Multiscale Models for Sea Ice

Ken Golden, University of Utah



Seaiceis a multiscale
fluid-solid composite.
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Central theme:

How do we use “small scale” information to
find effective behavior relevant to large-scale
sea ice physics and ecology models?



HOMOGENIZATION for Composite Materials
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resistors in series resistors in parallel
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STATISTICAL PHYSICS

How do microscopic laws determine macroscopic behavior?

Banwell, Burton, Cenedese, Golden, Astrom, Physics of the Cryosphere, Nature Reviews Physics 2023

graphene



Polar Ecology and the Physics of Sea Ice

How do sea ice properties
affect the life it hosts?

How does life in and on sea ice
affect its physical properties?




What is this talk about?

A tour of recent results on multiscale modeling of
physical and biological processes in the sea ice system.

microscale
mesoscale

macroscale

through the lens of several
areas of mathematics



microscale
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fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo  nutrient flux for algal bloom



brine volume fraction and connectivity increase with temperature

T=-15°C, $=0.033 T=-6°C, $=0.075 T=-3°C, $=0.143

T=-8°C, ¢$=0.057 T=-4°C, ¢=0.113

X-ray tomography for brine in sea ice Golden et al., Geophysical Research Letters, 2007



percolation model
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Critical behavior of fluid transport in sea ice
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Golden, Ackley, Lytle Science 1998

R U L E o F F IV E S Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009



nutrient replenishment
controlled by ice permeability

biological activity turns on
or off according to
rule of fives

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

sea ice algal
communities

D. Thomas 2004

critical behavior of microbial activity
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Convection-fueled algae bloom
Ice Station Weddell
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cross-pollination




sea ice human bone

P. Hansma




Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007

i percolation theory

Research for fluid permeability
Letters

28 AUGUST 2007
Volume 34 Number 16

2
k(d)= k,($—0.05)
ko=3x10" w’

critical exponent t
critical path analysis

microscale

X-ray CT
governs
mesoscale confirms rule of fives

processes Pringle, Miner, Eicken, Golden

J. Geophys. Res. 2009
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measuring
fluid permeability
of Antarctic seaice

SIPEX 2007



electrical measurements Wenner array

vertical conductivity

Zhu, Golden, Gully, Sampson PhysicaB 2010
Sampson, Golden, Gully, Worby Deep Sea Research 2011



Sea ice algae secrete exopolymeric substances (EPS)
affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?
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® 2D random pipe model with bimodal distribution of pipe radii

® Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden

EPS - Algae Model Jajeh, Golden, Deming, Reimer 2025

Multiscale Modeling and Simulation, 2018
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brine skeletonization

Manav Arora, Lou Kondic, Darrren Skolnik, Ken Golden

porosity = 0.022 porosity = 0.114



skeletonization of porous brine microstructures
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Thermal Evolution of Brine Fractal Geometry in Sea Ice

Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer,
Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2024

fractal dimension of the
coastline of Great Britain
by box counting

N(e) ~e P

brine channels and
inclusions “look”
like fractals

(from 30 yrs ago)

X-ray computed
tomography of
brine in seaice

columnar and granular



The first quantitative study of the fractal dimension of brine in sea ice
and its strong dependence on temperature and porosity.
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discovered for sandstones
statistically self-similar porous media Fractal geometry of brine in sea ice, Ward, et al. 2024



Implications of brine fractal geometry on sea ice ecology and biogeochemistry

10 cm 1cm 2 mm

Brine inclusions are home to
ice endemic organisms, e.g.,
bacteria, diatoms, flagellates,
rotifers, nematodes.

The habitability of seaice
for these organisms is
inextricably linked to its
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.
(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.



Remote Sensing of Sea Ice

Effective complex permittivity of a composite

with radar, microwaves, ... . o .
in the quasistatic (long wavelength) limit

interaction of
EM waves with

brine and \i’g D — GE

° . polycrystalline
& microstructures,
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What are the effective propagation characteristics
of an EM wave (radar, microwaves) in the medium?



Analytic Continuation Method for Homogenization

Bergman 1978, Milton 1979, Golden & Papanicolaou 1983, Milton 2002

complexities of mixture geometry
Stieltjes integrals for homogenized parameters
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@ rigorous forward bounds; approximations;
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quantum mechanics
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forward and inverse bounds on the complex permittivity of sea ice

forward bounds inverse bounds

matrix particle = |
% 1:01 F qm,n
s | R
:_% 0.96 . ’
% 0:94: 0 ’

. Golden 1995, 1997 T s o
Slab temperature °C
4.75 GHz data Bruno 1991
Inverse Homogenization inversion for brine inclusion

Cherkaev and Golden (1998), Day and Thorpe (1999),

Cherkaev (2001), McPhedran, McKenzie, Milton (1982), Separatlons in sea ice from

Theory of Composites, Milton (2002) measurements of effective
egge o %
i} composite geometry complex permittivity ¢
& ) (spectral measure p) rigorous inverse bound
] on spectral gap
inverse bounds and construct algebraic curves which bound

admissible region in (p,q)-space

recovery of brine porosity

Gully, Backstrom, Eicken, Golden Orum, Cherkaeyv, Golden
Physica B, 2007 Proc. Roy. Soc. A, 2012



probability density

Uncertainty Quantification for Homogenization
via Stieltjes Integral Representations

Clara Platt, Elena Cherkaev, Akil Narayan, Debdeep Bhattacharya, Ken Golden 2025

Classical bounds in the analytic continuation method assume fixed microstructural
parameters, such as porosity, local permittivities, or inclusion separations.

But what if there is uncertainty, and they are random variables?

brine volume fraction p,

separation parameter q

Hashin-Shtrikman bounds

matrix-particle bounds

m(h) |

UQ for complex permittivity & thermal conductivity of sea ice



Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation
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of scientific publishing atthe  of sea ice using remote should walk so as to expend
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@® Stieltjes integral representation for

effective complex permittivity
Milton (1981, 2002), Barabash and Stroud (1999), ...

® Forward and inverse bounds
orientation statistics
@® Appliedtoseaice using

two-scale homogenization
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higher threshold for fluid flow in granular sea ice

nutrient fluxes for microbes

microscale details impact “mesoscale” processes meltpond drainage
snow-ice formation

columnar granular

5% 10%

Golden, Furse, Gully, Lin, Mosier, Sampson, Tison 2025

electromagnetically distinguish ice types
inverse homogenization for polycrystals



Spectral computations for sea ice floe conflguratlons
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Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT)
to describe quantized energy levels of heavy atomic nuclei.

[N] i~ N(O,1), A= (N+N")/2  Gaussian orthogonal ensemble (GOE)
[N]ij ~ N(0,1)+iN(0,1), A= (N+ NT)/Z Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

Spacing distributions of the first billion zeros

of the Riemann zeta function
Spacing distributions of energy levels for heavy atomic nuclei rieanest nelanber spasinas
1.0 T T T f’rﬂq“‘a\_
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Universal eigenvalue statistics arise in a broad range of “unrelated” problems!



s extended Anderson localization Anderson 1958

° ° Mott 1949
”U”“VU“U“ i “UU”im disorder-driven Evangelou 1992
Shklovshii et al 1993

_,m’cg“ﬂp;~f~'?.ia”?ed metal / insulator transition

propagation vs. localization in wave physics:
Wave equations quantum, optics, acoustics, water waves

Laplace + Diffusion

equations we find percolation-driven

Anderson transition for classical transport in composites

mobility edges, localization, universal spectral statistics

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

but no wave interference or scattering effects at play!



Order to Disorder in Quasiperiodic Composites

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, Communications Physics 2022
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Golden, Goldstein & Lebowitz, Phys. Rev. Lett., 1985
Golden, Goldstein & Lebowitz, J. Stat. Phys., 1990
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1D, 2D imhomogeneous materials - quasiperiodic

o(x) =3+ cosx + coskx

effective conductivity

. constant k& 1irrational quasiperiodic
o (k) =

fk) k rational periodic

Golden, Goldstein, Lebowitz
Classical transport in modulated structures, Phys. Rev. Lett. 1985

G. Bouchitté, S. Guenneau, F. Zolla, SIAM Multiscale Modeling & Simulation, 2010
E. Cherkaev, S. Guenneau, N. Wellander, IEEE Metamaterials, 2017

N. Wellander, S. Guenneau, E. Cherkaev, Math. Methods in the Applied Sci., 2017



—— Golden, Goldstein, and Lebowitz
/" f Phys. Rev. Lett. 1985
J. Stat. Phys. 1990

// £ (Classical transport in quasiperiodic media
/ ,’: ;

1D two component composite material

effective conductivity G*(k)

line of slope k through
an infinite checkerboard effective resistivity 1/ o™ (k) = 1 - G(k)
02 ' G (k)
R = 0, kirrational T
()= 1/pq, k= p/q rational '

continuous at k irrational

discontinuous at k rational oo |




Moiré patterns generate two component composites

on any scale
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graphene twisted bilayer graphene
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Yankowitz

graphene Moiré superlattice
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magic
angle

Li

Blrowska

superconductivity, novel band topology
semiconductor quantum dots, acting as “artificial atoms”

Moiré patterns from “interference” of two periodic lattices

Moiré superlattices - condensed matter playground (Li et al, 2023)



Order to disorder in quasiperiodic composites

Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

twisted bilayer composites
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mesoscale



advection enhanced diffusion

-0.1 -0.2
effective diffusivity o 04
nutrient and salt transport in sea ice o | 06 ’
heat transport in sea ice with convection
-0.4 -0.8

sea ice floes in winds and ocean currents
tracers, buoys diffusing in ocean eddies
diffusion of pollutants in atmosphere

‘ ‘ Wells etal. 2011
0 0.1 0.2 0.3 0.4

advection diffusion equation with a velocity field ©

oT =
ﬁ u=0 i S ~ Drake
homogenize
oT -
= = AT
or "

k" effective diffusivity

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 |~ g i o
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 LB s T Masters, 1969 o
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Homogenization for convection-enhanced
thermal transport in seaice

N. Kraitzman, R. Hardenbrook,
H. Dinh, N. B. Murphy, E. Cherkaev,
J. Zhu and K. M. Golden

August 2024

First rigorous mathematical theory of
thermal conductivity of sea ice with
convective fluid flow; captures data.

missing in climate models
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tracers flowing through inverted sea ice blocks



Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

oo [ 20). o= [

@ L is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator /T HI'

H = stream matrix , & = local diffusivity
[:=-V(-A)"1V- |, Ais the Laplace operator

i HI" is bounded for time independent flows

© 6 o ¢

F (k) is analytic off the spectral interval in the k-plane

rigorous framework for numerical computations of
spectral measures and effective diffusivity for model flows

new integral representations, theory of moment calculations

separation of material properties and flow field



Bounds on Convection Enhanced Thermal Transport

SlmUIatlonS data [Trodahl et al., 2001]
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Monte-Carlo simulations of SDE with
temperature dependent Péclet number P

Rigorous Padé approximant bounds in terms of
P using Stieltjes integral + analytic continuation
method for the measure
strength of advection B = kP/2m

Euler-Maruyama and subsampling
methods for SDE

Darcy velocity v = 0.5 [m/s]

cat’s eye flow model for
brine convective flow

Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu, & Golden
Proc. Royal Soc. A, 2024



ocean wave propagation through the sea ice pack

. ) @ wave-ice interactions critical to
Stieltjes integral representation and bounds growth and melting processes

the complex viscoelasticity of the ice - ocean layer

@ break-up; pancake promotion

Sampson, Murphy, Hallman, Cherkaev, Golden 2025 floe size distribution

effective layer parameter
previously fit to wave data

Keller 1998
Mosig, Montiel, Squire 2015
Wang, Shen 2012

Analytic Continuation Method

Bergman 1978, Milton 1979
Golden and Papanicolaou 1983
Milton, Theory of Composites 2002

homogenized
parameter
depends on
&4 seaice
. concentration
. andice floe
geometry

like EM waves



IPR

Resolvent representation of the
deviatoric strain field

X€s = s(sI — XI‘Sx) _lxeg

Strain field IPR

Waves in sea ice and solid state physics
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The sea ice pack has fractal structure.

Self-similarity of sea ice floes
Weddell Sea, Antarctica

[
o

fractal dimensions of Okhotsk Sea ice pack
smaller scales D~1.2, larger scales D~1.9

fractal dim. vs. floe size exponent Toyota, et al. Geophys. Res. Lett. 2006
Adam Dorsky, Nash Ward, Ken Golden 2024 Rothrock and Thorndike, J. Geophys. Res. 1984




SEA ICE ALGAE high level of local heterogeneity

Can we improve agreement between algae models and data?

80% of polar bear diet can be traced to ice algae*.

*Brown TA, et al. (2018). PloS one, 13(1), €0191631



HETEROGENEITY in PARAMETERS & CONDITIONS

At each location within a larger region, consider

dN
Frimba NP —nN treating parameters
AP as random variables
— = yBNP — 4P
ar
N(0) = P(0) =

VAN VAR VAN

growth rate, B Initial nutrients, N, Initial algae, P,

But, Monte Carlo for Full Algae Model: 8 hours X 10,000
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Jody R. Reimer"?©® | Frederick R. Adler'">® | Kenneth M. Golden' | Akil Narayan'~

'Department of Mathematics, University Abstract
of Utah, Salt Lake City, Utah, USA

2 el g ol e There is often considerable uncertainty in parameters in ecological models. This
School of Biological Sciences, University

of Utah, Salt Lake City, Utah. USA uncertainty can be incorporated into models by treating parameters as random
3Scientific Computing and Imaging

Institute, University of Utah, Salt Lake
City, Utah, USA uncertainty quantification methods, such as polynomial chaos approaches, allow

variables with distributions, rather than fixed quantities. Recent advances in

Correspondences for the analysis of models with random parameters. We introduce these methods
Jody R. Reimer, Department of

Mathematics and School of Biological with a motivating case study of seaice algal blooms in heterogeneous environments.

gde"ces'lum;;"s“y ERChy SalCdie We compare Monte Carlo methods with polynomial chaos techniques to help

ity, Utah, USA. . |

Email: reimer@math.utah.edu understand the dynamics of an algal bloom model with random parameters.
N-P Model Introduce polynomial chaos approach to widely used

ecological ODE models, but with random parameters.



ECOLOGICAL INSIGHTS

=== Mean
1 +1 stdev range
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¢ Jower peak bloom intensity

® Jonger bloom duration

® able to compare variance to data

Inverse Problem: given algal and nutrient data, recover growth rate distribution
Anthony Lee, Jody Reimer, Akil Narayan, Ken Golden 2024



Optimal Movement of a Polar Bear in
a Heterogenous Icescape

Nicole Forrester, Rylie Gagne, Jody Reimer, Ken Golden 2025 -

Polar bears expend 5X more energy
swimming than walking on sea ice.

As seaice is lost, how
do polar bears optimize
their movement to save
energy and survive?

https://pluspng.com/img-png/polar-bear-png-polar-white-bear-png-1000.png
https://zt2downloadlibrary.fandom.com/wiki/Bearded Seal (Tamara Henson)




Polar Bear Percolation

To study the importance of ice connectedness, we
exaggerate the data by setting the cost of walking
on ice to 0 with the cost of swimming still at 5.
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melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
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Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



Topological Euler characteristic = # maxima + # minima = # saddles
Data Analysis topological invariant

filtration - sequence of nested topological spaces, indexed by water level

40 Expected
Euler Characteristic Curve (ECC)
30 -
o tracks the evolution of the EC of
= 0 the flooded surface as water rises
o)
© 10+
g zero of ECC ~ percolation
S o percolation on a torus
I creates a giant cycle
@D 10|
20}
Bobrowski &
30 | | | | Skraba, 2020 . .
- image analysis
! 00 o o0 1 Carlsson, 2009 porous media
Level Set Height 500 realizations cosmology

Vogel, 2002 GRF  brain activity

Physical Review Research (invited, in revision), R. Moore, J. Jones, D. Gollero, R. Hardenbrook, C. Strong, K. M. Golden 2024



100 year old model for magnetic materials

From magnets to mEIt ponds used to explain melt pond geometry

(3¢ .
magnetic domains Arctic melt ponds magnetic domains Arctic melt ponds

in cobalt in cobalt-iron-boron

LAY LY
A/V M /T/T//: I/?//;/V spin down

1 | spin up

real ponds
(Perovich)

r
' e . Ma, Sudakov, Strong,
| bt Golden, New J. Phys. 2019

- 1..‘ }'- .
nh_’_’:‘" o

model

=
| ¥ K- o WYY
Time evolution - William Harrison, Tyler Evans, Ken Golden 2024



macroscale



number of days

500

Anomalous diffusion in sea ice dynamics 7/

; BTN
i1 PIZ (MY <80%)

Ice floe diffusion in winds and currents

observations from GPS data

Lukovich, Hutchings, Barber, Ann. Glac. 2015

Floe scale model of advection diffusion
Tyler Evans, Huy Dinh, Kaeden George, Ben Murphy, Elena Cherkaev, Ken Golden 2025

diffusive o =1
(Jx(t) = x(0) — (x(t) — x(0))|*) ~ t* a = Hurst exponent sub-diffusive o < 1
super-diffusive a > 1

Model Approximations
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Arctic sea ice pack with tagged particle
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From micro to macro in ice floe dynamics

Delaney Mosier, Tyler Evans, Ben Murphy, Elena Cherkaev, Ken Golden, 2025

homogenization of ice floe advection-diffusion
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Arctic Marginal Ice Zone

sea ice
concentration

0.15 <y < 0.80

transitional region
between dense pack ice
and open ocean

® biologically active region

@ intense ocean-ice-atmosphere
interactions

- - _' |
b o
_f':
# "_Ll
|'- ]

29 August2010 4/ GRL 2013

® significant wave activity
Strong & Rigor

MIZ “WIDTH"” ??

Where the action iS! fundamental length scale of

ecological and climate dynamics



In processes in geophysics and materials science, a region where
solid and liquid phases co-exist is known as a mushy layer.

e.g. in solidification of binary liquids and alloys

solid porous matrix dendritic interface between
with liquid inclusions sea ice and sea water

sea ice

7

S

\_" \ ‘\.\
s
Sk
cket >
NN
e
o

P

cooling metal

Earth’s mantle

CRREL

Sea Ice is a mushy layer, Feltham, et al., GRL 2006
Phase evolution of young sea ice, Wettlaufer, et al., GRL 1997



Multiscale mushy layer model for marginal ice zone dynamics

Strong, Cherkaev, Golden Scientific Reports 2024

MIZ - transitional region between dense pack ice and open ocean

OBJECTIVE: model & predict dramatic annual cycle
impacts climate dynamics, polar ecology, human activities

mushy layer physics in the lab Arctic MIZ as a mushy layer

solid

2 cm mushy layer

liquid

NaCl-H20 in lab
(Peppin et al., 2007, J. Fluid Mech.)

MOdEI captures baSic phy5ics Of 0 01 02 03 04 05 06 07 08
sea ice concentration

MIZ dynamics & predicts cycle.



Identifying Fractal Geometry in Arctic Marginal Ice Zone Dynamics

Julie Sherman, Court Strong, Ken Golden, Environ. Res. Lett. 2025

Compute the fractal dimension of the boundary of the Arctic MIZ by boxcounting
methods; analyze seasonal cycle and long term trends.

Observed 1980-1983 Observed 2019-2022

J u Iy Fit 1980-1983 Fit 2019-2022
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Filling the polar data gap with hole in satellite coverage
partial differential equations  of seaice concentration field

previously assumed
ice covered

a b

Gap radius: 611 km
06 January 1985

Gap radius: 311 km

30 August 2007
A _O fill = harmonic function satisfying
\lj_ satellite BC’s plus learned stochastic term

. Global Sea Ice Concentration Climate Data Records, 2022
Strong and Golden, Remote Sensing 2016

Strong and Golden, SIAM News 2017 Lavergne, Sorensen, et al., Norwegian Met. Inst., ... OSI SAF




Conclusions

Our research is helping to improve projections of the fate of
Earth’s sea ice packs, and the ecosystems they support.

Mathematics for sea ice advances the theory of composites,
inverse problems, and other areas of science and engineering.

Modeling sea ice leads to unexpected
areas of math and physics.
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of the American Mathematical Society
November 2020 Volume 67, Number 10
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bottom of a sea ice core

Reimer



HANK YOU

Australian Government

Department of the Environment y :
P and Water Resources ANTARCTIC CLIMATE ’ Antarctica New Zealand
& ECOSYSTEMS

Australian Antarctic Division COOPERATIVE RESEARCH CENTRE

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999



Topography-albedo feedback and
the shifting Arctic ice pack

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

multiyear ice
thicker with
hummocky surface

first-year ice
thinner with
smoother surface

Julia Ditto

Meter-scale differences in surface topography between MYI and FYI mechanistically
alter summertime melt pond formation and coverage, significantly lowering albedo
for younger, smoother ice, and forming a self-perpetuating feedback loop.
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Topography-albedo feedback and
the shifting Arctic ice pack

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

Coupled PDE model of topography H(x,y,t) and melt pond depth h(x,y,t).

Co-evolution of topography and albedo drives stark differences
in the state of the ice pack at the end of summer.
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transport in percolation theory

lattice homogenization

MICRO » MACRO

local conductivity (electrical or fluid)  effective conductivity or fluid permeability

insulator conductor

y off : on

X))

oy probability p

bond —>= 9 o robability 1-p o
0 pc 1 =p

consider local conductivities }

1 and h>0 percolation threshold
smooths, softens transition o(p) ~ oo (p—p) p—pt

UNIVERSAL critical exponents for lattices -- depend only on dimension
1 <t <2 (foridealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

non-universal behavior in continuum



Ising Model for a Ferromagnet

\ ) fﬂ W o +1 spinup blue
T "7 1 -1 spindown  wahite

Curie point
applied :—HE S; —JE ;S i
i T H ‘ J

critical temperature
magnetic
field <1,7>

nearest neighbor Ising Hamiltonian

islandsof  Pr . .*
like spins . g . 1
N B vrm= g Ly

E...'-.i'._l-.': e j

o effective magnetization

energy is lowered when nearby spins align
with each other, forming magnetic domains

rnagnetic domains  eit ponds (Perovich) magneticdomains  melt ponds (Perovich)
in cobalt in cobalt-iron-boron



Ising model for ferromagnets —3> Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys., 2019

ZH S; —J Z SiS;

<%,7>

4 1 water (spinup) random magnetic field
- §o represents snow topography

ice (spin down)

magnetization M pond area fraction > _ (M+1) only nearest neighbor
~ albedo 2 patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized
by Glauber spin flip dynamics, system “flows” toward metastable equilibria.

Order from Disorder
. .r.- ?

*-w:w

pond size
distribution exponent

observed
(Q( Yz Ml MY e ¥ N4 Observed -1.5
" A L € sy, AV . s (Perovich, et al. 2002)
i v ] model -1.58
ﬁ;‘ TPReE AAR S 1010 10710° 10
,..J_' S i et A (m?) -
Ising melt pond Scientific American
EOS, PhysicsWorld, ...

model photo (perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data



Order to disorder in sea ice inspired - twisted bilayer composites

q uasi period iccom pOSitES tunable quasiperiodic composites with exotic properties
. (optical, electrical, thermal) Anderson localization; our Moiré
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022 patterned geometries are similar to twisted bilayer graphene

increasing twist angle between two lattices

periodic e quasiperiodic
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ty of Microgeometries
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Wide Variety of Microgeometries




Small Difference in Moiré Parameters

|

Big Difference in Material Properties



Observed MIZ location and width

Observational analysis of annual cycle in Bering-Chukchi Sea sector 2000-2004
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widens by a factor of 3-4 and moves poleward by 1500 km



thermal flow field through the ice cover:
multiscale granular composite
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homogenize

homogenized thermal conductivity is a key parameter in MIZ mushy layer model



Where to look to see this behavior exploited in
tunable media that display rich transport properties?

Go back to the dawn of
ordered, aperiodic materials -

quasicrystals.

Shechtman et al. 1984
Levine & Steinhardt 1984



Kelvin-Voigt model N 5
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MIZ as a moving phase transition region

pC%_T =V (kVT)+ S Classical small-scale application

a Solid .
§ = lpler— )T + oL e o

2 cm mushy layer

T — 1T, «
=1 —
v (n—n)

km:(g+1—w

—1
ks ki ) homogenization
kz = wks + (1 - ¢>kl

NaCl-H,0 in lab
(Peppin et al., 2007;, J. Fluid Mech.)

Macroscale application

p effective density S models nonlinear phase change
T temperature 1) sea ice concentration
¢ specific heat k effective diffusivity

L latent heat of fusion l liquid, s solid

e Develop multiscale PDE model for simulating phase transition fronts to predict
MIZ seasonal cycles and decadal trends

 Model simulates MIZ as a large-scale mushy layer with effective thermal
conductivity derived from physics of composite materials



MIZ observations MIZ model vs. observations
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