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Sea ice is a multiscale 
�uid-solid composite.
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Central theme:

How do we use “small scale” information to 
find effective behavior relevant to large-scale 

sea ice physics and ecology models? 
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STATISTICAL PHYSICS
How do microscopic laws determine macroscopic behavior?

Banwell, Burton, Cenedese, Golden, Astrom, Physics of the Cryosphere, Nature Reviews Physics 2023
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Polar Ecology and the Physics of Sea Ice 

How do sea ice properties 
a�ect the life it hosts?

How does life in and on sea ice
a�ect its physical properties?

Megafauna

Microbes
Pekelo/iStockphoto



      A tour of recent results on multiscale modeling of 
physical and biological processes in the sea ice system.

microscale

mesoscale

macroscale

  through the lens of several
areas of mathematics

What is this talk about?



microscale



micro - brine channel (SEM)

sea ice is a 
    porous composite

D. Cole

brine channels (cm) 

brine inclusions in sea ice (mm)

R. Obbard

pure ice with brine, air, and salt inclusions

horizontal section vertical section

Weeks & Assur

Golden



ACE CRC Krembs
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�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient �ux for algal  bloom

Perovich
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-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



p = 2/3

percolation model

Torquato

p = ?c

p = 1/3



10 ppc

effective conductivity

percolation threshold

UNIVERSAL for lattices
depends only on dimension, 

conductivity

permeability

e = tt

~~t 2 rigorous boundnumerical
Golden PRL 1990,  CMP 1992

d = 3

SWISS CHEESE Halperin, Feng, Sen PRL 1985

Critical behavior of transport
   near percolation threshold

<1       t       2<

continuum exponents can be non-universal

conductivity 
critical exponent

~~t 1.3d = 2



PERCOLATION THRESHOLD φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 
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0

“on - o�” switch  
for bulk �uid �owo� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable

φ

v = k p

Darcy’s Law

k = �uid permeability tensor

homogenized parameter

p = 1/3 p = 2/3

impermeable permeable

lattice percolation



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



NW Florida Daily News, Wikimedia Malliaris, Turner

Arcone, et al.

stealth



cross-pollination



human bonesea ice

P. Hansma
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X-ray CTmicroscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory 
for �uid permeability

con�rms rule of �ves

theory agrees closely
with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

critical exponent   t 

φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

critical path analysis



measuring 
�uid permeability
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



electrical measurements Wenner array

vertical conductivity

Sampson, Golden, Gully, Worby   Deep Sea Research   2011 
Zhu, Golden, Gully, Sampson   Physica B   2010



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

How does the biology a�ect the physics?
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Sea ice algae secrete exopolymeric substances (EPS)
       affecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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Zhu, Jabini, Golden, 
Eicken, Morris
Ann. Glac. 2006

RANDOM
     PIPE
  MODEL

Krembs

FRACTAL

Steffen, Epshteyn,  Zhu, Bowler, Deming, Golden         
Multiscale Modeling and Simulation, 2018

EPS - Algae Model   Jajeh, Golden, Deming, Reimer 2025
SIAM News 
June 2024



porosity = 0.022 porosity = 0.114

brine skeletonization
Manav Arora, Lou Kondic, Darrren Skolnik, Ken Golden



skeletonization of porous brine microstructures

porosity = 0.028 porosity = 0.004



Thermal Evolution of Brine Fractal Geometry in Sea Ice
Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, 

Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2024

-8 C,   = 0.057° φT =C,   = 0.033° φT = -12  

Proko�ev

fractal dimension of the 
coastline of Great Britain 
by box counting 

X-ray computed
tomography of
brine in sea ice

Golden, Eicken, et al. GRL, 2007

brine channels and
inclusions “look” 
like fractals 
(from 30 yrs ago) columnar and granular



Katz and Thompson,1985;  Yu and Li, 2001
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Porosity  φ

Follows same curve as 
exactly self-similar 
Sierpinski tetrahedron

The �rst quantitative study of the fractal dimension of brine in sea ice 
and its strong dependence on temperature and porosity.

red curve

discovered for sandstones
statistically self-similar porous media

D. Eppstein

Fractal geometry of brine in sea ice, Ward, et al. 2024 



A B C D

10 cm 1 cm 2 mm

Implications of brine fractal geometry on sea ice ecology and biogeochemistry  

Brine inclusions are home to 
ice endemic organisms, e.g., 
bacteria, diatoms, �agellates, 
rotifers, nematodes.

The habitability of sea ice 
for these organisms is 
inextricably linked to its 
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.

(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.



}
E�ective complex permittivity of a composite 
in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
What are the e�ective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?

Remote Sensing of Sea Ice

with radar, microwaves, ...
interaction of
EM waves with
brine and
polycrystalline
microstructures,
rough surfaces

Recover sea ice properties from
electromagnetic (EM) data 

 INVERSE PROBLEM

ε*

electrical conductivity
thermal conductivty
magnetic permeability
di�usivity



complexities of mixture geometry

distilled

2D lattice
spectral
measure µ

distilled

gap
0 1

Analytic Continuation Method for Homogenization
Bergman 1978, Milton 1979, Golden & Papanicolaou 1983, Milton 2002

Stieltjes integrals for homogenized parameters

spectral measure

geometry

material 
parameters

/

µ = spectral measure of            (operator, matrix)

mass = characteristic function
of the brine phase

Bartleby.com

rigorous forward bounds; approximations;
inverse bounds to recover porosity, connectivity

quantum mechanics

fractal geometries



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Inverse Homogenization  
Cherkaev and Golden (1998), Day and Thorpe (1999), 
Cherkaev (2001), McPhedran, McKenzie, Milton (1982), 
Theory of Composites, Milton (2002)

∗ε
composite geometry
(spectral measure µ)

Bruno 1991
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1

Uncertainty Quanti�cation for Homogenization
via Stieltjes Integral Representations

Clara Platt, Elena Cherkaev, Akil Narayan, Debdeep Bhattacharya, Ken Golden  2025

Classical bounds in the analytic continuation method assume �xed microstructural 
parameters, such as porosity, local permittivities, or inclusion separations.

UQ for complex permittivity & thermal conductivity of sea ice

But what if there is uncertainty, and they are random variables? 

Hashin-Shtrikman bounds matrix-particle bounds
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

Golden, Furse, Gully, Lin, Mosier, Sampson, Tison 2025

electromagnetically distinguish ice types 
inverse homogenization for polycrystals    
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

uncorrelated level repulsion

UNIVERSAL 
Wigner-Dyson 
distribution 

Murphy, Cherkaev, Golden, Phys. Rev. Lett. 2017; Murphy, Cherkaev, Hohenegger, Golden, Comm. Math. Sci. 2015

Anderson 
localization 
transition

RANDOM 
MATRIX 
THEORY



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
              to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1), A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

               

Universal eigenvalue statistics arise in a broad  range  of “unrelated” problems!

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the first billion zeros 
of the Riemann zeta function

GUE



propagation vs. localization in wave physics: 
     quantum, optics, acoustics, water waves

metal / insulator transition

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Evangelou  1992
Shklovshii et al  1993

Anderson localization

we �nd percolation-driven 

mobility edges, localization, universal spectral statistics

but no wave interference or scattering e�ects at play!

disorder-driven

Wave equations

Laplace + Di�usion
         equations



Order to Disorder in Quasiperiodic Composites

Holmium–magnesium–zinc quasicrystal

aperiodic tiling of the plane - R. Penrose 1970s energy surface Al-Pd-Mn quasicrystal
Unal et al., 2007

quasiperiodic checkerboard
Stamp�i, 2013

dense packing of dodecahedra
3D Penrose tiling Tripkovic, 2019

quasiperiodic crystal
          quasicrystal

ordered but aperiodic
lacks translational symmetry

Levine & Steinhardt, Phys. Rev. Lett., 1984
Shechtman et al., Phys. Rev. Lett., 1984

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, Communications Physics 2022

classical transport in 
quasiperiodic media

Golden, Goldstein & Lebowitz, Phys. Rev. Lett., 1985
Golden, Goldstein & Lebowitz, J. Stat. Phys., 1990

...



σ(x) = 3 + cos x + cos kx

σ∗ =
k

k{ irrational
rationalf(k)

constant

1D, 2D inhomogeneous materials - quasiperiodic

(k)

effective conductivity

quasiperiodic

periodic

Golden, Goldstein, Lebowitz
Classical transport in modulated structures, Phys. Rev. Lett. 1985

G. Bouchitté, S. Guenneau, F. Zolla, SIAM Multiscale Modeling & Simulation, 2010

E. Cherkaev, S. Guenneau, N. Wellander, IEEE Metamaterials, 2017

N. Wellander, S. Guenneau, E. Cherkaev, Math. Methods in the Applied Sci., 2017

...
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-0.2

0 1 2-1-2

k

G(k)

{G(k) = 
    0,     k irrational
1/pq,    k = p/q  rational

Golden, Goldstein, and Lebowitz
Phys. Rev. Lett. 1985

J. Stat. Phys. 1990

  line of slope k through 
an infinite checkerboard

effective conductivity σ  (k)*

effective resistivity 1/ σ  (k) = 1 - G(k)*

Classical transport in quasiperiodic media

continuous at k irrational
discontinuous at k rational

1D two component composite material



Moiré patterns generate two component composites

quantum dots
arti�cial atoms

Tran et al.
Nature 2019

on any scale

rotation
dilation 



Birowska

Yankowitz

Moiré patterns from “interference” of two periodic lattices

graphene twisted bilayer graphene

superconductivity, novel band topology
semiconductor quantum dots, acting as “arti�cial atoms”

Li

Moiré superlattices - condensed matter playground   (Li et al, 2023)

magic
angle

AM

graphene Moiré superlattice

TWISTRONICS



����������������������������������������
��������
������	

Order to disorder in quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

Anderson transition as twist angle is tunedwe bring the solid state physics framework for electronic 
transport and band gaps in semiconductors to classical 
transport in periodic and quasiperiodic composites

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

photonic crystals and quasicrystals

sea ice - inspired high tech spin o�
tunable Moiré composites with exotic properties 

(optical, electrical, thermal, ...), Anderson localization; our Moiré 
patterned geometries are similar to twisted bilayer graphene 

but can be engineered on any scale!

twisted bilayer composites



mesoscale



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



Homogenization for convection-enhanced 
thermal transport in sea ice

N. Kraitzman, R. Hardenbrook, 
H. Dinh, N. B. Murphy, E. Cherkaev, 

J. Zhu and K. M. Golden

August 2024

First rigorous mathematical theory of
thermal conductivity of sea ice with 
convective �uid �ow; captures data.

missing in climate models



tracers flowing through inverted sea ice blocks 



κ∗ = κ 1 +
∞

−∞

dµ(τ)

κ2 + τ2
, F (κ

∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Di�usion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

rigorous framework for numerical computations of 
spectral measures and e�ective di�usivity for model �ows 

new integral representations, theory of moment calculations

separation of material properties and �ow �eld           



Bounds on Convection Enhanced Thermal Transport

simulations data [Trodahl et al., 2001]

Darcy velocity v = 0.5 [m/s]

cat’s eye �ow model for
brine convective flow

        Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu, & Golden

Monte-Carlo simulations of SDE with 
temperature dependent Péclet number P 

Rigorous Padé approximant bounds in terms of
P using Stieltjes integral + analytic continuation

method for the measure

Euler-Maruyama and subsampling 
methods for SDE

strength of advection B = κP/2π

Proc. Royal Soc. A, 2024



ocean wave propagation through the sea ice pack 

e�ective layer parameter 
previously �t to wave data

   Stieltjes integral representation and bounds for 
the complex viscoelasticity of the ice - ocean layer 

Sampson, Murphy, Hallman, Cherkaev, Golden 2025

quasistatic, long wavelength regime
homogenized

parameter
depends on

sea ice 
concentration

and ice �oe
geometry

Bergman 1978, Milton 1979
Golden and Papanicolaou 1983 

Analytic Continuation Method

Milton, Theory of Composites 2002

like EM waves

Keller 1998
Mosig, Montiel, Squire 2015
Wang, Shen 2012

wave-ice interactions critical to
growth and melting processes 

break-up; pancake promotion
�oe size distribution



Extended strain Localized strain

Strain field IPR

Poisson (in between) Wigner Dyson

Resolvent representation of the 
deviatoric strain field 

Waves in sea ice and solid state physics
Stieltjes integral representation of 
effective complex viscoelasticity

Eigenvector IPR

IP
R

index

Increasing geometric order

Transition in the eigenvalue spacing distribution of 
Large inclusions               Small inclusions
“Local to collective deformation transition”

GOE IPR

mobility edges

0        4         8        12



Polarstern

400m

Self-similarity of sea ice floes
Weddell Sea, Antarctica

Toyota, et al.  Geophys. Res. Lett. 2006 

fractal dimensions of Okhotsk Sea ice pack  
  smaller scales D~1.2,  larger scales D~1.9 

Rothrock and Thorndike, J. Geophys. Res. 1984 

The sea ice pack has fractal structure.

fractal dim. vs. floe size exponent 
Adam Dorsky, Nash Ward, Ken Golden 2024



SEA ICE ALGAE

80% of polar bear diet can be traced to ice algae∗.

∗
Brown TA, et al. (2018). PloS one, 13(1), e0191631

Can we improve agreement between algae models and data?

high level of local heterogeneity



HETEROGENEITY in PARAMETERS & CONDITIONS

At each location within a larger region, consider

dN
dt

= α− BNP− ηN

dP
dt

= γBNP− δP

N(0) = N0, P(0) = P0

But, Monte Carlo for Full Algae Model: 8 hours X 10,000

treating parameters
as random variables
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Uncertainty quantification for ecological models with random 
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Abstract 

There is often considerable uncertainty in parameters in ecological models. This 

uncertainty can be incorporated into models by treating parameters as random 

variables with distributions, rather than fixed quantities. Recent advances in 

uncertainty quantification methods, such as polynomial chaos approaches, allow 

for the analysis of models with random parameters. We introduce these methods 

with a motivating case study of sea ice algal blooms in heterogeneous environments. 

We compare Monte Carlo methods with polynomial chaos techniques to help 

understand the dynamics of an algal bloom model with random parameters. 

Introduce polynomial chaos approach to widely used 
ecological ODE models, but with random parameters.  N-P Model



ECOLOGICAL INSIGHTS
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±1 stdev range
Deterministic 

Mean

• lower peak bloom intensity
• longer bloom duration
• able to compare variance to data

Inverse Problem: given algal and nutrient data, recover growth rate distribution 
Anthony Lee, Jody Reimer, Akil Narayan, Ken Golden 2024
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Polar bears expend 5X more energy 
swimming than walking on sea ice. 

Optimal Movement of a Polar Bear in 
a Heterogenous Icescape

Nicole Forrester, Rylie Gagne, Jody Reimer, Ken Golden 2025
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Polar Bear Percolation

site percolation
threshold

pc = 0.59   for  d = 2 

c
c

i

w
h = 

ratio of local 
“conductivities”

connected
ice pathway

h = 0.2
h = 0.1
h = 0

h = 0

C(p)

C(p)

ice disconnected
bear must swim

To study the importance of ice connectedness, we 
exaggerate the data by setting the cost of walking 
on ice to 0 with the cost of swimming still at 5.

pc

Polar Bear 
Critical 

Exponent

2000 x 2000





major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces



Topological 
Data Analysis

Bobrowski &
Skraba, 2020

Euler characteristic   =  # maxima  +  # minima  -  # saddles

�ltration - sequence of nested topological spaces, indexed by water level

topological invariant

Expected 
Euler Characteristic Curve (ECC)

500 realizations 

tracks  the evolution of the EC of 
the �ooded surface as water rises

zero of ECC ~ percolation 

Carlsson, 2009

Vogel, 2002

image analysis
porous media 
cosmology 
brain activity

percolation on a torus 
creates a giant cycle

GRF

Physical Review Research (invited, in revision), R. Moore, J. Jones, D. Gollero, R. Hardenbrook, C. Strong, K. M. Golden 2024



From magnets to melt ponds 100 year old model for magnetic materials
used to explain melt pond geometry 

Ma, Sudakov, Strong, 
Golden, New J. Phys. 2019

magnetic domains 
           in cobalt

Arctic melt ponds magnetic domains 
in cobalt-iron-boron

Arctic melt ponds

2D Ising model

spin up

spin down

model real ponds
(Perovich)

Scientific American,
EOS, PhysicsWorld, ...

Time evolution -  William Harrison, Tyler Evans, Ken Golden 2024



macroscale



Vorticity Dominated Forcingψ = 0.3

Lukovich, Hutchings, Barber, Ann. Glac.  2015

Ice �oe di�usion in winds and currents

Anomalous di�usion in sea ice dynamics

observations from GPS data

Floe scale model of advection di�usion
Tyler Evans, Huy Dinh, Kaeden George, Ben Murphy, Elena Cherkaev, Ken Golden 2025

Hurst exponent
di�usive

sub-di�usive

super-di�usive

Model Approximations

Floe-Floe Interactions: Linear Elastic Collisions
Advective Forcing: Passive, Linear Drag Law

Power Law Size Distribution:
D. A. Rothrock and A. S. Thorndike     Journal of Geophysical Research     1984

Fractional PDE



Einstein’s pollen grain

Hurst exponent
jamming
transition

Arctic sea ice pack with tagged particle



molecular di�usivity

e�
ec

tiv
e 

di
�

us
iv

it
y

200 1

1

2

velocity �eldinitial sea ice 
concentration �eld

Gaussian BC �ow

From micro to macro in ice �oe dynamics

homogenization of ice �oe advection-di�usion

Delaney Mosier, Tyler Evans, Ben Murphy, Elena Cherkaev, Ken Golden, 2025

bounds on advection-enhanced
di�usivity for ice concentration 

from STIELTJES INTEGRALS 



29 August 2010

Arctic Marginal Ice Zone 

Strong & Rigor
GRL 2013

MIZ

Where the action is!

0.15 < ψ < 0.80

sea ice 
concentration

transitional region 
between dense pack ice 

and open ocean

biologically active region

intense ocean-ice-atmosphere 
interactions

signi�cant wave activity

MIZ   “WIDTH”  ??
fundamental length scale of 

ecological and climate dynamics



In processes in geophysics and materials science, a region where 
solid and liquid phases co-exist is known as a mushy layer.

Chen

cooling metal

e.g. in solidi�cation of binary liquids and alloys

solid porous matrix 
with liquid inclusions

Sea Ice is a mushy layer, Feltham, et al., GRL 2006
Phase evolution of young sea ice, Wettlaufer, et al., GRL 1997

sea ice

Earth’s mantle

dendritic interface between
sea ice and sea water

CRREL



Multiscale mushy layer model for marginal ice zone dynamics

Strong, Cherkaev, Golden     Scienti�c Reports  2024

MIZ - transitional region between dense pack ice and open ocean

OBJECTIVE: model & predict dramatic annual cycle 
impacts climate dynamics, polar ecology, human activities

Arctic MIZ as a mushy layer 

sea ice concentration ψ

liquid

MIZ

2 cm mushy layer

solid

liquid

NaCl-H2O in lab
(Peppin et al., 2007, J. Fluid Mech.)

mushy layer physics in the lab

solid

Model captures basic physics of 

MIZ dynamics & predicts cycle.  



Identifying Fractal Geometry in Arctic Marginal Ice Zone Dynamics
Julie Sherman, Court Strong, Ken Golden, Environ. Res. Lett.  2025

Compute the fractal dimension of the boundary of the Arctic MIZ by boxcounting 
methods; analyze seasonal cycle and long term trends.
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early summer early autumn

July

October

wave  and thermal
interactions with
fractal boundary



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

�ll = harmonic function satisfying
satellite BC’s plus learned stochastic term

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0
 Global Sea Ice Concentration Climate Data Records, 2022

Lavergne, Sorensen, et al., Norwegian Met. Inst., ... OSI SAF  



Conclusions

Our research is helping to improve projections of the fate of 
Earth’s sea ice packs, and the ecosystems they support.

Mathematics for sea ice advances the theory of composites, 
inverse problems, and other areas of science and engineering. 

Modeling sea ice leads to unexpected 
areas of math and physics.
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Topography-albedo feedback and 
the shifting Arctic ice pack

Meter-scale di�erences in surface topography between MYI and FYI mechanistically 
alter summertime melt pond formation and coverage, signi�cantly lowering albedo 
for younger, smoother ice, and forming a self-perpetuating feedback loop. 

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

Julia Ditto

�rst-year ice
thinner with 

smoother surface

multiyear ice
thicker with 

hummocky surface



Co-evolution of topography and albedo drives stark di�erences 
in the state of the ice pack at the end of summer.

Topography-albedo feedback and 
the shifting Arctic ice pack

David E. Gluckman, Tyler P. Evans and Kenneth M. Golden, 2025

Coupled PDE model of topography H(x,y,t) and melt pond depth h(x,y,t).



transport in percolation theory

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum
1 < t < 2  (for idealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

{0
probability  p
probability  1 - p

local conductivity (electrical or �uid)

bond

consider local conductivities
1   and   h > 0

smooths, softens transition

percolation threshold

e�ective conductivity or �uid permeability
insulator conductor

o� on

10 ppc

MICRO MACRO
lattice homogenization



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)

effective magnetization



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



increasing twist angle between two lattices

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

Order to disorder in 
quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

twisted bilayer 
graphene

sea ice inspired - twisted bilayer composites
tunable quasiperiodic composites with exotic properties 

(optical, electrical, thermal) Anderson localization;  our Moiré 
patterned geometries are similar to twisted bilayer graphene 

constellation of periodic systems in a sea of randomness

superconducting
magic twist angle



  

Wide Variety of Microgeometries

HighLow

E



  

Wide Variety of Microgeometries



  

Small Difference in Moiré Parameters

      Big Difference in Material Properties



average

Observed MIZ location and width
Observational analysis of annual cycle in Bering-Chukchi Sea sector 2000-2004 

1500 km

3x

averaged

widens by a factor of 3-4 and moves poleward by 1500 km



thermal �ow �eld through the ice cover:
multiscale granular composite

spectral measures for 2D
horizontal thermal conductivity

homogenize
open water

fraction

homogenized thermal conductivity is a key parameter in MIZ mushy layer model



Where to look to see this behavior exploited in 
tunable media that display rich transport properties? 

Go back to the dawn of 
ordered, aperiodic materials - 

quasicrystals.
Shechtman et al. 1984

Levine & Steinhardt 1984



Forward bounds for the effective viscoelasticity are fitted to 
well known wave-ice datasets, including Wadhams et al. 1988, 
Newyear & Martin 1997, Wang & Shen 2010, Meylan et al. 2014,
and several others!

Single effective rheological 
parameter (Mosig et al. 2015)

Effective complex 
viscoelasticity 

shear 
modulus

pressure elasticity density kinematic 
viscosity

gravity displacement

Integral representation

microscale macroscaledivergence-free
deviatoric stress 

Kelvin-Voigt model



NaCl-H2O in lab
(Peppin et al., 2007;, J. Fluid Mech.) 

Solid

Liquid

2 cm mushy layer

Macroscale application
Solid

Liquid

MIZ as a moving phase transition region 

Classical small-scale application

• Develop multiscale PDE model for simulating phase transition fronts to predict
MIZ seasonal cycles and decadal trends

• Model simulates MIZ as a large-scale mushy layer with effective thermal
conductivity derived from physics of composite materials

homogenization



MIZ observations MIZ model vs. observations

location

width

sea ice
concentration

Model captures basic physics 
of MIZ dynamics.

captures 96% annual cycle MIZ location; 78% width




