

Multiscale Models for Sea Ice

Ken Golden, University of Utah

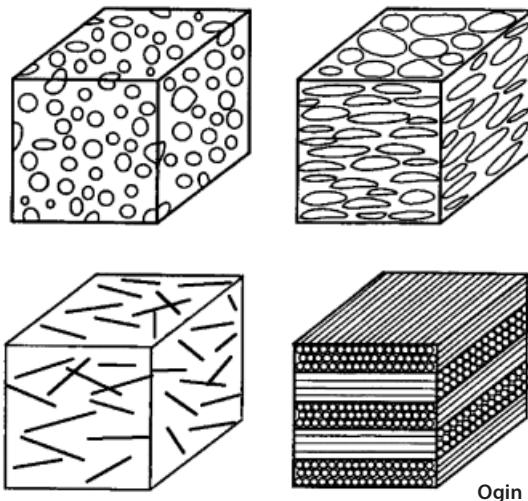
Sea ice is a multiscale fluid-solid composite.

micro

meso

macro

composites & metamaterials

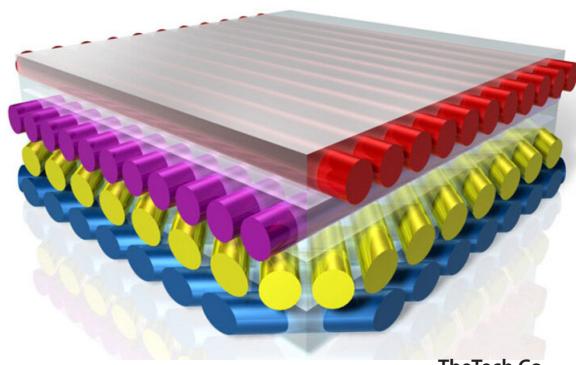


porous rock

Gaspari

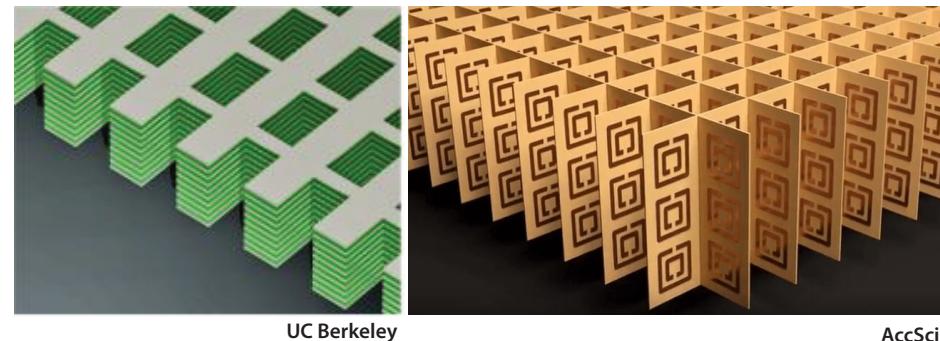
porous sea ice

Weeks

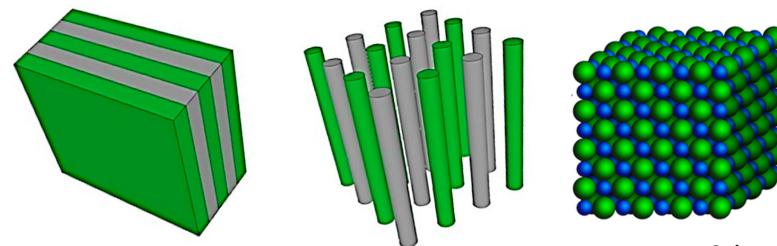


TheTech Co

negative index of refraction metamaterials



acoustic and seismic metamaterials

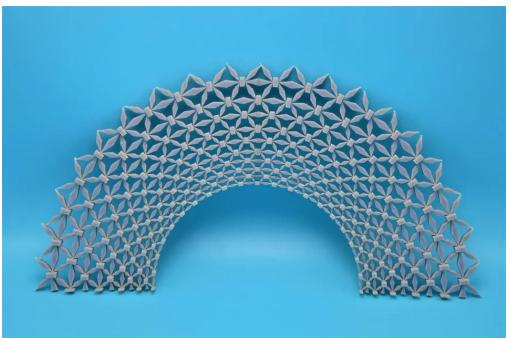


Qahtan

invisibility cloak

Warner Bros.

structural cloak

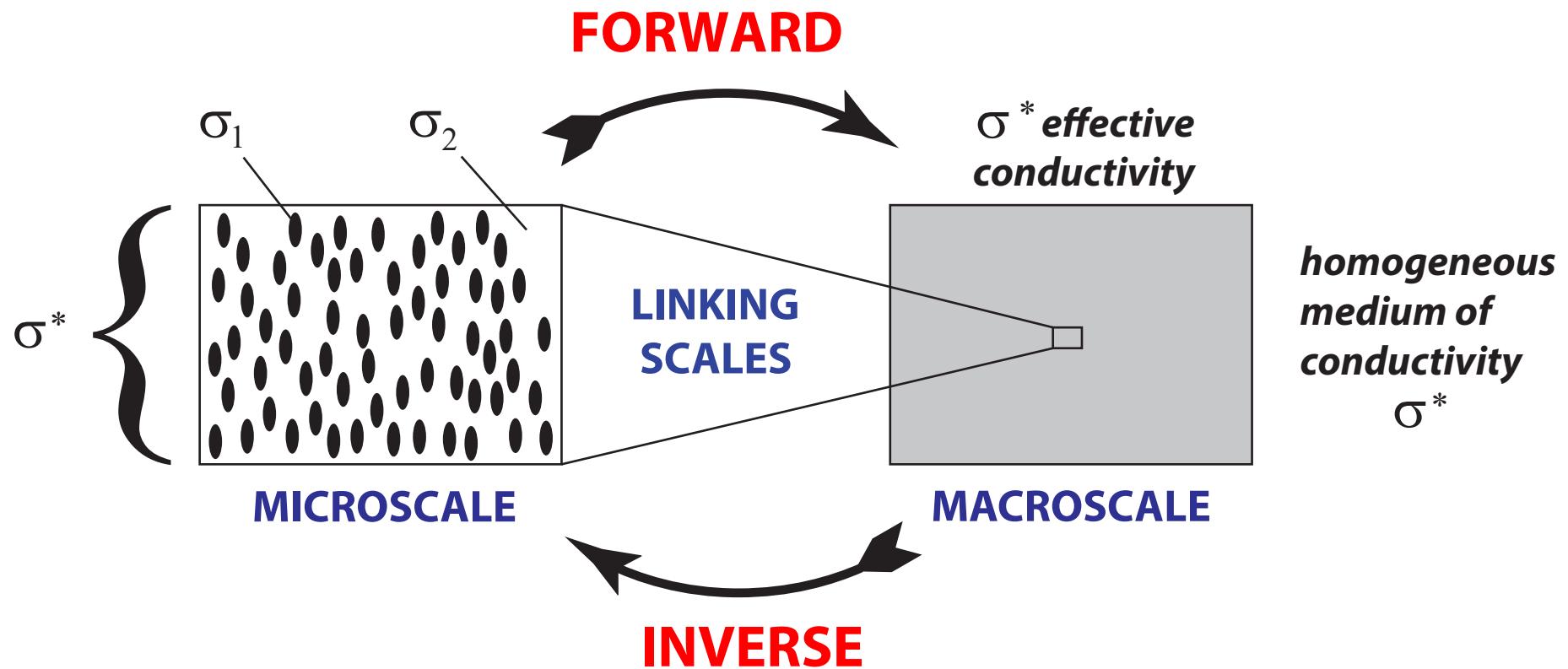


U. Missouri

Central theme:

How do we use “small scale” information to find effective behavior relevant to large-scale sea ice physics and ecology models?

HOMOGENIZATION for Composite Materials

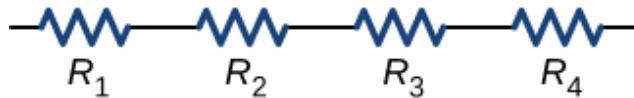


Maxwell 1873

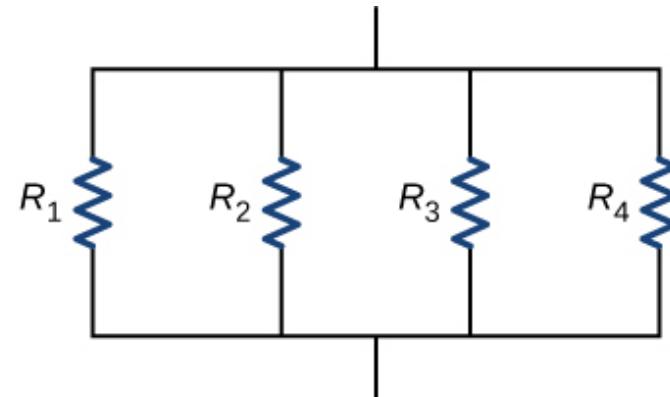
Einstein 1906

Wiener 1912, Hashin & Shtrikman 1962

resistors in series



resistors in parallel



equivalent resistance

$$R_{eq} = R_1 + R_2 + R_3 + R_4$$

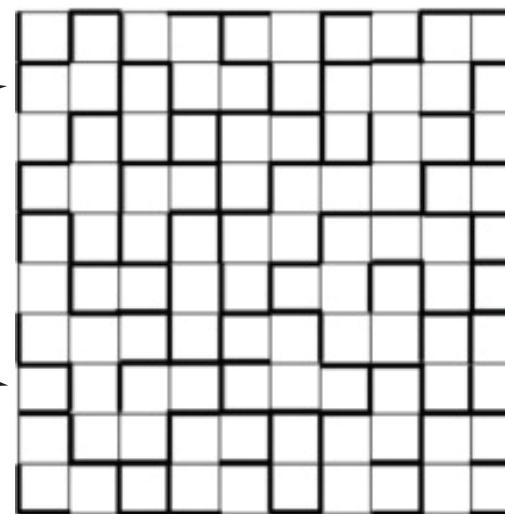
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

random
resistor network

percolation
model

R_1 →

R_2 →



$R_{eq} = ??$

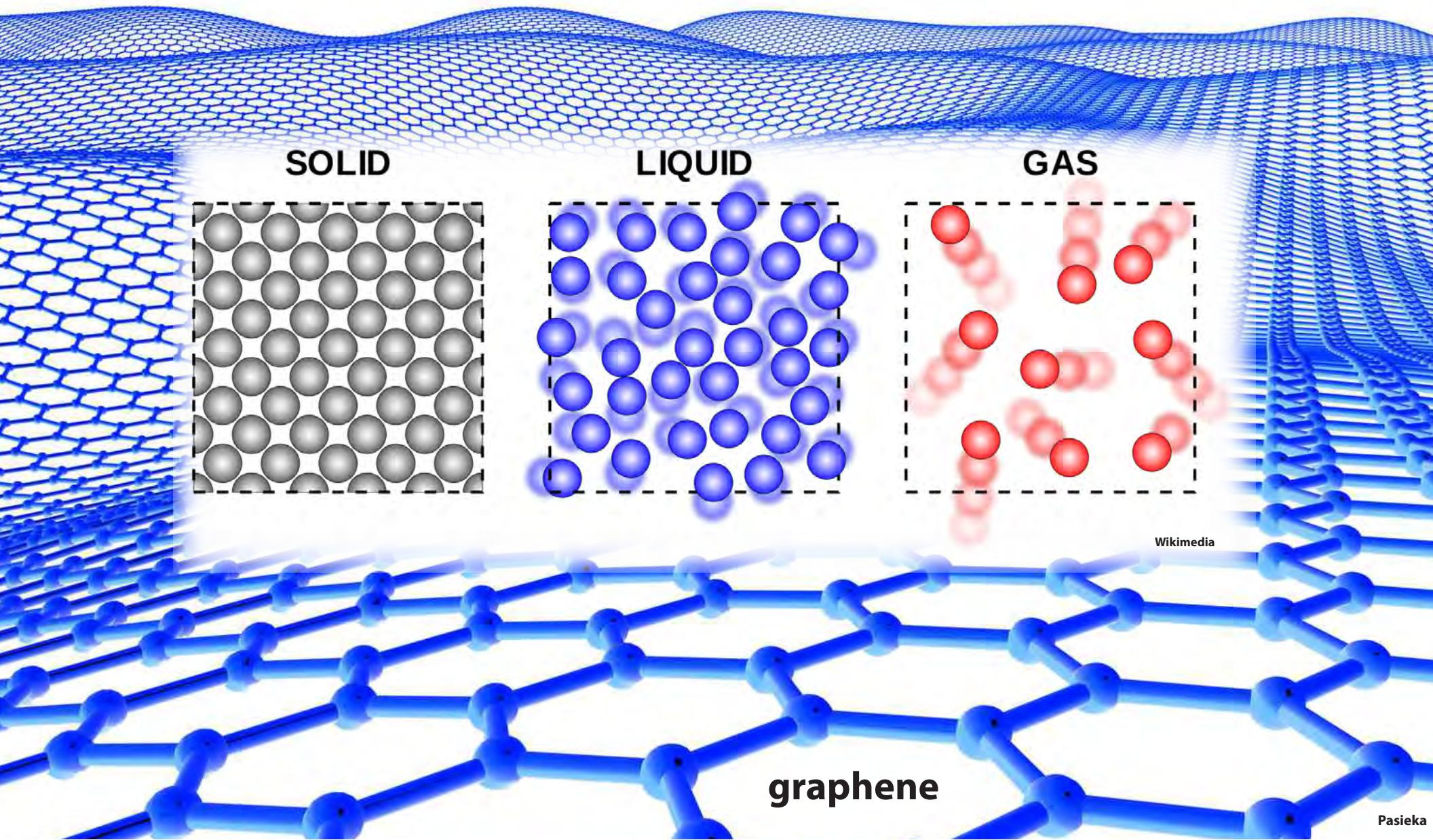
infinite lattice ?

discrete
homogenization

STATISTICAL PHYSICS

How do microscopic laws determine macroscopic behavior?

Banwell, Burton, Cenedese, Golden, Astrom, Physics of the Cryosphere, *Nature Reviews Physics* 2023



Polar Ecology and the Physics of Sea Ice

How do sea ice properties affect the life it hosts?

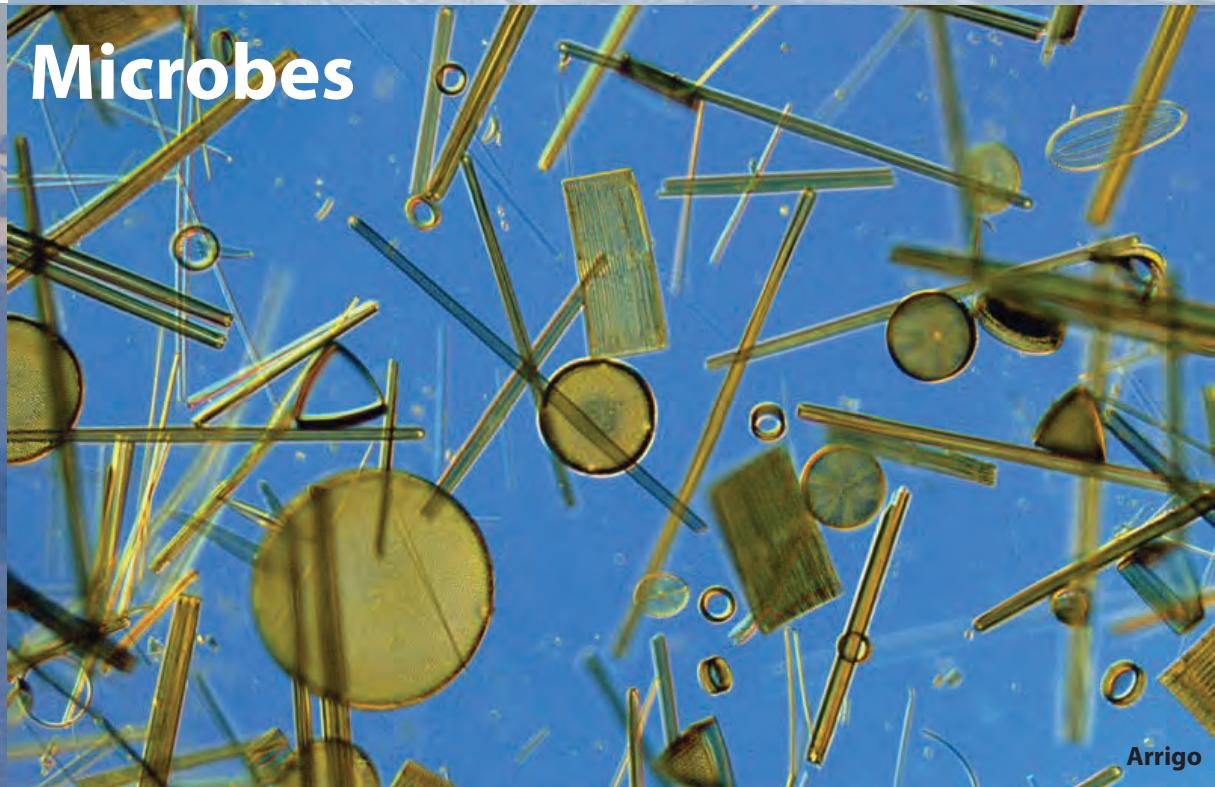
How does life in and on sea ice affect its physical properties?

Golden

Pekelo/iStockphoto

Megafauna

Microbes



Arrigo

What is this talk about?

A tour of recent results on multiscale modeling of physical and biological processes in the sea ice system.

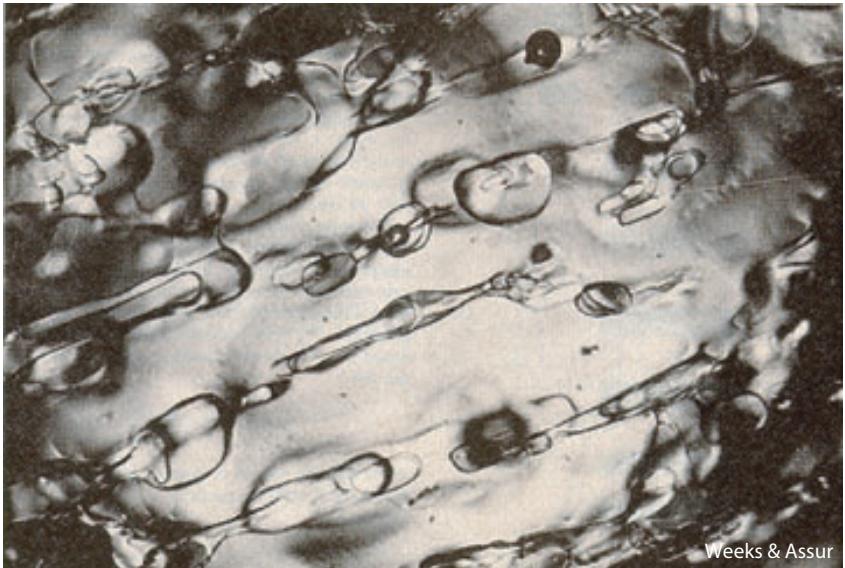
microscale

mesoscale

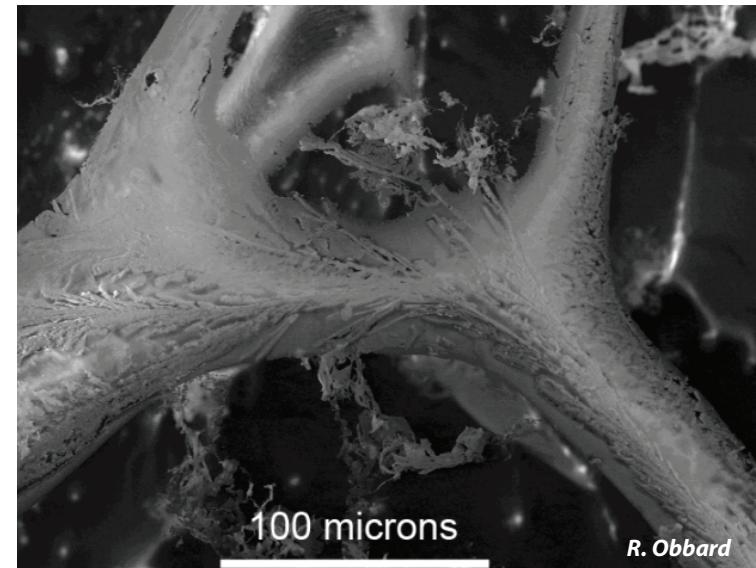
macroscale

**through the lens of several
areas of mathematics**

microscale



brine inclusions in sea ice (mm)



micro - brine channel (SEM)

***sea ice is a
porous composite***

pure ice with brine, air, and salt inclusions

horizontal section

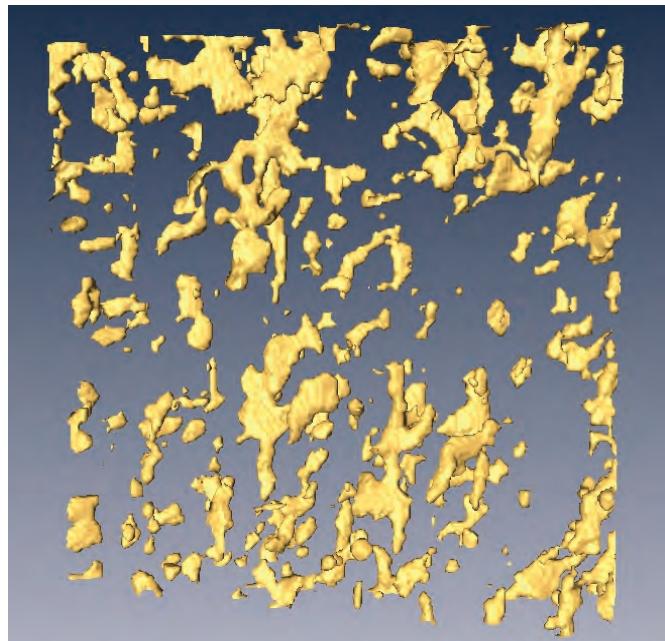
vertical section

fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

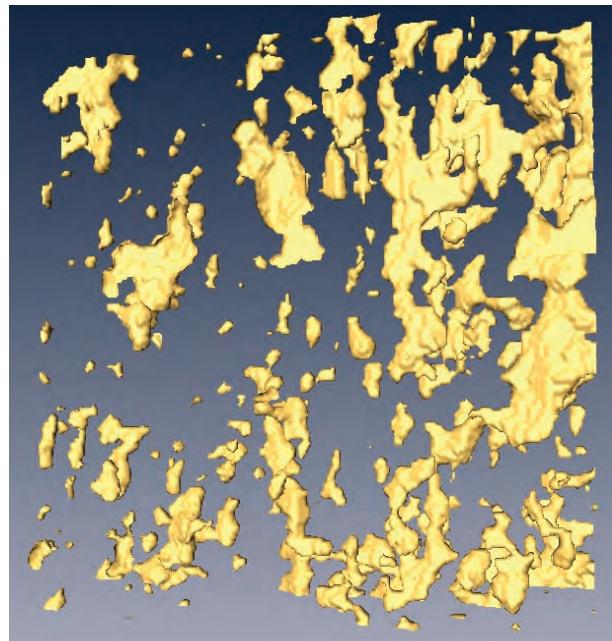
evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal bloom

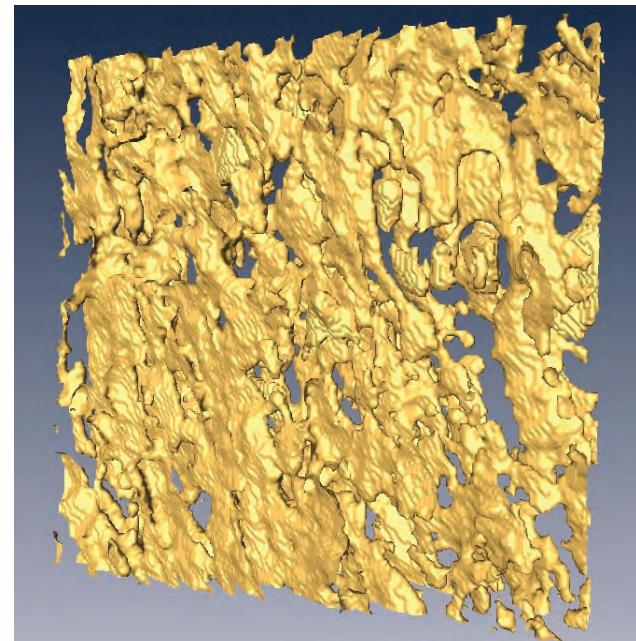
brine volume fraction and **connectivity** increase with temperature



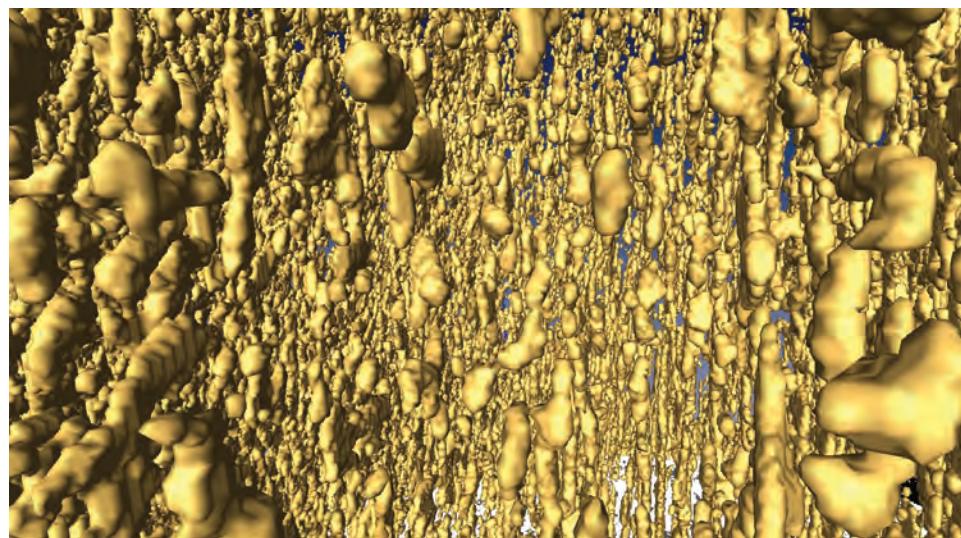
$T = -15^{\circ}\text{C}$, $\phi = 0.033$



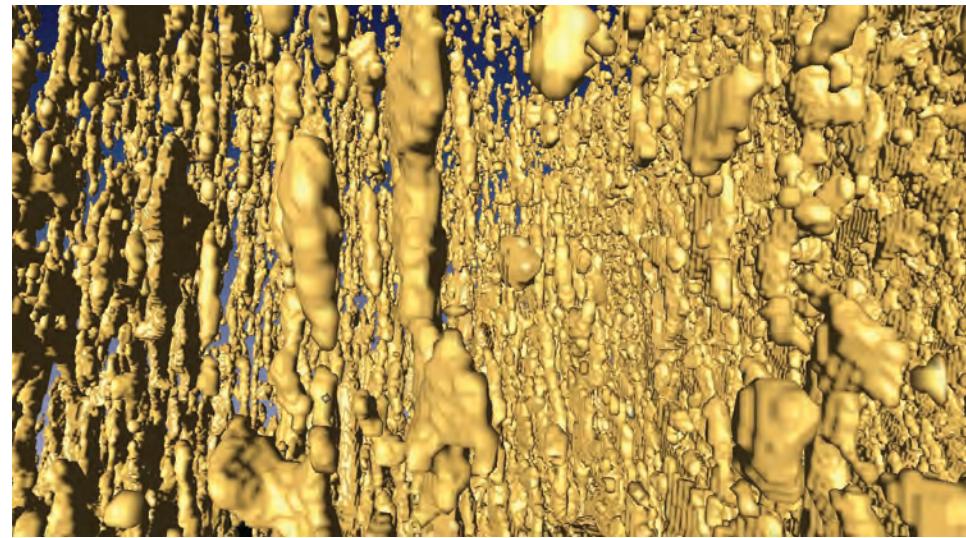
$T = -6^{\circ}\text{C}$, $\phi = 0.075$



$T = -3^{\circ}\text{C}$, $\phi = 0.143$

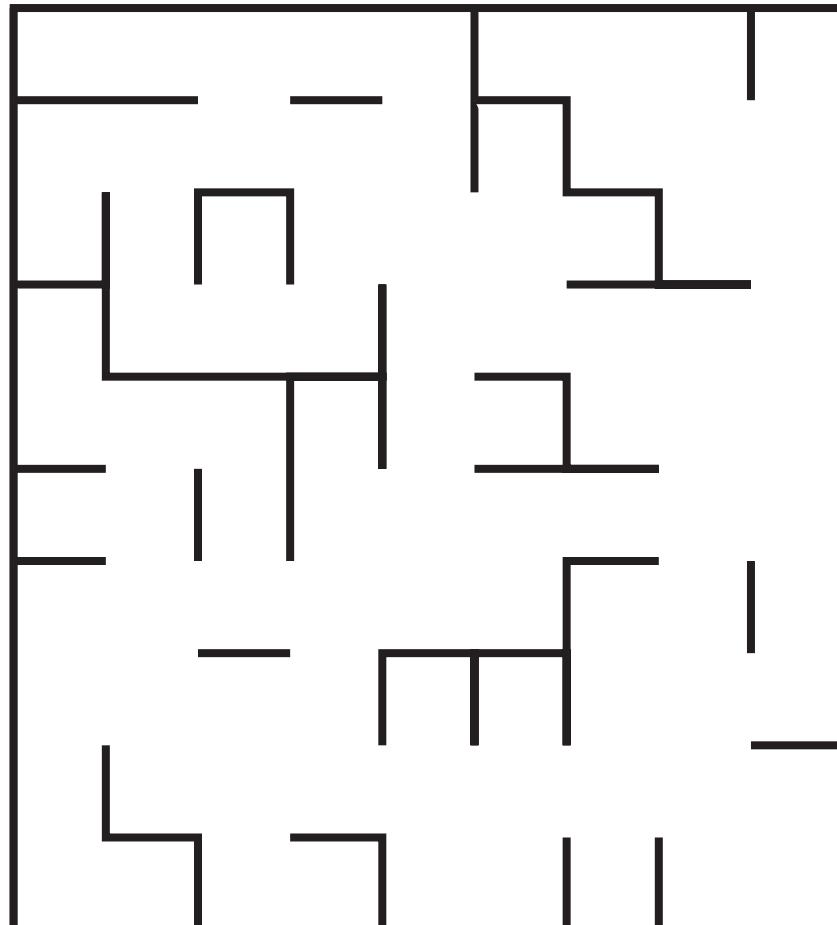


$T = -8^{\circ}\text{C}$, $\phi = 0.057$



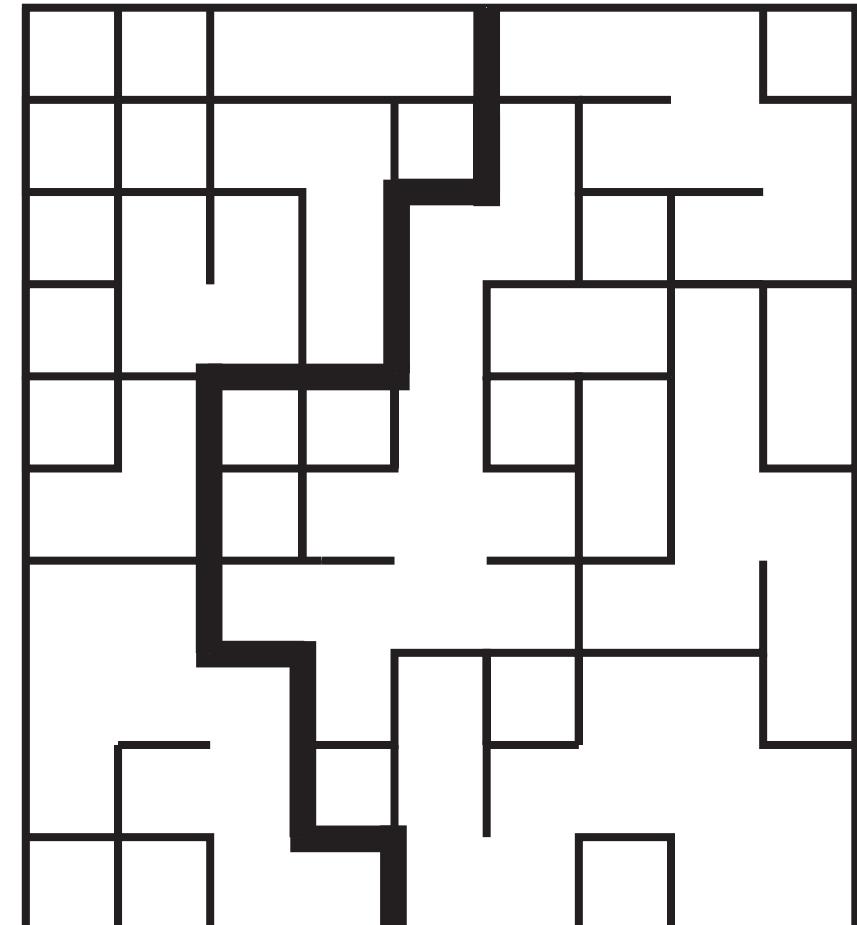
$T = -4^{\circ}\text{C}$, $\phi = 0.113$

percolation model

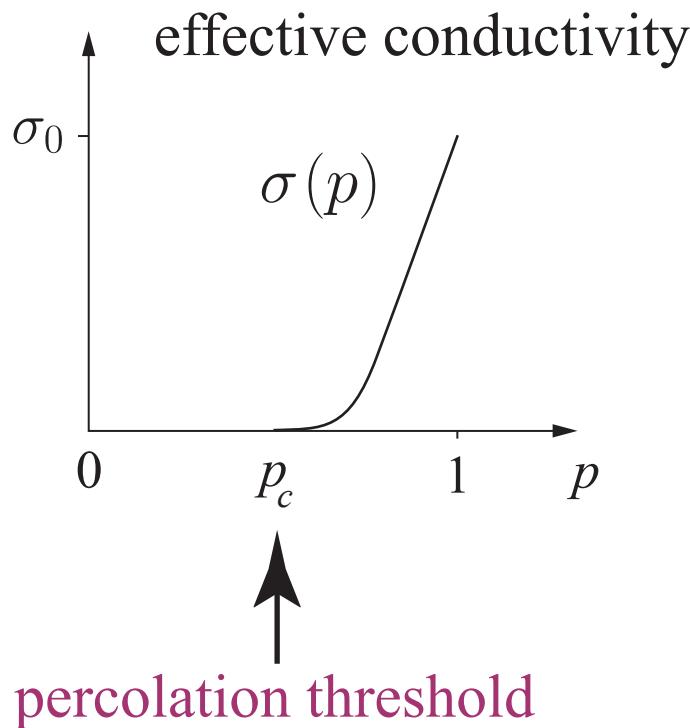


$$p = 1/3$$

$$p_c = ?$$



$$p = 2/3$$



**conductivity
critical exponent** t

$d = 3$	numerical	$t \approx 2$
$d = 2$		$t \approx 1.3$

Critical behavior of transport near percolation threshold

conductivity

$$\sigma(p) \sim \sigma_0 (p - p_c)^t, \quad p \rightarrow p_c^+$$

permeability

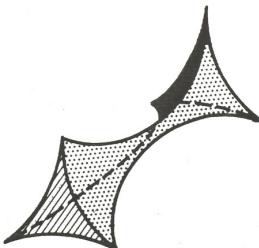
$$\kappa(p) \sim \kappa_0 (p - p_c)^e, \quad p \rightarrow p_c^+$$

UNIVERSAL for lattices

depends only on dimension, $e = t$

rigorous bound $1 \leq t \leq 2$

Golden PRL 1990, CMP 1992



continuum exponents can be *non-universal*

SWISS CHEESE

Halperin, Feng, Sen PRL 1985

Critical behavior of fluid transport in sea ice

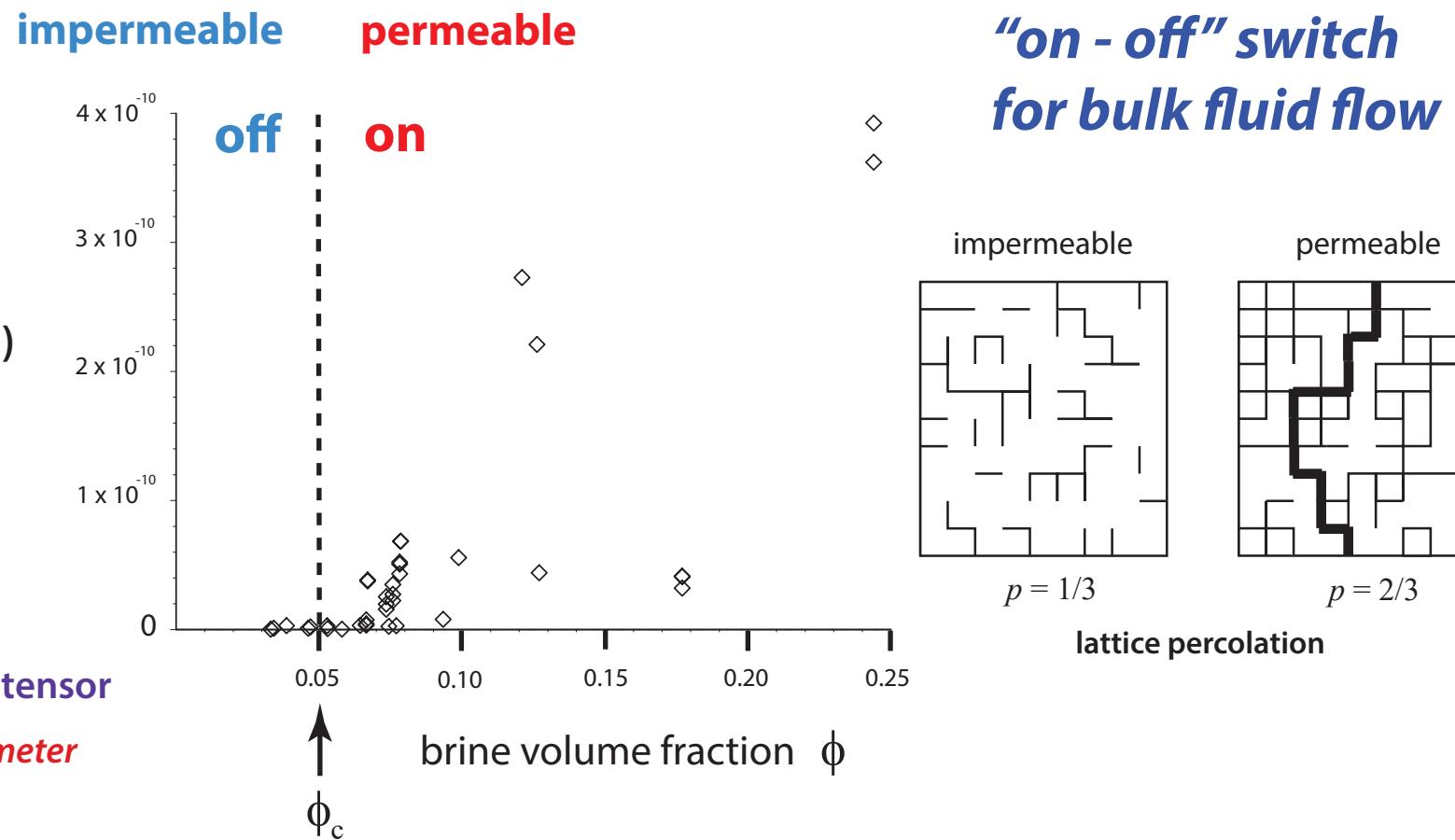
Arctic field data

vertical fluid
permeability k (m^2)

Darcy's Law

$$\mathbf{V} = -\frac{\mathbf{k}}{\eta} \nabla p$$

\mathbf{k} = fluid permeability tensor
homogenized parameter



PERCOLATION THRESHOLD $\phi_c \approx 5\% \longleftrightarrow T_c \approx -5^\circ\text{C}, S \approx 5 \text{ ppt}$

RULE OF FIVES

Golden, Ackley, Lytle *Science* 1998
Golden, Eicken, Heaton, Miner, Pringle, Zhu *GRL* 2007
Pringle, Miner, Eicken, Golden *J. Geophys. Res.* 2009

sea ice algal communities

D. Thomas 2004

nutrient replenishment
controlled by ice permeability

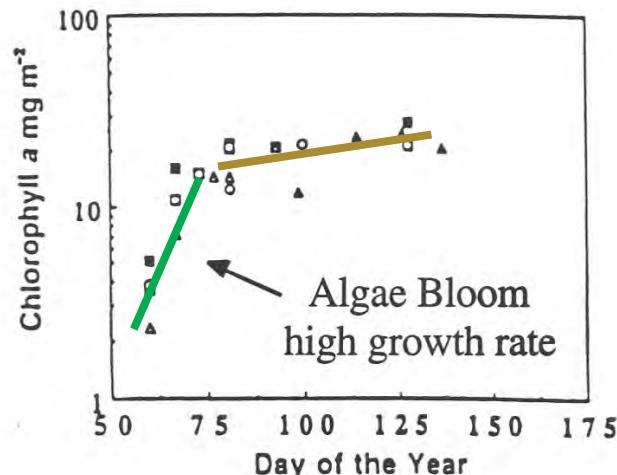
biological activity turns on
or off according to
rule of fives

Golden, Ackley, Lytle

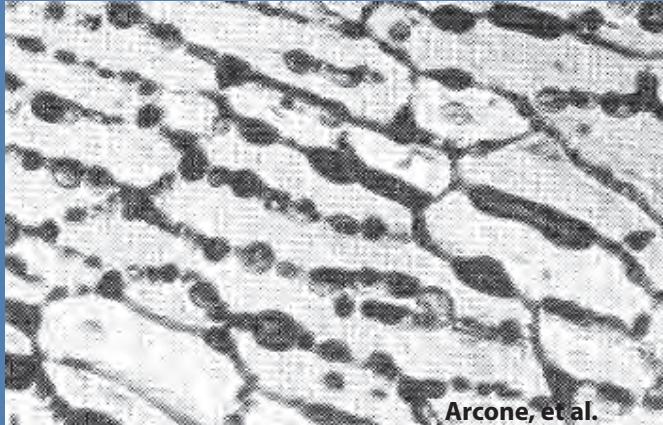
Science 1998

Fritsen, Lytle, Ackley, Sullivan **Science 1994**

critical behavior of microbial activity



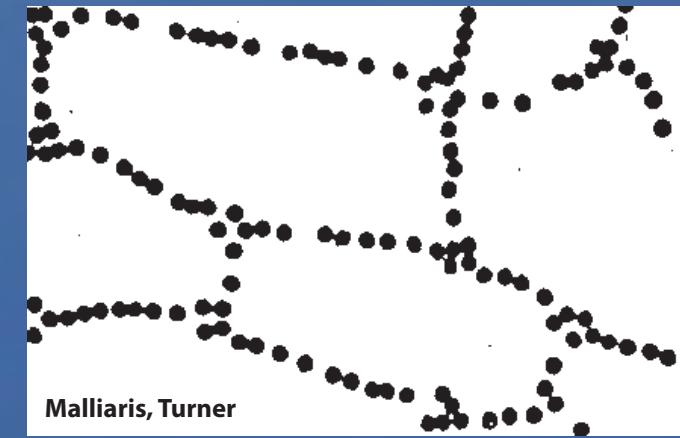
Convection-fueled algae bloom
Ice Station Weddell



Arcone, et al.

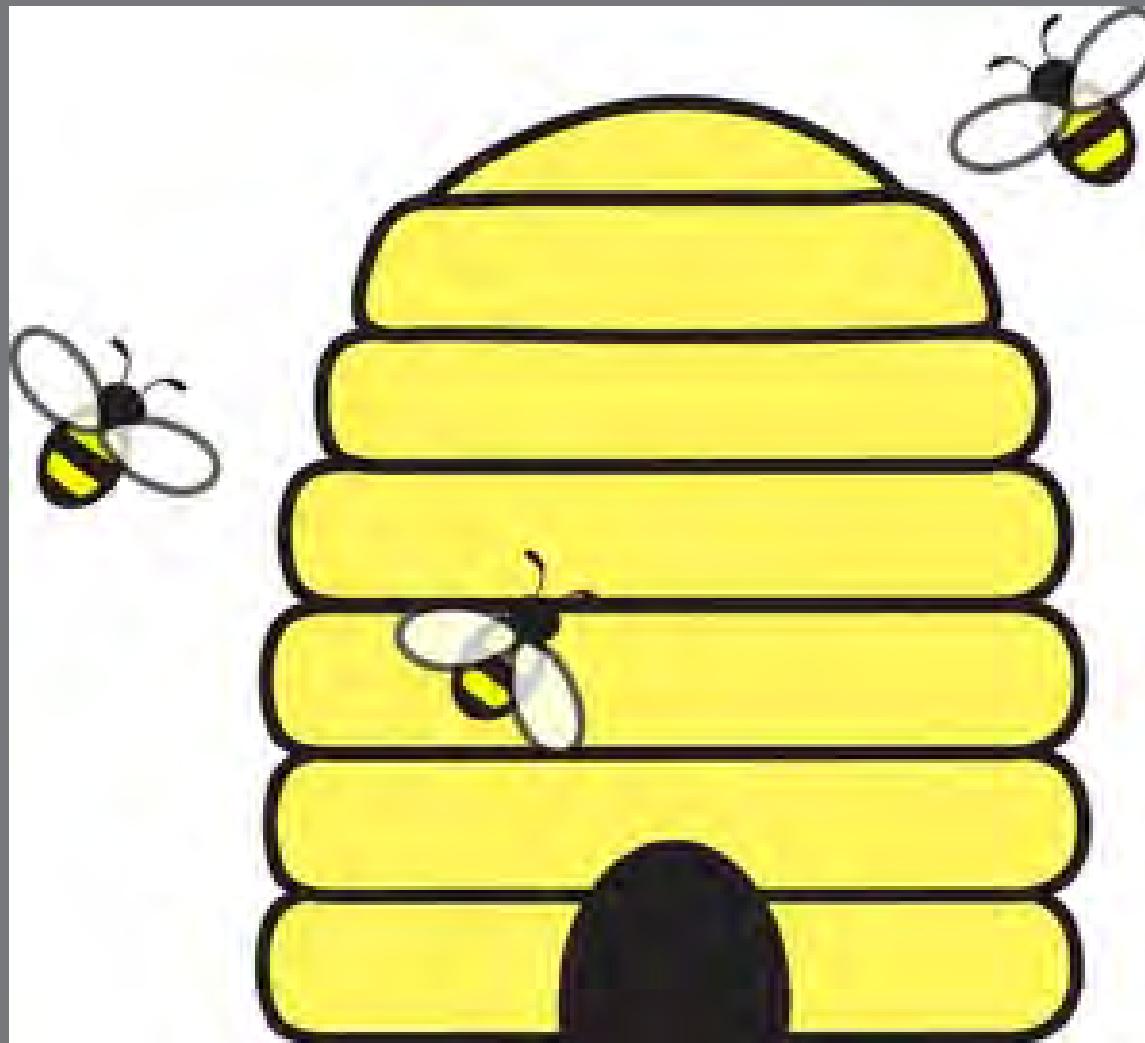
stealth

NW Florida Daily News, Wikimedia



Malliaris, Turner

cross-pollination



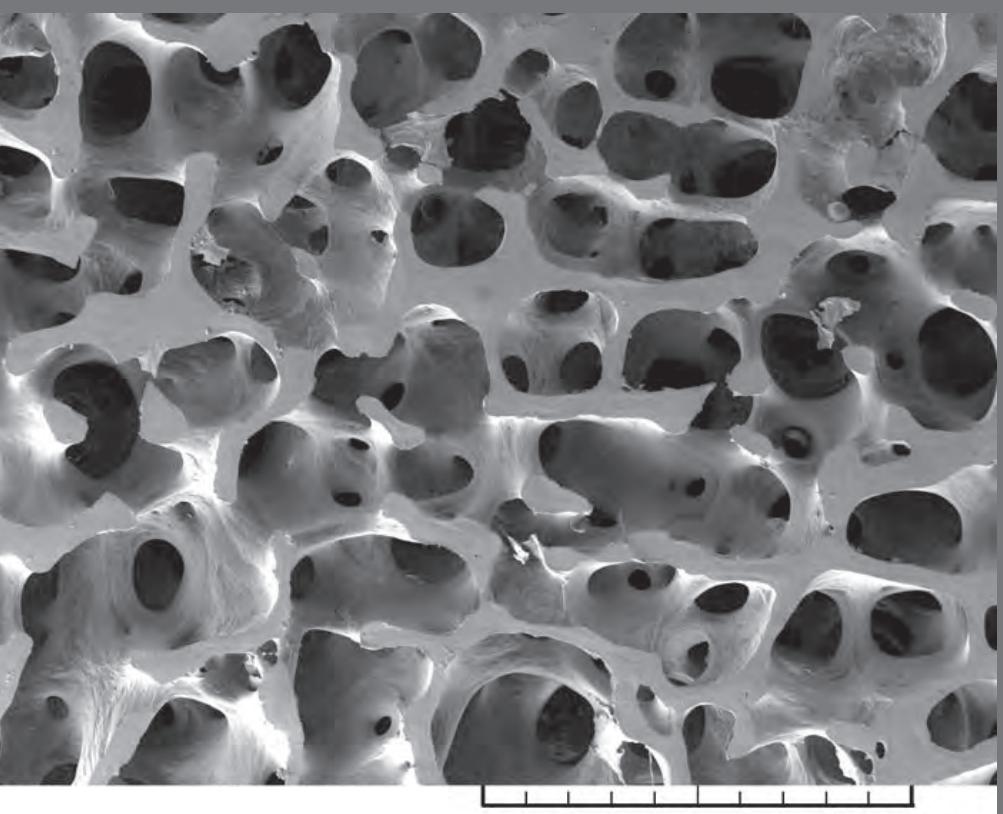
sea ice



Weeks

human bone

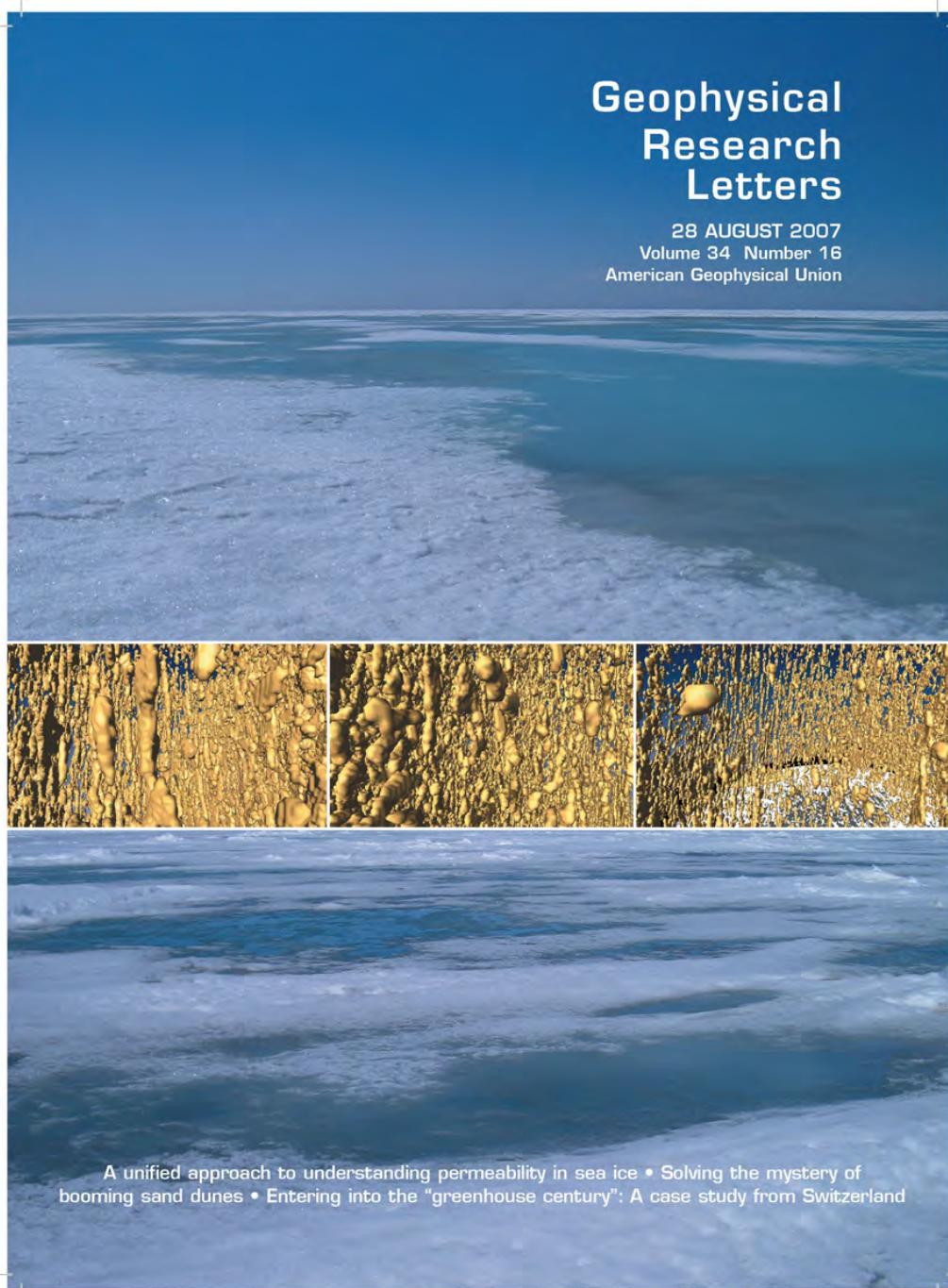
Ascenzi



P. Hansma

Thermal evolution of permeability and microstructure in sea ice

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007



microscale
governs
mesoscale
processes

percolation theory
for fluid permeability

$$k(\phi) = k_0 (\phi - 0.05)^2$$

$$k_0 = 3 \times 10^{-8} \text{ m}^2$$

critical exponent t
critical path analysis

X-ray CT

confirms rule of fives

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

theory agrees closely
with field data

A unified approach to understanding permeability in sea ice • Solving the mystery of
booming sand dunes • Entering into the "greenhouse century": A case study from Switzerland

Notices

of the American Mathematical Society

May 2009

Volume 56, Number 5

Climate Change and
the Mathematics of
Transport in Sea Ice

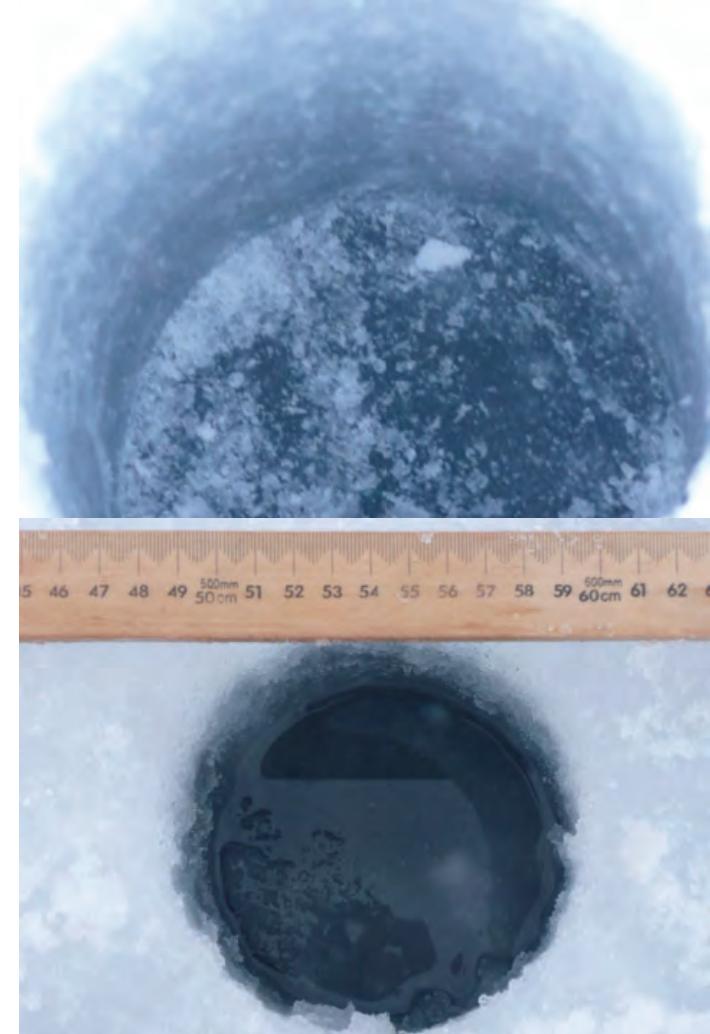
page 562

Mathematics and the
Internet: A Source of
Enormous Confusion
and Great Potential

page 586

photo by Jan Lieser

Real analysis in polar coordinates (see page 613)

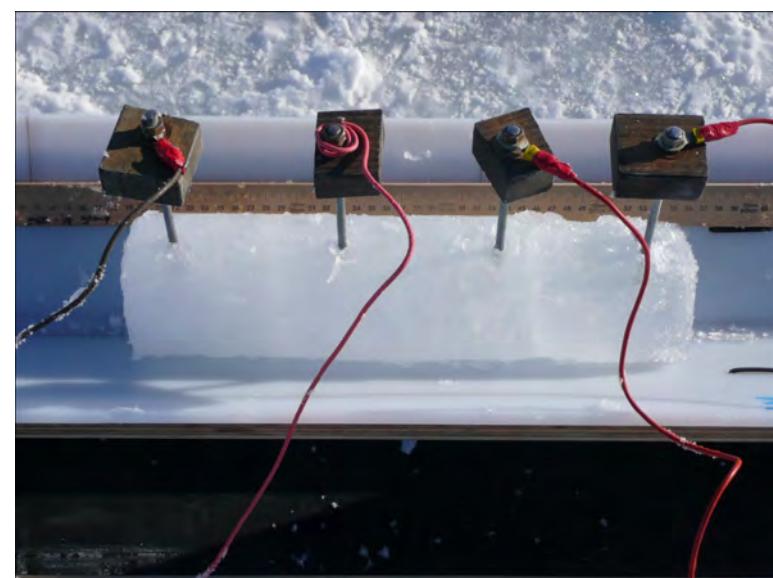


***measuring
fluid permeability
of Antarctic sea ice***

SIPEX 2007

electrical measurements

Wenner array



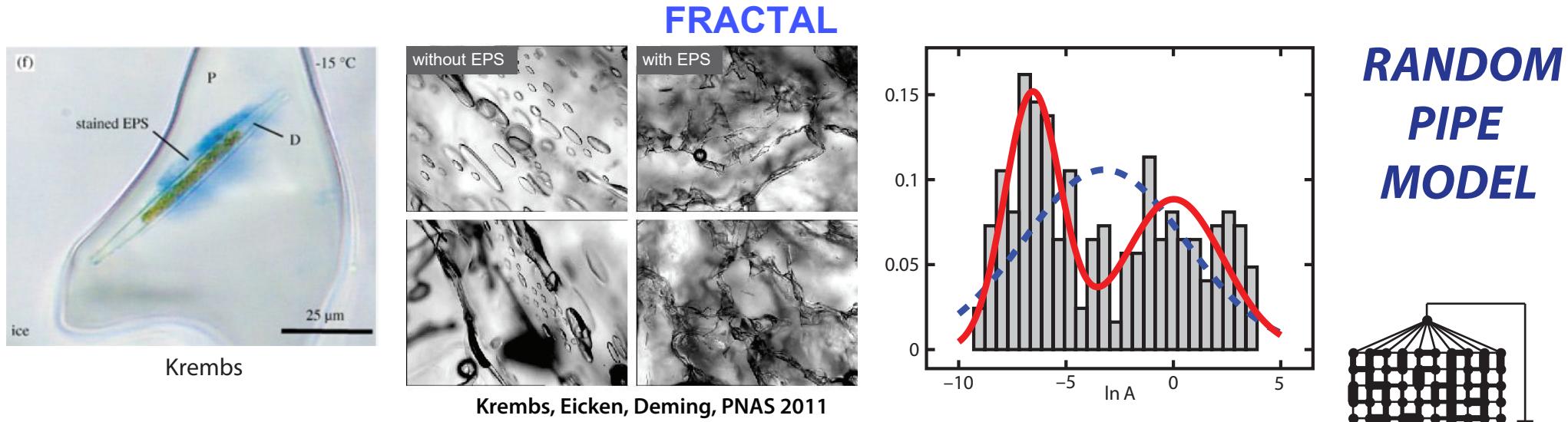
vertical conductivity

Zhu, Golden, Gully, Sampson *Physica B* 2010

Sampson, Golden, Gully, Worby *Deep Sea Research* 2011

Sea ice algae secrete exopolymeric substances (EPS) affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?



- 2D random pipe model with bimodal distribution of pipe radii
- Rigorous bound on permeability k ; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden
Multiscale Modeling and Simulation, 2018

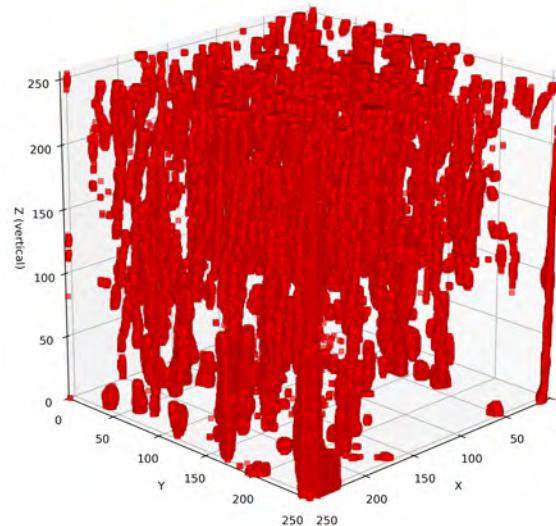
EPS - Algae Model Jajeh, Golden, Deming, Reimer 2025

SIAM News
June 2024

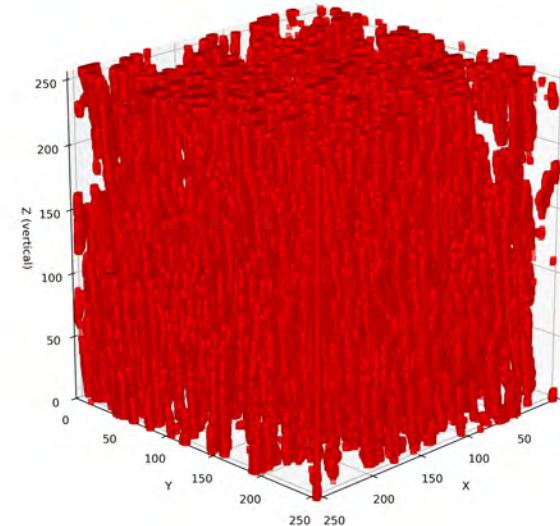
Zhu, Jabini, Golden,
Eicken, Morris
Ann. Glac. 2006

brine skeletonization

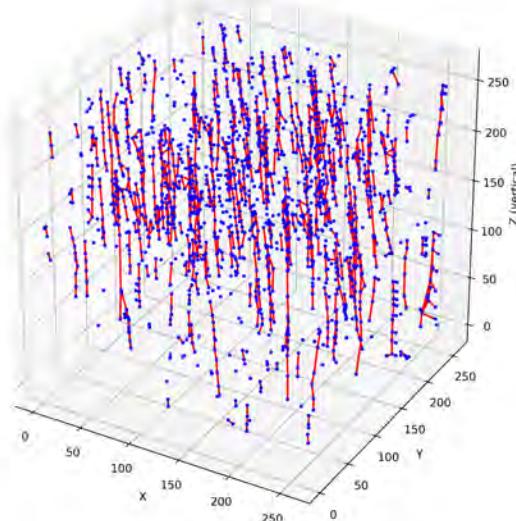
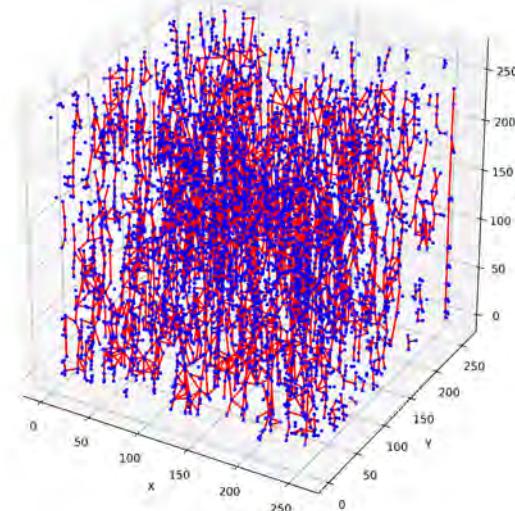
Manav Arora, Lou Kondic, Darren Skolnik, Ken Golden



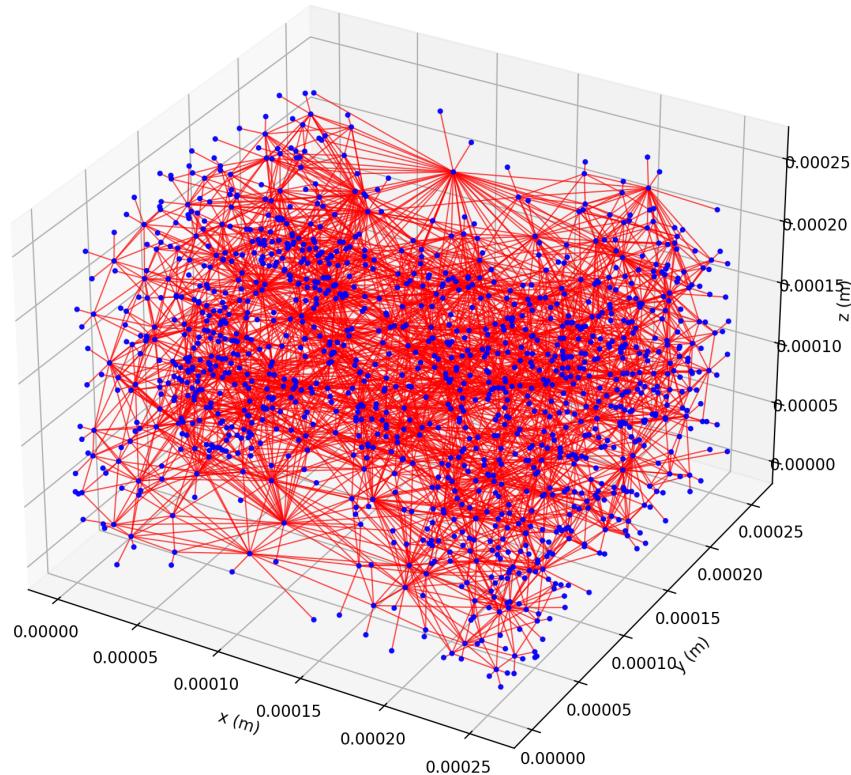
porosity = 0.022



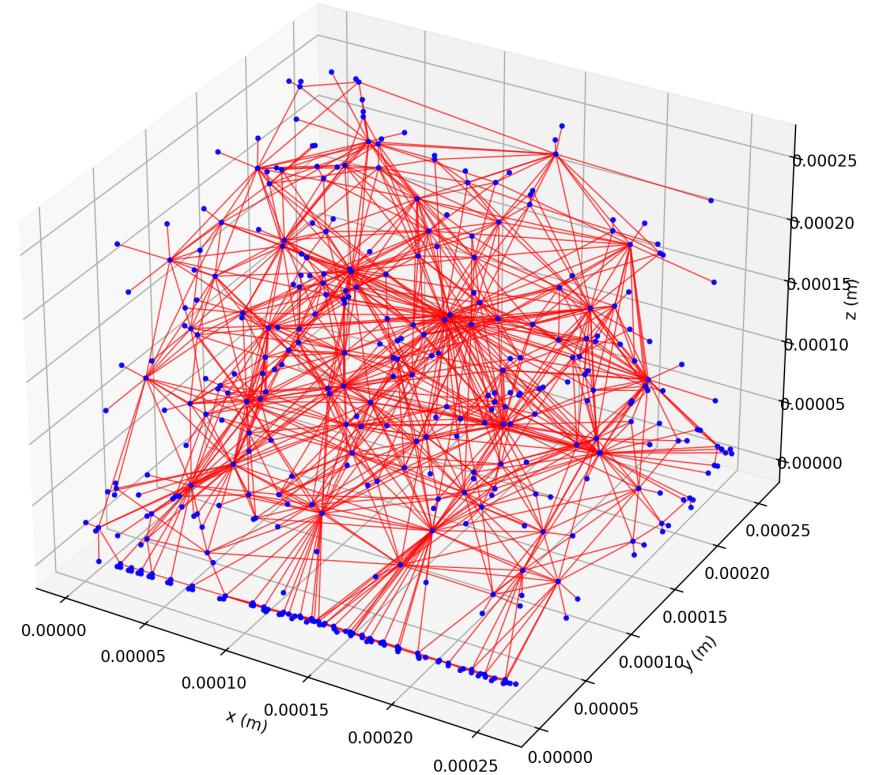
porosity = 0.114



skeletonization of porous brine microstructures



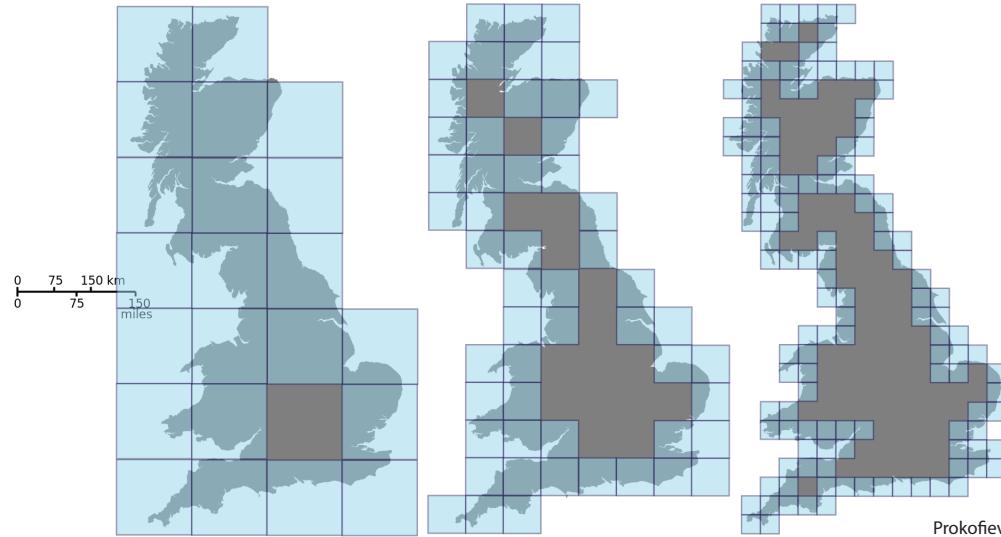
porosity = 0.028



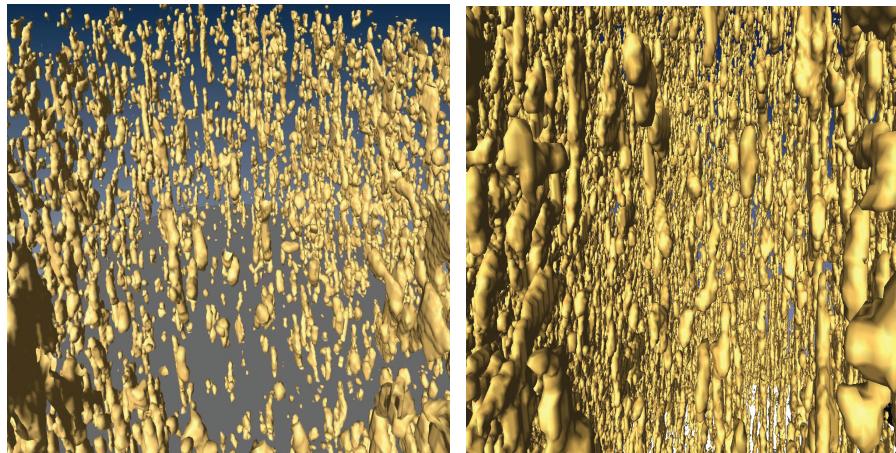
porosity = 0.004

Thermal Evolution of Brine Fractal Geometry in Sea Ice

Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer,
Marc Oggier, Megan O'Sadnick, Elena Cherkaev and Kenneth Golden, 2024



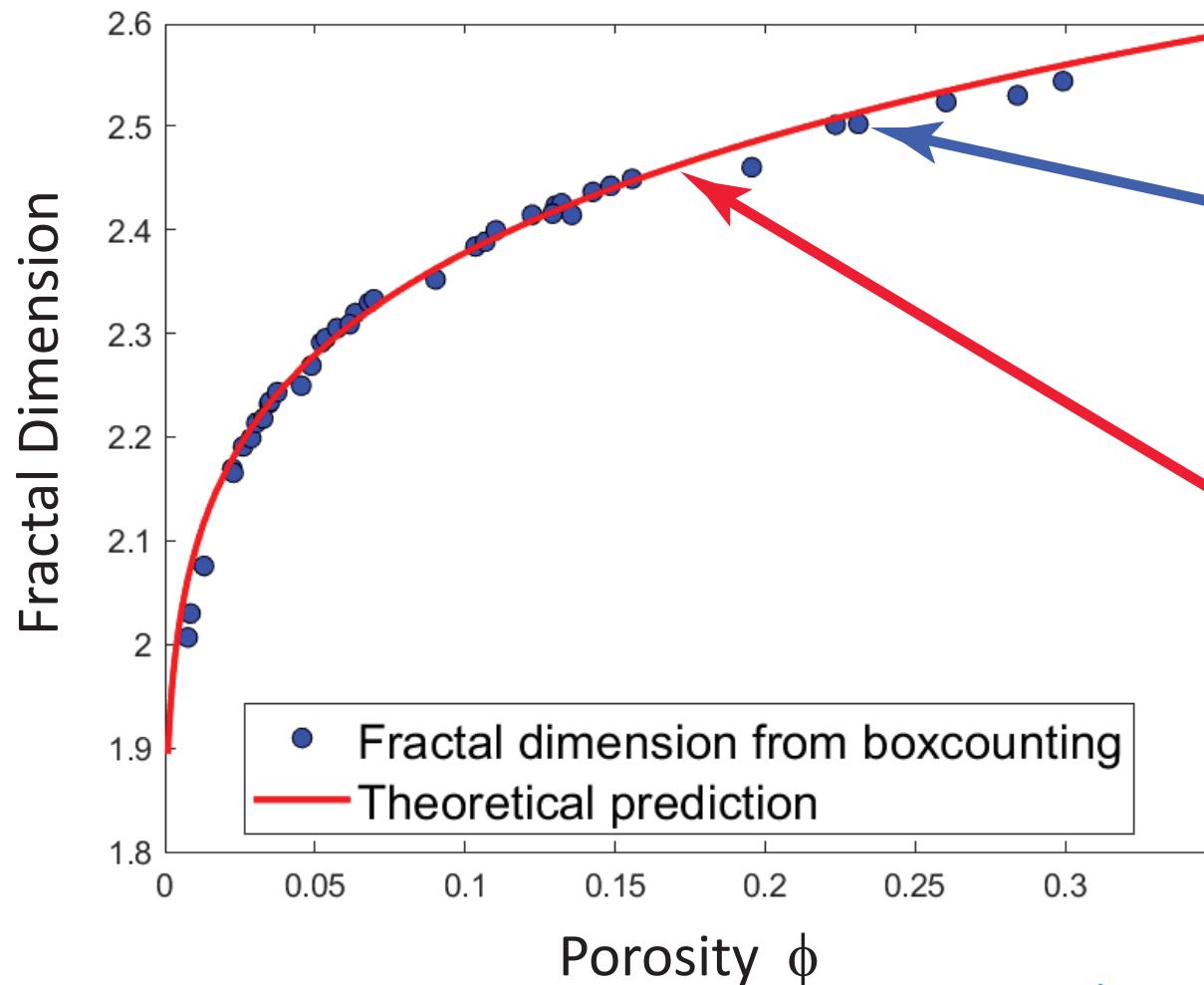
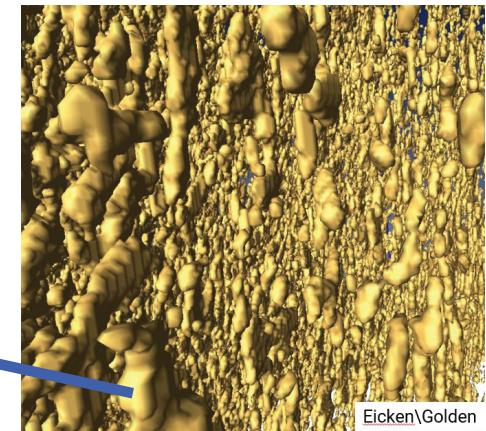
$T = -12^\circ \text{ C}$, $\phi = 0.033$ $T = -8^\circ \text{ C}$, $\phi = 0.057$



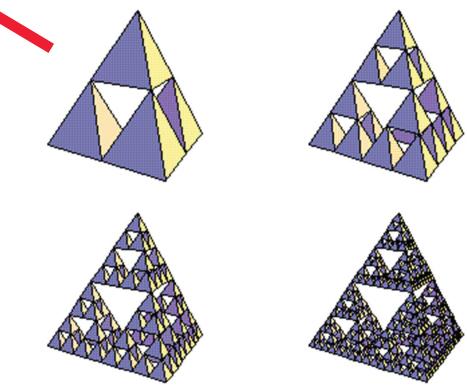
brine channels and inclusions “look” like fractals (from 30 yrs ago)

X-ray computed tomography of brine in sea ice columnar and granular

The first quantitative study of the fractal dimension of brine in sea ice and its strong dependence on temperature and porosity.



Follows same curve as exactly self-similar Sierpinski tetrahedron



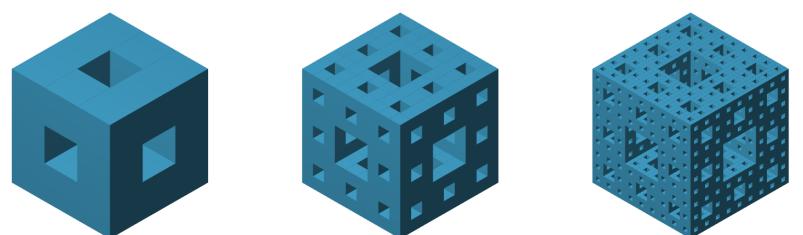
D. Eppstein

red curve

$$F_d = d_E - \frac{\ln \phi}{\ln(\lambda_{min}/\lambda_{max})}$$

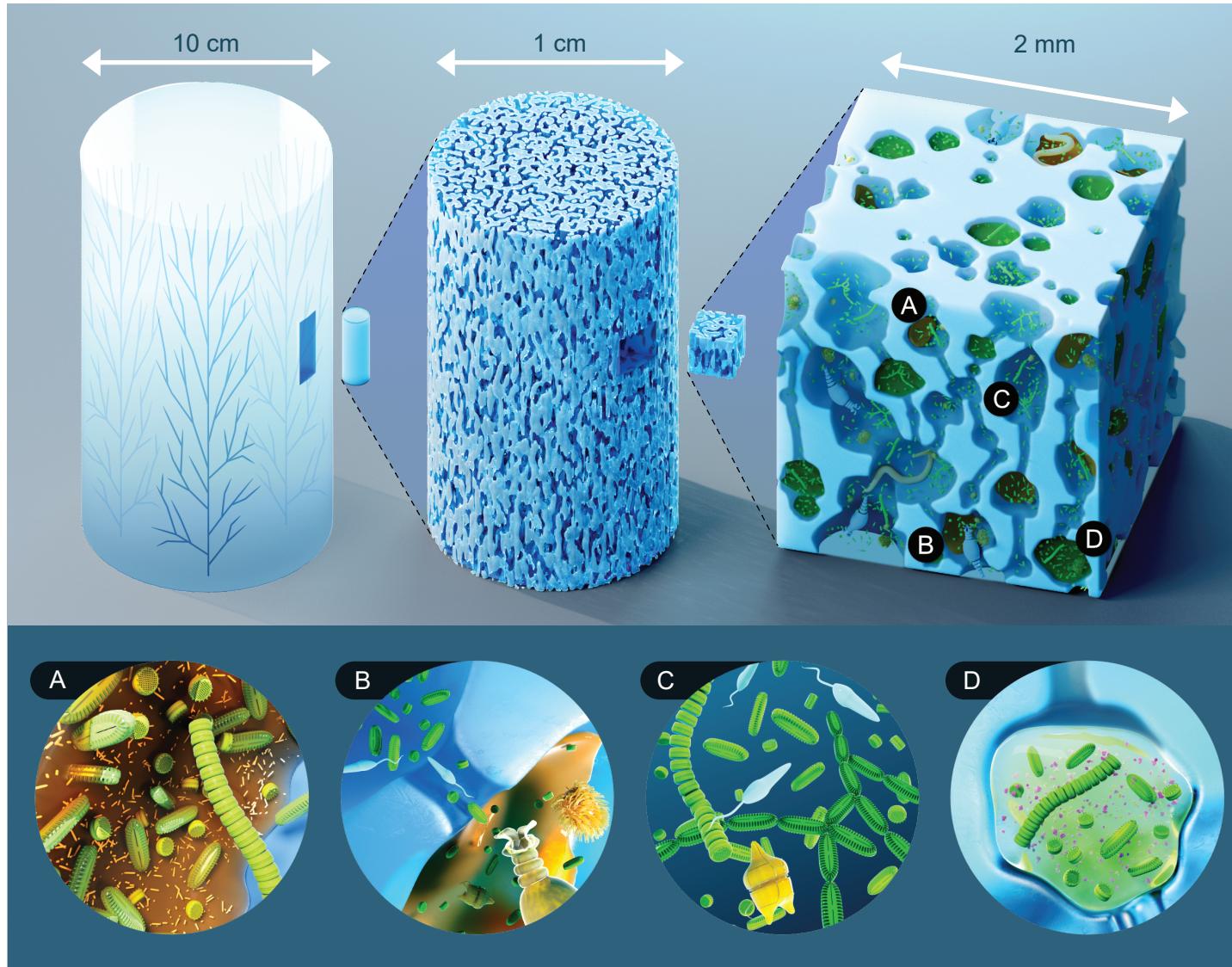
Katz and Thompson, 1985; Yu and Li, 2001

discovered for sandstones
statistically self-similar porous media



Fractal geometry of brine in sea ice, Ward, et al. 2024

Implications of brine fractal geometry on sea ice ecology and biogeochemistry



Brine inclusions are home to ice endemic organisms, e.g., bacteria, diatoms, flagellates, rotifers, nematodes.

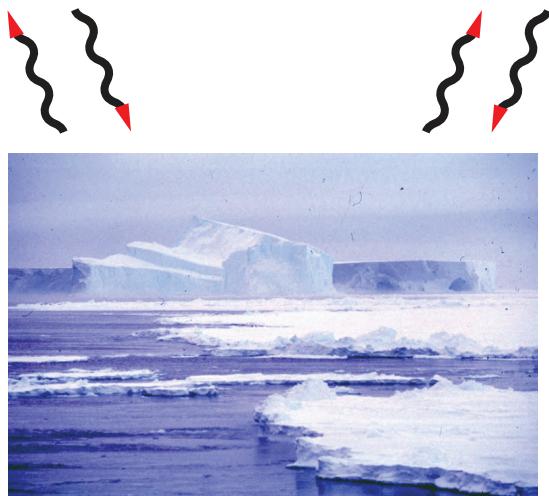
The habitability of sea ice for these organisms is inextricably linked to its complex brine geometry.

- (A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.
- (B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).
- (D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.

Remote Sensing of Sea Ice

with radar, microwaves, ...

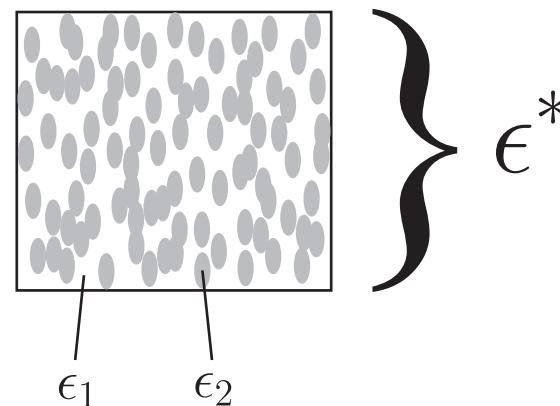
interaction of
EM waves with
brine and
polycrystalline
microstructures,
rough surfaces



INVERSE PROBLEM

Recover sea ice properties from
electromagnetic (EM) data ϵ^*

Effective complex permittivity of a composite
in the quasistatic (long wavelength) limit



$$D = \epsilon E$$

$$\nabla \cdot D = 0$$

$$\nabla \times E = 0$$

$$\langle D \rangle = \epsilon^* \langle E \rangle$$

electrical conductivity
thermal conductivity
magnetic permeability
diffusivity

p_1, p_2 = volume fractions of
the components

$$\epsilon^* = \epsilon^* \left(\frac{\epsilon_1}{\epsilon_2}, \text{ composite geometry} \right)$$

What are the effective propagation characteristics
of an EM wave (radar, microwaves) in the medium?

Analytic Continuation Method for Homogenization

Bergman 1978, Milton 1979, Golden & Papanicolaou 1983, Milton 2002

Stieltjes integrals for homogenized parameters

$$F(s) = 1 - \frac{\epsilon^*}{\epsilon_2} = \int_0^1 \frac{d\mu(z)}{s - z} \quad s = \frac{1}{1 - \epsilon_1/\epsilon_2}$$

geometry

material parameters

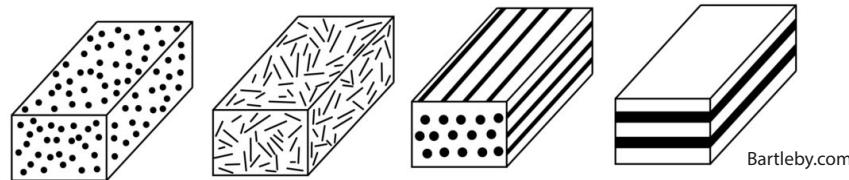
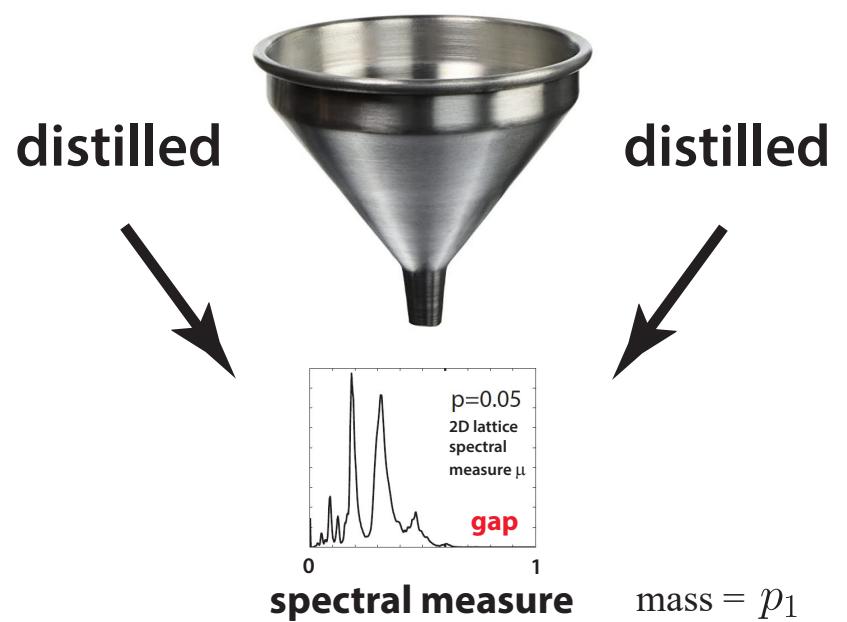
- μ = **spectral measure** of $\Gamma \chi$ (operator, matrix)

$$\Gamma = \nabla(-\Delta)^{-1} \nabla.$$

χ = characteristic function
of the brine phase

- rigorous forward bounds; approximations;
inverse bounds to recover porosity, connectivity

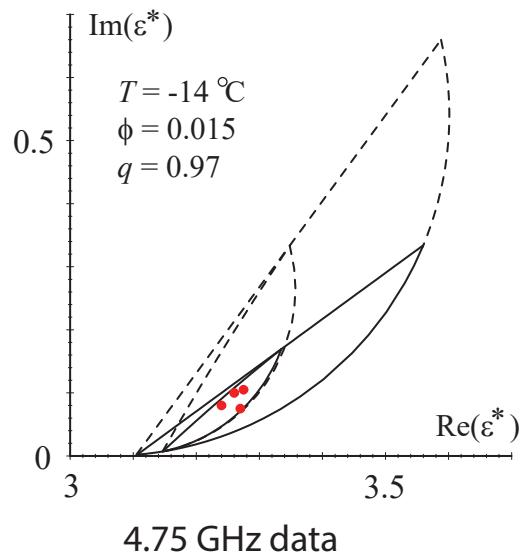
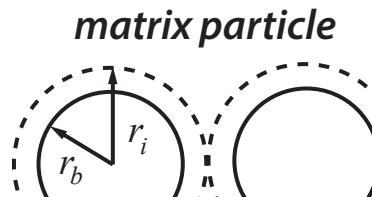
complexities of mixture geometry



quantum mechanics
fractal geometries

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

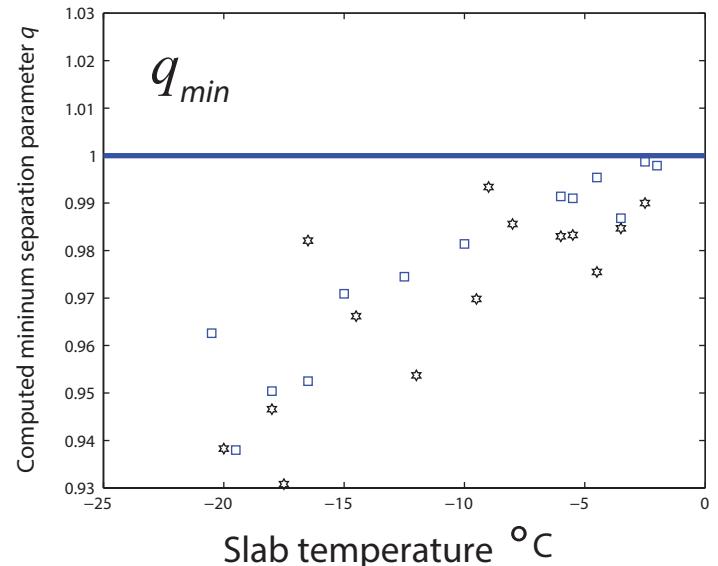


matrix particle

$$q = r_b / r_i$$
$$0 < q < 1$$

Golden 1995, 1997
Bruno 1991

inverse bounds



Inverse Homogenization

Cherkaev and Golden (1998), Day and Thorpe (1999),
Cherkaev (2001), McPhedran, McKenzie, Milton (1982),
Theory of Composites, Milton (2002)

ε^* composite geometry
(spectral measure μ)

inverse bounds and
recovery of brine porosity

Gully, Backstrom, Eicken, Golden
Physica B, 2007

inversion for brine inclusion
separations in sea ice from
measurements of effective
complex permittivity ε^*

rigorous inverse bound
on spectral gap

construct algebraic curves which bound
admissible region in (p,q) -space

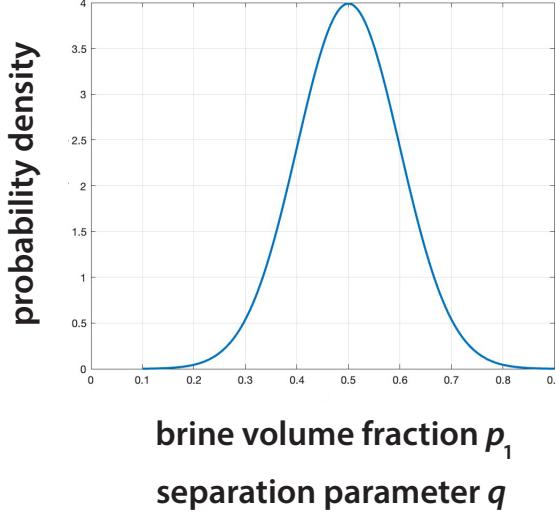
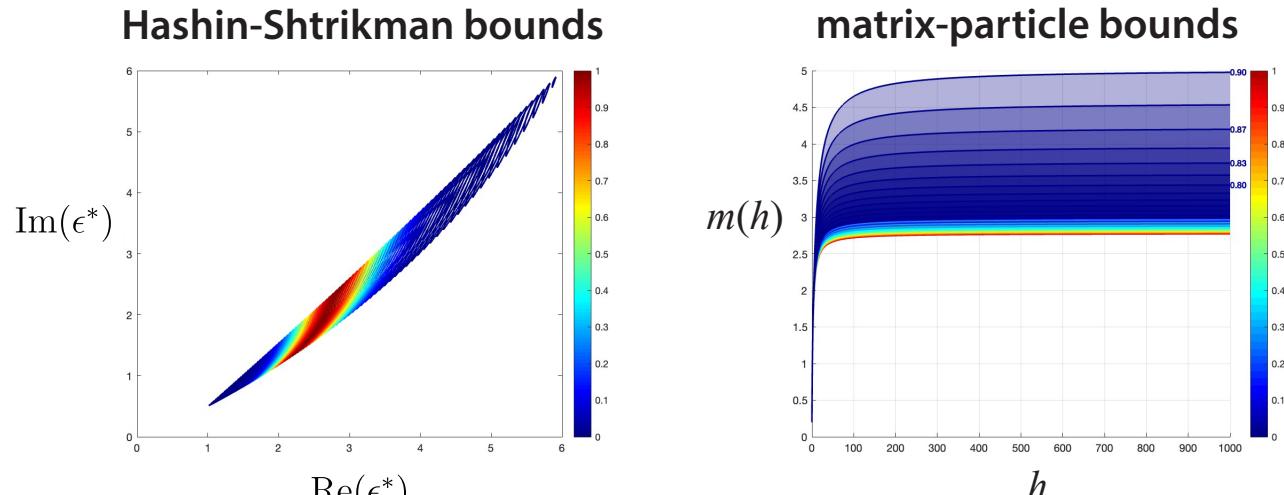
Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012

Uncertainty Quantification for Homogenization via Stieltjes Integral Representations

Clara Platt, Elena Cherkaev, Akil Narayan, Debdeep Bhattacharya, Ken Golden 2025

Classical bounds in the analytic continuation method assume **fixed** microstructural parameters, such as porosity, local permittivities, or inclusion separations.

But what if there is uncertainty, and they are random variables?

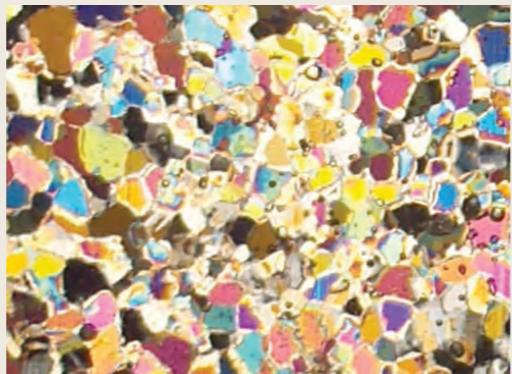


UQ for complex permittivity & thermal conductivity of sea ice

Bounds on the complex permittivity of polycrystalline materials by analytic continuation

Adam Gully, Joyce Lin,
Elena Cherkaev, Ken Golden

- **Stieltjes integral representation for effective complex permittivity**
Milton (1981, 2002), Barabash and Stroud (1999), ...
- **Forward and inverse bounds**
orientation statistics
- **Applied to sea ice using two-scale homogenization**
- **Inverse bounds give method for distinguishing ice types using remote sensing techniques**



ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

Proc. R. Soc. A

Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review
commemorating 350 years
of scientific publishing at the
Royal Society

A method to distinguish
between different types
of sea ice using remote
sensing techniques

A computer model to
determine how a human
should walk so as to expend
the least energy

THE
ROYAL
SOCIETY
PUBLISHING

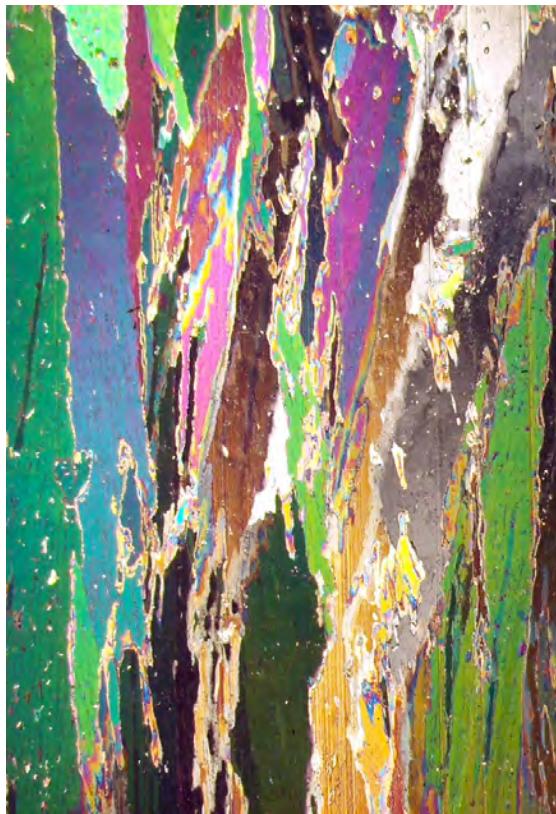
higher threshold for fluid flow in granular sea ice

microscale details impact “mesoscale” processes

nutrient fluxes for microbes
melt pond drainage
snow-ice formation

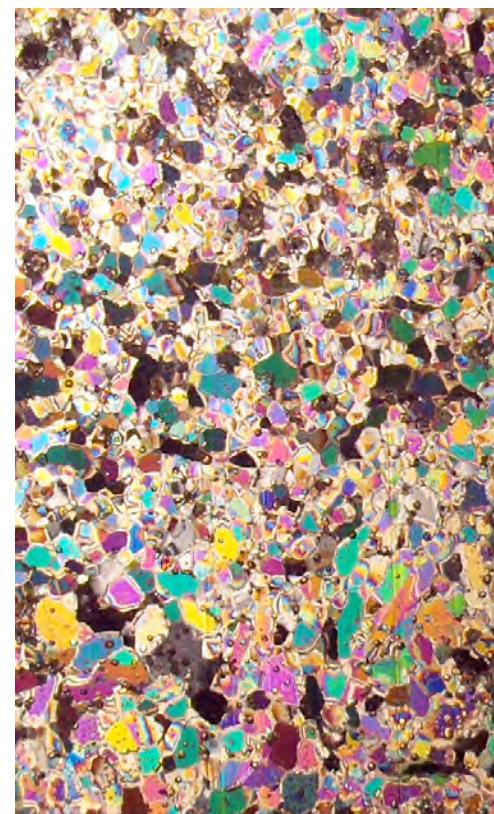
columnar

5%



granular

10%

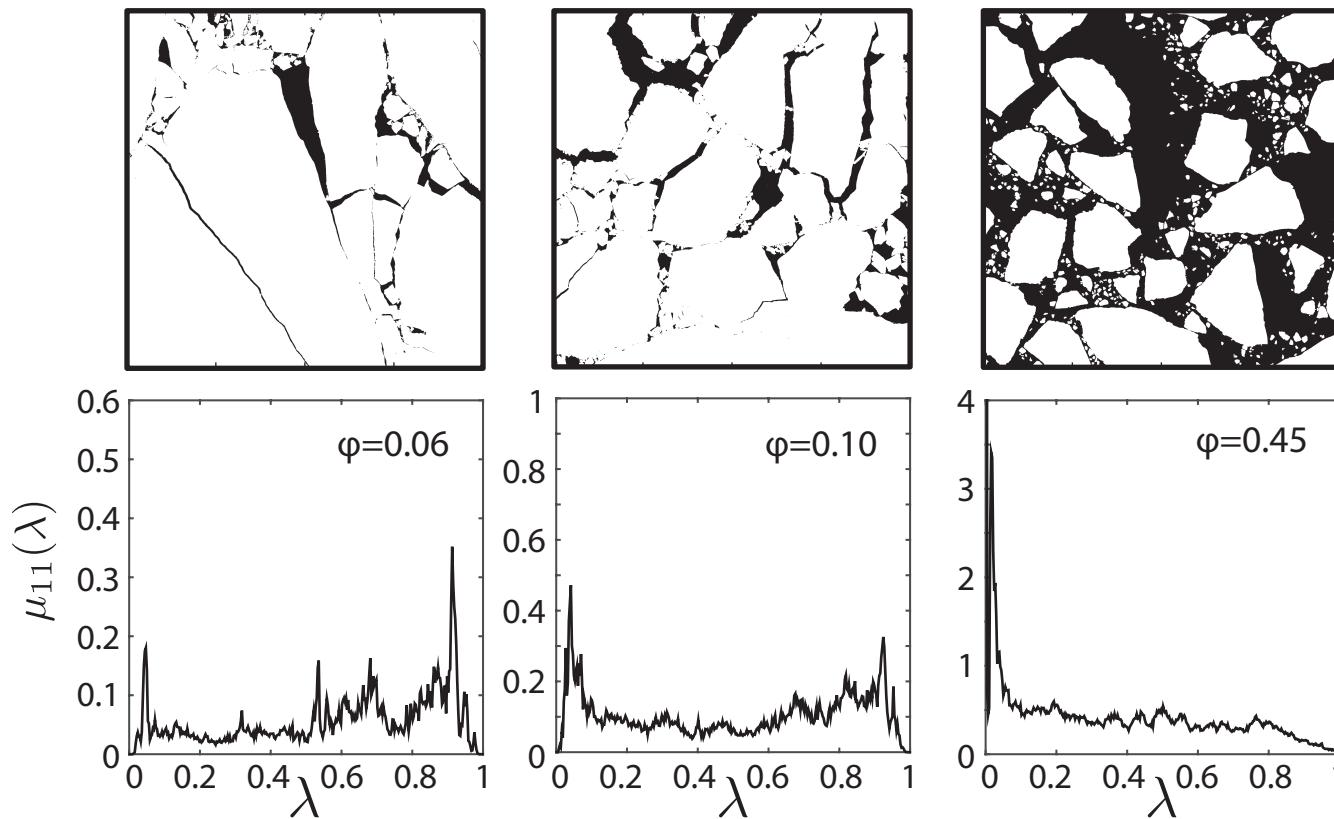


Golden, Furse, Gully, Lin, Mosier, Sampson, Tison 2025

electromagnetically distinguish ice types
inverse homogenization for polycrystals

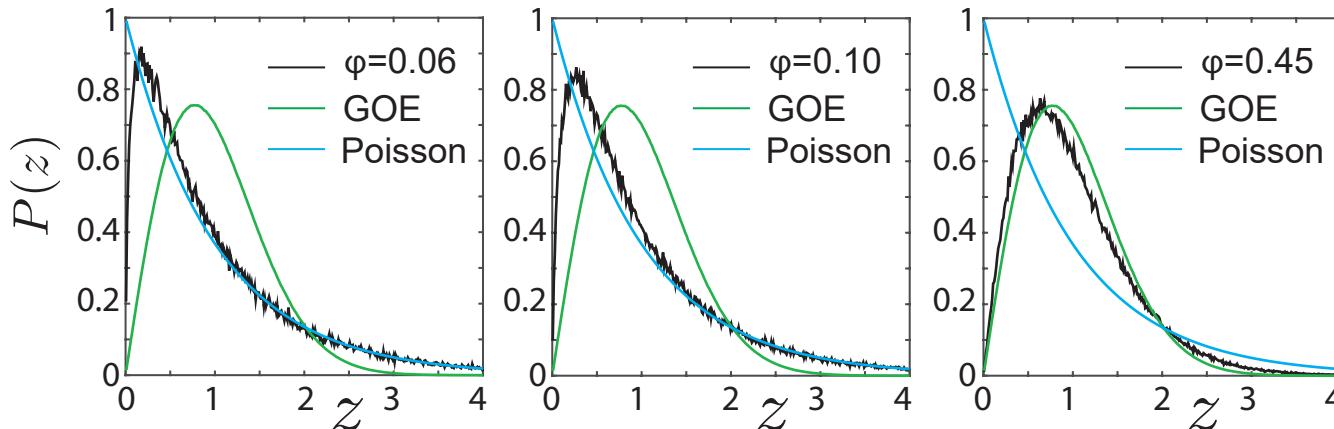
Spectral computations for sea ice floe configurations

**spectral
measures**



**eigenvalue
spacing
distributions**

**RANDOM
MATRIX
THEORY**



uncorrelated

level repulsion

**UNIVERSAL
Wigner-Dyson
distribution**
**Anderson
localization
transition**

Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT) to describe quantized energy levels of heavy atomic nuclei.

$$[\mathbf{N}]_{ij} \sim N(0,1),$$

$$\mathbf{A} = (\mathbf{N} + \mathbf{N}^T)/2$$

Gaussian orthogonal ensemble (GOE)

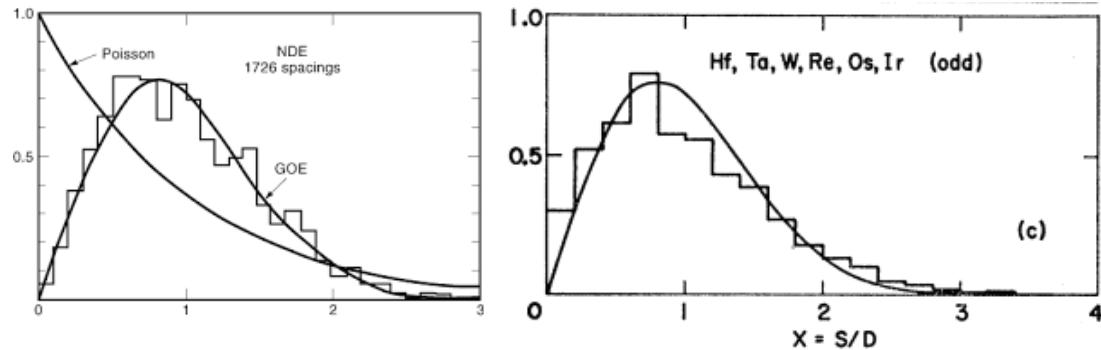
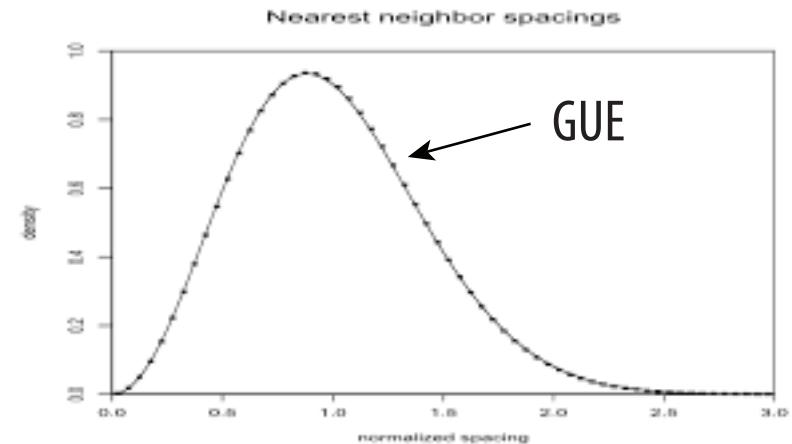
$$[\mathbf{N}]_{ij} \sim N(0,1) + iN(0,1), \quad \mathbf{A} = (\mathbf{N} + \mathbf{N}^{\dagger})/2$$

Gaussian unitary ensemble (GUE)

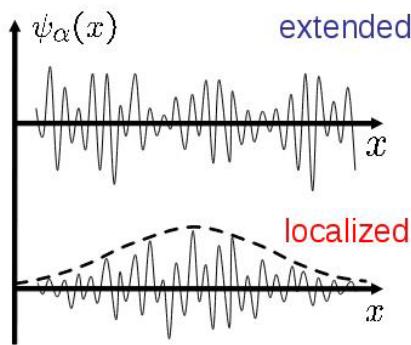
Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

Spacing distributions of the first billion zeros of the Riemann zeta function

Spacing distributions of energy levels for heavy atomic nuclei



Universal eigenvalue statistics arise in a broad range of “unrelated” problems!



Wave equations

Anderson localization

disorder-driven

metal / insulator transition

Anderson 1958
 Mott 1949
 Evangelou 1992
 Shklovshii et al 1993

**propagation vs. localization in wave physics:
 quantum, optics, acoustics, water waves**

Laplace + Diffusion
 equations

we find percolation-driven

Anderson transition for classical transport in composites

mobility edges, localization, universal spectral statistics

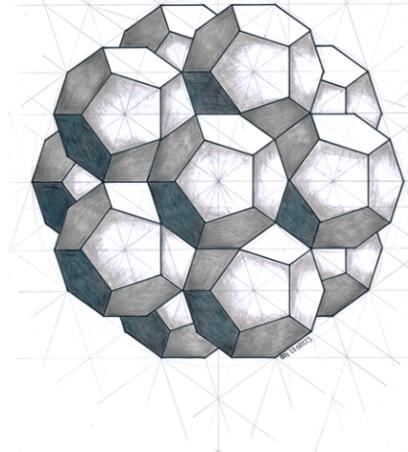
Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

but no wave interference or scattering effects at play!

Order to Disorder in Quasiperiodic Composites

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, *Communications Physics* 2022

quasiperiodic crystal quasicrystal



dense packing of dodecahedra

3D Penrose tiling

Tripkovic, 2019

ordered but aperiodic

lacks translational symmetry

Shechtman et al., *Phys. Rev. Lett.*, 1984

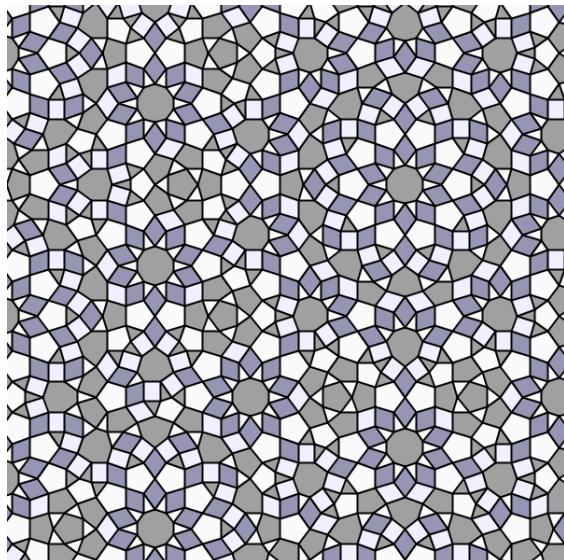
Levine & Steinhardt, *Phys. Rev. Lett.*, 1984

classical transport in
quasiperiodic media

Golden, Goldstein & Lebowitz, *Phys. Rev. Lett.*, 1985

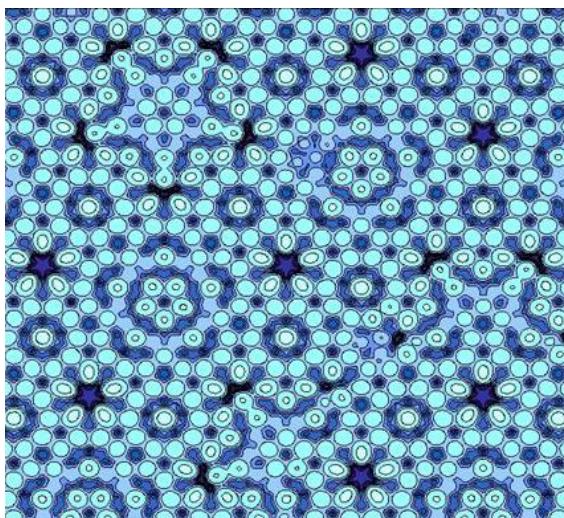
Golden, Goldstein & Lebowitz, *J. Stat. Phys.*, 1990

⋮



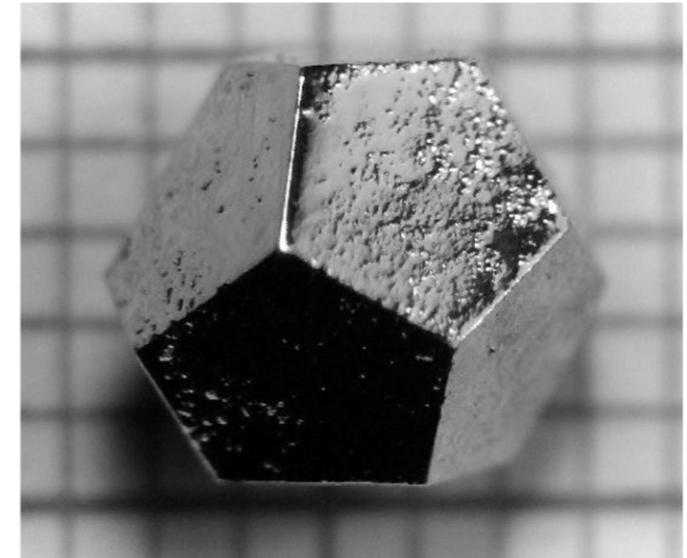
quasiperiodic checkerboard

Stampfli, 2013

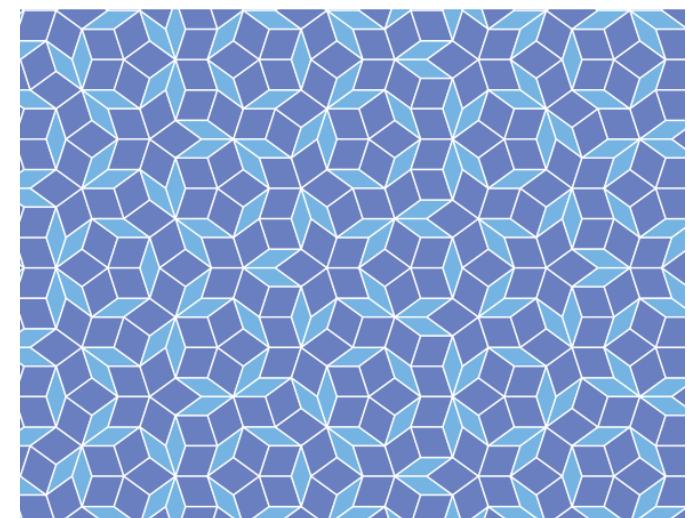


energy surface Al-Pd-Mn quasicrystal

Unal et al., 2007



Holmium-magnesium-zinc quasicrystal



aperiodic tiling of the plane - R. Penrose 1970s

1D, 2D inhomogeneous materials - quasiperiodic

$$\sigma(x) = 3 + \cos x + \cos kx$$

effective conductivity

$$\sigma^*(k) = \begin{cases} \text{constant} & k \text{ irrational} \quad \text{quasiperiodic} \\ f(k) & k \text{ rational} \quad \text{periodic} \end{cases}$$

Golden, Goldstein, Lebowitz

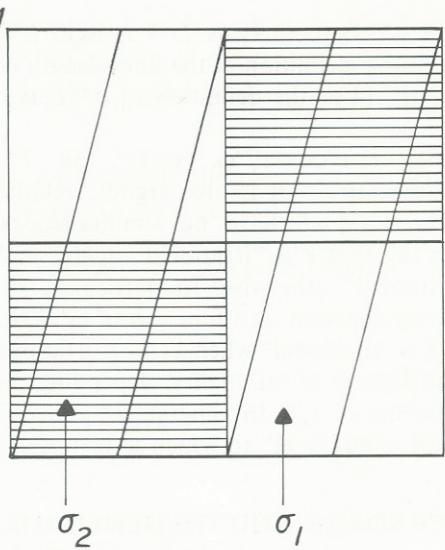
[Classical transport in modulated structures, Phys. Rev. Lett. 1985](#)

...

G. Bouchitté, S. Guenneau, F. Zolla, *SIAM Multiscale Modeling & Simulation*, 2010

E. Cherkaev, S. Guenneau, N. Wellander, *IEEE Metamaterials*, 2017

N. Wellander, S. Guenneau, E. Cherkaev, *Math. Methods in the Applied Sci.*, 2017



line of slope k through
an infinite checkerboard

$$G(k) = \begin{cases} 0, & k \text{ irrational} \\ 1/pq, & k = p/q \text{ rational} \end{cases}$$

continuous at k irrational
discontinuous at k rational

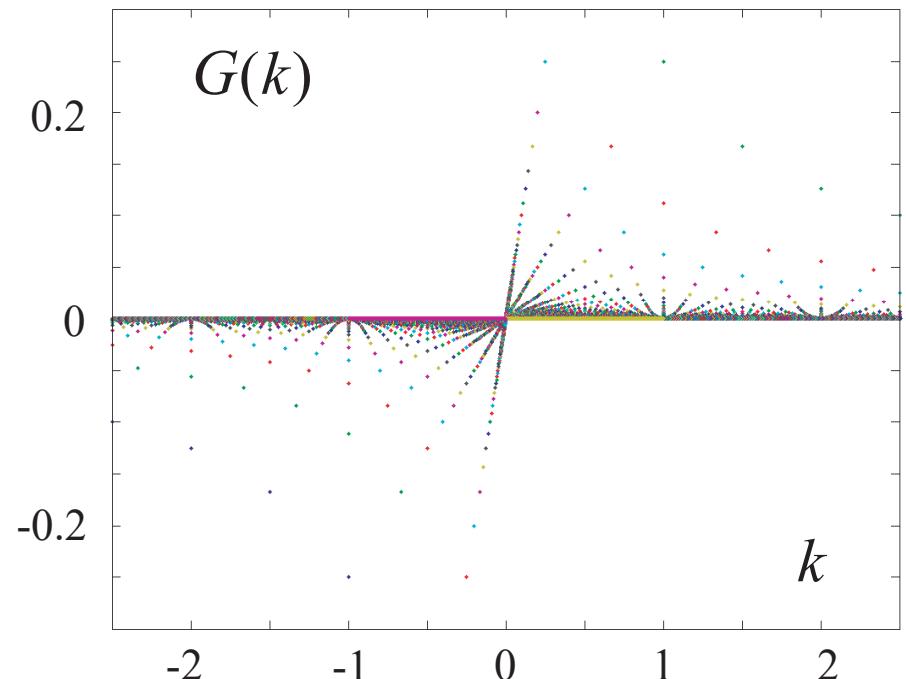
Classical transport in quasiperiodic media

Golden, Goldstein, and Lebowitz
Phys. Rev. Lett. 1985
J. Stat. Phys. 1990

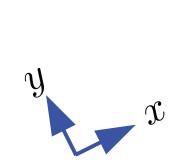
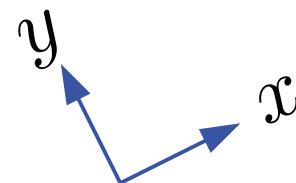
1D two component composite material

effective conductivity $\sigma^*(k)$

effective resistivity $1/\sigma^*(k) = 1 - G(k)$

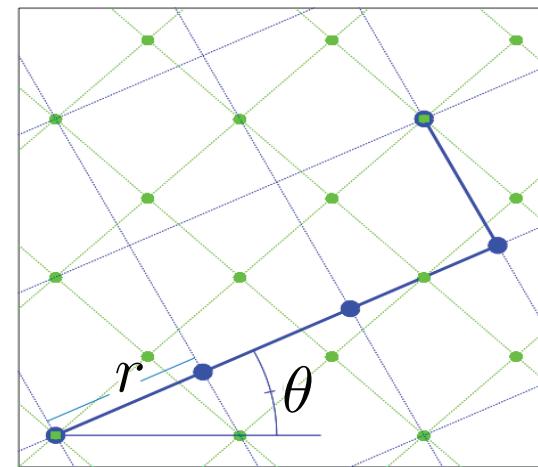


Moiré patterns generate two component composites on any scale



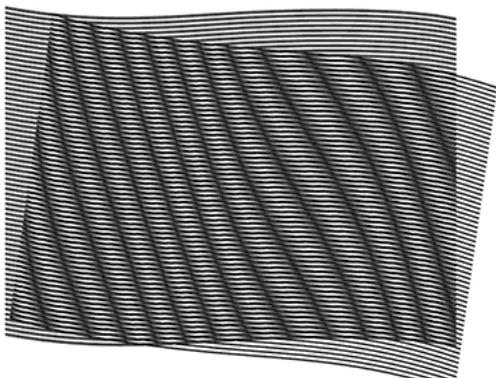
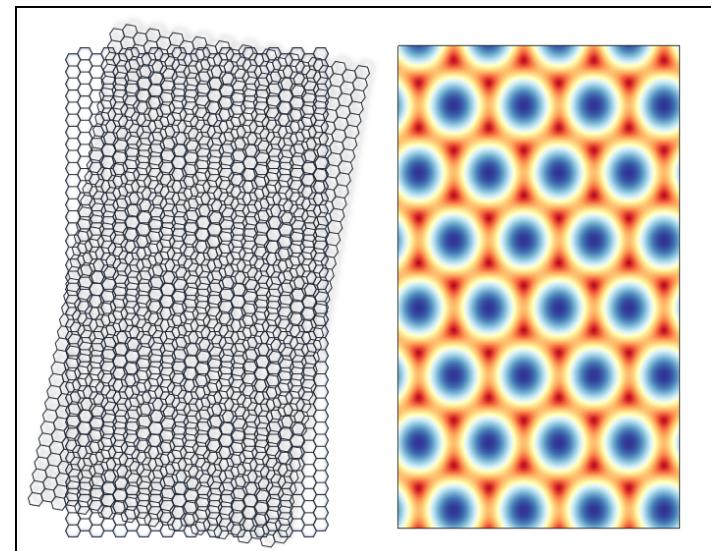
rotation
dilation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$



$$\psi(x', y') = \cos 2\pi x' \cos 2\pi y'$$

$$\chi = \begin{cases} 1, & \psi \geq 0 \\ 0, & \psi < 0 \end{cases}$$

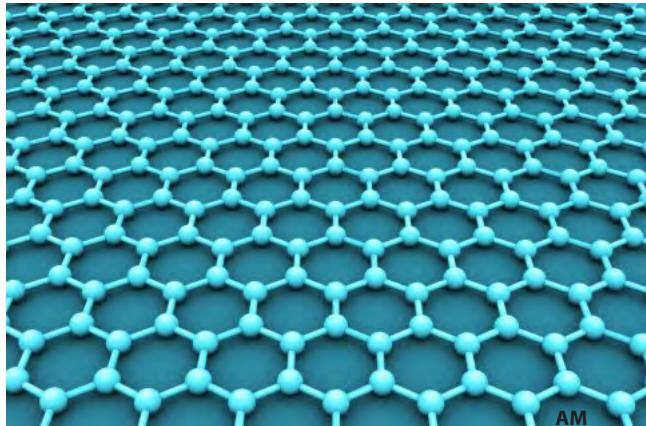


quantum dots
artificial atoms

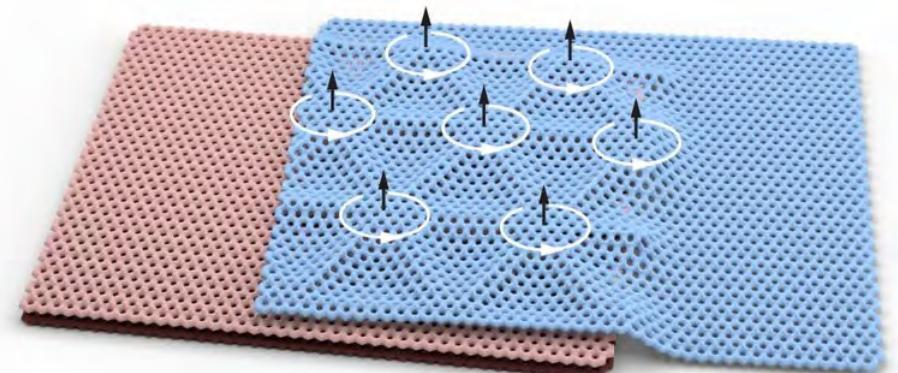
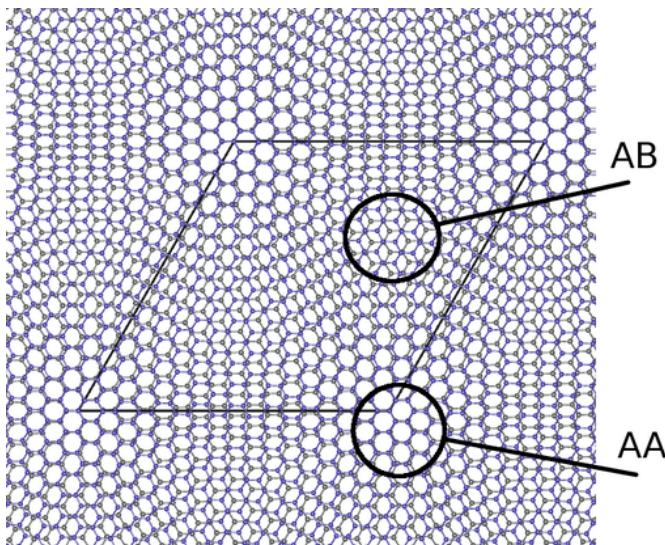
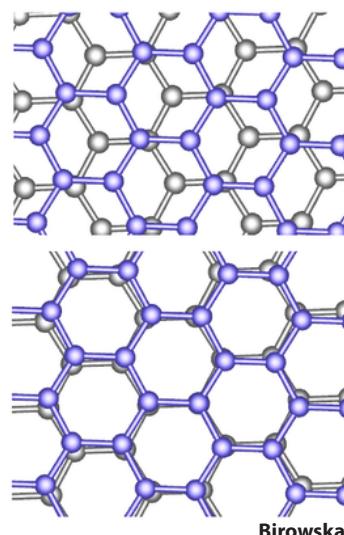
Tran et al.
Nature 2019

TWISTRONICS

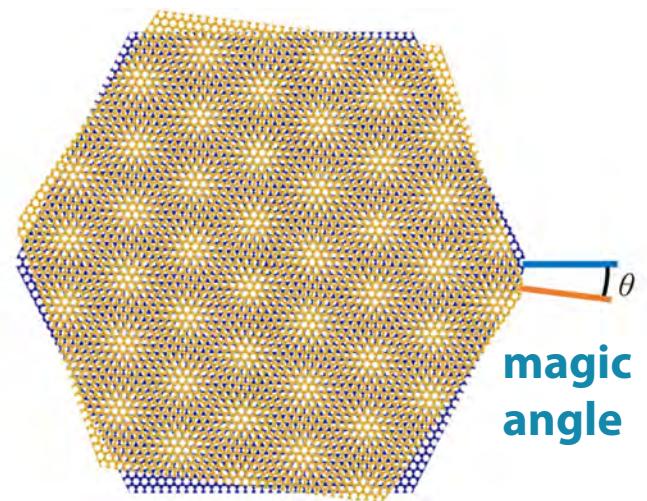
graphene



twisted bilayer graphene



graphene Moiré superlattice



superconductivity, novel band topology
semiconductor quantum dots, acting as "artificial atoms"

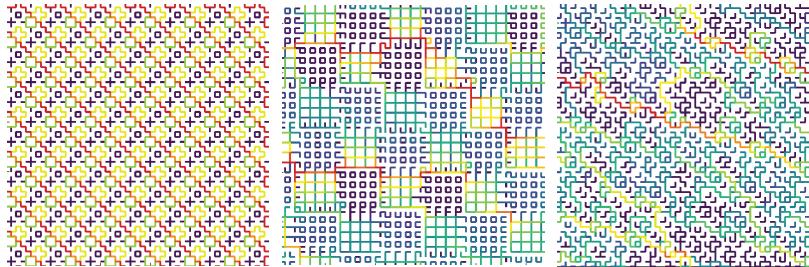
Moiré patterns from “interference” of two periodic lattices

Moiré superlattices - condensed matter playground (Li et al, 2023)

Order to disorder in quasiperiodic composites

Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

Parameterized Moiré Pattern Creates Tunable Microgeometry



twisted bilayer composites

sea ice - inspired high tech spin off

tunable Moiré composites with exotic properties

(optical, electrical, thermal, ...), Anderson localization; our Moiré patterned geometries are similar to **twisted bilayer graphene**

but can be engineered on any scale!

Figure 1 consists of a 2x5 grid of plots. The top row is labeled 'electric field strength' and the bottom row is labeled 'spectral measure μ '. The columns represent different filling factors: $\varphi = 0$, $\varphi = 1/8$, $\varphi = 1/2$, $\varphi = 2$, and 'random'. The top row shows the spatial distribution of electric field strength, with a color bar ranging from blue to red. The bottom row shows the spectral measure μ on a logarithmic scale from 10^{-8} to 10^{-4} . A horizontal arrow at the top indicates a transition from 'periodic' (left) to 'quasiperiodic' (right) behavior.

we bring the solid state physics framework for electronic transport and band gaps in semiconductors to classical transport in periodic and quasiperiodic composites

Anderson transition as twist angle is tuned photonic crystals and quasicrystals

mesoscale

advection enhanced diffusion

effective diffusivity

nutrient and salt transport in sea ice
heat transport in sea ice with convection
sea ice floes in winds and ocean currents
tracers, buoys diffusing in ocean eddies
diffusion of pollutants in atmosphere

advection diffusion equation with a velocity field \vec{u}

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T = \kappa_0 \Delta T$$

$$\vec{\nabla} \cdot \vec{u} = 0$$

↓
homogenize

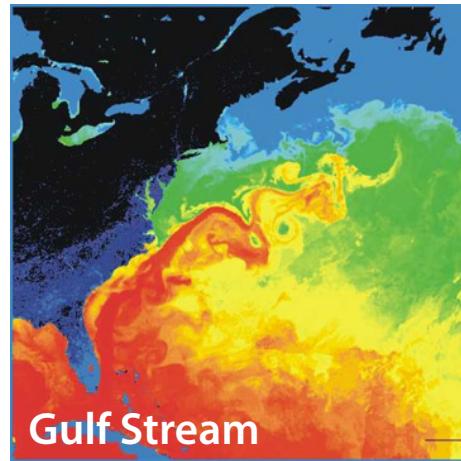
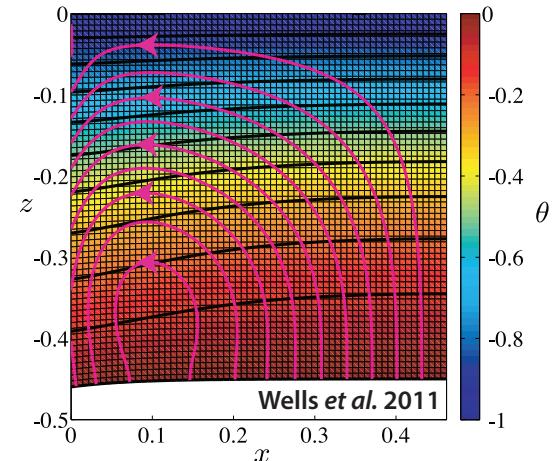
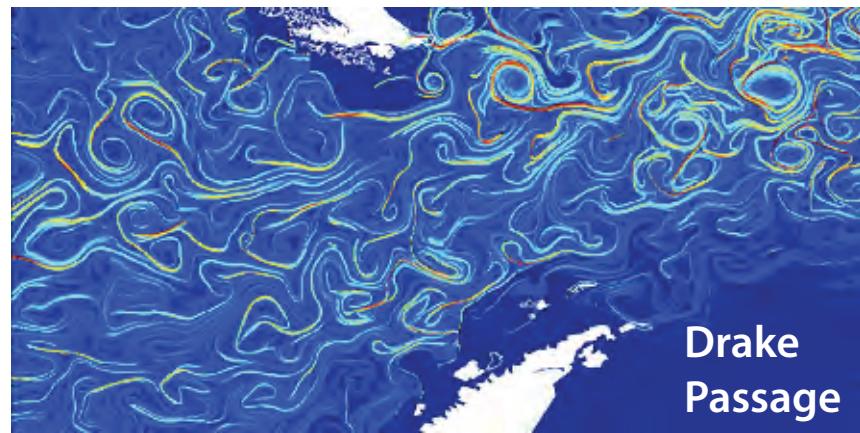
$$\frac{\partial \bar{T}}{\partial t} = \kappa^* \Delta \bar{T}$$

κ^* **effective diffusivity**

Stieltjes integral for κ^* with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

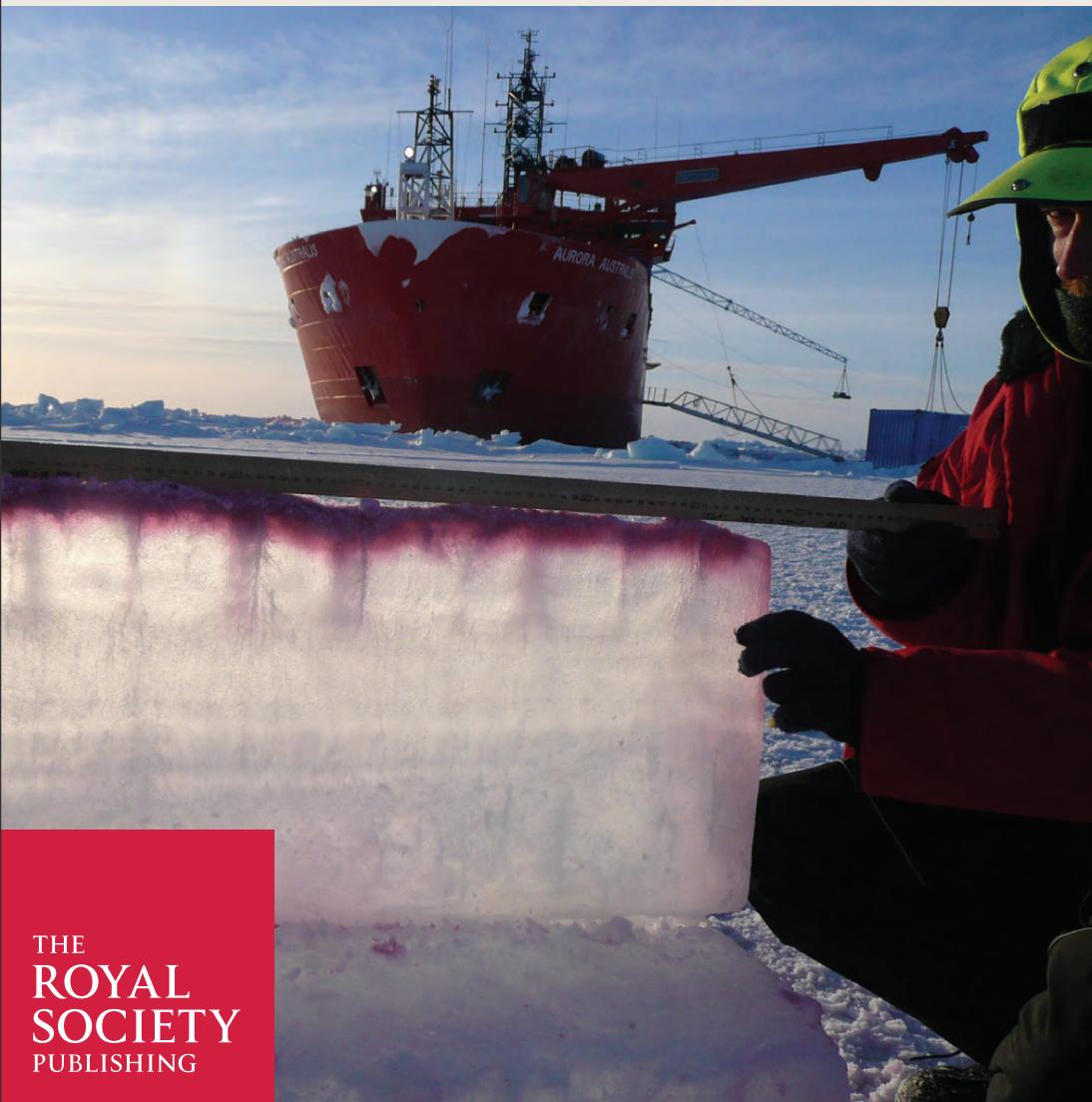
Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020



Masters, 1989

PROCEEDINGS OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES



Homogenization for convection-**enhanced** thermal transport in sea ice

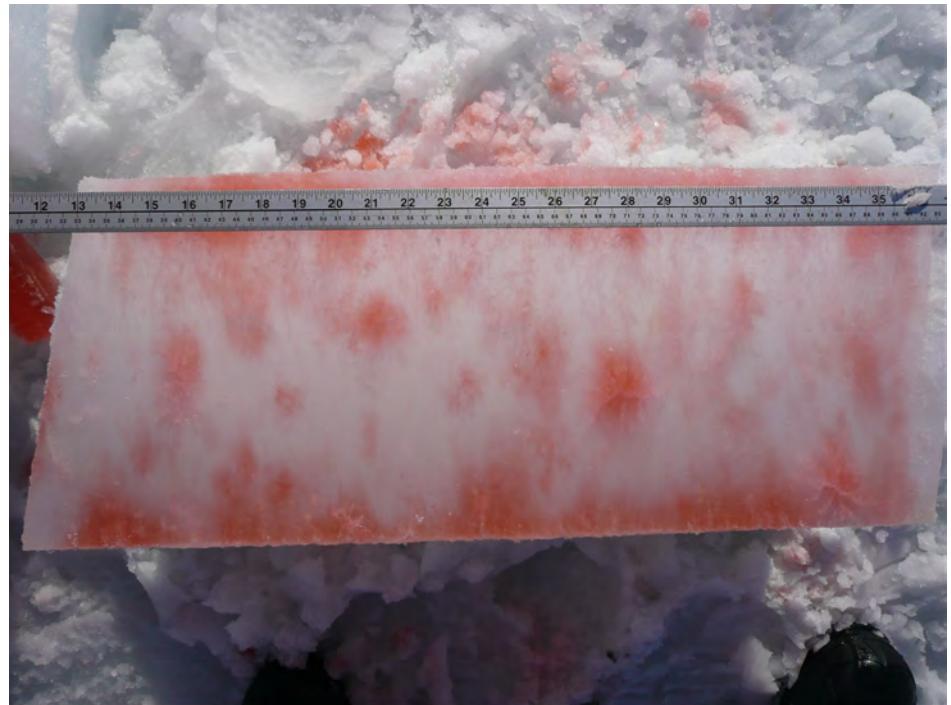
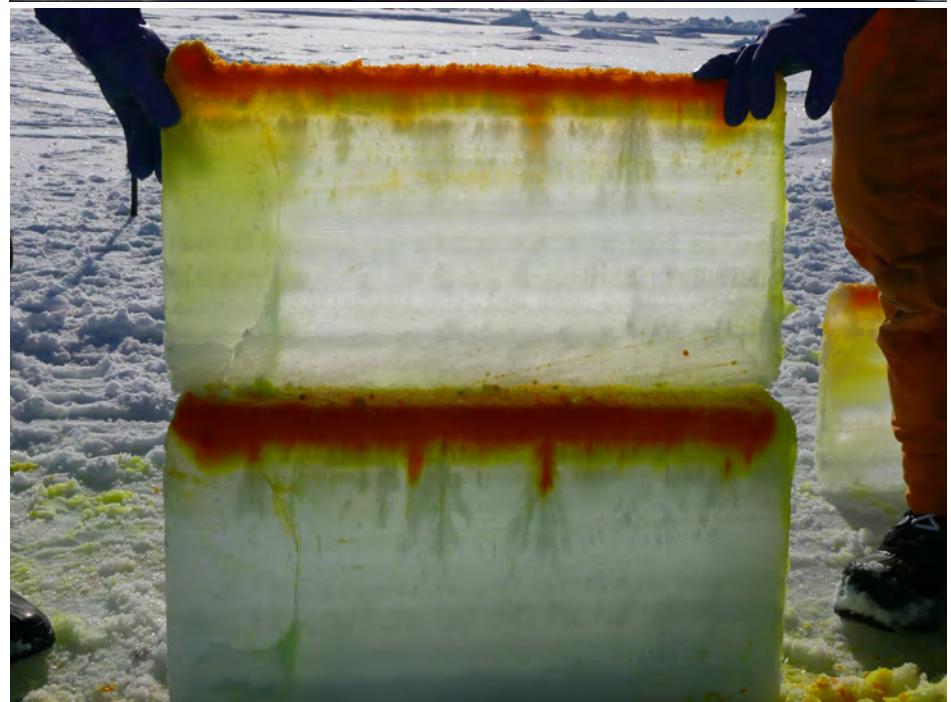
N. Kraitzman, R. Hardenbrook,
H. Dinh, N. B. Murphy, E. Cherkaev,
J. Zhu and K. M. Golden

August 2024

First rigorous mathematical theory of
thermal conductivity of sea ice with
convective fluid flow; captures data.

missing in climate models

tracers flowing through inverted sea ice blocks



Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, *J. Math. Phys.* 2020

$$\kappa^* = \kappa \left(1 + \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2} \right), \quad F(\kappa) = \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2}$$

- μ is a positive definite measure corresponding to the spectral resolution of the self-adjoint operator $i\Gamma H \Gamma$
- H = stream matrix , κ = local diffusivity
- $\Gamma := -\nabla(-\Delta)^{-1}\nabla \cdot$, Δ is the Laplace operator
- $i\Gamma H \Gamma$ is bounded for time independent flows
- $F(\kappa)$ is analytic off the spectral interval in the κ -plane

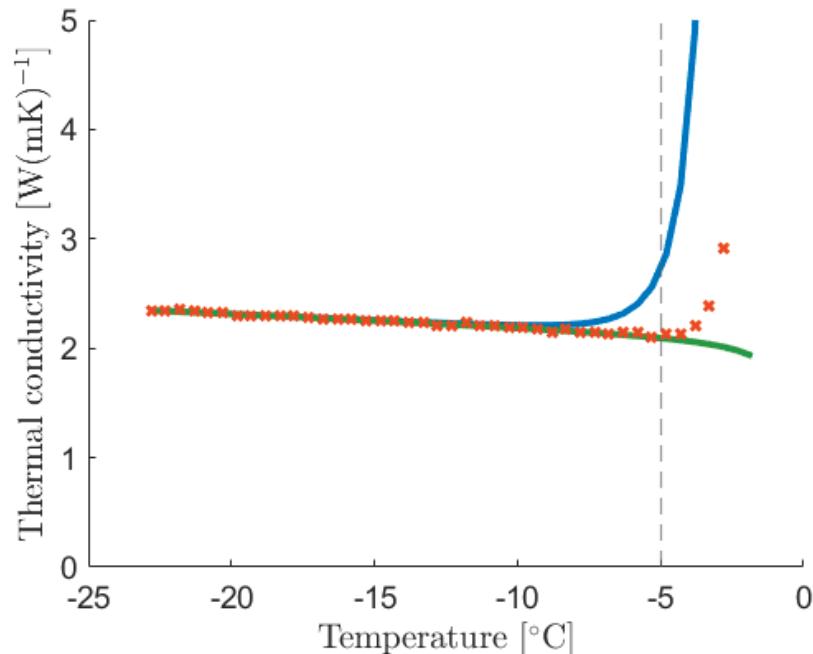
**rigorous framework for numerical computations of
spectral measures and effective diffusivity for model flows**

new integral representations, theory of moment calculations

separation of material properties and flow field

Bounds on Convection Enhanced Thermal Transport

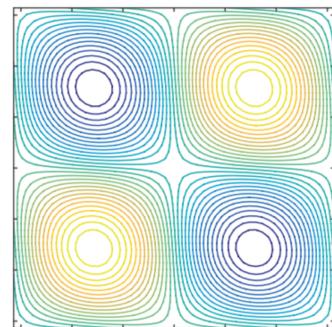
simulations



Monte-Carlo simulations of SDE with temperature dependent Péclet number P

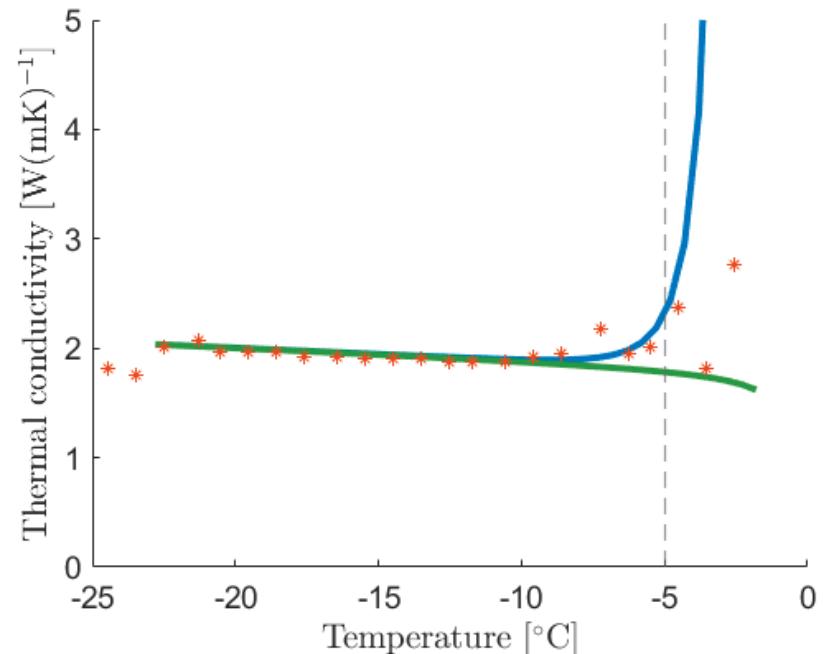
strength of advection $B = \kappa P/2\pi$

Euler-Maruyama and subsampling methods for SDE



cat's eye flow model for brine convective flow

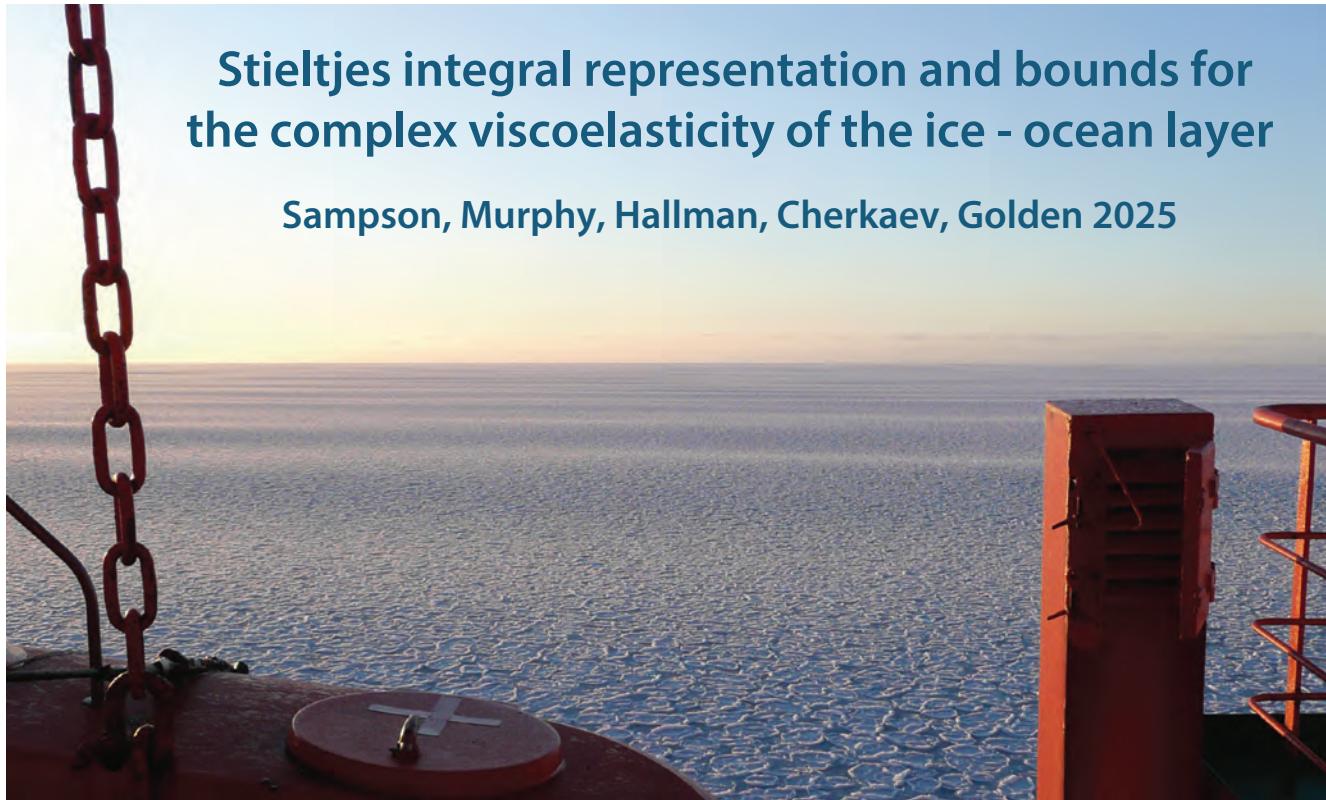
data [Trodahl et al., 2001]



Rigorous Padé approximant bounds in terms of P using Stieltjes integral + analytic continuation method for the measure

Darcy velocity $v = 0.5$ [m/s]

ocean wave propagation through the sea ice pack



Stieltjes integral representation and bounds for the complex viscoelasticity of the ice - ocean layer

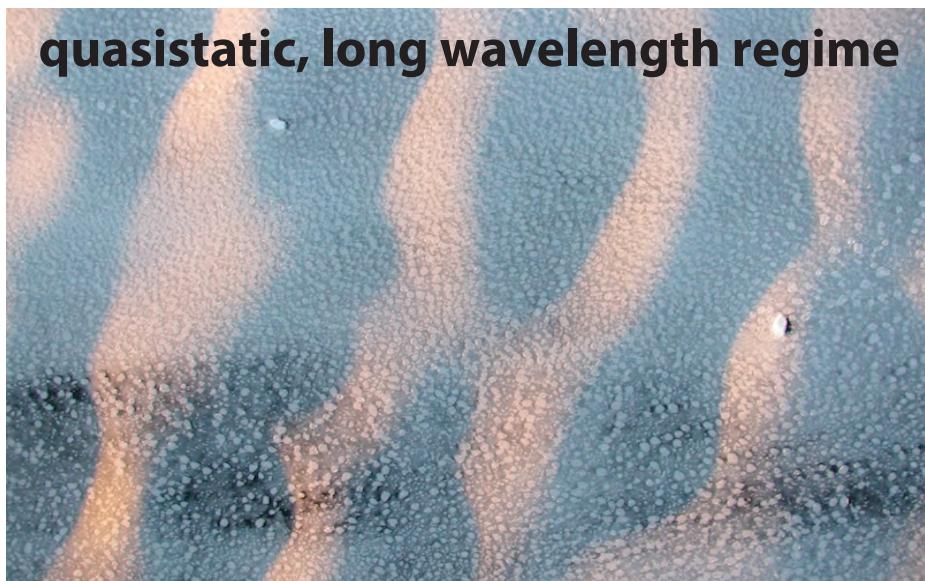
Sampson, Murphy, Hallman, Cherkaev, Golden 2025

- wave-ice interactions critical to growth and melting processes
- break-up; pancake promotion floe size distribution

effective layer parameter previously fit to wave data

Keller 1998
Mosig, Montiel, Squire 2015
Wang, Shen 2012

Analytic Continuation Method
Bergman 1978, Milton 1979
Golden and Papanicolaou 1983
Milton, *Theory of Composites* 2002



quasistatic, long wavelength regime

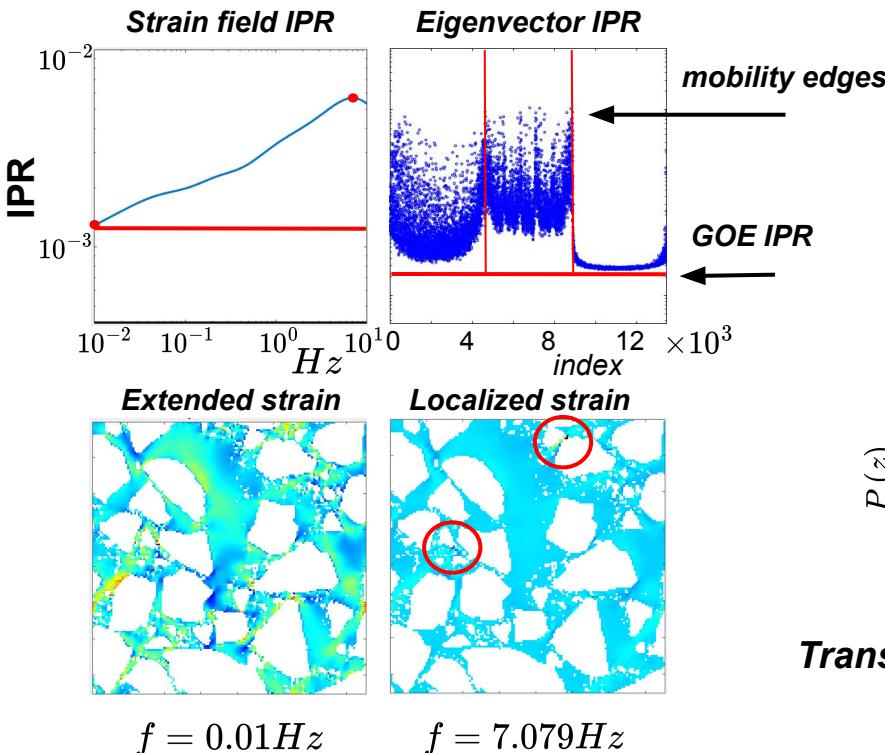
homogenized parameter depends on sea ice concentration and ice floe geometry

like EM waves

Waves in sea ice and solid state physics

Resolvent representation of the deviatoric **strain field**

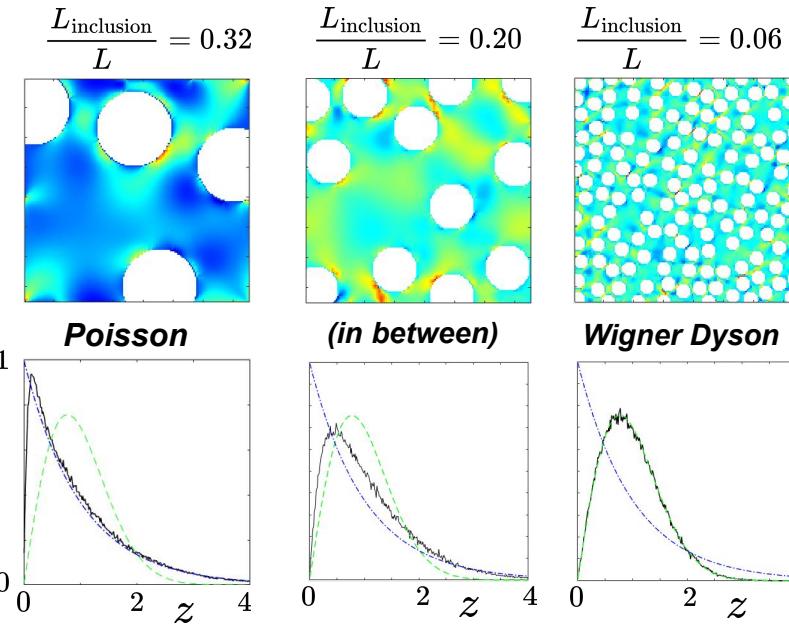
$$\chi \epsilon_s = s(sI - \chi \Gamma^S \chi)^{-1} \chi \epsilon_s^0$$



Stieltjes integral representation of effective complex viscoelasticity

$$\frac{\nu^*}{\nu_2} = \int_0^1 \frac{d\mu(\lambda)}{s-\lambda}$$

Increasing geometric order



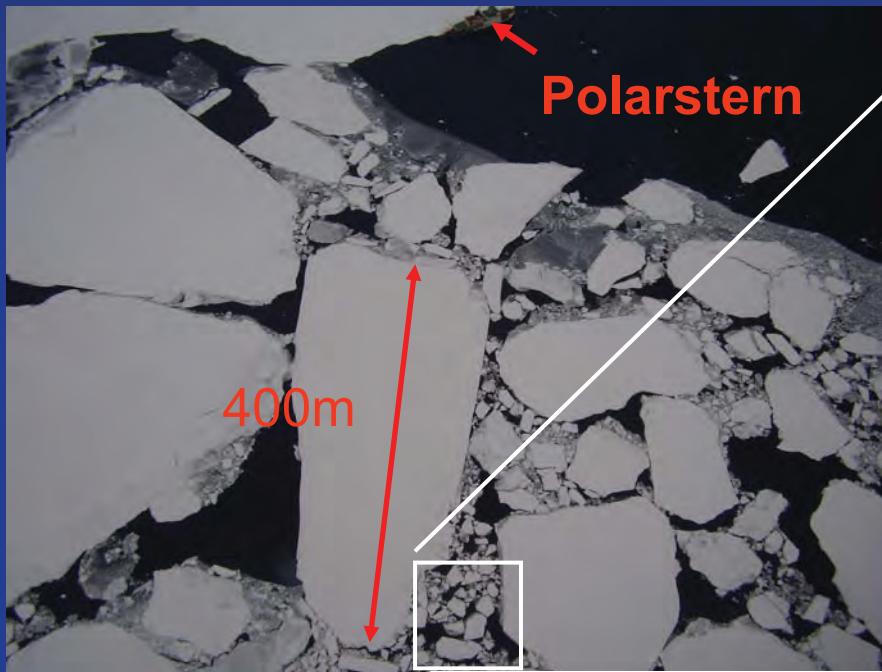
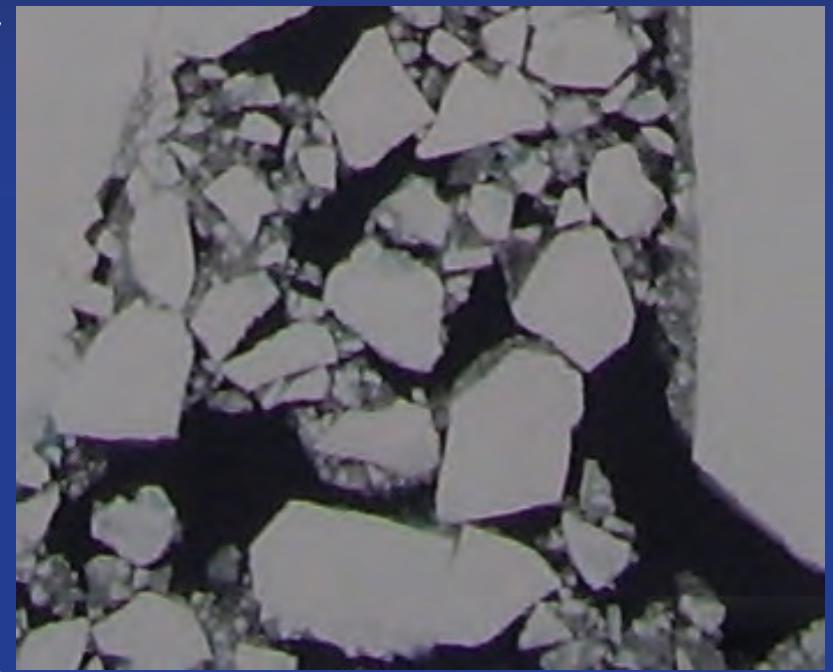
Transition in the eigenvalue spacing distribution of $\chi\Gamma^S\chi$

Large inclusions \longrightarrow Small inclusions
 “Local to collective deformation transition”

The sea ice pack has fractal structure.

Self-similarity of sea ice floes

Weddell Sea, Antarctica



*fractal dimensions of Okhotsk Sea ice pack
smaller scales $D \sim 1.2$, larger scales $D \sim 1.9$*

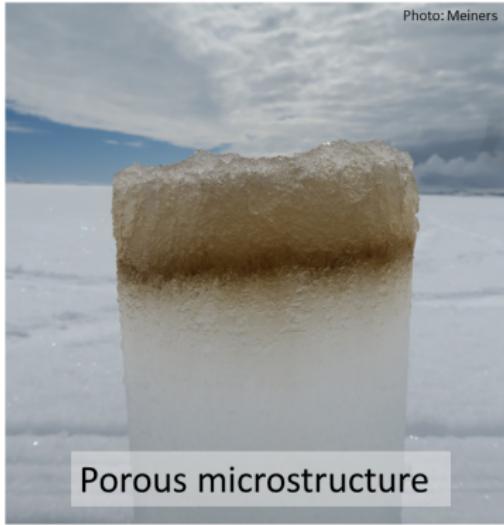
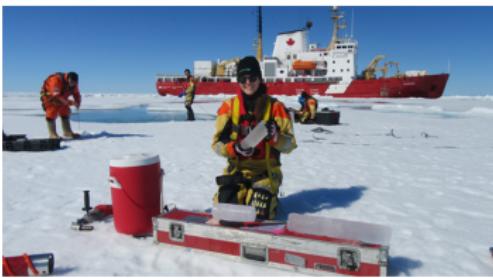
fractal dim. vs. floe size exponent

Adam Dorsky, Nash Ward, Ken Golden 2024

Toyota, et al. *Geophys. Res. Lett.* 2006

Rothrock and Thorndike, *J. Geophys. Res.* 1984

SEA ICE ALGAE high level of local heterogeneity



Can we improve agreement between algae models and data?

80% of polar bear diet can be traced to ice algae*.

* Brown TA, et al. (2018). *PLoS one*, 13(1), e0191631

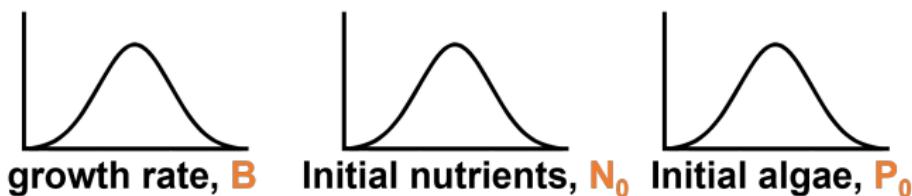
HETEROGENEITY in PARAMETERS & CONDITIONS

At each location within a larger region, consider

$$\begin{aligned}\frac{dN}{dt} &= \alpha - \textcolor{brown}{B}NP - \eta N \\ \frac{dP}{dt} &= \gamma \textcolor{brown}{B}NP - \delta P\end{aligned}$$

**treating parameters
as random variables**

$$N(0) = \textcolor{brown}{N}_0, \quad P(0) = \textcolor{brown}{P}_0$$



But, Monte Carlo for Full Algae Model: 8 hours X 10,000

Uncertainty quantification for ecological models with random parameters

Jody R. Reimer^{1,2} | Frederick R. Adler^{1,2} | Kenneth M. Golden¹ | Akil Narayan^{1,3}

¹Department of Mathematics, University of Utah, Salt Lake City, Utah, USA

²School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA

³Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA

Correspondences

Jody R. Reimer, Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.

Email: reimer@math.utah.edu

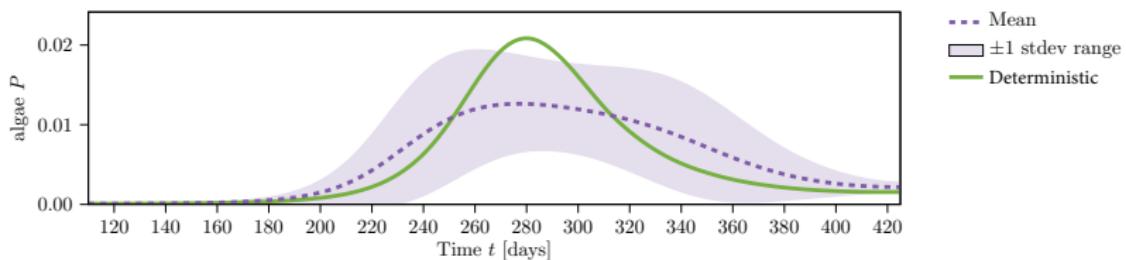
Abstract

There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters.

N-P Model

Introduce polynomial chaos approach to widely used ecological ODE models, but with random parameters.

ECOLOGICAL INSIGHTS



- lower peak bloom intensity
- longer bloom duration
- able to compare variance to data

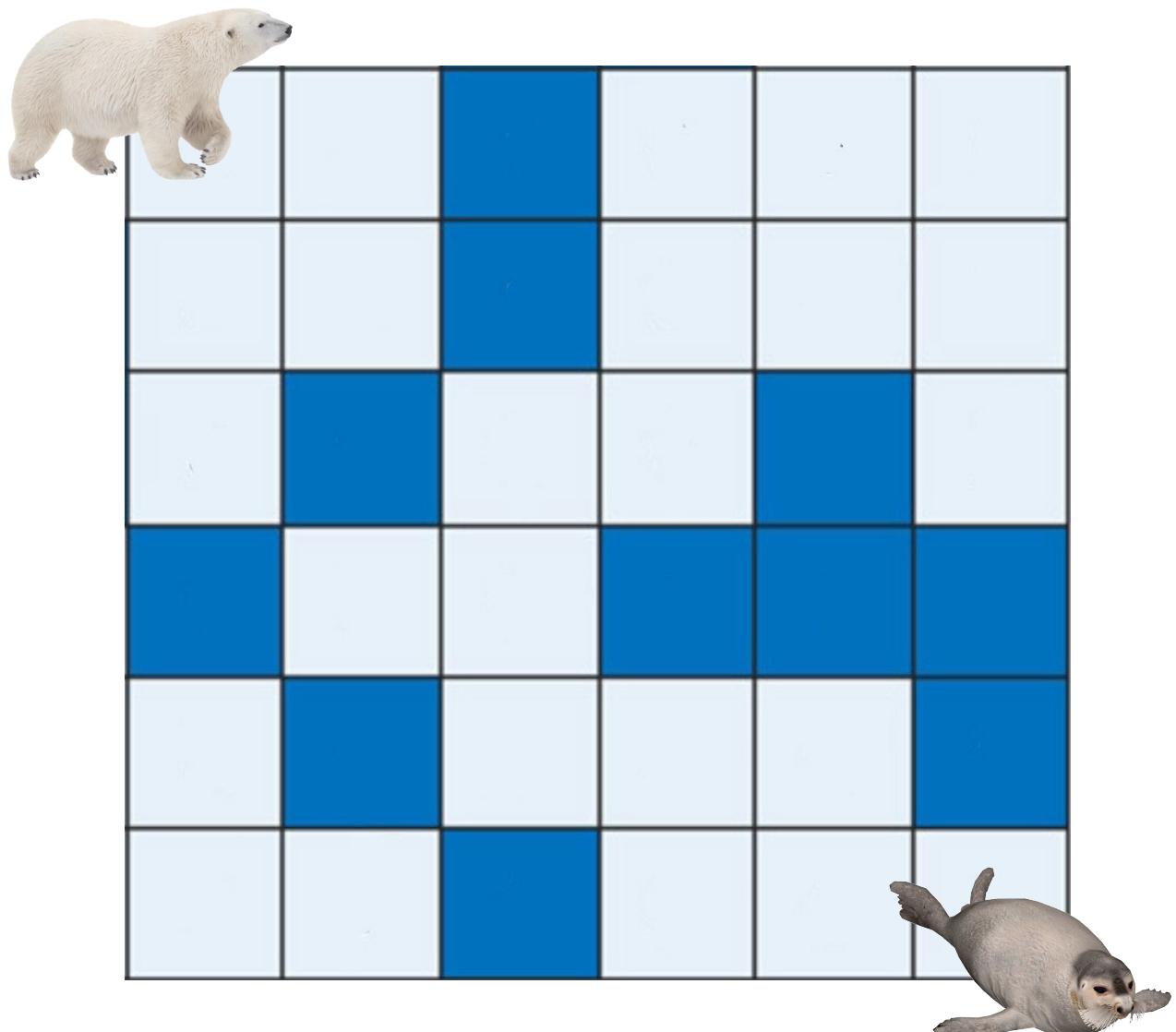
Inverse Problem: given algal and nutrient data, recover growth rate distribution
Anthony Lee, Jody Reimer, Akil Narayan, Ken Golden 2024

Optimal Movement of a Polar Bear in a Heterogenous Icescape

Nicole Forrester, Rylie Gagne, Jody Reimer, Ken Golden 2025

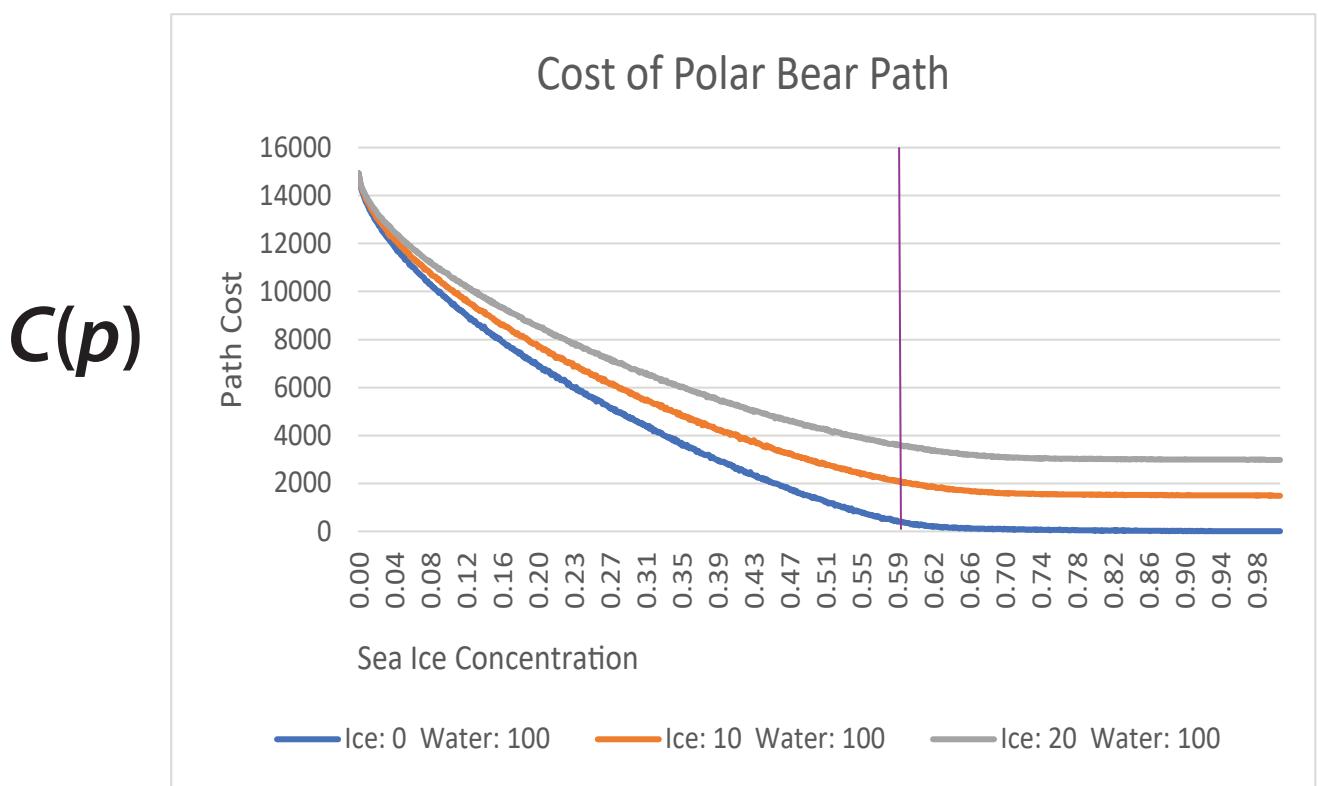
Polar bears expend 5X more energy swimming than walking on sea ice.

As sea ice is lost, how do polar bears optimize their movement to save energy and survive?



Polar Bear Percolation

To study the importance of ice connectedness, we exaggerate the data by setting the cost of walking on ice to 0 with the cost of swimming still at 5.



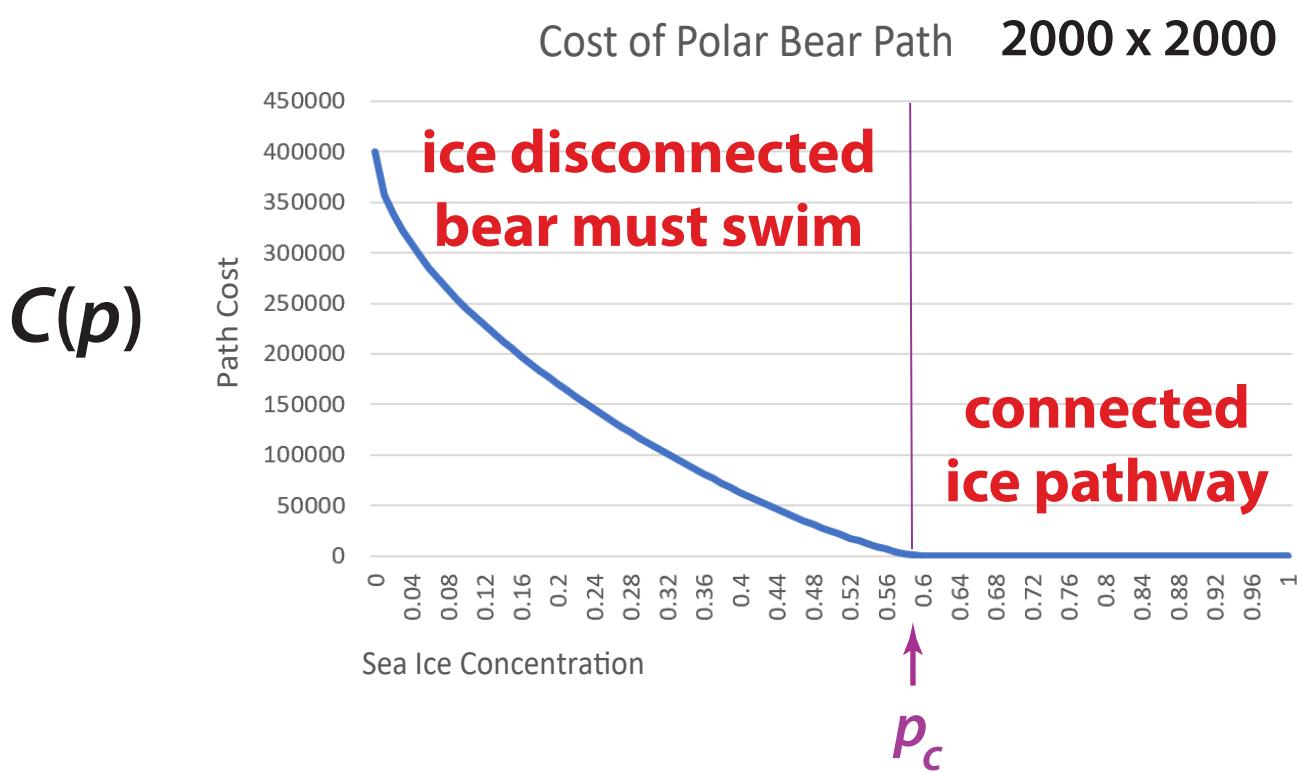
$$h = \frac{C_i}{C_w}$$

ratio of local
“conductivities”

- ← $h = 0.2$
- ← $h = 0.1$
- ↑ $h = 0$

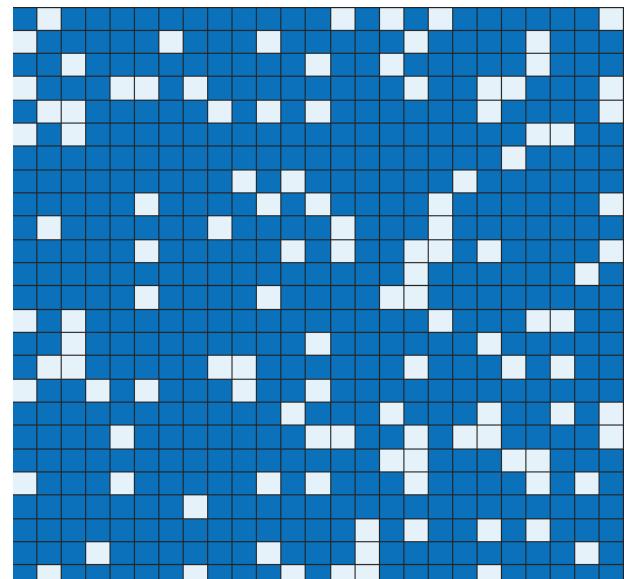
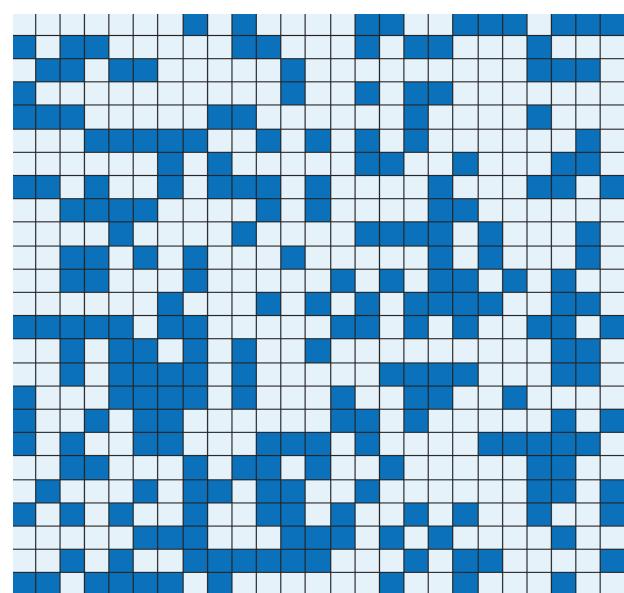
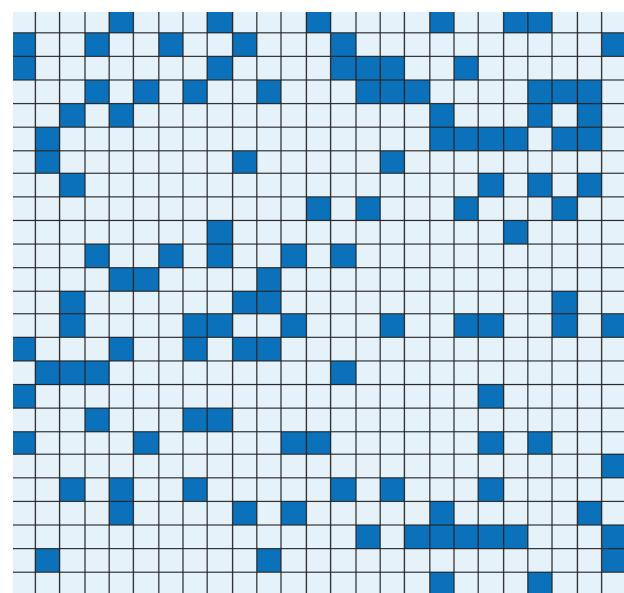
site percolation
threshold

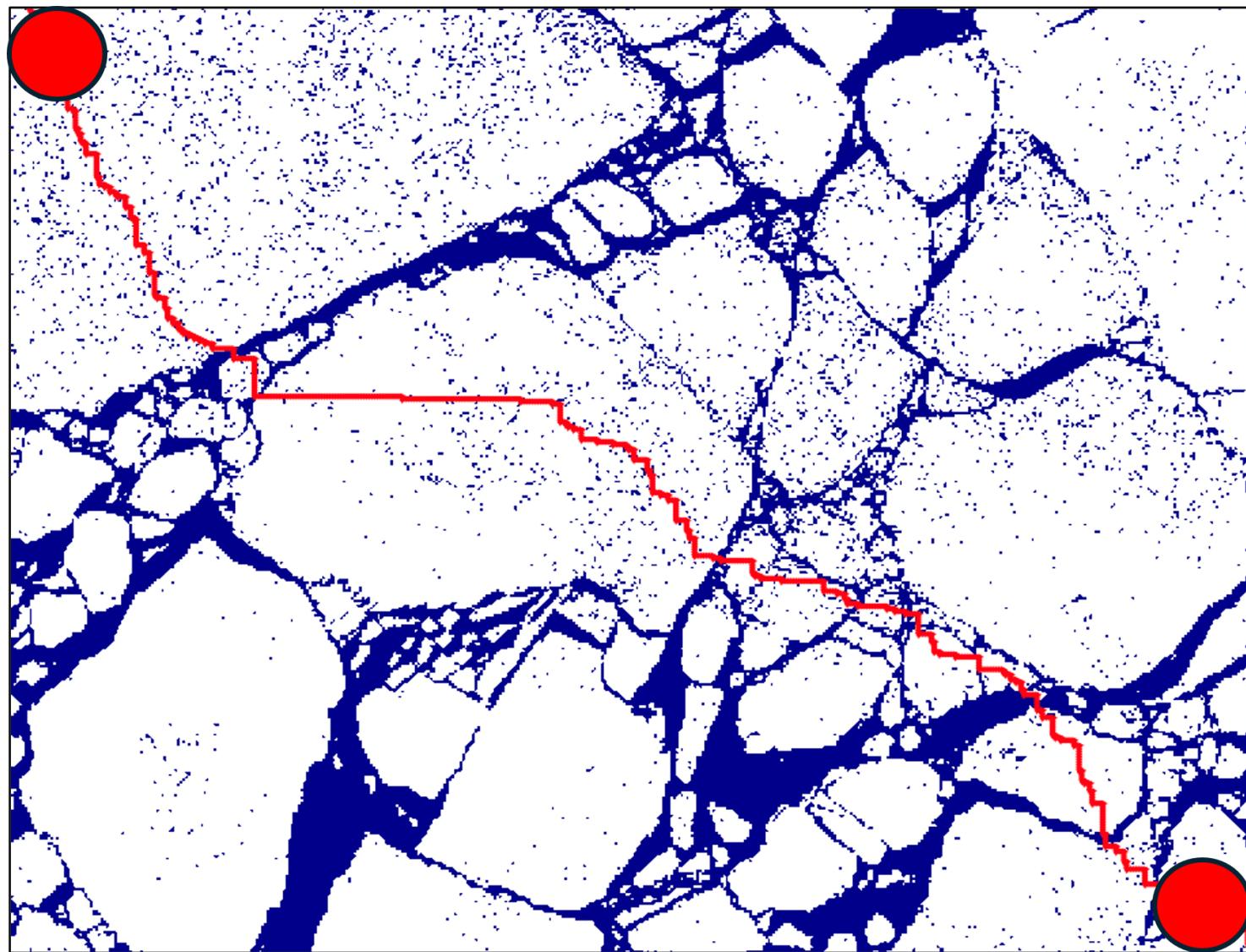
$$p_c = 0.59 \text{ for } d = 2$$



Polar Bear
Critical
Exponent

← $h = 0$





melt pond formation and albedo evolution:

- *major drivers in polar climate*
- *key challenge for global climate models*

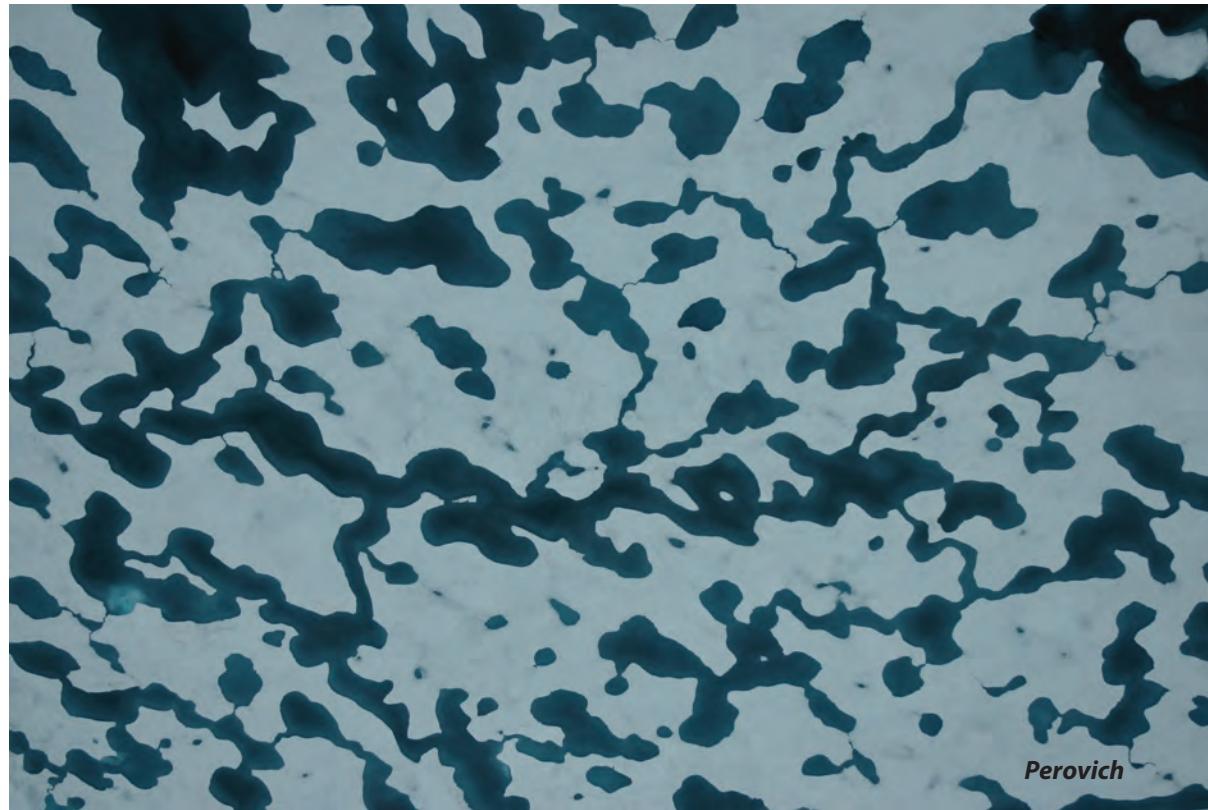
**numerical models of melt pond evolution, including
topography, drainage (permeability), etc.**

Lüthje, Feltham,
Taylor, Worster 2006

Flocco, Feltham 2007

Skyllingstad, Paulson,
Perovich 2009

Flocco, Feltham,
Hunke 2012

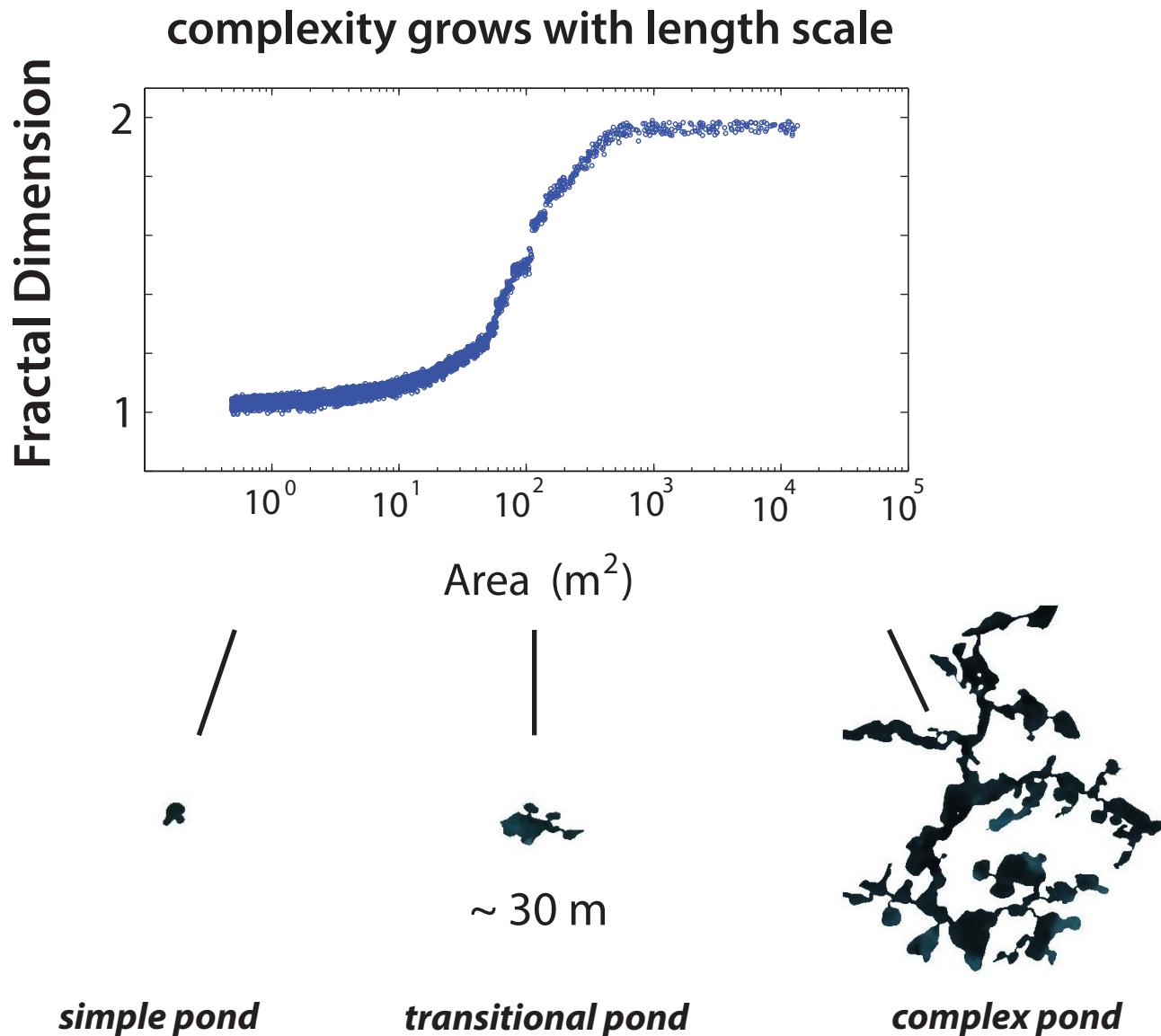


**Are there universal features of the evolution
similar to phase transitions in statistical physics?**

Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

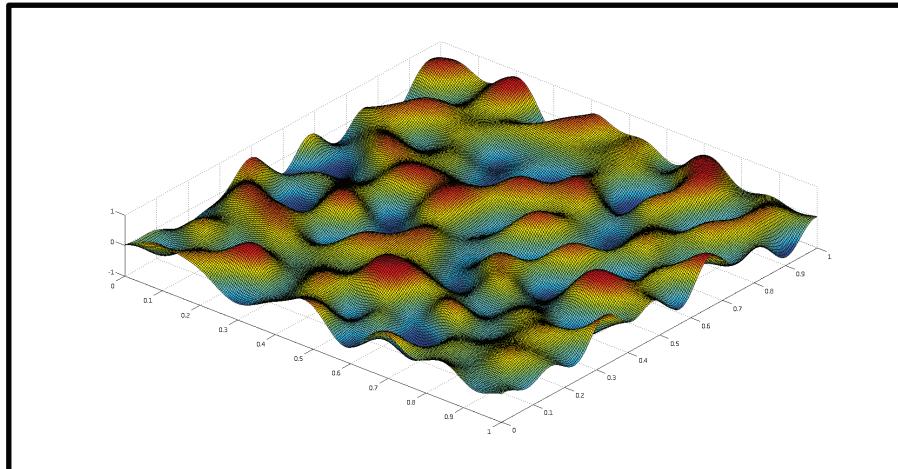
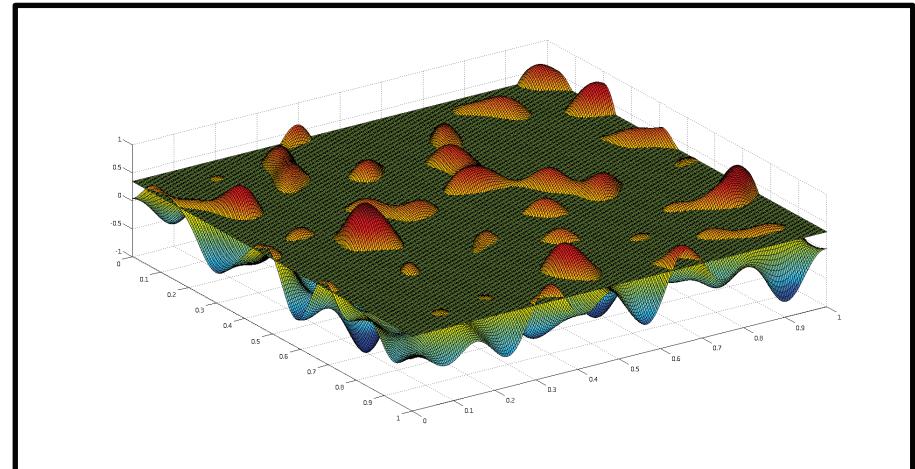
The Cryosphere, 2012



Continuum percolation model for melt pond evolution

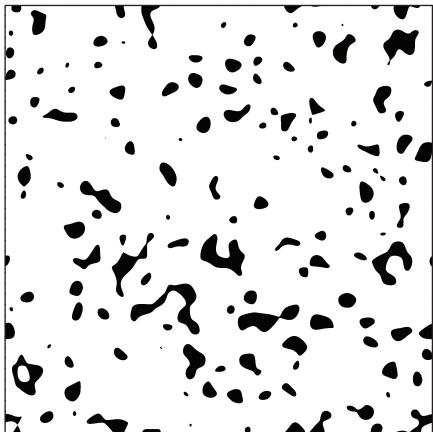
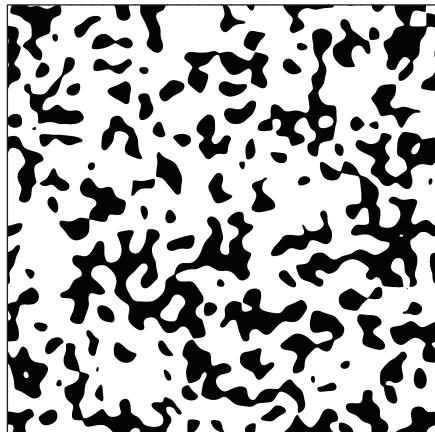
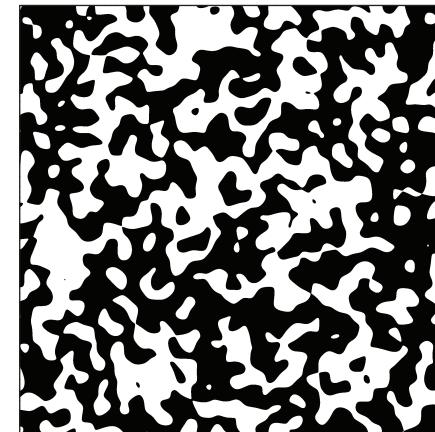
level sets of random surfaces

Brady Bowen, Court Strong, Ken Golden, *J. Fractal Geometry* 2018



random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds



electronic transport in disordered media

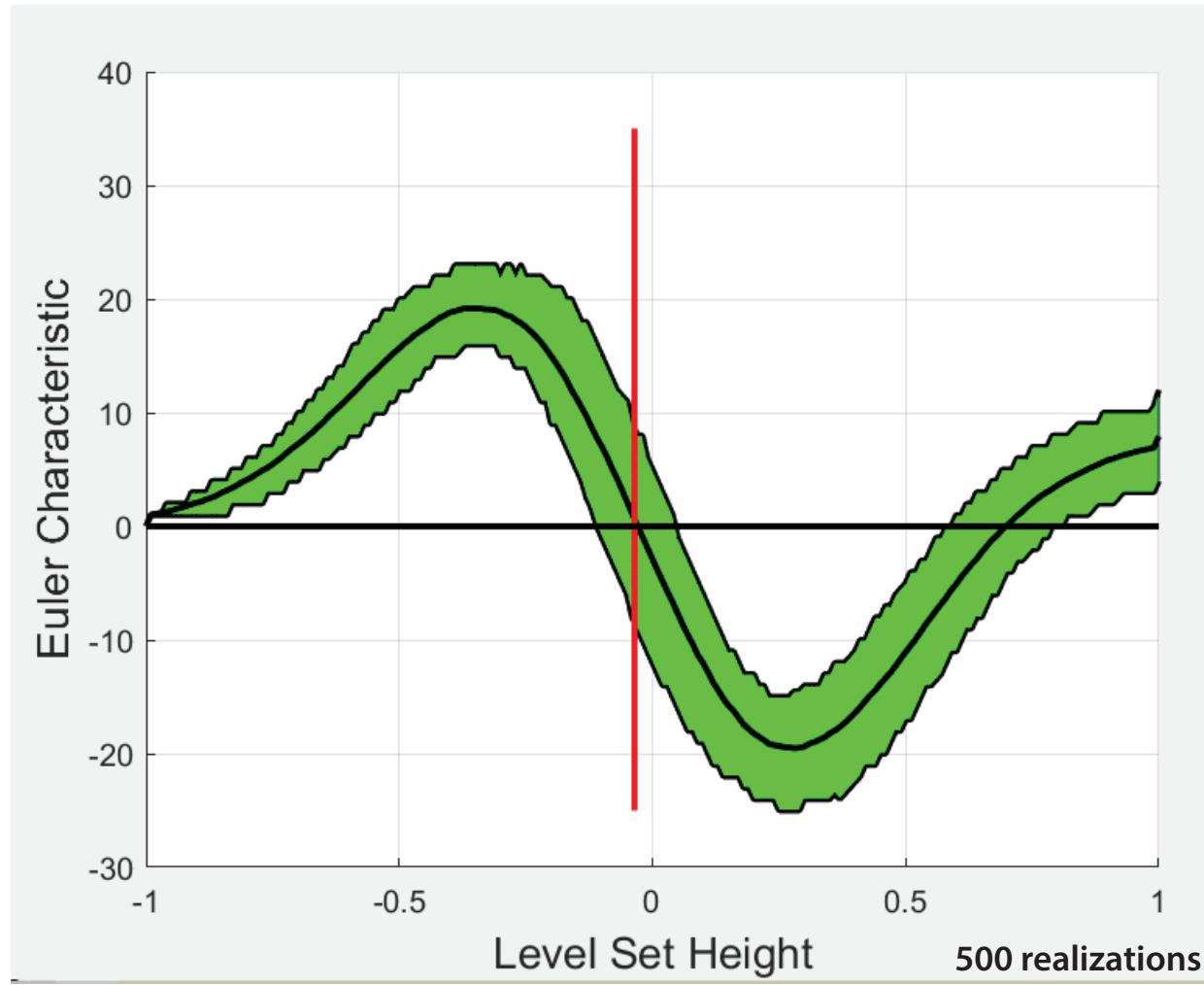
diffusion in turbulent plasmas

Isichenko, Rev. Mod. Phys., 1992

Topological Data Analysis

Euler characteristic = # maxima + # minima - # saddles
topological invariant

filtration - sequence of nested topological spaces, indexed by water level



Expected
Euler Characteristic Curve (ECC)

tracks the evolution of the EC of
the flooded surface as water rises

zero of ECC ~ percolation

percolation on a torus
creates a giant cycle

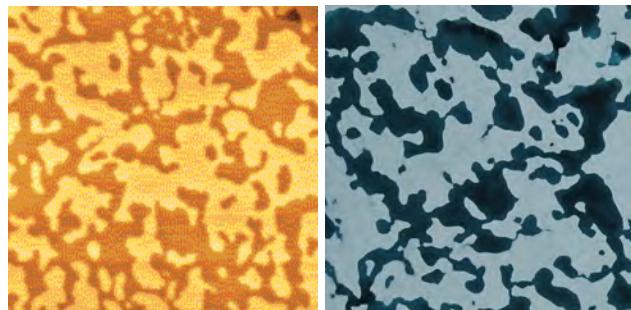
Bobrowski &
Skraba, 2020

Carlsson, 2009

Vogel, 2002 GRF

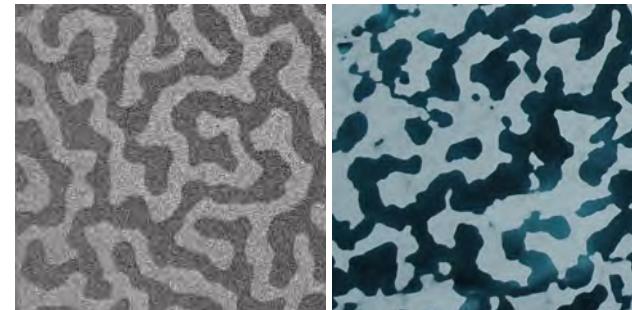
image analysis
porous media
cosmology
brain activity

From magnets to melt ponds



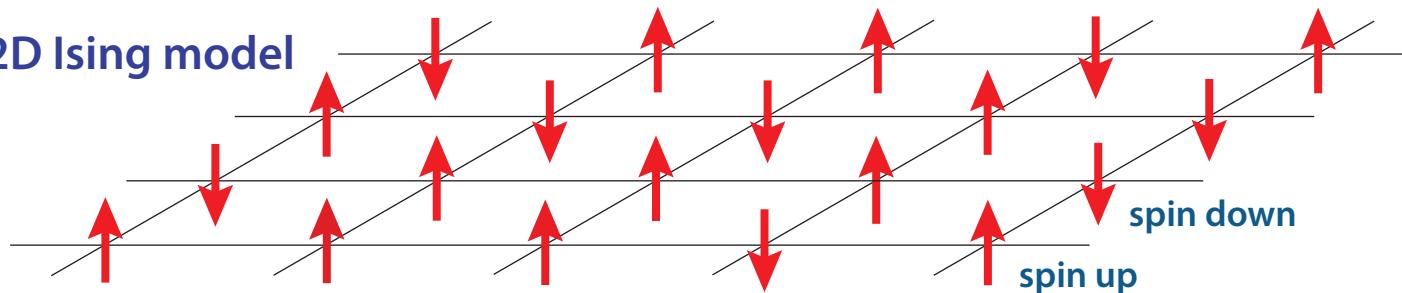
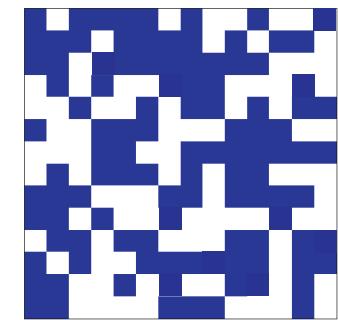
magnetic domains in cobalt Arctic melt ponds

100 year old model for magnetic materials used to explain melt pond geometry

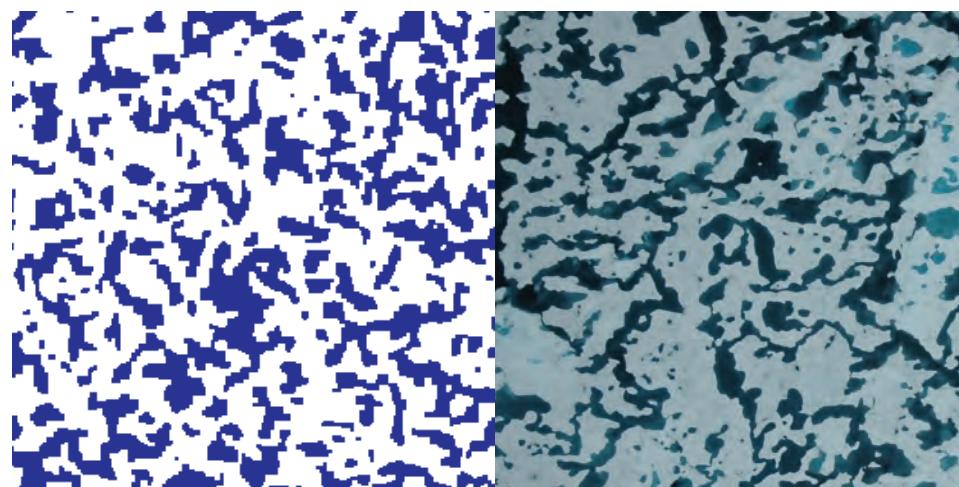


magnetic domains in cobalt-iron-boron Arctic melt ponds

2D Ising model



model



real ponds (Perovich)

Ma, Sudakov, Strong, Golden, *New J. Phys.* 2019

Scientific American, EOS, PhysicsWorld, ...

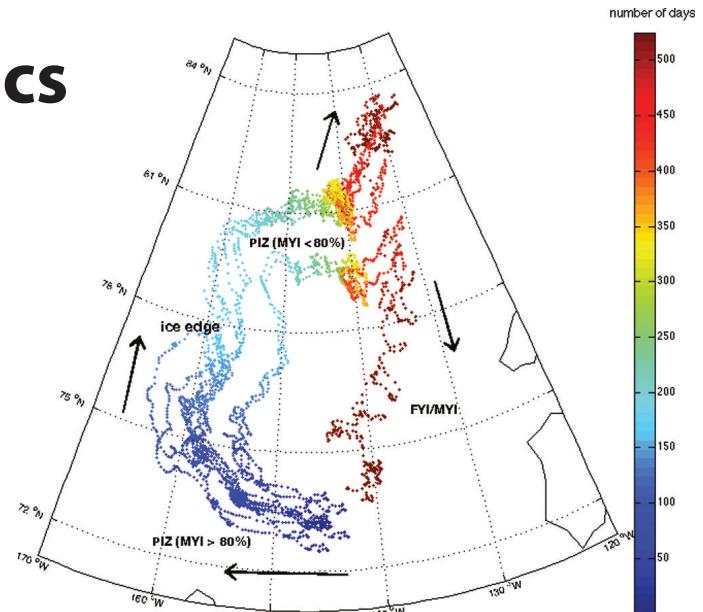
Time evolution - William Harrison, Tyler Evans, Ken Golden 2024

macroscale

Anomalous diffusion in sea ice dynamics

Ice floe diffusion in winds and currents observations from GPS data

Lukovich, Hutchings, Barber, *Ann. Glac.* 2015



Floe scale model of advection diffusion

Tyler Evans, Huy Dinh, Kaeden George, Ben Murphy, Elena Cherkaev, Ken Golden 2025

$$\langle |\mathbf{x}(t) - \mathbf{x}(0) - \langle \mathbf{x}(t) - \mathbf{x}(0) \rangle|^2 \rangle \sim t^\alpha$$

α = Hurst exponent

diffusive $\alpha = 1$

sub-diffusive $\alpha < 1$

super-diffusive $\alpha > 1$

Model Approximations

Power Law Size Distribution: $N(D) \sim D^{-k}$

D. A. Rothrock and A. S. Thorndike *Journal of Geophysical Research* 1984

Floe-Floe Interactions: Linear Elastic Collisions

Advection Forcing: Passive, Linear Drag Law

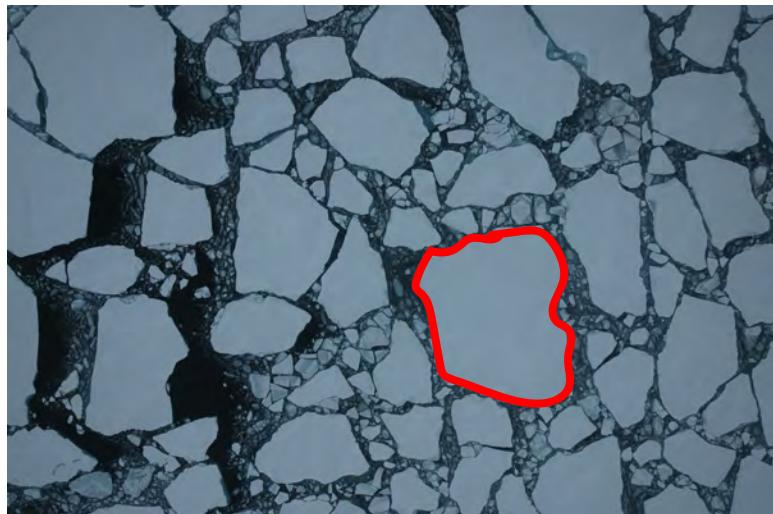
Fractional PDE

$$\text{Fractional PDE} = \text{Floe-Floe Interactions} + \text{Advection Forcing} = \text{Vorticity Dominated Forcing}$$

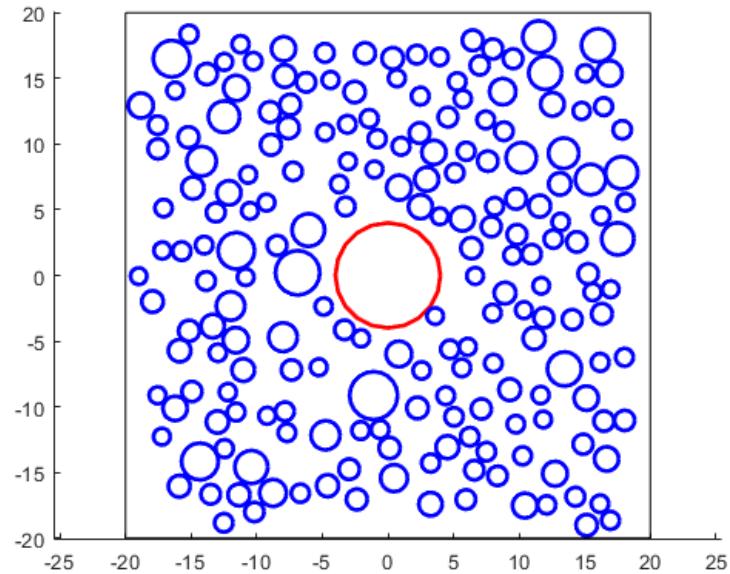
$\psi = 0.3$

Vorticity Dominated Forcing

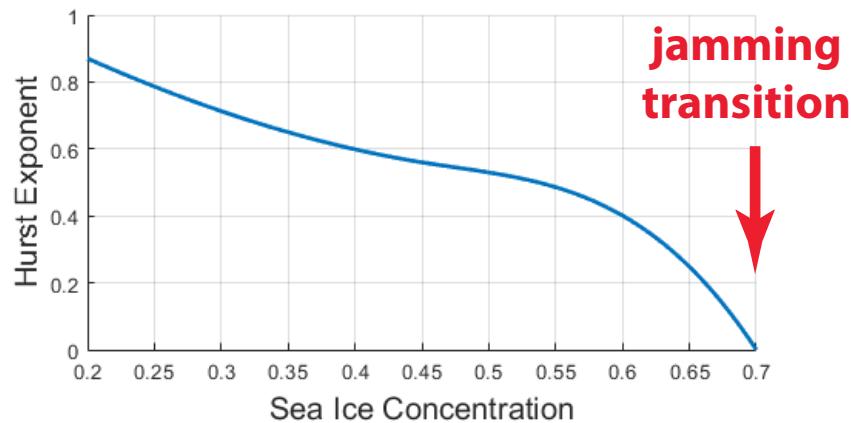
Arctic sea ice pack with tagged particle



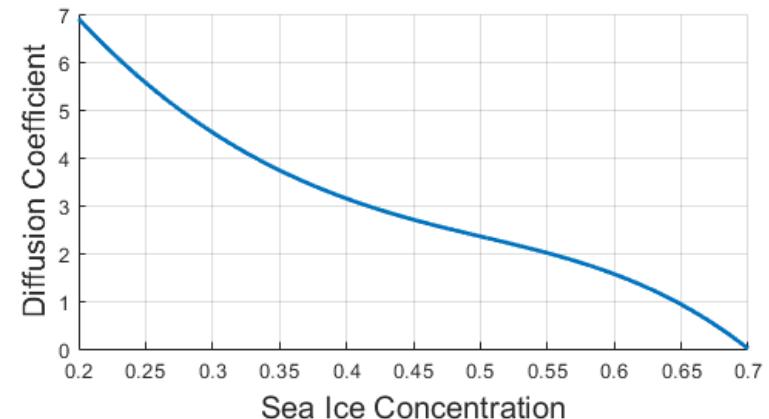
Einstein's pollen grain



Hurst exponent



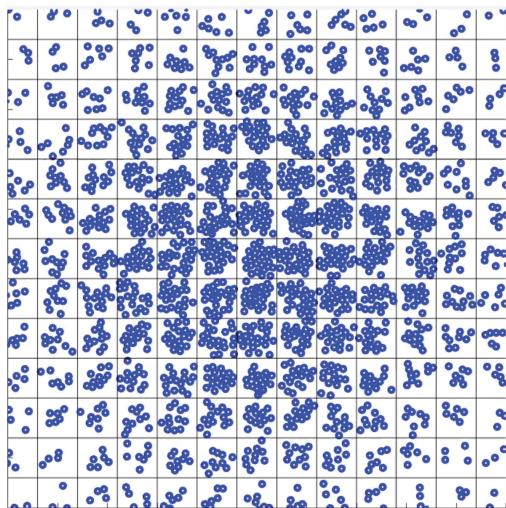
diffusion coefficient



From micro to macro in ice floe dynamics

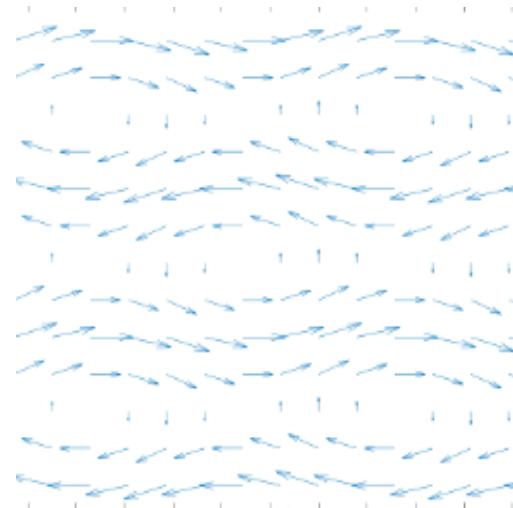
Delaney Mosier, Tyler Evans, Ben Murphy, Elena Cherkaev, Ken Golden, 2025

homogenization of ice floe advection-diffusion



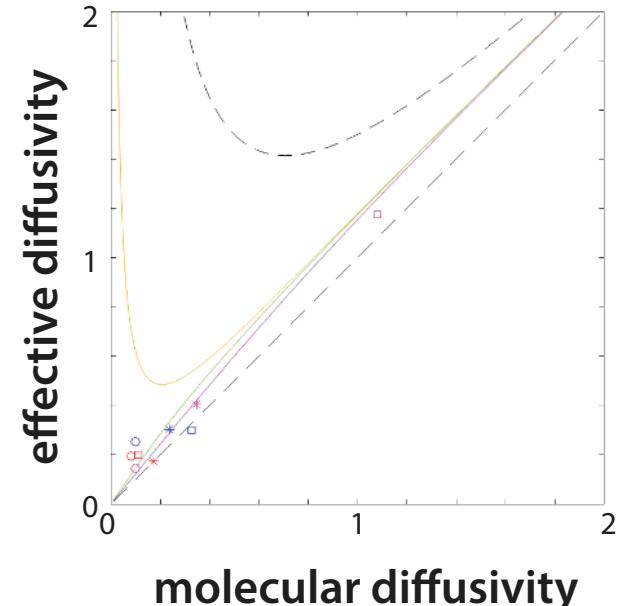
initial sea ice
concentration field

Gaussian



velocity field

BC flow



bounds on advection-enhanced
diffusivity for ice concentration
from STIELTJES INTEGRALS

Arctic Marginal Ice Zone

sea ice
concentration
 $0.15 < \psi < 0.80$

**transitional region
between dense pack ice
and open ocean**

- biologically active region
- intense ocean-ice-atmosphere interactions
- significant wave activity

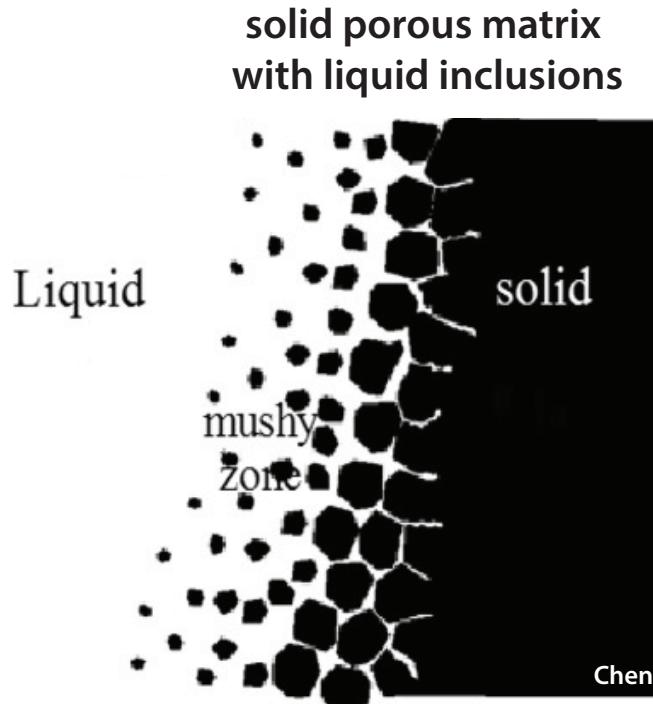
MIZ “WIDTH” ??

fundamental length scale of
ecological and climate dynamics

Where the action is!

In processes in geophysics and materials science, a region where solid and liquid phases co-exist is known as a **mushy layer**.

e.g. in solidification of binary liquids and alloys



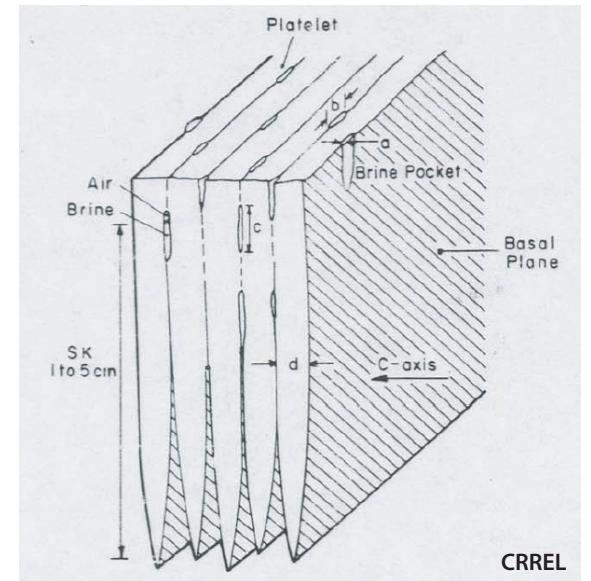
solid porous matrix
with liquid inclusions

sea ice

cooling metal

Earth's mantle

dendritic interface between
sea ice and sea water



Sea Ice is a mushy layer, Feltham, et al., *GRL* 2006

Phase evolution of young sea ice, Wettlaufer, et al., *GRL* 1997

Multiscale mushy layer model for marginal ice zone dynamics

Strong, Cherkaev, Golden *Scientific Reports* 2024

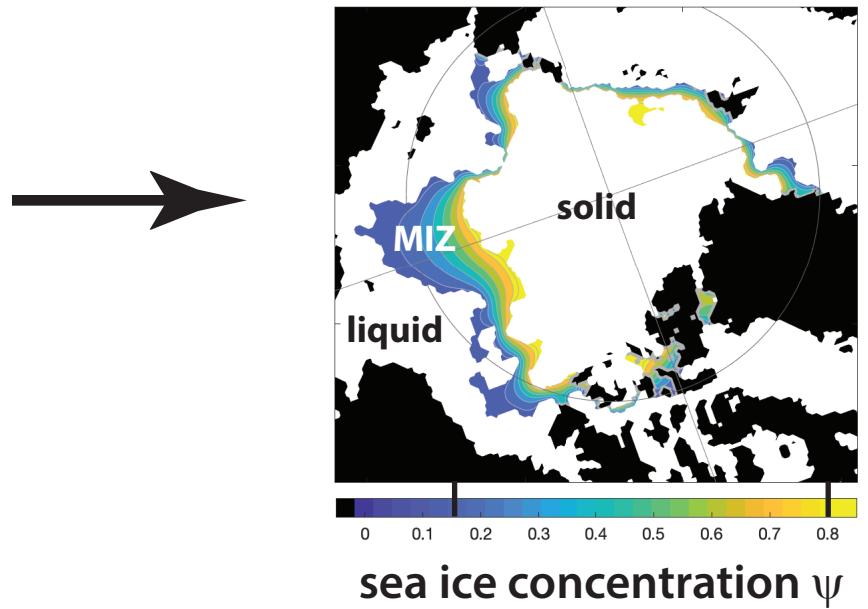
MIZ - transitional region between dense pack ice and open ocean

OBJECTIVE: model & predict dramatic annual cycle
impacts climate dynamics, polar ecology, human activities

mushy layer physics in the lab

NaCl-H₂O in lab
(Peppin et al., 2007, J. Fluid Mech.)

Arctic MIZ as a mushy layer

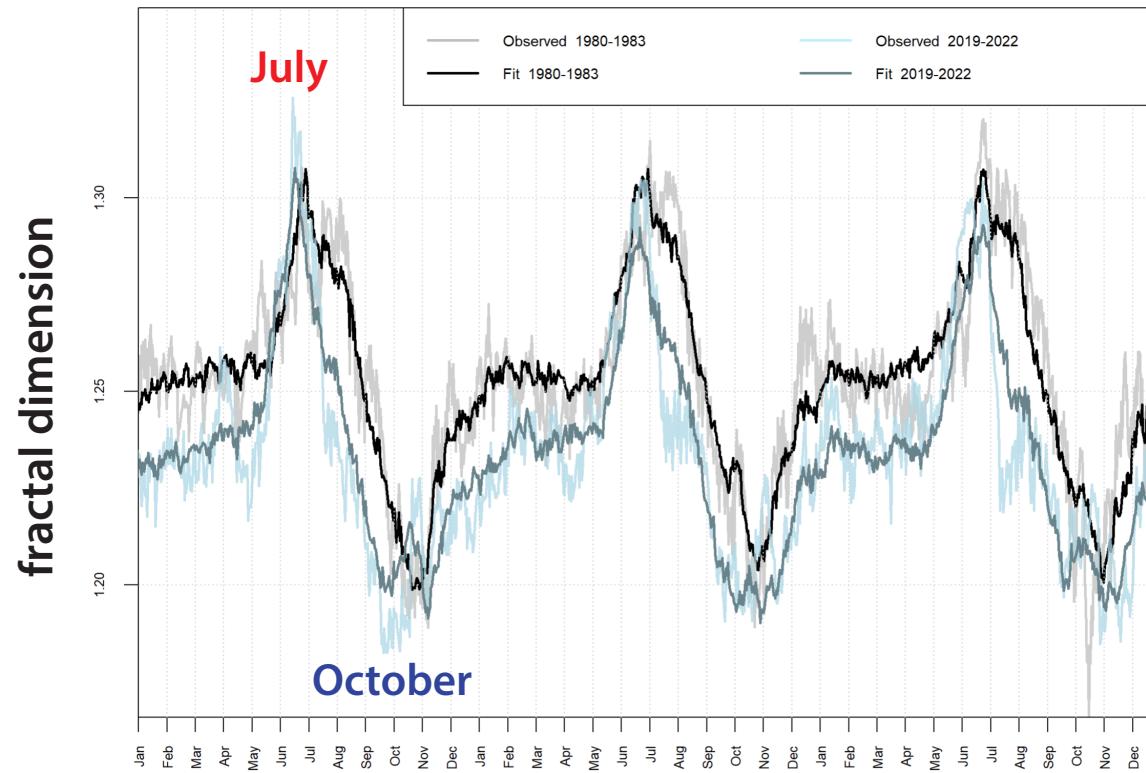


**Model captures basic physics of
MIZ dynamics & predicts cycle.**

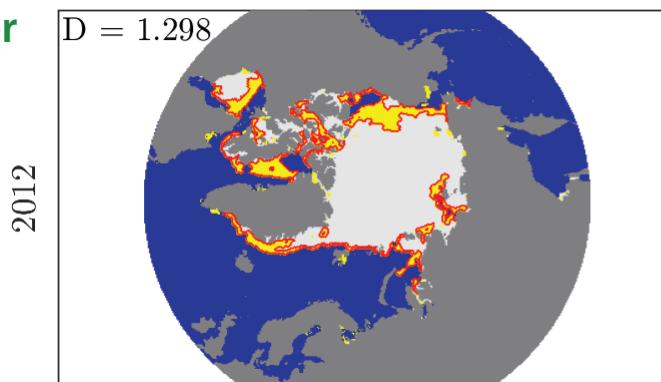
Identifying Fractal Geometry in Arctic Marginal Ice Zone Dynamics

Julie Sherman, Court Strong, Ken Golden, *Environ. Res. Lett.* 2025

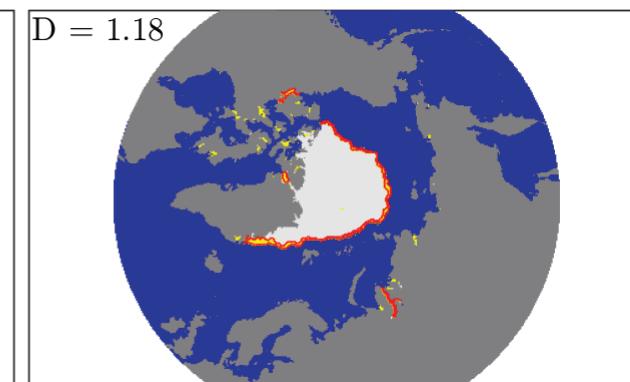
Compute the fractal dimension of the boundary of the Arctic MIZ by boxcounting methods; analyze seasonal cycle and long term trends.



early summer



early autumn



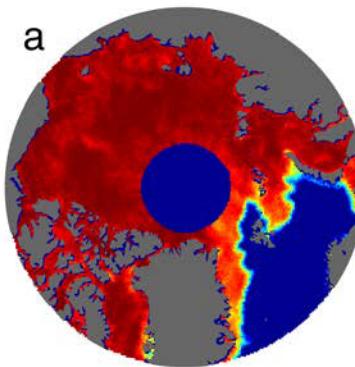
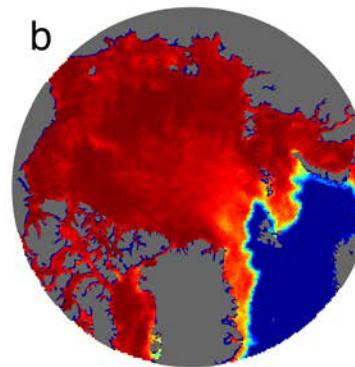
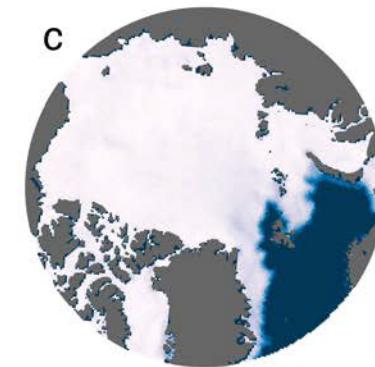
wave and thermal
interactions with
fractal boundary

Filling the polar data gap with partial differential equations

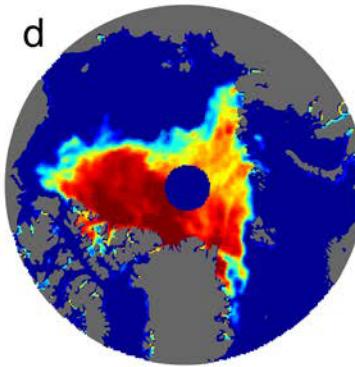
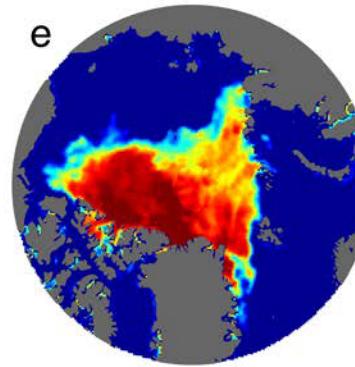
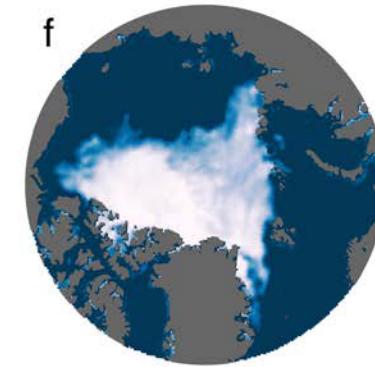
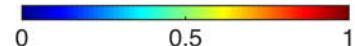
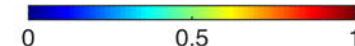
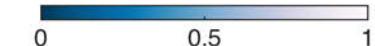
hole in satellite coverage
of sea ice concentration field

previously assumed
ice covered

Gap radius: 611 km
06 January 1985



Gap radius: 311 km
30 August 2007



$$\Delta \psi = 0$$

fill = harmonic function satisfying
satellite BC's plus learned stochastic term

Conclusions

Our research is helping to improve projections of the fate of Earth's sea ice packs, and the ecosystems they support.

Mathematics for sea ice advances the theory of composites, inverse problems, and other areas of science and engineering.

Modeling sea ice leads to unexpected areas of math and physics.

ISSN 0002-9920 (print)
ISSN 1088-9477 (online)

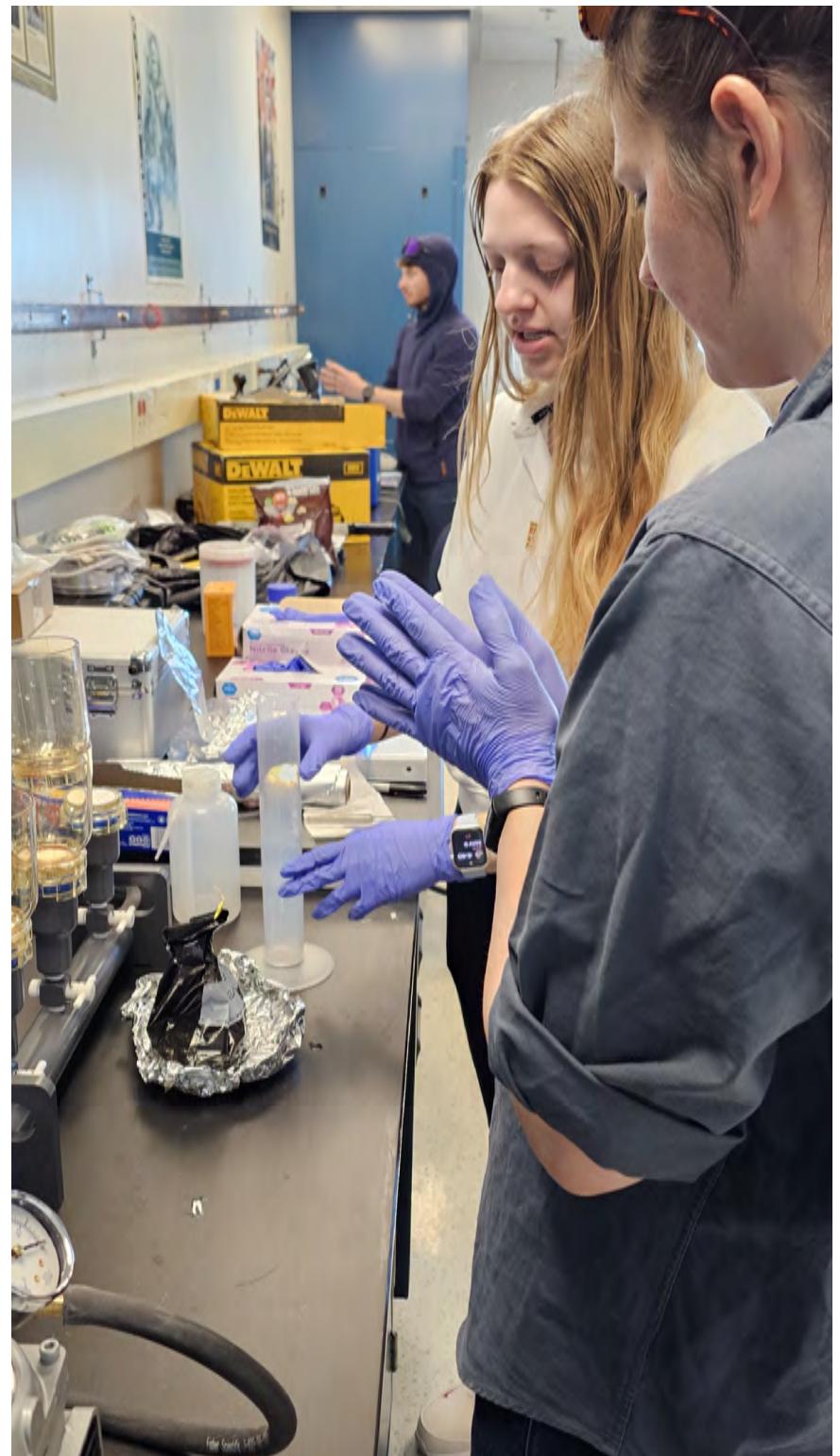
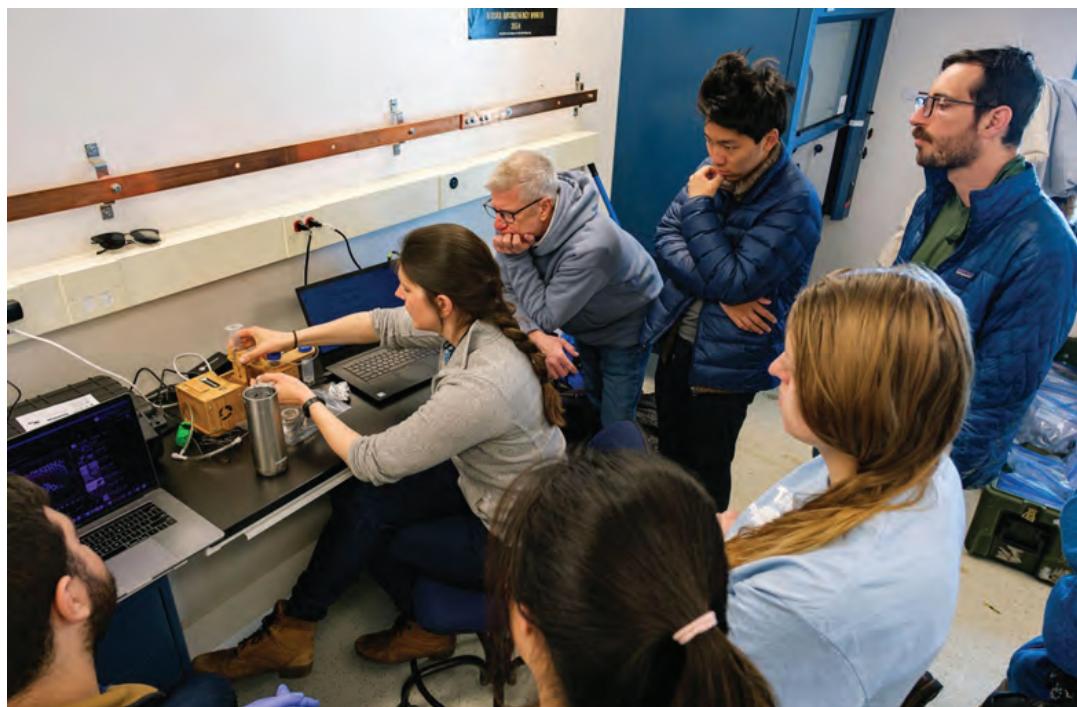
Notices

of the American Mathematical Society

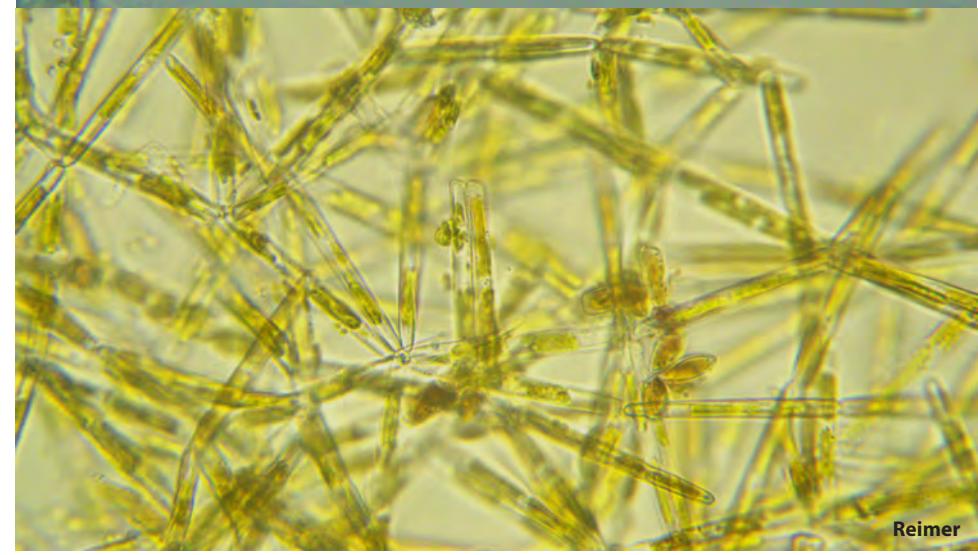
November 2020

Volume 67, Number 10

Arctic Mathpedition 2024



bottom of a sea ice core



THANK YOU

Office of Naval Research

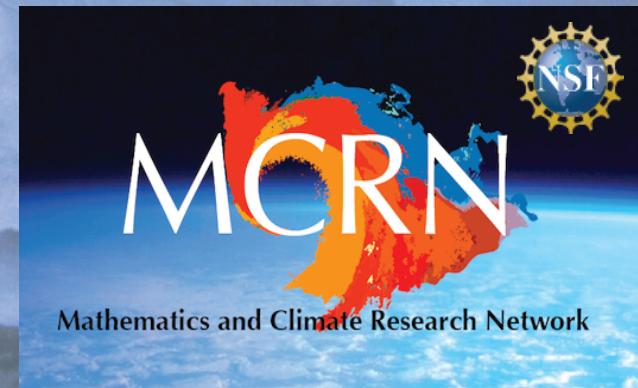
Applied and Computational Analysis Program
Arctic and Global Prediction Program

National Science Foundation

Division of Mathematical Sciences
Division of Polar Programs

Australian Government
Department of the Environment
and Water Resources
Australian Antarctic Division

ANTARCTIC CLIMATE
& ECOSYSTEMS
COOPERATIVE RESEARCH CENTRE



Buchanan Bay, Antarctica

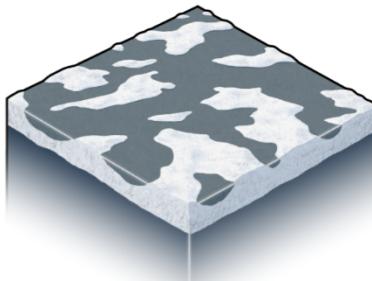
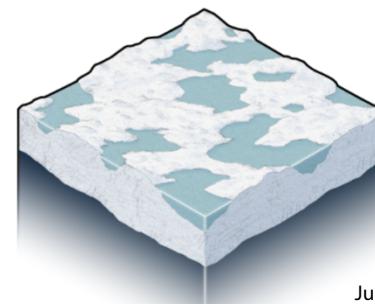
Mertz Glacier Polynya Experiment

July 1999

Topography-albedo feedback and the shifting Arctic ice pack

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

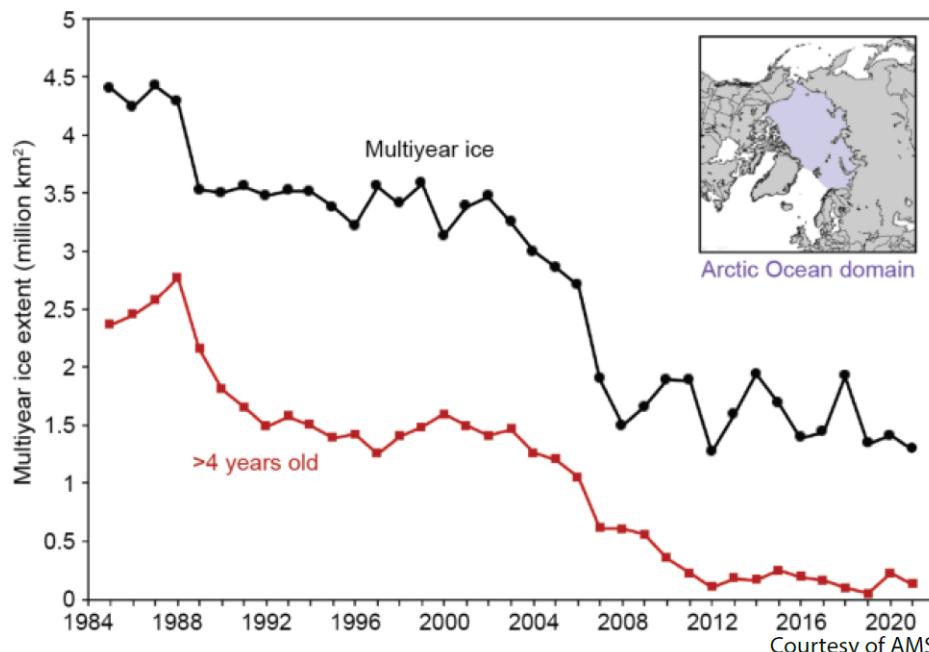
first-year ice
thinner with
smoother surface



multiyear ice
thicker with
hummocky surface

Julia Ditto

Meter-scale differences in surface topography between MYI and FYI mechanistically alter summertime melt pond formation and coverage, significantly lowering albedo for younger, smoother ice, and forming a self-perpetuating feedback loop.

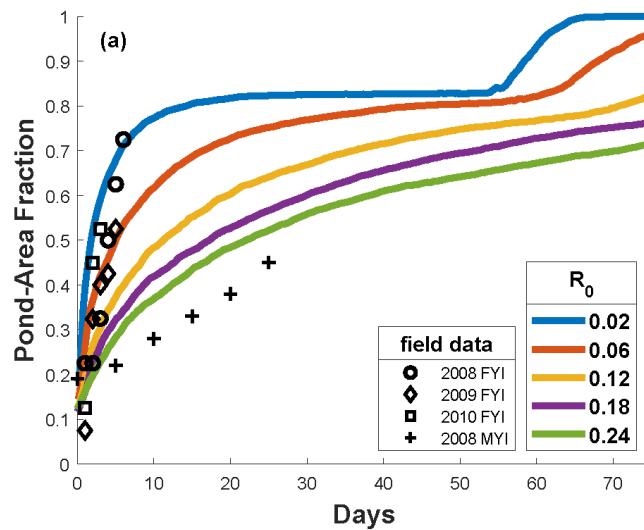
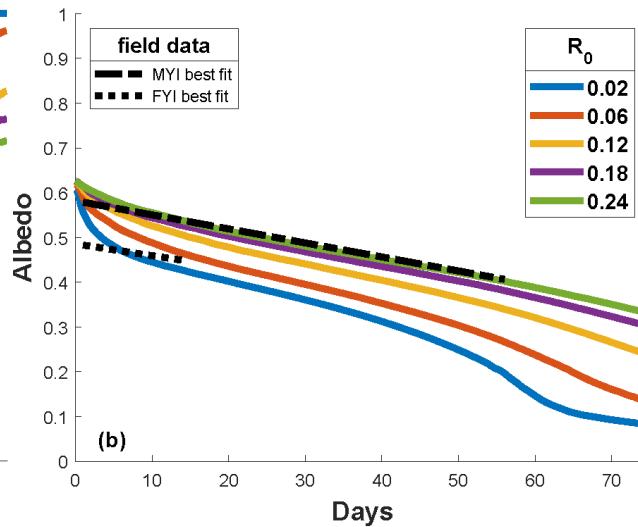
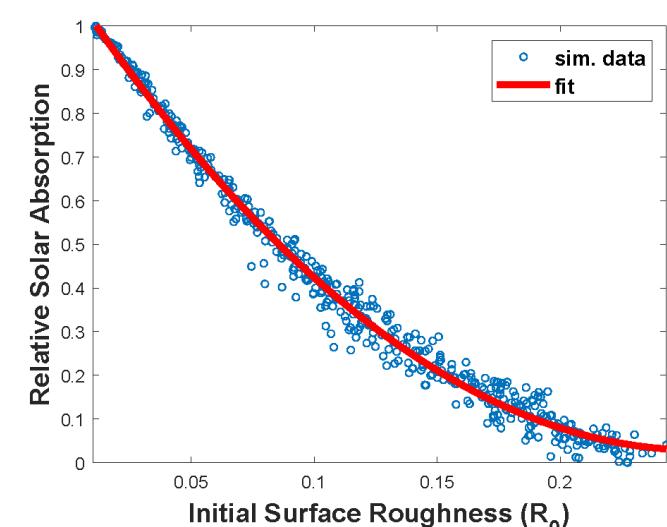


Topography-albedo feedback and the shifting Arctic ice pack

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

Coupled PDE model of topography $H(x,y,t)$ and melt pond depth $h(x,y,t)$.

Co-evolution of topography and albedo drives stark differences in the state of the ice pack at the end of summer.



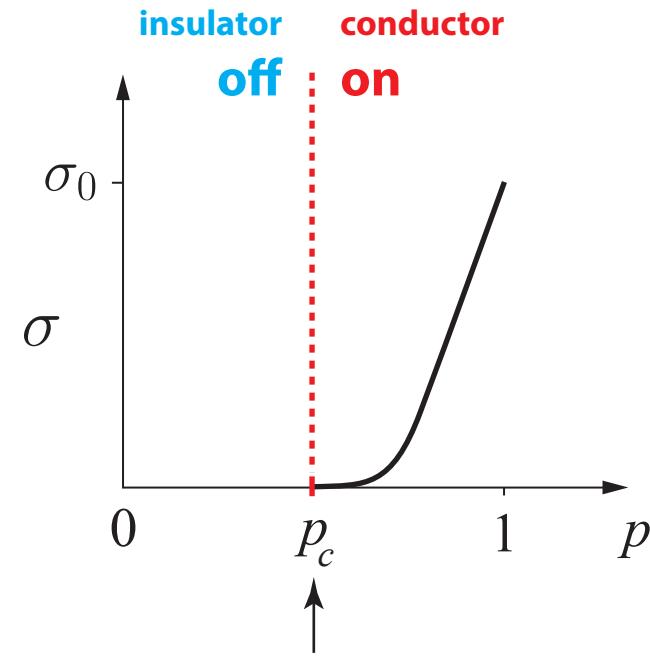
transport in percolation theory

MICRO $\xrightarrow{\text{lattice homogenization}}$ MACRO

local conductivity (electrical or fluid)

effective conductivity or fluid permeability

bond $\rightarrow \begin{cases} \sigma_0 & \text{probability } p \\ 0 & \text{probability } 1 - p \end{cases}$



consider local conductivities

1 and $h > 0$

smooths, softens transition

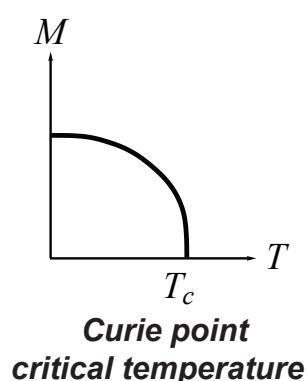
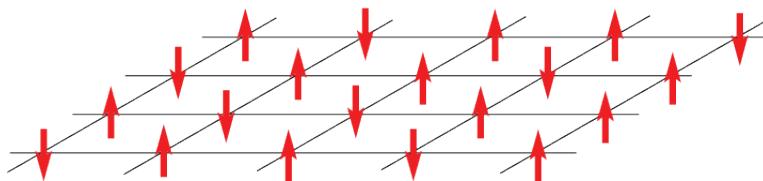
$$\sigma(p) \sim \sigma_0 (p - p_c)^t \quad p \rightarrow p_c^+$$

UNIVERSAL critical exponents for lattices -- depend only on dimension

$1 \leq t \leq 2$ (for idealized model), Golden, *Phys. Rev. Lett.* 1990 ; *Comm. Math. Phys.* 1992

non-universal behavior in continuum

Ising Model for a Ferromagnet

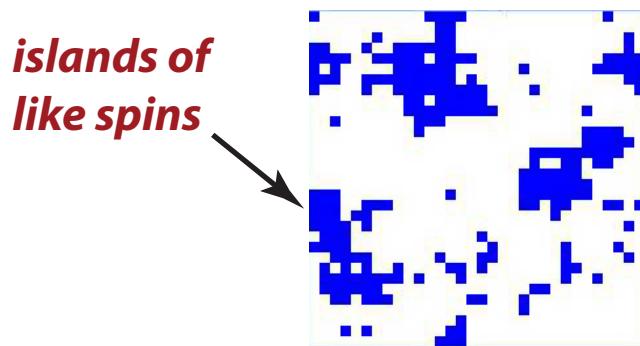


$$s_i = \begin{cases} +1 & \text{spin up} \\ -1 & \text{spin down} \end{cases}$$

blue
white

$$\mathcal{H} = -H \sum_i s_i - J \sum_{\langle i,j \rangle} s_i s_j$$

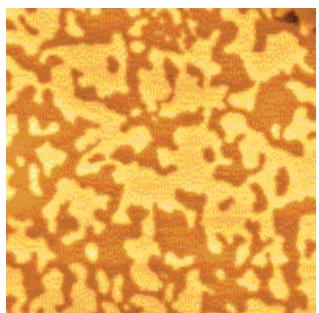
nearest neighbor Ising Hamiltonian



energy is lowered when nearby spins align with each other, forming **magnetic domains**

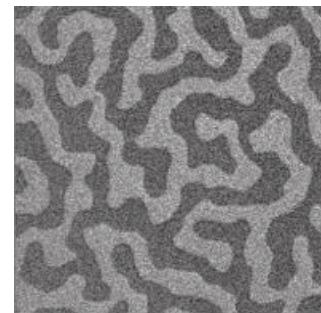
$$M(T, H) = \lim_{N \rightarrow \infty} \frac{1}{N} \left\langle \sum_j s_j \right\rangle$$

effective magnetization



magnetic domains
in cobalt

melt ponds (Perovich)



magnetic domains
in cobalt-iron-boron

melt ponds (Perovich)

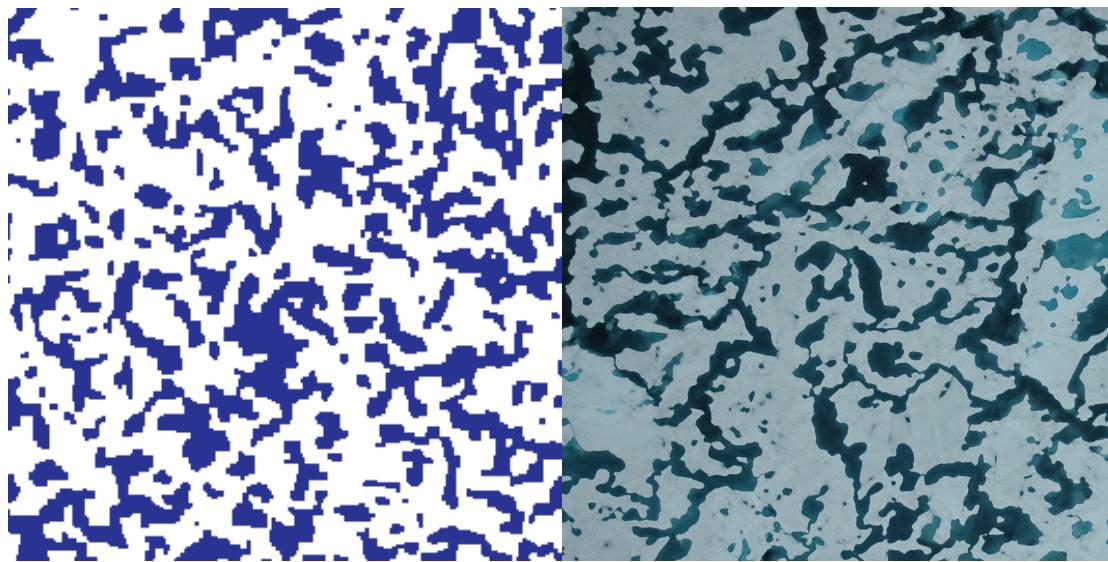
Ising model for ferromagnets \rightarrow Ising model for melt ponds

Ma, Sudakov, Strong, Golden, *New J. Phys.*, 2019

$$\mathcal{H} = - \sum_i^N H_i s_i - J \sum_{} s_i s_j \quad s_i = \begin{cases} \uparrow & +1 \text{ water (spin up)} \\ \downarrow & -1 \text{ ice (spin down)} \end{cases} \quad \text{random magnetic field represents snow topography}$$

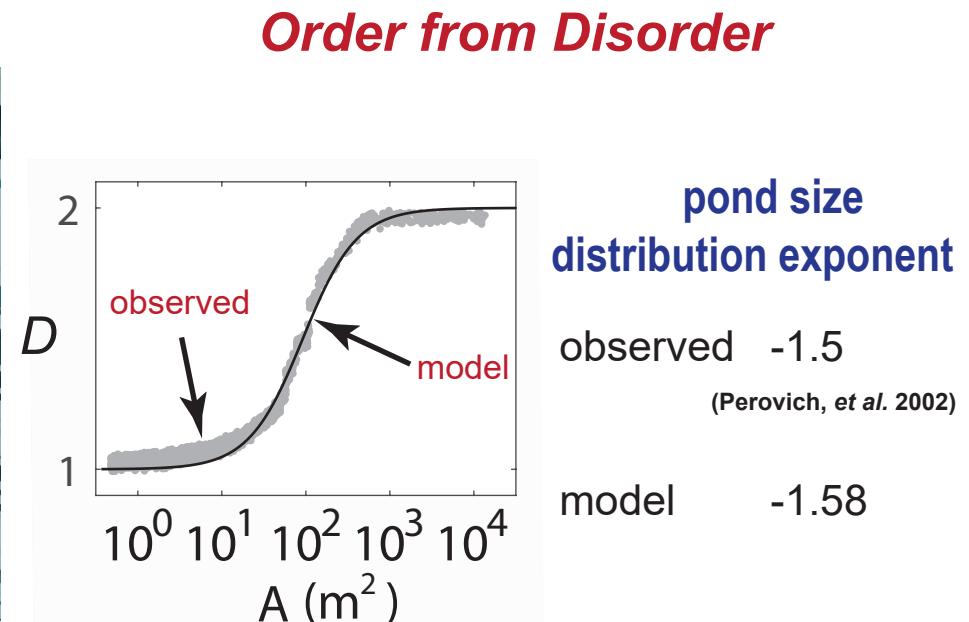
magnetization M **pond area fraction**
 \sim *albedo* $F = \frac{(M+1)}{2}$ only nearest neighbor patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized by Glauber spin flip dynamics, system “flows” toward metastable equilibria.



Ising
model

melt pond
photo (Perovich)



Scientific American
EOS, PhysicsWorld, ...

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order to disorder in quasiperiodic composites

Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

sea ice inspired - twisted bilayer composites

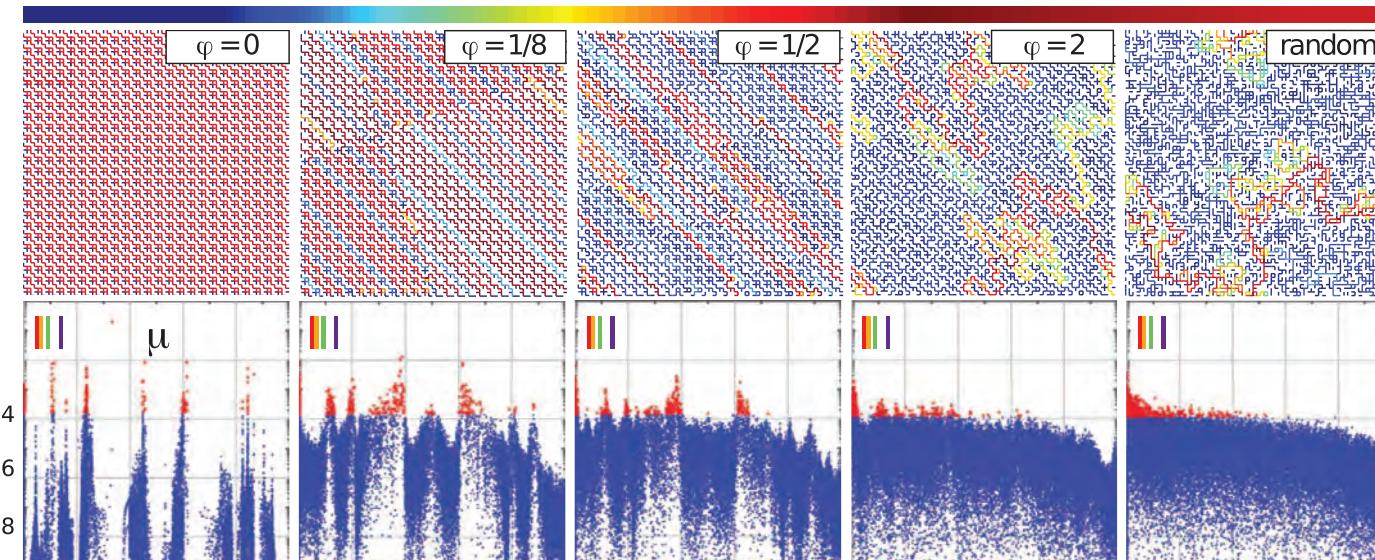
tunable quasiperiodic composites with exotic properties

(optical, electrical, thermal) Anderson localization; our Moiré patterned geometries are similar to **twisted bilayer graphene**

increasing twist angle between two lattices

periodic \longrightarrow quasiperiodic

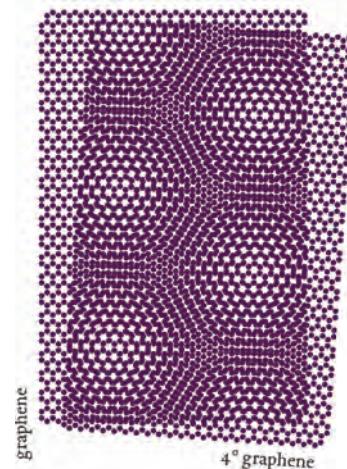
electric field strength



RRN at percolation threshold

twisted bilayer graphene

superconducting magic twist angle



communications physics

Explore content \downarrow About the Journal \downarrow Publish with us \downarrow

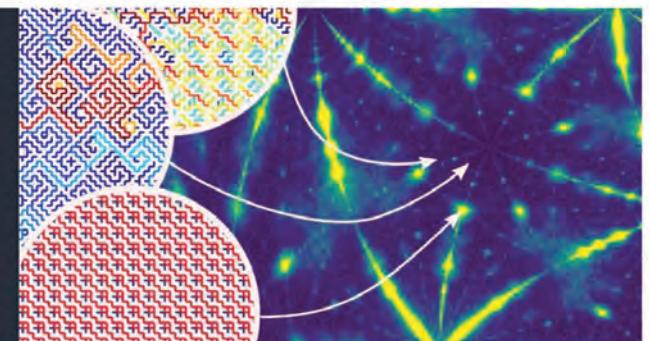
[View all journals](#) [Search](#) [Log in](#)

[Sign up for alerts](#) [RSS feed](#)

[nature](#) > communications physics

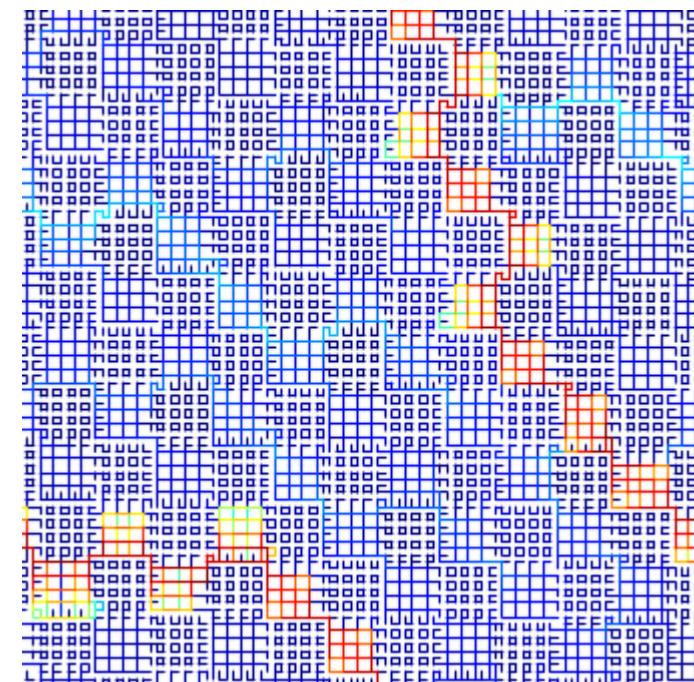
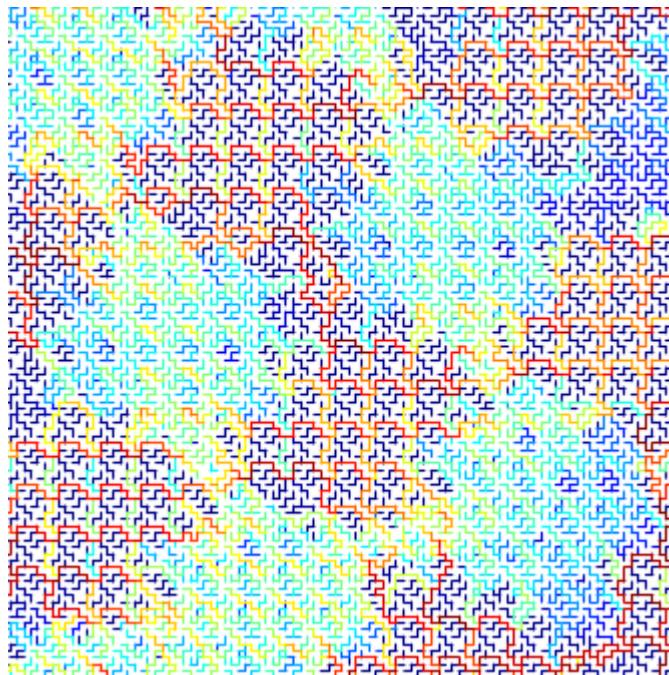
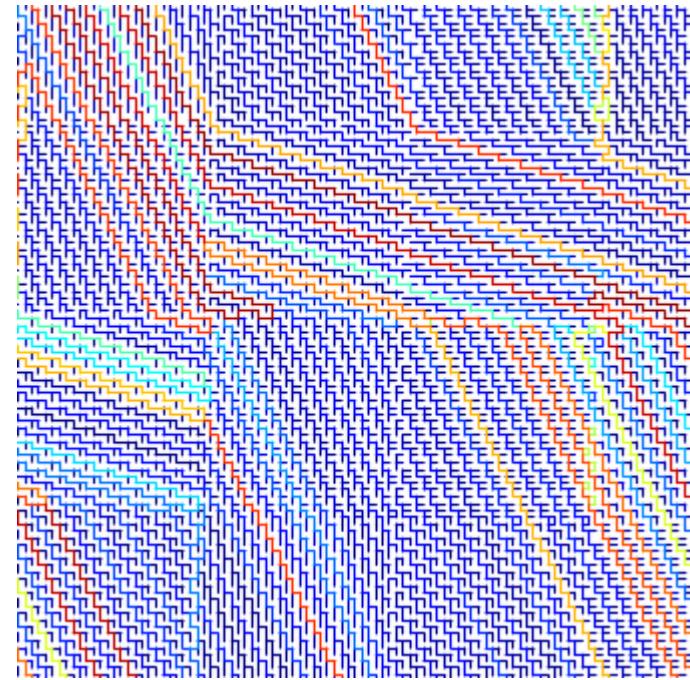
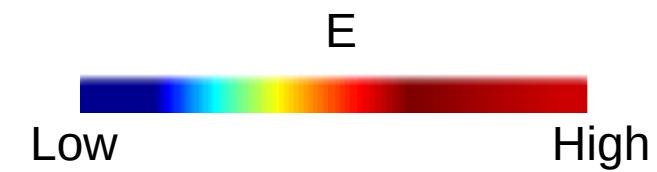
Order to disorder in quasiperiodic composites

David Morison, N. Benjamin Murphy ... Kenneth M. Golden
Article | 14 June 2022

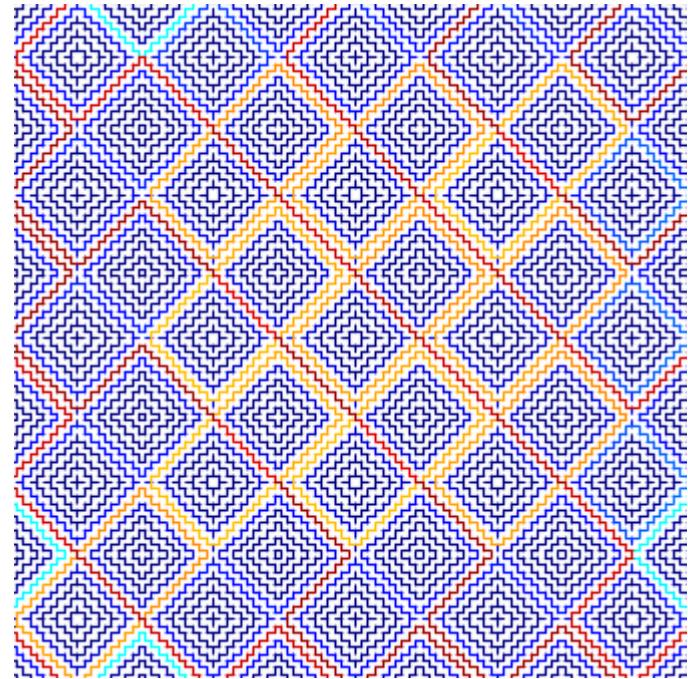
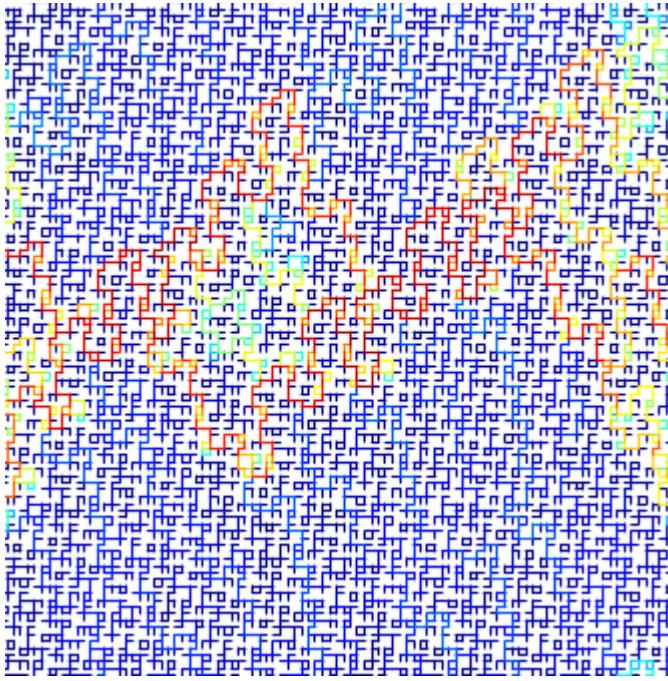
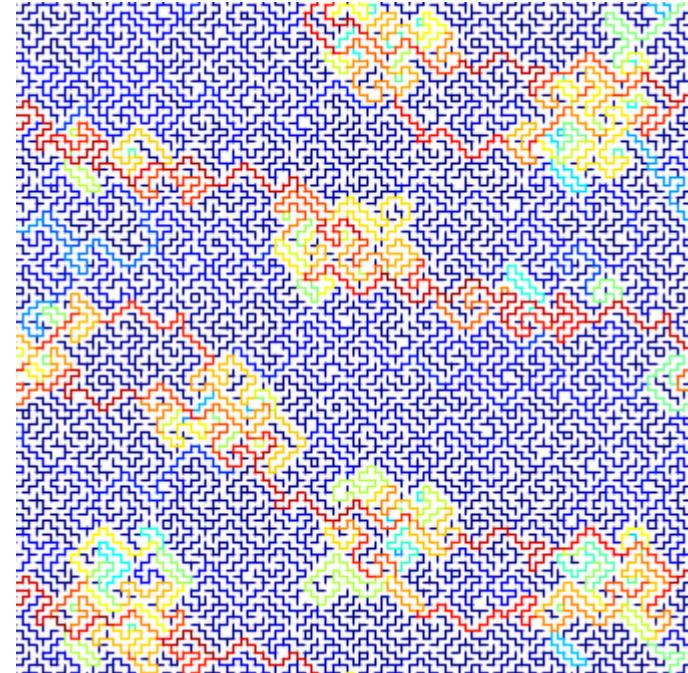


constellation of periodic systems in a sea of randomness

Wide Variety of Microgeometries



Wide Variety of Microgeometries

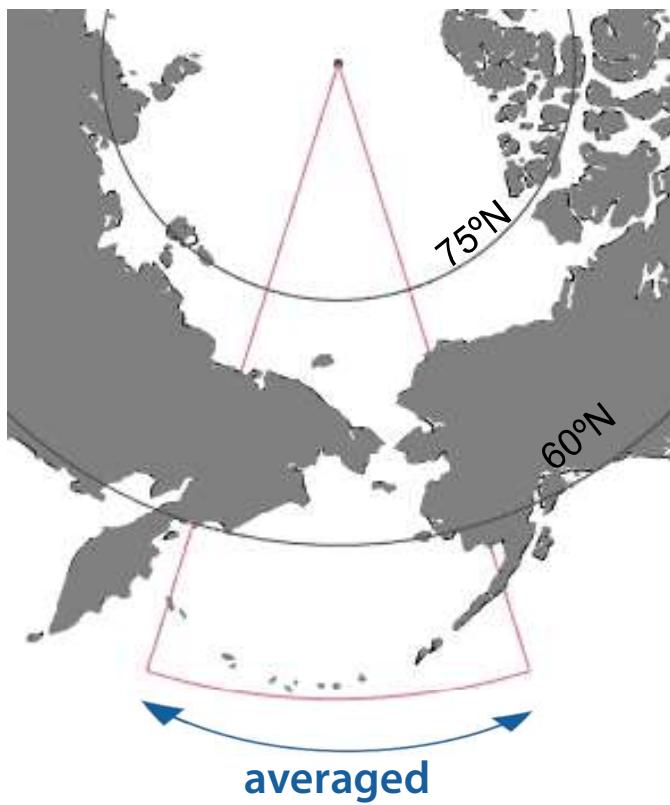
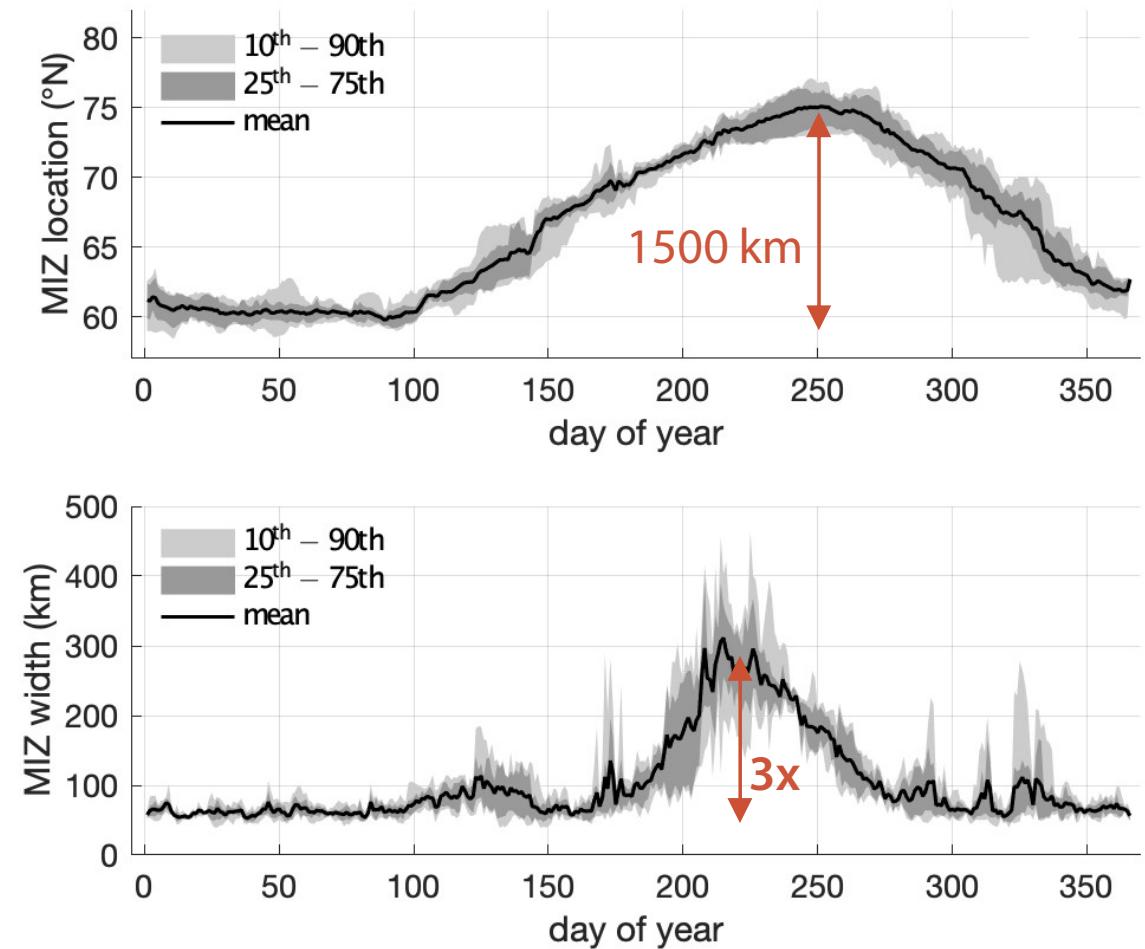


Small Difference in Moiré Parameters

Big Difference in Material Properties

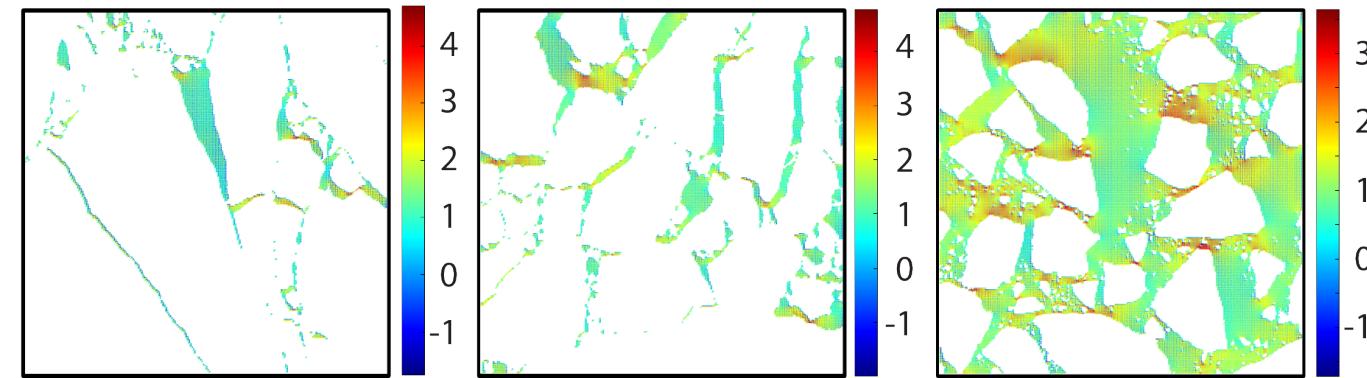
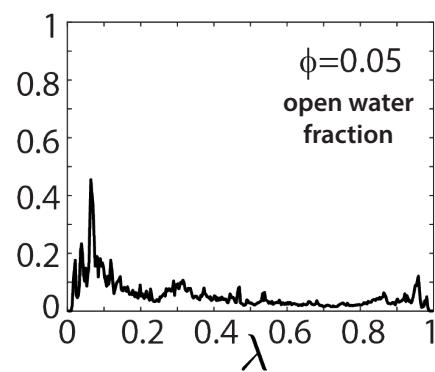
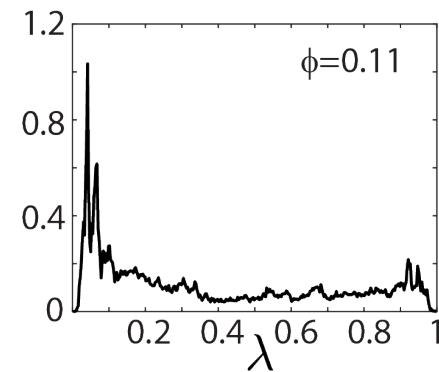
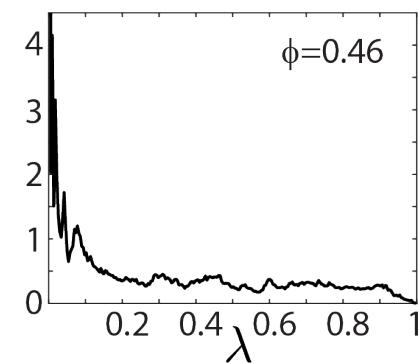
Observed MIZ location and width

Observational analysis of annual cycle in Bering-Chukchi Sea sector 2000-2004



widens by a factor of 3-4 and moves poleward by 1500 km

thermal flow field through the ice cover: multiscale granular composite



homogenize

spectral measures for 2D
horizontal thermal conductivity

homogenized thermal conductivity is a key parameter in MIZ mushy layer model

Where to look to see this behavior exploited in tunable media that display rich transport properties?

Go back to the dawn of
ordered, aperiodic materials -
quasicrystals.

Shechtman et al. 1984
Levine & Steinhardt 1984

Single effective rheological parameter (Mosig et al. 2015)

$$\nu^* = G - i\omega\rho v$$

Effective complex viscoelasticity

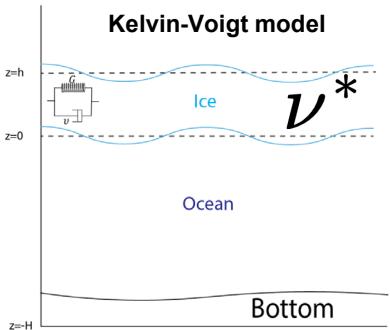
divergence-free deviatoric stress

$$\nabla \cdot \sigma_s = 0$$

$$\begin{array}{ll} \text{microscale} & \text{macroscale} \\ \sigma_s = 2\nu\epsilon_s & \langle\sigma_s\rangle = 2\nu^*\epsilon_s^0 \\ \nu(\vec{x}) = \chi_1\nu_1 + \chi_2\nu_2 & \langle\epsilon_s\rangle = \epsilon_s^0 \end{array}$$

Forward bounds for the effective viscoelasticity are fitted to well known wave-ice datasets, including [Wadhams et al. 1988](#), [Newyear & Martin 1997](#), [Wang & Shen 2010](#), [Meylan et al. 2014](#), and several others!

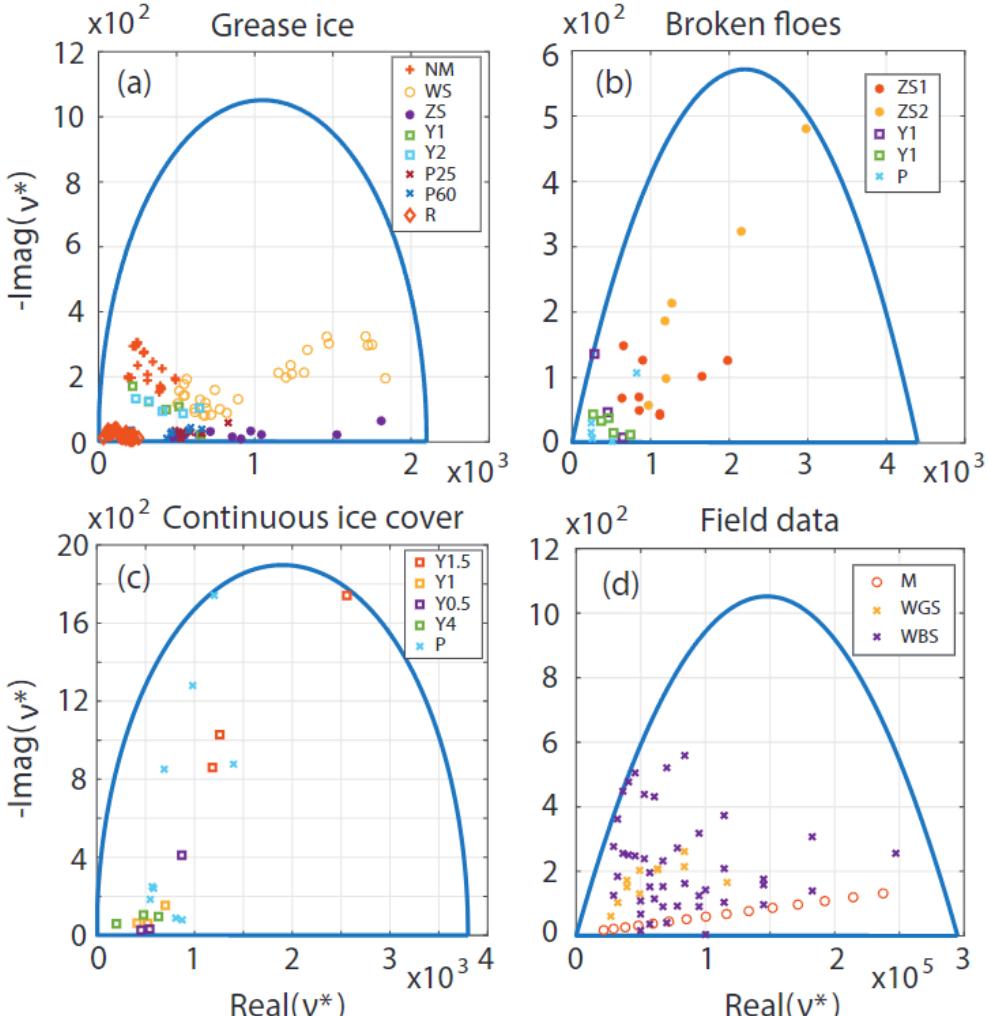
G	P	C	ρ	v	g	u
shear modulus	pressure	elasticity	density	kinematic viscosity	gravity	displacement



Integral representation

$$\frac{\nu^*}{\nu_2} = ||\epsilon_s^0||^2 (1 - F(s))$$

$$F(s) = \int_0^1 \frac{d\mu(\lambda)}{s-\lambda}$$



MIZ as a moving phase transition region

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + S$$

$$S = [\rho(c_l - c_s)T + \rho L] \frac{\partial \psi}{\partial t}$$

$$\psi = 1 - \left(\frac{T - T_s}{T_l - T_s} \right)^\alpha$$

$$k_x = \left(\frac{\psi}{k_s} + \frac{1 - \psi}{k_l} \right)^{-1}$$

$$k_z = \psi k_s + (1 - \psi) k_l$$

homogenization

ρ effective density

T temperature

c specific heat

L latent heat of fusion

S models nonlinear phase change

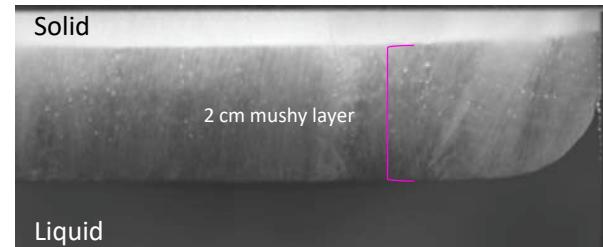
ψ sea ice concentration

k effective diffusivity

l liquid, s solid

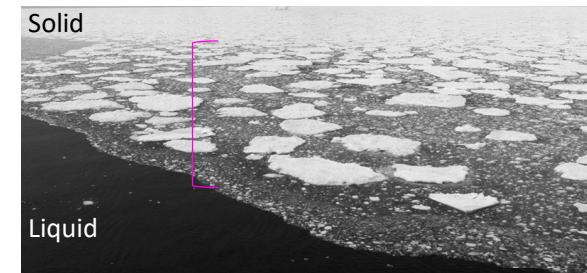
- Develop multiscale PDE model for simulating phase transition fronts to predict MIZ seasonal cycles and decadal trends
- Model simulates MIZ as a large-scale mushy layer with effective thermal conductivity derived from physics of composite materials

Classical small-scale application



NaCl-H₂O in lab
(Peppin et al., 2007; J. Fluid Mech.)

Macroscale application



MIZ observations

location

