sierpiński Triangle, we can notice that if the linear 

dimension of the basis triangle is doubled, then the area of the whole fractal (black triangles) increases 

by a factor of three. 

Using the pattern given above, we can calculate a dimension for the Sierpiński Triangle. 

𝐷 =
𝑙𝑜𝑔3

𝑙𝑜𝑔2
= 1.585 

The result of this calculation proves the non-integer fractal dimension. 

The number of triangles in the Sierpiński Triangle can be calculated with the formula: 

𝑁 = 3k 

Where 𝑁 is the number of triangles and 𝑘 is the number of iterations. 
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2.10 Von Koch Curve 

 

The Koch snowflake or the Koch Curve is a fractal curve and one of the earliest fractals to have been 

discovered. Koch constructed his curve in 1904 as an example of a non-differentiable curve, that is, 

a continuous curve that does not have a tangent at any of its points. 

2.10.1 Construction 

Begin with a straight line. Divide it into three equal segments and replace the middle segment by the 

two sides of an equilateral triangle of the same length as the segment being removed. Now repeat, 

taking each of the four resulting segments, dividing them into three equal parts and replacing each of 

the middle segments by two sides of an equilateral triangle. Continue this construction. 

The Koch curve is the limiting curve obtained by applying this construction an infinite number of 

times. 

 

                                           Fig 2.12 The Koch curve or Koch snowflake 

 

2.10.2 Properties of Koch Edge 

The Von Koch Curve clearly shows the self-similarity of fractal. The same pattern appears 

everywhere along the curve in different scale, from visible to infinitesimal. Ideally, the iteration 

process should go on indefinitely. 

The length of the intermediate curve at the nth iteration of the construction is (4/3)n, where n = 0 

denotes the original straight line segment. Therefore, the length of the Koch curve is infinite. 
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Moreover, the length of the curve between any two points on the curve is also infinite since there is 

a copy of the Koch curve between any two points. 

Three copies of the Koch curve placed outward around the three sides of an equilateral triangle form 

a simple closed curve that forms the boundary of the Kock snowflake. Three copes of the Koch curve 

placed so that they point inside the equilateral triangle create a simple closed curve that forms the 

boundary of the Koch anti-snowflake. 

                                                              

                       Fig 2.13 Koch snowflake                     Fig 2.14 Koch Anti-snowflake  
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CHAPTER 3 

APPLICATIONS OF FRACTAL GEOMETRY 

                     The facts that fractals are abundant in nature and natural phenomena, is itself a testimony 

to the potential applicability and design efficiency of these shapes. Fraction shapes capture the fine 

details and organic irregularity of natural forms like clouds, cost lines and land shapes.  

                       Fractals have variety of applications in science. Because it’s properly of self-similarity 

exists everywhere. They can be used to model plants, blood vessels, nerves, explosions, clouds, 

mountains, turbulence, etc. Fractal geometry models natural objects more closely than does other 

geometries. 

                                 Engineers have begun designing and constructing fractals in order to solve 

partial engineering problems. Fractals are also used in computer graphics are even in composing 

music. 

                       Fractal geometry has permeated many areas of science. Such as astrophysics, 

biological science, and has become one of the most important techniques in computer graphics. 

Architects are using fractal geometries to create more impressive buildings. Digital artists use fractal 

geometries to create interesting art work which engages views at variable scales Game designers are 

always seeking to create natural organic environments. Which do not seem to be constructed and 

synthetic. Fractal geometry can be applied in such environments to include random elements which 

can enrich user experience. 

                         Fractals are also used to generate natural patterns which can create effective 

camouflage and preclude artificial repetitive motifs. Fractals have been used by seismologists to 

understand earthquake phenomena and gain deeper understanding of the earth physical constitution. 

As well as the distribution pattern of earthquakes. Financial theorists have even applied fractals to 

understand and forecast stock market patterns.                                              

3.1 Fractals in Computer Graphics 

The biggest usage of fractals in everyday life is in computer science. Many images compression 

schemes use fractal algorithms to compress computer graphics files to less than a quarter of their 

original size.  

               Computer graphics artists uses many fractals forms to create text termed landscapes and 

other intricate models. 
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                  It’s possible to create all sorts up realistic “Fractal forgesies” images of natural scene, such 

a lunar landscape, mountain ranges and coastlines. We can see them it may special effects in 

Hollywood movies and also in television ads. The “genesis effect” in the films “star trek II”. “The 

worth of khan” was created using fractal used to create the geography of a moon. and to draw the 

outline of dreaded “death star”. But fractal signals can be used to model natural objectives. Allowing 

up to define mathematically our environment with a higher accuracy than ever before. 

3.2 Fractals in Biological Science 

                      Biological scientists have traditionally model nature using Euclidean representations of 

natural object or series. They represented heartbeats as sine waves. Conifer trees as cones, animals 

habit a simple area, and cell membranes as curves or simple surfaces however scientists have come 

to recognize that many natural constructs are better characteristic using fractal geometry. Biological 

systems and processes are typically characterized by many levels of substructure with some general 

pattern repeated in an ever-decreasing cascade.  

                          Scientists discovered that basic architecture of a chromosome in tree like: every 

chromosome consist of many “mini chromosomes” and therefore can be treated as fractal for a human 

chromosome, for in theory one can argue that everything existent on this world is fractal: - 

➢ The branching of tracheal tubes  

➢ The leaves in trees 

➢ The veins in hand 

➢ Water swirling and twisting out of a tap 

➢ A puffy cumulus clouds 

➢ Tiny oxygen molecules or the DNA molecules 

➢ The stocks market 

 

  All of these are fractals from people ancient civilizations to the marker of star trek II: The worth of 

khan scientists. Mathematicians and artists alike have been captivated by fractal and have utilized 

them in their work. 

3.3 Fractals in Film Industry 

  One of the more trivial applications of fractals is their visual effect. Not only do fractals have a 

stunning aesthetic value that is, they are remarkably pleasing to the eye, but they also have a way to 

trick the mind. Fractals have been used commercially in the film industry. Fractal images are used as 

an alternative to costly elaborate sets to produce fantasy land scape. 
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3.4 Fractals in Astrophysics 

Nobody really how many stars actually glitter in our skies, but have you ever wondered how they 

were formed and ultimately found their home in the world? Astrophysicist believe that the key to this 

problem in the fractal nature of interstellar gas. Distributions are hierarchical, like smoke trails or 

billow cloud in the sky and the clouds in space. Giving them an irregular but repetitive pattern that 

would be impossible to describe without the help of fractal geometry. 

3.5 Fractals in Image Compression 

Most use full application of fractals and Fractal geometry in image compression it is also one of the 

more controversial ideas. The basic concept behind of fractal image compression is to take an image 

and express it as an it rated system of functions the image can be quickly displayed, and at any 

magnification with infinite levels of fractal details. The largest problems behind its ideas is deriving 

the system of functions which describe an image. 

3.6 Fractals in Fluid Mechanics 

The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic and very 

difficult to model correctly. A fractal representation of them helps engineers and physicists to better 

understand complex flows. Flames can also be simulated. Porous media have a very complex 

geometry and are well represented by fractal. This is actually used in petroleum science.  

3.7 Fractals in Medicine 

Biosensor interactions can be studied by using fractals 

3.8 Fractals in Astronomy 

Fractals will may be revolutionize the way that the universe is seen. Cosmologists usually assume 

that matter is spread uniformity across space. But observations show that is not true. Astronomers 

agree with that assumptions on “small” scales. But most of them think that the universe is smooth at 

very large scales. However, a dissident group of scientists claims that the structure of the universe is 

fractal at all scales. If this new theory is proved to be correct, even the big bung models should be 

adapted. Some years ago, we proposed a new approach for the analysis of galaxy and cluster 

correlations abused on the concepts and methods of modern statistical physics. This led to the 

surprising result that galaxy correlations are fractal and not homogeneous up to the limits of the 

available catalogues. In the meantime, many more redshifts have been measured and we have 

extended our method also to the analysis of number counts and angular catalogues. The result is that 
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galaxy structures are highly irregular and self-similar. The usual statistical method, based on the 

assumption of homogeneity, are therefore inconsistent for all the length scales probed until now. A 

new move general conceptual frame work is necessary to identity the real physical properties of these 

structures. But present cosmologists need more data about the matter distribution in the universe to 

prove (or not) that we are living in a fractal universe 

3.9 Fractals in Telecommunications 

A new application is fractal- shaped antennae that reduce greatly the size and the weight of the 

antennae. Fractenna is the company which sells these antennae. The benefits depend on the fractal 

applied, frequency of interest, and so on. In general, the fractal parts produce ‘fractal loading’ and 

makes the antenna smaller for given frequency of use. Practical shrinkage of 2-4 times is realizable 

for acceptable performance. Surprisingly high performance is attained. 

3.10 Fractal Antenna 

A fractal antenna is an antenna that uses a fractal, self-similar design to maximize the length, or 

increase the perimeter (on inside section or the outer structure), of material that can receive or transmit 

electromagnetic radiation within a given total surface area or volume. cohen use this concept of fractal 

antenna. And it is theoretically it is proved that fractal design in the only design which receives 

multiple signals. 

 

            Fig 3.1 A fractal antenna 

3.11 Fractals in Surface Physics 

Fractals are used to describe the roughness of surface is characterized by a combination of two 

different fractals. 

 

 



23 
 

CONCLUSION 

 

By now, we have talked about what fractals are, and we used some famous fractals to illustrate how 

we can create a fractal image. However, fractals are much more than that. 

Many scientists have found that fractal geometry is a powerful tool for uncovering secrets from a 

wide variety of systems and solving important problems in applied science. The list of known physical 

fractal systems is long and growing rapidly. 

Fractals improved our precision in describing and classifying “random” or organic objects, but maybe 

they are not perfect. Maybe they are just closer to our natural world, not the same as it is. Some 

scientists still believe that true randomness does exist, and no mathematical equation will ever 

describe it perfectly. So far, there is no way to say who is right and who is wrong. 

Perhaps for many people fractals will never represent anything more than beautiful pictures. 

Fractals are, without a doubt, foreign to a great many Mathematics students. It is precisely because 

of the newness of the science and the unfamiliarity with the concepts that students should study fractal 

geometry. They could benefit from an introduction to an area of mathematical research. They could 

read about new discoveries in the field in current periodicals. They could see applications of the 

science in popular culture. They could see Mathematics as a study of dynamic system other than one 

that has remained static for centuries. 

We believe that students would benefit by learning different types of mathematics. One that could 

lead students to a sense of mathematical discovery. One that could show students that there is a way 

to do some mathematical experimentation using current technology. It is strongly felt that most high 

school mathematics students benefit by learning new branches of mathematics. An introduction to 

fractal geometry fulfil all these objectives. 
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