
CHAPTER 1

Mo I ation and Overview

The determination of the transport, electromagnetic, and mechanical properties of het
erogeneous materials has a long and venerable history attracting the attention of some
of the luminaries of science, including Maxwell (1873), Rayleigh (1892), and Einstein
(1906). In his Treatise on Electricity and Magnetism, Maxwell derived an expression for
the effective conductivity of a dispersion of spheres that is exact for dilute sphere con
centrations. Lord Rayleigh developed a formalism to compute the effective conductivity
of regular arrays of spheres that is used to this day. Work on the mechanical properties
of heterogeneous materials began with the famous paper by Einstein in which he deter
mined the effective viscosity of a dilute suspension of spheres. Since the early work on
the physical properties of heterogeneous materials, there has been an explosion in the
literature on this subject because of the rich and challenging fundamental problems it
offers and its manifest technological importance.

11 What Is a Heterogeneous Material?

In the most general sense, a heterogeneous material is one that is composed of domains
of different materials (phases), such as a composite, or the same material in different
states, such as a polycrystal. This book focuses attention on the many instances in
which the “microscopic” length scale (e.g., the average domain size) is much larger
than the molecular dimensions (so that the domains possess macroscopic properties)
but much smaller than the characteristic length of the macroscopic sample. In such
circumstances, the heterogeneous material can be viewed as a continuum on the mi
croscopic scale, subject to classical analysis, and macroscopic or effective properties
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Figure 1.1 Left panel: A schematic of a random two-phase material shown as white and gras
regions with general phase properties K1 and K2 and phase volume fractions ~i and ~ Here
L and £ represent the macroscopic and microscopic length scales, respectively. Right panel
When L is much bigger than £, the heterogeneous material can be treated as a homogeneous
material with effective property Ke.

can be ascribed to it (see Figure 1.1). Such heterogeneous media abound in synthetic
products and nature. Synthetic examples include:

• aligned and chopped fiber composites
• particulate composites
• interpenetrating multiphase composites
• cellular solids
• colloids
• gels
• foams
• microemulsions
• block copolymers
• fluidized beds
• concrete

Some examples of natural heterogeneous materials are:

• polycrystals
• soils
• sandstone
• granular media
• Earth’s crust
• sea ice
• wood
• bone
• lungs
• blood
• animal and plant tissue
• cell aggregates and tumors



1.2: EFFECTIVE PROPERTIES AND APPLICATIONS 3

The physical phenomena of interest occur on “microscopic” length scales that span
from tens of nanometers in the case of gels to meters in the case of geological media.
Structure Ofl this “microscopic” scale is generically referred to as microstructure in this
book.

In many instances, the microstructures can be characterized only statistically, and
therefore are referred to as random heterogeneous materials, the chief concern of this
book. There is a vast family of random microstructures that are possible, ranging from

~2. dispersions with varying degrees of clustering to complex interpenetrating connected
multiphase media, including porous media. A glimpse of the richness of the possible

:~microstructures can be garnered from Figures 1.2 and 1.3, which depict examples of
:j~ synthetic and natural random heterogeneous materials, respectively.

Beginning from the top, the first example of Figure 1.2 shows a scanning electron
&Y~micrograph of a colloidal system of hard spheres of two different sizes. The second

.~. example is an optical image of the transverse plane of a fiber-reinforced material:
ceramic—metal composite (cermet) made of alumina (Al2 03) fibers (oriented perpen

• ~dicular to the plane) in an aluminum matrix. Note the clustering of the fibers. The
• ;iast example shows a processed optical image of a cermet that is primarily composed

of boron carbide (black regions) and aluminum (white regions). Both of these phases
~áre connected across the sample (interpenetrating) even though, from a planar sec

~. .tion, it appears that only the black phase is connected. In all of these examples, the
~ ~microstructure can be characterized only statistically.

Beginning from the top, the first example of Figure 1.3 shows a planar section
through a Fontainebleau sandstone obtained via X-ray microtomography. As we will

‘~ee, this imaging technique enables one to obtain full three-dimensional renderings
~ ~Of the microstructure (see Figure 12.14), revealing that the void or pore phase (white

~ region) is actually connected across the sample. The second example shows a scanning
~èlectron micrograph of the porous cellular structure of cancellous bone. The third

~‘ example shows an image of red blood cells, one of a number of different particles
• :‘~ontained in the liquid suspension of blood.

~i.2 Effective Properties and Applications
~e will consider four different classes of problems as summarized in Table 1.1 on page

!‘ ~7. We will focus mainly on the following four steady-state (time-independent) effective
properties associated with these classes:

~ Effective conductivity tensor, ~e

-~. Effective stiffness (elastic) tensor, Ce

~ ~3. Mean survival time, r
~ Fluid permeability t~nsor, k

~It?~ each case, the phase properties and phase volume fractions (fractions of the to
~tal volume occupied by the phases) are taken to be given information. Depending on
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Figure 1.2 Synthetic random heterogeneous materials. From top to bottom: Colloidal system
of hard spheres of two different sizes (Thies-Weesie 1995), fiber-reinforced cermet (courtesy
of G. Dvorak), and an interpenetrating three-phase cermet composed of boron carbide (black
regions), aluminum (white regions), and another ceramic phase (gray regions) (Torquato et al.
1999a).
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Figure 1.3 Natural random heterogeneous materials. From top to bottom: Fontainebleau
sandstone [data taken from Coker et al. (1996)], cellular structure of cancellous bone (Gibson
and Ashby 1997), and red blood cells (Alberts et al. 1997).

p
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the physical context, each phase can be either solid, fluid or void. We will also ex
amine certain relaxation times associated with time-dependent transport processes in
heterogeneous media.

1.2.1 Conductivity and Analogous Properties

The quantity 0~e represents either the electrical or thermal conductivity tensor, which
are mathematically equivalent properties. It is the proportionality constant between
the average of the local electric current (heat flux) and average of the local electric
field (temperature gradient) in the composite. This averaged relation is Ohm’s law or
Fourier’s law (for the composite) in the electrical or thermal problems, respectively.
More generally, for reasons of mathematical analogy, the determination of the effective
conductivity translates immediately into equivalent results for the effective dielectric
constant, magnetic permeability, or diffusion coefficient (see Chapter 13). Therefore,
we refer to all of these problems as class A problems as described in Table 1.1, adapted
after a similar table of Batchelor (1974). Of course, each local field within this class will
depend on the local phase properties (as depicted in Figure 1.1) and hence generally
will be different from one another. Moreover, whereas the electrical conductivity, ther
mal conductivity, and diffusion coefficient are transport (nonequilbrium) properties,
the dielectric constant and magnetic permeability are equilibrium properties. Observe
that the determination of the effective diffusion coefficient of a medium in which one
phase is impermeable to mass transport is actually just a special limit of the conduc
tivity problem, namely, the limit in which one of the phases has zero conductivity (see
Chapter 13).

A key macroscopic parameter characterizing the electricallthermal characteristics
of a heterogeneous material is the effective electrical/thermal conductivity (Beran
1968, Batchelor 1974, Bergman 1978, Hashin 1983, Milton 1984, Torquato 1987).
Knowledge of u~ is of importance in a host of applications. Electrical applications
include composites used as insulators for coatings or electrical components and oil
drilling operations, where electrical conductivity measurements of the brine-saturated
rock are used to infer information about the permeability of the pore space. Thermal ap
plications range from composites used for insulation, heat exchangers, and heat sinks
for electronic cooling to geophysical problems (e.g., determination of the geothermal
temperature gradient). In the case of composites used as microwave resonator materi
als, capacitors, and insulators, the effective dielectric constant is a critical macroscopic
characteristic. Applications involving composites with desirable values of the effective
magnetic permeability include motors, generators, transformers, and computer disks.
Diffusion of tracer particles in fluid-saturated porous media occurs in many industrial
processes, such as chromatography, catalysis and oil recovers and biological processes
such as blood transport and transport in cells or through cell membranes. In these
instances, the effective diffusion coefficient is a key parameter.
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Table 1.1 The four different classes of steady-state effective media problems considered here.
F c K0 G, where Ke is the general effective property, G is the average (or applied) generalized
gradient or intensity field, and F is the average generalized flux field. Class A and B problems
share many common features and hence may be attacked using similar techniques. Class C
and D problems are similarly related to one another.

General Average (or Applied) Average
Effective Generalized Generalized

Class Property Intensity Flux
Ke G F

Thermal Conductivity Temperature Gradient Heat Flux

Electrical Conductivity Electric Field Electric Current

A Dielectric Constant Electric Field Electric Displacement

Magnetic Permeability Magnetic Field Magnetic Induction

Diffusion Coefficient Concentration Gradient Mass Flux

Elastic Moduli Strain Field Stress Field
B

Viscosity Strain Rate Field Stress Field

Survival Time Species Production Rate Concentration Field
C

NMR Survival Time NMR Production Rate Magnetization Density

Fluid Permeability Applied Pressure Gradient Velocity Field
D

Sedimentation Rate Force Mobility

1.2.2 Elastic Moduli

The effective stiffness (elastic) tensor Ce is one of the most basic mechanical properties
of a heterogeneous material (Watt, Davies and O’Connell 1976, Christensen 1979, Willis
1981, Hashin 1983, Milton 1984, Kohn 1988, Nemat-Nasser and Hon 1993, Torquato
2000a). The quantity C0 is the proportionality constant between the average stress and
average strain. This relation is the averaged Hooke’s law for the composite. An obvious
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class of composites in which it is desired to know Ce is one where the material must
bear some mechanical load. This can include synthetic materials, such as structural
composites used in a myriad of applications, or biological materials, such as bone or
tendon. The speed and attenuation of elastic waves in fluid-saturated porous media (a
detection procedure used in oil and gas exploration) depend upon, among other param
eters, the elastic moduli of the media. We note that the problem of finding the effective
shear viscosity of a suspension of particles in a liquid is related to the problem of deter
mining the effective shear modulus of the suspension under special limits (Chapter 13),
and hence we term these class B problems as described in Table 1.1. Moreover, under
certain situations, the effective stiffness tensor completely specifies the effective ther
mal expansion characteristics of a heterogeneous material (Chapter 15). Finally, we
note that there is a correspondence between the elastic and viscoelastic properties of a
heterogeneous material (Chapter 15).

1.2.3 Survival Time or Trapping Constant

Physical problems involving simultaneous diffusion and reaction in heterogeneous me
dia abound in the physical and biological sciences (Prager 1963a, Berg 1983, Zwanzig
1990, Torquato l991a, den Hollander and Weiss 1994, Zhou and Szabo 1996, Port-
man and Wolynes 1999). Considerable attention in the chemical physics community
has been devoted to instances in which the heterogeneous medium consists of a pore
region in which diffusion (and bulk reaction) occurs and a “trap” region whose inter
face can absorb the diffusing species via a surface reaction. Examples are found in
widely different processes, such as heterogeneous catalysis, fluorescence quenching,
cell metabolism, ligand binding in proteins, migration of atoms and defects in solids,
and crystal growth, to mention but a few. A key parameter in such processes is the mean
survival time r, which gives the average lifetime of the diffusing species before it gets
trapped. Often it is useful to introduce its inverse, called the trapping constant y cc
which is proportional to the trapping rate. Interestingly, nuclear magnetic resonance
(NMR) relaxation in porous media yields an NMR survival time that is mathemati
cally equivalent to the aforementioned one typically studied in chemical physics, and
therefore we term these class C problems, as described in Table 1.1.

1.2.4 Fluid Permeability

A key macroscopic property for describing slow viscous flow through porous media is
the fluid permeability tensor k (Beran 1968, Scheidegger 1974, Batchelor 1974, Dullien
1979, Torquato 199 ib, Adler 1992). The quantity k is the proportionality constant be
tween the average fluid velocity and applied pressure gradient in the porous medium.
This relation is Darcy’s law for the porous medium. The flow of a fluid through a
porous medium arises in a variety of technological problems. Examples include thc
extraction of oil or gas from porous rocks, spread of contaminants in fluid-saturated
soils, and separation processes such as in chromatography, ifitration, biological mem
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braneS, and bioreactors. We observe that the problem of particles sedimenting through
a liquid shares some similarities to the problem of determining the fluid permeability
of the suspension, and hence we term these class D problems, as indicated in Table 1.1.

1.2.5 Diffusion and Viscous Relaxation Times

Relaxation processes associated with the previous two problems of trapping and
flow in porous media are also of interest. Specifically, it is desired to know how the
concentration and velocity fields decay in time from initially uniform values. Such
time-dependent processes are exactly described by a spectrum of relaxation times (in
verse eigenvalues) that are intimately related to the pore-space topology. In the trapping
and flow problems, we refer toT1, 7’2,... and 01,02,... as the diffusion and viscous re
laxation times, respectively. It will be shown that these relaxation times are related to
their steady-state counterparts (r and k) as well as to each other.

1.2.6 Definitions of Effective Properties

Given the phase properties K1, K2, . . ., KM and phase volume fractions &, ‘k2, . . ., ~ of a
heterogeneous material with M phases, how are its effective properties mathematically
defined? It will be shown in Chapter 13 that the effective properties of the heteroge
ñeôus material are determined by averages of local fields derived from the appropriate
gOverning continuum-field theories (partial differential equations) for the problem of
c~Oncern. Specifically, any of the aforementioned effective properties, which we denote
~eherally by Ke, is defined by a linear relationship between an average of a generalized
•k~eal flux F and an average of a generalized local (or applied) intensity G, i.e.,

FcXKe.G. (1.1)

For the conduction, elasticity, trapping, and flow problems, the average generalized flux
F represents the average local electric current (heat flux), stress, concentration, and
~ielocity fields, respectively, and the average generalized intensity G represents the av
ërage local electric field (or temperature gradient), strain, production rate, and applied
pressure gradient, respectively. The precise nature of (1.1) is discussed in Chapter 13.
~: Table 1.1 summarizes the average local (or applied) field quantities that determine
the steady-state effective properties for all four problem classes. As already noted, the
~individual problems within class A are mathematically equivalent to each other; the
~same is true of the problems within class C. The elasticity and viscosity problems of
èlass B share some similarities but are generally different (Chapter 13). The fluid per
~meability and sedimentation problems of class D are related but generally different
~(Chapter 13). Whereas the properties of classes A and B are scale invariant, the prop

• ërties of classes C and D are scale dependent (Chapter 13). This classification scheme is

~nade more mathematically precise in Chapter 13.
At first glance, the effective properties of one class appear to share no relationship

• ~ the effective properties of the other classes. Indeed, the governing equations are
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E0-.’-

e = ~ 1~~2 ~2 (Arithmetic Average) = (~ /~ ÷ ~2’~2) (Harmonic Average)

Figure 1.4 Atwo-phase material consisting of alternating layers of the phases. Formulas (1.2)
and (1.3) are exact when the applied field is oriented parallel (left panel) and perpendicular
(right panel) to the slabs, respectively.

different from class to class (see Chapter 13 for a complete discussion of this point).
Nonetheless, it is shown in Chapter 23 that these apparently different properties can
be ~related to each other via cross-property relations.

1.3 Importance of Microstructure

The effective properties of a heterogeneous material depend on the phase properties
and microstructural information, including the phase volume fractions, which repre
sent the simplest level of information. It is important to emphasize that the effective
properties are generally not simple relations (mixtures rules) involving the phase vol
ume fractions. This suggests that the complex interactions between the phases result
in a dependence of the effective properties on nontrivial details of the microstructure.

To illustrate the fact that the effective properties of a random heterogeneous material
depend on nontrivial features of the microstriicture, we consider two examples. In both
instances, we assume that the medium consists of two phases, one with volume fraction

~i and the other with volume fraction ~ and so ~ = 1. In the first case, it is desired
to predict the effective conductivity 0~e of a composite of arbitrary microstructure with
phase conductivities o~i and o2. One might surmise that a reasonable estimate is a simpk
weighted average of the phase conductivities involving the volume fractions, such as

= Uj~b1 + U2~2. (1.2

This arithmetic-average prediction usually grossly overestimates the effective conduc
tivity of isotropic media, especially for widely different phase conductivities. The reasor
for this discrepancy is that formula (1.2) is exact for the layered composite depictec
in the left panel of Figure 1.4 in the direction along the slabs. Thus, because the mor
conducting phase is always connected across the system along the slab direction, th
effective conductivity can be of the order of the more conducting phase. This ideal
ized situation and its close approximants represent a very small subset of possibli
composite microstructures, and therefore (1.2) can appreciably overestimate the effec
tive conductivities of general composites. On the other hand, one might try to use th~
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50—50 Mixture

Figure 1.5 Left panel: 50-50 mixture consisting of a disconnected inclusion phase and a con
nected matrix phase. The gray phase is highly conducting (or stiff) relative to the white phase.
Right panel: The same microstructure except the phases are interchanged.

harmonic-average formula

1 (1.3)

td estimate the effective conductivity. This expression, however, typically grossly under
estimates the effective conductivity of isotropic media, since it corresponds exactly to
the effective conductivity of the layered composite in the direction perpendicular to the
slabs (see right panel). It is seen that if one phase is insulating relative to the other, there
~vi11 be little current perpendicular to the slabs, since the phases are disconnected from
one another. In conclusion, estimates based only on incorporating volume-fraction in
formation (i.e., simple mixture rules) cannot capture crucial microstructural features
..r~uired to estimate accurately the effective conductivity of- most composites. Since

• .~.. tl~ conductivity is one of the simplest properties, this last statement applies to all of
the other effective properties as well

:‘ ~In the second example, we consider a 50-50 two-phase system shown in the left
~ ~‘. -panel of Figure 1.5. It consists of a disconnected inclusion phase and a connected ma
~Let the gray “phase” be highly conducting (or stiff) compared to the white

- ~, ;‘~hase.” The right panel shows a composite with exactly the same microstructure but
~ “~ ~jith the phases interchanged. Which of the two composites has the higher effective

~. qpnductivity (or stiffness)2 Clearly the one depicted in the right panel has the higher
..~ffective property, since the connected phase here is the more conducting (or stiffer)

~liase. Thus, even though both composites have the same volume fraction, their ef

•~ ~f.ê~tive properties will be dramatically different, implying that the effective properties
on microstructural information beyond that contained in the volume fractions.

ih ‘higher-order microstructural information is the main subject of Part I of this
book We have seen through both examples that connectedness is crucial higher order

- -

0

~o~oo 0

~—,/ 0~ ~oo
000 ~O

50—50 Mixture
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information. For this reason, Chapters 9 and 10 are devoted entirely to percolation and
clustering in random heterogeneous materials.

To summarize, for a random heterogeneous material consisting of M phases, the
general effective property Ke is the following function:

Ke=f(Kl,K2,...,KM;~l,~,b2,...,~M;1Z), (1.4)

where IZ indicates functionals of higher-order microstructural information. The math
ematical form that this microstructural information takes is described in the next
section.

1.4 Development of a Systematic Theory

In light of the importance of determining the effective properties of heterogeneous
media, a vast body of literature has evolved based upon direct measurements (either ex
perimentally or computationally), semiempirical relations, and theoretical techniques.
The time and cost to attack this problem by performing measurements on each mate
rial sample for all possible phase properties and microstructures are clearly prohibitive.
Successful empirical relations tend to be more useful for correlating data rather than
predicting them. Inasmuch as the effective property depends not only on the phase
properties but is sensitive to the details of the microstructure, it is natural to take
the broader approach of predicting the effective property from a knowledge of the
microstructure. One can then relate changes in the microstructure quantitatively to
changes in the macroscopic property. One of the chief aims of this book is to provide
such a systematic theory of general random heterogeneous materials.

1.4.1 Microstructural Details

A systematic theory of random heterogeneous materials rests on our ability to describe
the “details of the microstructure,” by which we mean the phase volume fractions;
surface areas of interfaces, orientations, sizes, shapes, and spatial distribution of the

domains; connectivity of the phases; etc. Quantitatively speaking, we investigate
certain n-point correlation functions that statistically describe the microstructure. As
will be shown throughout this book, there are a variety of different correlation functions
that naturally arise when the averaging process involved in relation (1.1) is rigorously
carried out. Roughly speaking, the averaging process results in integrals in which the
relevant local fields are weighted with the n-point correlation functions. More precisely,
the averages are functionals of the n-point correlation functions.

Many types of correlation functions arise depending on the property and class of
microstructures of interest. To give the reader a preview of the concept of a correlation
function, we will discuss a specific family of such descriptors that arise in all four
problem classes. For simplicity, we consider a two-phase medium that is statistically
isotropic (as defined in Chapter 2) and begin with the one-point correlation function
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• - Figurei.6 A schematic showing attempts at sampling for the correlation functions S1, S2, and
~S~~ftom.a planar section.

• •,

dehotedby S1. Instead of giving here a precise mathematical definition of this quantity,
as Th.;done in Chapter 2, we will describe how one would ascertain it from a planar
~ec~ion through the heterogeneous material. The one-point function S1 is obtained by
ra~ófnly throwing a single point onto the planar section many times and recording the

•~fr~ctioh of times that it lands in one of the phases, say the “white” phase of Figure 1.6.
It’is~c1ear that if the planar section is big enough and the number of attempts are

• suffi~iently large, S1 will approach the volume fraction of the white phase. Thus, Si is
the ~5robability that a single point falls in the white phase. The two-point correlation~
fi~ñcfion S2(r) is obtained by randomly throwing a line segment of length r into thel

• sañi~ç- many times and recording the fraction of times that its end points land in the
whit~phase (see Figure 1.6). By performing this experiment for all possible lengths r,

• .On~e~cah generate a graph of 52 as a function of r. Therefore, S2(r) is the probability
that.the two end points of a line segment of length r fall in the white phase. Clearly,
vaiäàtibñs in S2(r) reflect the extent to which the two points are correlated in the system,
and fliL’us~S2(r) contains more information than Si, which is just a constant. Similarly,
•S~(r,,~t)is the probability that the three vertices of a triangle with sides of lengths r, s,
and tTa1L.in the white phase. The three-point quantity S3 embodies more information
thanS2 ~Jn general, S~, gives the probability that n points with specified positions lie in

• the ~hite phase.
• .In€3hapters 19 and 20 we demonstrate, using first principles, that the effective prop
erie~re-jndeed generally dependent on an infinite amount of statistical information
about the ~microstructure; this is a direct consequence of the complex field interac
tions•~hàt:occur in the heterogeneous material. Of course, for general microstructures,
the.~infihite amount of information can never be ascertained in practice. In light of
thisli.i!ijitation, the faint of heart may ask whether one should give up on obtaining
StVUCtm-èiproperty relations? The answer is a definitive no for the same reasons that
StrIiCt1~1rctprOperty relations are pursued in any discipline that concernsitself with com
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plex interacting systems, such as materials science, solid and liquid state theory and
statistical physics.

First of all, there are a few special cases in which we do have complete informa
tion and hence can compute the effective properties exactly (see Chapters 15, 16, 19,
and 20). These examples lend important insight into the salient features that gener
ally determine effective properties. Second, one can develop estimates for the effective
properties that incorporate limited microstructural information. Chapter 18 discusses
well-known effective-medium approximations that include simple information (vol
ume fractions and shapes). More sophisticated approximations that incorporate three-
and four-point information are described in Chapter 21. Third, given partial statistical
information on the sample (finite set of correlation functions), one can establish the
range of possible values that the effective properties can take, i.e., rigorous upper and
lower bounds on the properties. One of the bounds can often yield useful estimates
of the effective property even when the other bound diverges from it. Moreover, the
study of bounds has important implications for the optimal design of composites. The
subject of bounds is treated in Chapters 14, 21, and 22.

It is noteworthy that significant advances have been made recently in the quanti
tative characterization of the microstructure of random heterogeneous materials both
theoretically and experimentally. These breakthroughs, described in Part I, have en
abled investigators to compute property estimates (including bounds) that depend
upon three- and four-point information for nontrivial models and real materials.

1.4.2 Multidisciplinary Research Area

The study of random heterogeneous materials is a multidisciplinary endeavor that
overlaps with various branches of materials science, engineering, physics, applied
mathematics, geophysics, and biology as schematically represented in Figure 1.7. In
some cases, the intersections with these disciplines arise because existing models,
methods, and results can be applied to study heterogeneous materials and vice versa. In
other instances, overlap arises because they share common goals with the study of het
erogeneous materials. Moreover, some of the disciplines offer a panoply of intriguing
heterogeneous materials that need to be investigated.

One of the central aims of materials science is to formulate structure/property rela
tions for single-phase materials (metals, ceramics, and polymers). This formulation is
less well developed in the case of composite materials that are composed of combina
tions of single-phase materials. Because composites can be designed to exhibit the best
characteristics of the individual constituents, they are ideally suited in modern tech
nologies that require materials with an unusual combination of properties that cannot
be met by conventional single-phase materials. For example, fiber-polymeric compos
ites can be fabricated that have relatively high stiffness, strength, and toughness, and
low weight. (The fiber by itself is too brittle, while the polymer alone is too compli
ant and of low strength.) The ability to tailor composites with a unique spectrum oJ
properties rests fundamentally on a systematic means to relate the effective properties
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• iotlfè-.microstructure, a basic goal of this book. Moreover, the availability of accurate
- I~ii~tu re/property relations has important implications for improved materials pro

cess’ing, since processing controls the microstructure and hence the bulk properties of
•the’he~terogeneous material.

• - Ti~isport, electromagnetic, and mechanical processes that occur in heterogeneous
matei~ials are of great importance in engineering. In chemical engineering, the ap
plica~tibns are driven by the petroleum, chemical, electronics, and pharmaceutical
indtistpies, and include ifitration and separation (flow in porous media), chemical
reaet6r:d~sign (thermal properties of packed beds), coatings (polymer dispersions), mi
ci~oelectronic components, inhalation therapy (two-phase aerosols), and drug-delivery
systefns. In aerospace and mechanical engineering, the applications are driven by the
defe~s~, space, electronics, transportation, and consumer products industries, and
indh~U~.qomposites as structural components in aircraft, space vehicles, and auto
m~ile~Hinsu1ation; heat exchangers; microelectromechanical systems (MEMS); and
rec-peational products (skis and rackets). In civil engineering, the applications are driven
by the ~iilding construction industries, infrastructure, and environmental issues, and

• mc d~bridges, building materials (concrete and wood), aging of materials (pipes,
pres~’ix~e vessels, exterior of buildings), spread of contaminants in fluid-saturated soils,

• and soil~mechanics. The systematic study of heterogeneous materials in engineering

Figure 1.7 The various disciplines that intersect the study of random heterogeneous materials.
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often goes by the names micromechanics and microhydrodynamics, reflecting concern
with primarily solid mechanical properties in the former and fluid mechanical proper
ties in the latter. In this book, we emphasize that such distinctions are unnecessary and
indeed are a hindrance, since it will be shown that it is very fruitful to view seemingly
disparate phenomena under a unifying light.

The main goal of statistical mechanics is to relate the macroscopic properties of a
system of many particles (atoms, molecules, spins, etc.) to its microscopic properties,
which include the interparticle interactions as well as the spatial statistics of the par
ticles. Statistical physics is the broader study of any interacting system of particles,
whether it exists at the atomic scale or not. For example, an important research area
within statistical physics is percolation theory, which seeks to understand connected-
ness and clustering properties of random media at any length scale (Chapters 9 and 10).
In this book we exploit the powerful methods and machinery of statistical mechanics
to quantify structure at the larger “microscopic” length scales associated with random
heterogeneous materials (see Figure 1.1).

Homogenization theory is an area of applied mathematics that is concerned with the
behavior of the partial differential equations that are valid locally within a heteroge
neous material in the limit that the ratio of the microscopic to macroscopic length
scales tends to zero (Bensoussan, Lions and Papanicolaou 1978, Sanchez-Palencia
1980, Jikov, Kozlov and Olenik 1994). Mathematical questions are the following: What
are the homogenized differential equations and how do the solutions converge to
this asymptotic limit? A byproduct of the homogenization process is the averaged
equation (1.1) that defines the effective property of interest. Chapter 13 is devoted
to homogenization theory.

The area of mathematical research that seeks to provide models and methods
to characterize random patterns is called stochastic geometry (Stoyan, Kendall and
Mecke 1995). This subject grew out of the classical area of geometrical probability that
concerned itself with less general considerations such as the famous Buffon needle
question (Chapter 2). Stereology is a related area that seeks to recover statistical infor
mation on three-dimensional structures from one- and two-dimensional information
obtained from linear or planar sections. The contributions of this book concerning the
microstructure of heterogeneous materials belong to the domain of stochastic geome
try. In particular, we generalize a preponderance of the results of stochastic geometry
that have been derived for certain spatially uncorrelated models (called Boolean models)
to a wide class of spatially correlated models.

Understanding the effective properties of heterogeneous materials has many appli
cations in geophysics. Most earth materials are heterogeneous, frequently on a variety
of different length scales. Rocks are aggregates of several different anisotropic min
erals that often are characterized by widely varying properties. Determination of the
properties of fluid-saturated porous rock is particularly germane to oil and gas explo
ration. The interpretation of changes in seismic velocities preceding earthquakes and
their relation to other precursor phenomena may depend on the effects of cracks on
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~~~ffective elastic moduli of the medium. Many of the methods and results of this
b~b~ók~are of direct relevance in geophysical applications.

Biblogy is a field that will be playing a larger role in the study of heterogeneous
- ~f~riäls in the future. Virtually all biological material systems are composites that
~~Lfound to have at least one distinct structural level at a variety of length scales.
‘~f~is~structural hierarchy is not fractal, i.e., it is neither self-similar nor is the number
of~l~’vel~ infinite. Some of these biological materials have superior physical properties
[~g~spider silk is at least five times stronger than steel (Tirrell 1996)]. Thus, biological

~ial~ offer fundamental challenges both in terms of microstructure characteri
t~5ti and property predictions. From a practical standpoint, it is desired to employ

~l~~6ri~ from biology to produce synthetic composite analogues with a unique spectrum
of~pi~’operties. Finally, we observe that three-dimensional imaging techniques originally
doped for biological applications (e.g., confocal microscopy) are now being applied
~ inorganic heterogeneous materials.

V ~VI

1~5~ Overview of the Book

Thi~b’ook is divided into two parts. Part I deals with the quantitative characterization
-: of th~thicrostructure of heterogeneous materials via theoretical, computer-simulation,

• ~ahd.i ging techniques. Emphasis is placed on foundational theoretical methods. Part
llti~tsá wide variety of effective properties of heterogeneous materials and describes

V h~wl iey are linked to the microstructure. This is accomplished using rigorous meth

ods.4Rëàders primarily interested in property prediction can skip to Part II while
• refen~ihg back to key portions of Part I as indicated.) Whenever possible, theoreti
cal ~retdictions for the effective properties are compared to available experimental
arid è&ñ~uter~simulation data. The overall goal of the book is to provide a rigorous
thea~r~iôf characterizing the microstructure and properties of heterogeneous materials
that ~n simultaneously yield results of practical utility A unified treatment of both
rnicrqti~ucture and properties is emphasized.

151 ~PartI

@ha~pter 2 the various microstructural functions that are essential in determining the
effecti4ej~roperties of random heterogeneous materials are defined. Chapter 3 provides
a revi~~ of the statistical mechanics of particle systems that is particularly germane
t9,thétiIdy of random heterogeneous materials, including sphere packings. In Chap
ter 4: ~ihified approach to characterize the microstructure of a large class of media is

• developéd-~This is accomplished via a canonical n-point function FJ~ from which one
cadi~e: exact analytical expressions for any microstructural function of interest.
~hap~e~rs ~5, 6, and 7 apply the formalism of Chapter 4 to the case of systems of iden
tical spheres, spheres with a polydispersivity in size, and anisotropic particle systems
~inckiding laminates), respectively. In Chapter 8 the methods of Chapter 4 are extended
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to quantify the microstructure of cell models. Here the random-field approach is also.
discussed. Chapter 9 reviews the study of percolation and clustering on a lattice and
introduces continuum percolation. Chapter 10 discusses specific developments in con
tinuum percolation theory Chapter 11 describes a means to study microstructural~
fluctuations that occur on local length scales. Finally, Chapter 12 discusses computer-i
simulation techniques (primarily Monte Carlo methods) to quantify microstructure:~
Moreover, it is shown how to apply the same methods to compute relevant microstruc~
tural functions from two- and three-dimensional images of the material. Finally, we~
describe methods that enable one to reconstruct or construct microstnictures from ~
knowledge of limited microstructural information.

It is noteworthy that the statistical descriptors discussed in Part I are quite general
and may also find application in diverse fields where characterization of spatial struc
ture is a vital objective, such as cosmology and ecology. For instance, an important
branch of cosmology is concerned with the description and understanding of the spa
tial distribution of mass and “voids” in galaxies and clusters of galaxies in the universe•~
(Peebles 1993, Saslaw 2000). The study of how spatial patterns arise and are maintained’
is a major area of research in ecological theory (Pielou 1977, Diggle 1983, Durrett and~
Levin 1994). It is the opinion of this author that a cross-fertilization of ideas between~,
all of these different fields will be mutually beneficial.

1.5.2 PartIl

In Chapter 13 the local governing equations for the relevant field quantities and the
method of homogenization leading to the averaged equations for the effective prop~:
erties are described. The aforementioned classes of steady-state and time-dependeni~
problems are studied. In Chapter 14 minimum energy principles are derived that lead
to variational bounds on all of the effective properties in terms of trial fields. Chapter 15
proves and discusses certain phase-interchange relations for the effective conductiv~
ity and elastic moduli. Chapter 16 derives and describes some exact results for eacFi1.
of the effective properties. In Chapter 17 we derive the local fields associated with ~‘

single spherical or ellipsoidal inclusion in an infinite medium for all problem classes~
Chapter 18 presents derivations of popular effective-medium approximations for all,
four effective properties. In Chapter 19 cluster expansions of the effective properties of~~
dispersions are described. Chapter 20 presents derivations of so-called strong-contrast~
expansions for the effective conductivity and elastic moduli of generally anisotropic.
media of arbitrary microstructure. In Chapter 21, rigorous bounds on all of the effect
tive properties are derived using the variational principles of Chapter 14 and specifi~
trial fields. Chapter 22 describes the evaluation of the bounds found in Chapter 21w’
for certain theoretical model microstructures as well as experimental systems using ~:
the results of Part I. Finally, cross-property relations between the seemingly different
effective properties considered here are discussed and derived in Chapter 23.
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-Scope

~~~ã~the models, methods, and results reported in this book are obtained for
~~hase random heterogeneous materials. The extension to heterogeneous mate

?• ~with more than two phases is formally straightforward but will be covered less

ext~hsivelY. Such materials include polycrystals, which can be considered to be corn-
2 ~3o~ftes with an infinite number of anisotropic phases in which each phase is defined

• bhe crystallographic orientation of the individual grains.
~There are now a variety of computer-simulation techniques that have been developed

tc~evaluate directly the effective properties of realizations of model microstructures
(~icãIly with periodic boundary conditions) and of real material microstructures.

-. ~1ièh “computer experiments” are invaluable tools in providing benchmarks to test
• .~heories and in gaining insight into the nature of the structure/property relation. Some

~ of~e theoretical property predictions given in this book will be compared to available
• simulation data, but a treatment of such numerical methods is beyond the scope of the

• :~1~bdk. Specific citations to the numerical literature are given in Chapter 22.
~j~ace limitations will not permit us to treat, in any detail, cases in the conduction

• :‘~id~elasticity problems in which the multiphase interfaces of the heterogeneous ma-
- te~lare characterized by their own properties, i.e., nonideal or imperfect interfaces

• (~Ifapter 13). However, the various techniques to obtain effective properties with ideal
intèf~faces (described throughout Part II) may be applied to determine the effective

~~dperties with nonideal interfaces. Approaches for nonideal interfaces include ap
• ~prdx;imate methods (Chiew and Glandt 1987, Benveniste 1987, Miloh and Benveniste
• 1 9~9), exact results for periodic arrays of spheres (Cheng and Torquato 1 997a, Cheng
•ari~Torquato 1 997b), and rigorous bounding techniques (Hashin 1992, Torquato and

• Rintoul 1995, Lipton and Vernescu 1996, Zoia and Strieder 1997, Lipton 1997).
~ Heterogeneous materials with nonlinear constitutive relations are not treated. How

~e~i~f it is important to recognize that many of the results and methods in both parts
.~àf j~is book are directly relevant to nonlinear material behavior (Talbot and Willis
• 1.9~,7, Ponte Castaneda and Suquet 1998). In the cases of nonlinear stress—strain or
• cur~ent—electric field laws, it has been shown (Ponte Castaneda and Suquet 1998) that

• one~can obtain estimates of the effective nonlinear behavior based on the behavior
of~1inear companson’ material the subject of this book Thus nonlinear behavior

• - i~:oh~s, at the very least, the same microstructural information as required for the

material.
-The important topic of wave propagation in random media will not be covered. The

• irit&ested reader is referred to the work of Willis (1981 who discusses variational
pt4nciples, and of Sheng (1995), who covers a road range of topics on the theory and

• physics of wave propagation.
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CHAPTER 2

Microstructural Descriptors

We have seen that random heterogeneous materials exhibit a remarkably broad spec
trum of rich and complex microstructures. Our focus in Part I of this book is to develop
a machinery to characterize statistically this broad class of microstructures, i.e., to de
velop a statistical, or stochastic, geometry of heterogeneous materials. How or where
does one begin to address this challenging task? The answer, of course, depends on
what is the goal of the statistical characterization. Our goal is ultimately the prediction
of the macroscopic or effective physical properties of the random heterogeneous ma
terial, and thus this determines our starting point. The diverse effective properties that
we are concerned with in this book naturally and necessarily lead to a wide variety of
microstructural descriptors, generically referred to as microstructural correlation func
tions. As we noted in Chapter 1, such descriptors have applicability in other seemingly
disparate fields, such as cosmology (Peebles 1993, Saslaw 2000) and ecology (Pielou
1977, Diggle 1983, Durrett and Levin 1994).

In this chapter we will define and discuss the following microstructural correlation
functions, which are fundamental to determining the effective properties of random ij~
heterogeneous materials:

• n-point probability functions
• surface correlation functions
• lineal-path function
• chord-length density function
• pore-size functions
• percolation and cluster functions
• nearest-neighbor functions
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• pointlq-particle correlation functions
• surface-particle function

Whereas the first six types of quantities describe random media of arbitrary microstruc
ture, the last three apply specifically to random particle dispersions. Chapter 4 describes
a general formalism to represent and obtain all of these quantities from a canonical cor
relation function. Chapters 5—8, 10, and 12 deal with the evaluation of these functions
for specific models and materials.

2.1 Preliminaries

The use of the term random heterogeneous material or simply random medium rests on
the assumption that any sample of the medium is a realization of a specific random or
stochastic process (or random field). An ensemble is a collection of all the possible real
izations of a random medium generated by a specific stochastic process. We let (Q, F, P)
be some fixed probability space, where Q is a sample space (set of “outcomes”), F is a
a-algebra of subsets of Q (set of “events”) , and P is a probability measure (a function
that assigns probabilities to “events”) (Durrett 1996). Let each point cv e Q correspond
to a realization of the random medium that occupies some subset V of d-dimensional
Euclidean space, i.e., V e ~ The medium is in general statistically characterized by
a random variable ~(x, t; cv), called the structure function, that depends on all values of
the position vector x E V and on the time t. The time dependence allows for evolving
microstructures (e.g., shear flow in a suspension or growth processes in random media).

In this book we will assume that the microstructures are static or can be ap
proximated as static, and therefore the structure function ~(x; cv) will be taken to be
independent of time. For a fixed cv, the structure function may be a continuously vary
ing function of position (e.g., porosity of geologic media or orientation of crystals in a
polycrystal), or it may take on discrete values (e.g., fiber composites or colloids). Our
primary focus will be on two-phase random media, i.e., cases in which ~(x; cv) takes on
two different values. However, generalizations to multiphase media with an arbitrary
number of discrete phases follow in the obvious way. Some of the results given in this
book will apply to multiphase media as well.

Each realization cv of the two-phase random medium occupies the region of space
V e ~Jt~ of volume V that is partitioned into two disjoint random sets or phases: phase 1,
a region V1 (cv) of volume fraction ~i, and phase 2, a region V2(cv) of volume fraction
~2. Since the random sets V1 (cv) and V2 (cv) are the complements of one another, then
V1(w) U V2(cv) = V and Vi(cv) n V2Qv) = 0. Let aV(cv) denote the surface or interface
between Vi(cv) and V2(cv). Figure 2.1 shows a portion of a realization of a two-phase
random medium. For a given realization cv, the structure function ~(x; cv) is just the
indicator function I(~~(x; cv) for phase i, given for x E V by

I~~~(x; ) f 1, if X E V1(cv), (2.1)
0, otherwise,
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V1

V2

Figure 2.1 A portion of a realization w of a two-phase random medium, where phase 1 is the
white region ‘I)i, phase 2 is the gray region V2, and BV is the interface between the two regions.

fori= 1,2 with

I~1~(x;w)+2~2~(x;o)= 1. (2.2)

The random variable I~~~(x; w) is also called the characteristic function in the heteroge
neous media community, but we will not use this term, since it is usually reserved to
mean the Fourier transform of the probability density function in probability theory
and stochastic processes. The indicator function M(x; w) for the interface is defined as

M(x; a)) = IVI~’~(x; w)I = IVli:2)(x; w)I (2.3)

and therefore is a generalized function (e.g., a function involving Dirac delta functions)
that is nonzero when x is on the interface. Depending on the physical context, phase i
can be a solid, fluid, or void characterized by some general tensor property. Unless
otherwise stated, we will drop a) from the notation and write IW(x) for Z~~~(x; a)) and
M(x)forM(x;co).

In what follows we will consider the probabilistic descriptions of these and other
random variables. It is assumed that the reader is familiar with the basic notion of

. a,~probability distribution of a random variable. The books by Cinlar (1975), Priestley
~(1981), Vanmarcke (1983), Cressie (1993), and Durrett (1996) cover, in varying depths,
fu~idamental concepts in probability theory and stochastic processes.

22 n-PointProhabilityFunctions

~ 2.2.1 Definitions
~ ~or fixed x, the indicator function I~~)(x) has only two possible values; i.e., for some

.,.,. ~•. . realizations a) it will be 0 and some other a) it will be 1. Thus, the random variable Z~x)
‘does not possess a probability density function (if Dirac delta functions are excluded).

-~ The probabilistic descnption of I(1)(x) is given simply by the probability that 2~(x) is
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1,whichwewriteas

p {z(0(x) = i}.

Given this probability, it follows that

p = o} = i — p = 1).

A discrete random variableX can equivalently be specified by its cumulative distribution
Ii function F(x), defined by

F(x)~P{X ~x},

which has the properties that it is a nondecreasing, right-continuous function of x with
F(—oo) = 0 and F(+oo) = 1. However, this latter description for the simple binary
random variable I~(x) is somewhat awkward notationally and will be avoided.

We should note that the expectation (or average) of any function f[1(i) (x)] can be
expressed as

(f[z~(x)]) = ~ = i} f(1) + P {I(t)(x) = O} f(s)

where angular brackets denote an ensemble average, i.e., an average over all realizations
cv of the ensemble. In particular, when f{z(i) (x)] = 1(i) Cx), this expectation relation Yieldsj

S~(x) —. (I(i)(x)) = p {IW(x) = 1). (2.4)

Thus, in light of the 0, 1 nature of the indicator function 1(i) (x), its expectation is exactly
the same as the probability P {I(1)(x) = 1). Accordingly, following Torquato and Stell
(1982), we refer to S~(x) as the one-point probability function for phase i, since it gives
the probability of finding phase i at the position x. It is sometimes also referred to as
the one-point correlation function for the phase indicator function.

Knowing a realization l)1(w) is the same as knowing I(t)(x; cv) for all x in V. Therefore,
we may regard the random set VL (cv) as the collection of all random variables ~(x)
for x E V. Hence, the probability law of V~(co) is described by the finite-dimensional
distributions of the random process {1(i) (x) : x e V}. In other words, the probabilistic
description of V~(cv) is given by the joint distribution of 1(i) (xi )2~ (x2). 1(i) (x~) as n > 1
varies over the integers and x1,x2,. . . ,x~ vary over V. Of course, since the I(1)(x) are
either 0 or 1, this amounts to specifying the probabilities

p {z(~)(x1) =j1,z~~~(x2) ~ 1n}, (2.5)

where each 1k is either 0 or 1.
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The expectation of the product 1(i) (xi )1(i) (x2). I~j~ (x~) is a particularly important
average. Following the same line of reasoning leading to (2.4), we get

S~(xi,x2,. . . ,x~,) Ki)(xi)z~(x2)~

= p {IW(xi) 1,I~~~(x2) = 1 = i}

= Probability that 11 points at positions x1, X2,.. . , x,~ (2 6)
are found in phase i.

Following Torquato and Stell (1982), we will refer to as the n-point probability func
tion for phase i. Although it is correct to refer to it as an n-point correlation function,
we prefer the former term, since it emphasizes its special nature as a probability func
tion. Geometrical probability interpretations of the S~ are given in Section 2.2.3; see
also Figure 1.6 for such interpretations of lower-order S~. As we will see, the problem
of finding the two-point function S~ bears a close relationship to the classical Buffon
needle game of geometrical probability (Kendall and Moran 1962).

The special nature of the indicator function makes it possible to specify the gen
eral joint distributions of (2.5) by giving the set of n-point probability functions
s~, S~, . . . , S~ for phase i defined by (2.6). This can be seen by noting that

p {I~(xi) =ji,I~(x2) —I2~ . . . ,I~(x~) =In}

= (ii 2~~~(xk) ~[I[1 — I(i)(X)]) (2.7)
k€K 1EL

where K = (k ~ n;jk = 1} and L = (1 ~ n;jj = 0), and thus the expectation of the
product in (2.7) is computable in terms of the set of n-point probability functions
s~, S~, . . . , S~ for phase i.

In particular, one can express the probability S~ of finding n points in phase 2 in
terms of the set of phase 1 probabilities ~~~ This is easily shown, since

S~(xi,x2,.. . ,x,~) = (fl[i_Idlkxj)])

= 1 — ~S~’~(x1) + ~S~(x~,xk)
j=1 j<k

— ~S~1)(xj,xk,xl)++(_1)nS~(x1,x2,...,xn). (2.8)

j<kd

Note that the sth sum in (2.8) contains n!/[(n —s)!s!] terms and carries the factor (~1Y.
Indeed, the probability of finding any subset n 1 of the n points in phase 2 and the
remaining n2 = n — n 1 in phase 1 can be expressed purely in terms of the set of phase
1 probabilities ~~s~’~ (or the set of phase 2 probabilities) (Torquato and Stell
1982). For example, the probability s~’2~ of two “dissimilar ends” (i.e., the probability
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that a point at x1 is in phase 1 and a point at x2 is in phase 2) is given by

S~12~(xi,x2) = (Z(’)(xi)[l — I(1)(x2)]) = S~’~(xi) — S~’~(xi,x2). (2.9)

The n-point probability functions were introduced in the context of determining
the effective transport properties of random media by Brown (1955). These statistical
descriptors arise in rigorous expressions for the effective transport and mechanical
properties of random heterogeneous media, including the following:

• effective conductivity, dielectric constant, magnetic permeability, and diffusion co
efficient (Brown 1955, Prager 1963b, Beran 1968, Torquato 1980, Milton 1981a,
Phan-Thien and Milton 1982, Torquato 1985a)

• effective elastic moduli (Beran 1968, McCoy 1970, Dederichs and Zeller 1973, Kroner
1977, Willis 1981, Milton 1982, Milton and Phan-Thien 1982, Torquato 1997)

• trapping constant or, equivalently, mean survival time (Prager 1 963a, Torquato and
Rubinstein 1989)

• fluid permeability (Prager 1961, Weissberg and Prager 1970, Berryman and Milton
1985, Rubinstein and Torquato 1989)

Some general properties of the n-point probability functions have been studied by
Frisch and Stillinger (1963) and Torquato and Stell (1982, 1983a). Moreover, lower-
order S~ were calculated for various sphere models (Torquato and Stell 1?83b,
Torquato and Stell 1984, Torquato and Stell 1 985a). In Chapters 4—8, we discu4 the
determination of lower-order S~ for various particle, cell, and random-field i~iod
els. Chapter 12 describes how to extract such correlation functions from computer
simulations and images of real materials.

In what follows we describe some basic properties of the n-point probability
functions.

2.2.2 Symmetries and Ergodicity

If the n-point probability function S~ depends generally on the absolute positions
x1, x2, . . . , x,~, then we say that the medium is statistically inhomogeneous. Indeed, even
the one-point function S~ can depend on the local position x1 and then can be in
terpreted as a position-dependent volume fraction of phase i. Figure 2.2 depicts two
examples of statistically inhomogeneous media.

The medium is strictly spatially stationary or strictly statistically homogeneous if
the joint probability distributions describing the stochastic process are translationally
invariant, i.e., invariant under a translation (shift) of the space origin. Thus, the random
set V~(cv) generated from the stochastic process {I~1)(x) : x e V} is strictly statistically
homogeneous, provided that for some constant vector y in ~

~ {1i~xi~ =j1,I~(x2) =12,..~ =In}

= p {I~(x1 +y) =Ii,I~(x2 +y) =12,...~ +y) =j~},
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Figure 2.2 Two examples of statistically inhomogeneous media. Left panel: Density of the
gray phase decreases in the upward direction. Right panel: Density of the gray phase decreases
radially from the center.

for all n ~ 1, and xl,X2,. . . ,x~ in ~‘ftd and 11,12,. . . ,j~ in {0, 1}. (We emphasize that for
this statement to have any meaning for y in ~W’, V must equal ~W’, i.e., the volume V
must be infinite.) Equivalently, since such probabilities can be expressed in terms of the
n-point probability functions for phase i (see Section 2.1), V1(w) is strictly statistically
homogeneous if and only if

S~(xl,x2,...,Xn)z:S~(Xl+Y,X2+Y,...,Xfl+Y)

=S~(xi2,...,xi,1), (2.10)

for alln ~ 1, and xl,x2 x,~ in ~d, andy in ~ where Xjk = xk —x1. We see that for
statistically homogeneous media, the n-point probability function depends not on the
absolute positions but on their relative displacements. Thus, there is no preferred origin
in the system, which in relation (2.10) we have chosen to be the point Xi. In particular,
the one-point probability function is a constant everywhere, namely, the volume fraction
~ of phase i, i.e.,

s~=i~. (2.11)

The medium is said to be statistically homogeneous but anisotropic if ~ depends on
both the orientations and magnitudes of the vectors x12, x13,. . ., ~ (see Figure 2.3).

When the system is statistically homogeneous, it is meaningful to define volume
averages. Roughly speaking, the property of statistical homogeneity states that all re
gions of space are similar as far as statistical properties of the stochastic process are
concerned. This suggests an ergodic hypothesis; i.e., the result of averaging over all real
izations of the ensemble is equivalent to averaging over the volume for one realization
in the infinite-volume limit. Thus, complete probabilistic information can be obtained
from a single realization of the infinite medium. The ergodic hypothesis enables us to
replace ensemble averaging with volume averaging in the limit that the volume tends
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Figure 2.3 Two examples of portions of statistically homogeneous media with black and white
phases. Left panel: The layered medium is statistically anisotropic. Right panel: The medium
is statistically isotropic.

to infinity, i.e.,

S~(xi2, . . . ,xi1~) = lim ~ j I)I~~ + x12). . . I~(y + x1~)dy. (2.12)

We will refer to such systems as ergodic media.
The medium is said to be strictly statistically isotropic if the joint probability distri

butions describing the stochastic process are rotationally invariant, i.e., invariant under
rigid-body rotation of the spatial coordinates. For such media, this implies that S~ de
pends only on the distances Xjk = Ixjkl, 1 ~ j < k ~ n (see Figure 2.3). For example,
the two-point function (also known as the autocorrelation function) and three-point
function have the form

S~(xi,x2) = S~(xi2), (2.13)

S~(xi,x2,x3) = S~(xi2,x13,x23). (2.14)

Relation (2.14) for S~ remains invariant under all permutations of its arguments x 12~

x13, and x23. Both S~ and S~ can be obtained from any planar cut through a three-
dimensional medium when it is isotropic (see Figure 2.4). In practice, this means
that the two- and three-point functions can be extracted from cross-sections or two-
dimensional images of the isotropic sample (see Figure 1.6), provided that the planar
representation is sufficiently large. Moreover, the autocorrelation function S~ can also
be found from a linear cut through an isotropic medium (see Figure 2.4).

In general, the n-point probability functions for n ~ 2 cannot be expressed in terms
of lower-order q-point functions, q < n. However, in the special case of a medium
possessing “phase-inversion” symmetry at ~i = = 1/2, it is possible to determine the
odd-order probability functions~ from S~, S~ i,.. . , S~. We. say that a random
medium possesses phase-inversion symmetry if the morphology of phase 1 at volurrie
fraction ~i is statistically identical to that of phase 2 in the system where the volume

— —

-
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Figure 2.4 Planar and linear cuts through three-dimensional isotropic media. In the infinite-
system limit, S~’~ and S~’~ can be obtained from a planar cut and S~’1 can be extracted from a
linear cut.

Phase—inversion symmetric

000
00~ 0000
00~ 000
000 00

Phase—inversion asymmetric

Figure 2.5 Examples of systems possessing phase-inversion symmetry (top) and phase-
inversion asymmetry (bottom). In the leftmost and rightmost systems, the volume fractions of
phase 1 are ~ and 1 — ~, respectively.

fraction of phase 1 is 1 — ~ (see Figure 2.5) and hence

S~’~(x~; ~1,~2) = S~(x~; ~2,cb1), (2.15)

where x~ {x l,X2, . . . , x~ }. The notion of phase-inversion symmetry introduced here
quantitatively generalizes the notion of a “symmetric” two-phase material at & = =

1/2 [discussed by Beran (1968)] to arbitrary volume fractions. Examples of systems
with phase-inversion symmetry are symmetric-cell materials described in Chapter 8
(see Figures 8.5 and 8.6). To a good approximation, interpenetrating cermets, such as
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the one depicted in Figure 1.2, can be made to have phase-inversion symmetry At the
point ~i = = 1/2, a medium possessing phase-inversion symmetry has the special
property that the n-point probability functions for each phase are identical, or in other
words, the geometry of one phase is statistically indistinguishable from the other. Thus,
from (2.8),

2S~~1 = 1 — + — + ... + (—i)~~ ~S~’% . (2.16)

Therefore, for a medium with phase-inversion symmetry at ~ = = 1/2, the odd-
order probability functions S~+1 can be expressed in terms of all the lower-order
probability functions. For example, for such a symmetric medium with m = 1, we
deduce from (2.16) that

S~(x1,x2,x3) = ~~ ~]. (2.17)

However, the even-order functions S~ cannot be expressed in terms of the lower-order
functions, since the last term in (2.8) is always positive.

It is noteworthy that most random media do not possess phase-inversion symmetry.
A common example of a system with such phase-inversion asymmetry is a dispersion
of particles (see Figure 2.5 and Chapters 3—7).

2.2.3 Geometrical Probability Interpretation

The geometrical-probabilistic significance of the n-point probability function is easily
seen for any microstructure. Let F1c~ be a polyhedron with n vertices located at positions
xl, x2 x~. Then for statistically inhomogeneous media, ~ is the probability that all
n vertices of~ with fixed positions xi, x2,. . . , x~ lie in V1. For statistically homogeneous
but anisotropic media, S~ is the probability that all n vertices of F,c,1) lie in V~ when the
polyhedron is randomly placed in the volume at fixed orientation i.e., over all transla
tions of the polyhedron. For statistically isotropic media, S~ can be interpreted as the
probability that all n vertices of ~ lie in V1 when the polyhedron is randomly placed
in the volume, i.e., over all translations and solid-body rotations of the polyhedron.

In light of the above, one can view the determination of S~ as a generalization of the
Buffon needle game (Kendall and Moran 1962), in which one tosses a needle oflengthx
onto a grid of equidistant parallel lines separated by a distance L ~ x. The probability p
that the needle crosses the lines is inversely proportional to 7r; specifically, p = 2x/(n~L).
One can see that p is closely related to the probability of two dissimilar ends given by
(2.9) and thus to the two-point function S~.

For statistically homogeneous media composed of identical spheres of radius R
(phase 2) distributed throughout another material (phase 1), we may infer yet another
geometrical-probabilistic interpretation of these functions (Torquato and Stell 1982).
The function S~(xi , x2, . . . , x,~) may be interpreted to be the probability that a region
Q(n), the union volume of n spheres of radius R centered at x1,x2 x~, contains no

sphere centers. (Chapters 5 and 6 discuss the evaluation of the n-point probability
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functions for such models.) A similar interpretation may be inferred for particles of
arbitrar3T shape with a size distribution.

2.2.4 Asymptotic Properties and Bounds

We determine asymptotic properties of and bounds on S~ that apply to any statistically
jnhomogeneous two-phase random medium.

When any subset of q + 1.points coincide, so that x~ = .. = xj~1, we have

S~(x~) = S$~q(xi,.. . ,Xi1,Xi2,. . . ~Xjq~ ,x~)

= (z(~xl). .~ i(~)(~j~1). . . z(i)(x~)), (2.18)

where a bar above a quantity indicates its absence.
Let us now consider partitioning the set {xl,x2,. . . ,x,~} into L subsets (Xi}, {x2,x3},

(X4, X5, x6 } Let all of the relative distances between the m elements of these subsets
remain bounded, and let F~ be the polyhedron with m vertices located at the positions
associated with the jth subset. We denote the centroid of F~ by R1. Let Rjk be the relative
distance between the centroids of F~ and F~, where j and k are all possible values such
that 1 ~ I <k S L. A system is said to possess no long-range order if the events Rjk —~ oc
for all i and 1 are statistically independent, i.e., the n-point function factorizes into L
products as follows:

lim S~(x1,x2,.. .,x~)
all Rjk—*oo

= (i(i) (x1)) (I(i) (x2)I~~~ (x3)) (I(s) (x4)I~ (x5)I~~~ (x6)) .

=~ . . . (2.19)

The above partition, however, is just one of the possible ways to partition the set
~‘:‘f {xi,x2,. . . ,x~}. In general, for any partition into sets {y}, each with ni(y) elements, we

have in the absence of lbng-range order that

lim S~(x1,x2, . . . ,x,~) = 1~S~(~)(xl,x2 Xm(y)), (2.20)
all {y)

where R~ is the distance between the centroids of sets a and fi. An example of a system
with long-range order, and thus one that does not obey the asymptotic result (2.20), is
an infinitely large crystalline (periodic) array of identical spheres.

For concreteness, we apply the aforementioned general asymptotic results for the
cases n = 2 and n = 3 for statistically homogeneous media without long-range order.
We have for n = 2

• • ~• lim S~(x1z) = ~j, lim S~(xi2) = ~, (2.21)

-* • x12—+O XI2+CO

~ ~nd for n = 3, under permutations of the distances x~2, xu, and x23,

~. ~• • lim S~(x12,x13) = 4’j, lim S~(xi2,x13) = S~(x12), (2.22)x23—+O
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urn S~(x12,x13) = urn S~(x12,x13) = ~. (2.23)
X13—*OO all x~1—*oo
x12 fixed

Since 0 ~ IW(x) < 1 for all x in V, we have the elementary bounds

o <S~(x~) <S~i(xn_1), for allx1 and n ~ 2, (2.24)

O<S~(x1)< 1, forallx1. (2.25)

The one-point function S~(xi) (equal to the volume fraction ~ for homogeneous media)
is an upper bound on S~(x~) for all x~ and n.

A word on notation is in order here. When possible, we will suppress the superscript
in ~ indicating phase i and simply denote the function by

S~(x1,x2,.. .,x,1).

In such instances, the phase to which it refers will be specified.

2.2.5 Two-Point Probability Function

As noted earlier, the two-point or autocorrelation function S2 (r) S~1 (r) for statistically
homogeneous media can be obtained by randomly tossing line segments of length
r ri with a specified orientation and counting the fraction of times the end points
fall in phase 1 (see Figure 2.6). The function S2(r) provides a measure of how the end
points of a vector r in phase 1 are correlated. For isotropic media, S2(r) attains its
maximum value of ~i at r = 0 and eventually decays (usually exponentially fast) to its
asymptotic value of ~.

The form of S2 (r) provides information about certain gross features of the mi
crostructure, as discussed in detail in Chapter 5—7 and 12. For example, two different
autocorrelation functions for isotropic particle systems and their associated mi
crostructures are shown in Figure 2.7. In the first case of nonoverlapping disks
(Section 5.2.1), 52(r) exhibits oscillations for small r (short-range order) with pen
odicity roughly equal to the particle diameter D. This is reflective of spatial correlations
between the particles due to exclusion-volume (hard-core) effects. In the second case of
overlapping disks (Section 5.1.1), 52(r) exhibits no short-range order but rather mono-
tonically decays to its asymptotic value at exactly r = D. This indicates that particles of
characteristic size D are spatially uncorrelated. However, the form of S2 here belies the
fact that there are a statistically significant number of clusters in the system that are
appreciably larger than D (see Figure 2.7). Quantities that are better able to capture
cluster and percolation information are discussed in Section 2.7 and Chapters 9 and
10.

We see that one must be careful in interpreting length scales associated with S2. To
further remark on this point, it is convenient to define, for statistically homogeneous
media, the autocovariance of phase 1

~(r) ([zw(x) — ~≠~][I~’~(x +r) — ~~i) = S2(r) — ~, (2.26)
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Figure 2.6 A schematic depicting events that contribute to lower-order functions for random
media of arbitrary microstructure. Shown are the two-point probability function S2 ~~1) for
phase 1 (white region) defined by (2.6) with n = 2, surface—void and surface—surface functions
~ and ~ defined by (2.61) and (2.62), lineal-path function L L’1~ defined by (2.66), and the
pore-size density function P defined by (2.77).

C-,

0.3

~ ~ 20 3.0 4.0

Figure 2.7 The two-point probability function S2(r) for phase 1 for two different systems at
= = 1/2: a correlated system of nonoverlapping disks (top) and an uncorrelated system

of overlapping disks (bottom). Here D is a disk diameter.

-ID

:: Overlapping disks
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where D:’)(x) —~i is a random variable with zero mean, and 1(1) is the indicator function
(2.1) for phase 1. The autocovariance ~(r) has the limiting values x(O) = ~i 4~ and
x(oc) = 0, the latter applying in the absence of long-range order. Moreover, the function
~(r) must be positive semidefinite (nonnegative) in the sense that for any finite number
of spatial locations rl , r2, . . . ,i~ in ~R’1 and arbitrary real numbers 1~ az,.. . , am,

m m

~ ~ata1x(ri —rj) ~ 0. (2.27)
j=1 j=1

A variety of length scales associated with S2 can be defined. One length scale, which
we refer to as £s, is rooted in rigorous considerations:

i ~1/2 r pcc ~1I2

= I r~(r)dr = I r {Sz(r) — ~] dr . (2.28)
[Jo J [Jo

This length scale arises in rigorous bounds on the fluid permeability (Prager 1961)
and trapping constant (Rubinstein and Torquato 1988) of three-dimensional isotropic
random porous media. Since application of (2.8) for any statistically homogeneous
medium leads to the result that the autocovariance of phase 1 is equal that of phase 2,
i.e.,

x(r) = S~’~(r) — = S~2~(r) — k~, (2.29)

it is clear that measures based on the two-point function for the phases are not capable
of distinguishing length scales of phase 1 from length scales of phase 2. For example,
for isotropic media, the length scale defined by (2.28) for phase 1 is identical to the
corresponding one for phase 2.

Debye and Bueche (1949) showed that the two-point probability function S2 (r) of
an isotropic porous solid can also be obtained via scattering of radiation. Here phases
1 and 2 are the void and solid phases, respectively. The normalized scattered intensity
1(k) at a wave number k for a three-dimensional isotropic porous medium of volume
V is proportional to the Fourier transform of the autocovariance x(r), i.e.,

i(k) = 4~Vn~ f x(r)r2 sin(kr) dr, (~0)

where n0 is the mean density of electrons. To get the real-space two-point function S2(r)
from the scattered intensity 1(k), one need only perform the inverse Fourier transform:

1 “°° ~kr~
x(r) = S2(r) — = 2 2 I i(k)k2 sins ‘dk. (2.31)2ir Vn0 j0 kr

The accuracy of (2.31) depends on whether the “experimentally bandlimited” scatter
ing curve 1(k) approximates sufficiently closely the entire function i(k). The spectral
properties of x will be explored further below.

It has been shown (Guinier and Fournet 1955, Debye, Anderson and Brumberger
1957) that the expansion of the two-point probability function S2 (r) through terms
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linear in r for any three-dimensional isotropic medium is given by

S2(r) = — ~r + 0(r2), (2.32)

where s is the specific surface, defined to be the interface area per unit volume. This for
mula is valid for any three-dimensional, isotropic two-phase heterogeneous medium,
porous or not. The coefficient of the linear term r in (2.32) can be shown (Guinier
and Fournet 1955, Debye et al. 1957) to be proportional to the leading term in the
asymptotic expansion of the scattering curve i(k) for k —* 00, i.e.,

27rn2sV
z(k) , k -± 00. (2.33)

Thus, given that this asymptotic region can be reached with the value of the wavelength
employed, this formula provides a measurement technique to determine the specific
surface S of isotropic porous media. Berryman (1987) has shown that formula (2.32)
applies to anisotropic media as well after angular averaging.

We see that the derivative of S2 (r) at the origin is proportional to the specific surface
s for three-dimensional isotropic media. Indeed, for d-dimensional isotropic media, we
can extend the arguments of Debye et al. (1957) to obtain for finite s that

i (i)aS2 cod_I
=—————s, (2.34)

dr (Odd
r=O

where S~, more generally, is the two-point probability function for phase i and
~d/2

= r(1 +d12) (2.35)

is the d-dimensional volume of a sphere of unit radius, with coo 1. For the first three
space dimensions, we have that

—s/2, d=l,
dS~

= —stir , d = 2, (2.36)
dr

r=O —sf4 , d = 3.
,~ Kirste and Porod (1962) examined the next term in the asymptotic expansion of the

scattering curve i(k) (proportional to k~6). This was done for a special isotropic medium
whose surface separating the void phase from the solid phase could be developed locally

~ ~ ira canonical power series in the local derivatives of the principal radii of curvature
~: R1, R2 of the surface (Frisch and Stillinger 1963). The two-point probability function

is then given by

S2(r)~rq51 _~r{1_r2[~4~f KiK2dA+~f(Ki _K2)2dA]}+ (237)

~vhere the integrals are taken over the interface, S is the mean interface area, K1 =

:1~/(2R~), K2 = 1/(2R2), and r < 1/max(Ki,K2). The first integral in relation (2.37) is
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related to the topological genus p of the surface by the Gauss—Bonnet integral formula

4JK1K2dA = 4n~(1 —p).

Notice that there is no quadratic term r2 in (2.37). Relation (2.37) is valid only for
surfaces containing no edges, corners, multiple points, or generally any singular points
at which the radii of convergence of the aforementioned canonical expansion of the
surface shrink to zero.

Therefore, (2.37) necessarily breaks down for isotropic dispersions of convex impen
etrable particles that form interparticle contacts. Indeed, Frisch and Stillinger (1963)
showed that for random systems of identical three-dimensional impenetrable spheres
of diameter D, S2(r) is given by

S2(r) = — ~r + ~ (r)2 + (D(r3), (2.38)

where Z is the mean coordination number defined to be the average number of contacts
a given sphere has with its neighbors.

Realizability and Spectral Representation
What are the existence conditions for a valid (i.e., physically realizable) autocorrelation
or autocovariance function? In the study of time series (one-dimensional random pro
cesses) (Priestley 1981) and the theory of turbulence (Batchelor 1959), it is well known
that there are certain nonnegativity conditions involving the spectral representation of
the autocovariance x(r) that must be obeyed. Here we investigate such results for sta
tistically homogeneous two-phase random media in any space dimension d (Torquato
1999). Importantly, we show that these nonnegativity conditions are necessary but not
sufficient conditions that a valid autocovariance x(r) of a statistically homogeneous
two-phase random medium must meet. We also show that if the random medium is
also statistically isotropic, there are d different nonnegativity conditions that one can
exploit (Torquato 1999).

Consider an arbitrary stochastically continuous homogeneous process {Y(x) : x e
~d} with mean ~i = (Y) and autocovariance function

x(r) = ([Y(x) — ~][Y(x + r) — it]). (2.39)

It follows that

x(O) = (Y2) — (2.40)

and from Schwarz’s inequality that

Ix(r)I < — (2.41)

We now state the generalization of the Wiener—Khinchtine theorem (Priestley 1981)
developed for processes in time to this multidimensional spatial stochastic process
(Cressie 1993).
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Theorem 2.1 A necessary and sufficient condition for the existence ofan autocovariance
function ~(r) ofa general stochastically continuous homogeneous process {Y(x) : x e
is that it has the spectral (Fourier—Stieltjes) representation

x(r) = (2~)d f eik rdz(k) (2.42)

where Z(k) is a nonnegative bounded measure. If x(r) is absolutely integrable, i.e.,

f x(r)Idr<oo, (2.43)

then dZ(k) can be written as ~(k)dk and thus (2.42) becomes the standard Fourier
representation

x(r) = (2~)d f ~(k)e1k . rdk, (2.44)

where the spectral function ~<(k) is positive semidefinite, i.e.,

~(k) = f X(r)eth r dr> 0, for all k. (2.45)

Remarks:
1. This theorem may be proved by exploiting a general theorem due to Bochner (1936)

that any continuous functionf(r) is positive semidefinite in the sense of (2.27) if and
only if it has a Fourier—Stieltjes representation with a nonnegative bounded measure.
The continuity of x(r) follows directly from the requirement that the process Y(x) is
stochastically continuous. Thus, Theorem 2.1 may be regarded to be a special case
of Bochner’s theorem.

2. The quantity ZI~(O) is often called the spectral distribution function. If dZ(k) = ~<(k)dk
where 5~(k) ~ 0, then ~(k) 5~(k)Ix(0) is referred to as the spectral density, since it
has the properties of a probability density function, i.e., f,~(k)dk = 1 and g(k) ~ 0.

Although the existence condition of Theorem 2.1 is known in the context of random
media (Torquato 1999), it is not commonly known that not all autocovariances can be
generated by stochastic processes {I~(x) : x e ~Jtc~) that take only two values, zero or
one (Section 2.1). In other words, the class B of autocovariances that comes from the
binary stochastic process 11(i) (x) : x c ~W~) is a subclass of the total class that comes from
the general process {Y(x) : x c ~W~) and meets the existence condition of Theorem 2.1.
Therefore, the condition of Theorem 2.1 is only necessary but not sufficient for B. An
example of a function x(r) that meets the requirement of Theorem 2.1 but may not
belong to B has been analyzed by Torquato (1999) and is discussed in Section 12.6 [cf.
(12.19)].

The task of determining the necessary and sufficient conditions that B must pos
sess is very complex. In the context of stochastic processes in time (one-dimensional
processes), it has been shown that autocovariances in B must not only meet the con
dition of Theorem 2.1 but another condition on “corner-positive” matrices (McMillan
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1955, Shepp 1967). Since little is known about corner-positive matrices, this theorem
is very difficult to apply in practice. Thus, a meaningful characterization of B remains
an open and interesting problem, especially in the context of d-dimensional two-phase
random media.

We will not attempt to address the complete characterization of B here but instead
will summarize some simple necessary conditions, in addition to Theorem 2.1, that
characterize B (Torquato 1999). We have seen that since S~(0) = = (1(1)> =

the autocovariance at the origin is given by

x(O) = ~ for all x(r) e B, (2.46)

which should be compared to formula (2.40) for general stochastic processes. Applica
tion of the inequalities (2.24) to the two-point function S~(r) for homogeneous media
yield the bounds 0 ~ S~(r) ~ ~j, which are a direct consequence of the binary (i.e.,
zero-one) nature of the process. Combination of these bounds with relations (2.26) and
(2.29) give the corresponding bounds that all autocovariances in B must obe~~.

— min(~, ~) < x(r) < ~ for all ~(r) e B. (2.47)

Unlike general stochastic processes for which (2.41) applies, here we have both upper
and lower bounds on x(r), the lower bound deriving from the pointwise nonnegativity
of S~(r). Of course, in the absence of long-range order, x(c’o) = 0, but this condition
is not special to binary processes. Another consequence of the binary nature of the
process in the case of isotropic media is that the specific surface s is strictly positive
when both phases are present and so (2.34) yields that

dSW d

di~ = ~r=O <0, for all 0< ~j < 1 and x(r) € B. (2.48)

In other words, the slope of x(r) at r = 0 is strictly negative for nontrivial volume
fractions in the range 0 < ~ < 1. Thus, an autocovariance x(r) of an isotropic two-
phase random medium can neither have a zero nor a positive slope at r = 0 when
0 < çb~ < 1 (Yeong and Torquato 1998a). Note that when the Fourier transform ~(k)
exists, condition (2.45) implies only that the slope of x(r) at r = 0 is nonpositive (i.e.,
negative semidefinite). We recall from an earlier part of this section that S2 and thus
x(r) will generally possess not only a linear term r but a quadratic term r2 for sufficiently
small r [cf. (2.38)], although the quadratic term will be zero for a certain subclass of
B [cf. (2.37)].

Although the nonnegativity condition of Theorem 2.1 or, equivalently, condition
(2.27) is not sufficient to ensure that x(r) belongs to B, either condition still provides a
stringent test that all physically realizable x(r) must meet. Experience shows that the
nonnegativity condition coupled with the “binary” conditions (2.46)—(2.48) provide a
practical (if not exact) means to test the validity of proposed autocovariances for a wide
class of two-phase random media; see Yeong and Torquato (1998a), Cule and Torquato
(1999), Torquato (1999), and Section 12.6.
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Practically speaking, it is difficult to apply the nonnegativity condition (2.27) in order
to test the validity of a proposed x(r). For a wide class of statistically homogeneous
two-phase media, ~(r) tends to zero fast enough for the Fourier transform ~(k) to exist
[cf. (2.43)]. In such instances, it is much easier to apply the nonnegativity condition
(2.45) to test the validity of a proposed x(r). In what follows, we will assume that the
spectral function ~(k) exists and proceed to show that there are d different nonnegativity
conditions that one can exploit if the random medium is also statistically isotropic
(Torquato 1999).

The Fourier transform of some absolutely integrable function f(r) in d dimensions
is given by

f(k) = f f(r)e_ik ~ (2.49)

and the associated inverse operation is defined by

1 dff(k)edk~ (2.50)

(2ir)

where k is the wave vector. When the function depends only on the magnitude r = ri,
then we have the following simpler expressions for d = 1, 2, and 3:

1(k) = 2ff(r)coskrdr~ f(r) = Lff(k)coskrdk~ d = 1, (2.51)
0

f(k) = 27rf f(r)rJo(kr)dr, f(r) = -~- f1(k)kJo(kr)dk~ d = 2, (2.52)
0 2ir 0

- 4~r”°° 1 “°°-

f(k) = — I f(r)rsinkrdr, f(r) = —i— I f(k)ksinkrdk, d = 3, (2.53)
k j0 27rrJ0

• where k = Iki and Jo(x) is the zeroth-order Bessel function of the first kind.
The nonnegativity condition (2.45) holds for any wave vector k. In particular, it holds

~ for k = 0, i.e., the real-space volume integral of x(r) must be positive semidefinite or

f[S2(r) — ~]dr> 0. (2.54)

The integral condition (2.54) holds for statistically homogeneous but anisotropic me
dia. This nonnegativity condition could also have been obtained immediately from the

~; work of Lu and Torquato (1990a) on the coarseness, or standard deviation of the lo
~- ..~ cal volume fraction. In particular, it can be obtained from the asymptotic expression

~ (11.20) for large window sizes and the fact that the coarseness is positive semidefinite
(see Chapter 11).

If the medium is also statistically isotropic, then the two-point correlation function
~ cpends only on the magnitude r In, and (2.54) simplifies as

f[S2(r) — ~f]r~1dr> 0. (2.55)
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Here we have used the fact that dr = Q(d)r’1 1dr in a d-dimensional spherical coordinate
system, where

2ir’~”2
≤2(d) = r(d/2) (2.56)

is the positive d-dimensional solid angle and F(x) is the gamma function. If we let

M~ = f[S2(r) — ~b~]r~dr (2.57)

denote the nth moment of the function S2(r) — ~, then (2.55) states that the moment
Md_i is positive semidefinite for isotropic two-phase random media in d dimensions.

Thus far, we have shown that there is one nonnegativity condition for a d
dimensional homogeneous medium, namely, condition (2.45). However, the symmetr~i
possessed by isotropic media enables one to obtain d different nonnegativity condi
tions. In particular, Torquato (1999) demonstrated that for an isotropic autocorrelation
function S2(r) in d dimensions, the one-, two-, ..., and d-dimensional Fourier trans
forms of x(r) are all positive semidefinite. Let ~(k; rn) denote the rn-dimensional Fourier
transform of x(r). Then, for all values of the wave number k (i.e., k > 0), we have that

rn= 1,2,...,d. (2.58)

This is easily proved by recalling that for d-dimensional isotropic media, S2 (r) can be
extracted from a cut of the d-dimensional medium with an rn-dimensional subspace
(m = 1,2,... ,d — 1). The rn-dimensional subspace represents a lower-dimensional
random medium but with the same S2 as in d dimensions. Thus, the nonnegativity
condition (2.45) applies to this lower-dimensional random medium, yielding (2.58).

It follows immediately from (2.55) and (2.58) that

M~ >0, n = 0,1,.. .,d —1. (2.59)

Thus, for three-dimensional isotropic media, the zeroth, first, and second moments
of S2(r) — must be positive semidefinite. For two-dimensional isotropic media, the
zeroth and first moments must be positive semidefinite, whereas for one-dimensional
media, only the zeroth moment need be positive semidefinite. The real-space conditions
(2.54) and (2.59) are special cases of the more general and restrictive integral conditions
(2.45) and (2.58), respectively.

Algorithms have been developed recently to construct realizations of two-phase ran
dom media with specified microstructural correlation functions (see Chapter 12). One
can use the integral nonnegativity conditions (2.45) and (2.58) as well as the “binary”
conditions (2.46)— (2.48) to test whether hypothetical autocorrelation or autocovari
ance function meet necessary realizability conditions. The zero-wave number integral
conditions (2.54) and (2.59) may first be checked, since they are easier to compute than
the full Fourier transform; if they are negative, then there is no need to compute the
Fourier transform. We note that nonnegativity conditions on certain integrals involv
ing the three- and two-point probability functions have also been obtained (Torquato
1980, Milton 198lb, Milton and McPhedran 1982, Torquato 1999, Markov 1999).
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~ 2.3 Surface Correlation Functions

Surface correlation functions contain information about the random interface 8V and
are of basic importance in the trapping and flow problems. In this context, we will let
phase 1 denote the fluid or “void” phase, and phase 2 the “solid” phase. The simplest
surface correlation function is the specific surface s(x) (interface area per unit volume)
at point x, which is a one-point correlation function for statistically inhomogeneous
media, i.e.,

s(x) = (M(x)), (2.60)

where M(x) is the interface indicator function given by (2.3). Note that the nonnegative
specific surface cannot be interpreted as a probability, since the chance that a point at
x lands on the interface is zero. For homogeneous media, it is a constant everywhere,
which we will denote simply by s.

Two-point surface correlation functions for statistically inhomogeneous media are
defined by

F~~(xi,x2) = (Jv~(x1)I(x2)), (2.61)

F~~(xi,x2) (M(xi)M(x2)), (2.62)

where 1(x) I~’~(x) is the indicator function for the void phase. These functions are
called the surface—void and surface—surface correlation functions, respectively, and
they arise in rigorous bounds on the trapping constant (Doi 1976, Rubinstein and
Torquato 1988) and fluid permeability (Doi 1976, Rubinstein and Torquato 1989). For
homogeneous media they depend only on the displacement r x2 —x1, and for isotropic
media they depend only on the distance r = ri. The functions ~ and ~ can be ob
tained from any plane cut through a medium that is isotropic. Figure 2.6 shows events
that contribute to these functions. When the two points are far from one another in
systems without long-range order, F~~(x1,x2) —÷ s(xi)S1(x2) and F~5(x1,x2) —± s(xi)s(x2).
In the case of homogeneous media (of special interest to us in subsequent chapters),
these asymptotic results for ri —* cc reduce to

F~~(r) —÷ (M)(I) = s~i, F~~(r) —* (M)~ = s2, (2.63)

where ~ = (I) is the porosity, or the volume fraction of the void phase.
The generalization to an n-point surface correlation function in which a subset of

m of the 11 points is associated with the interface and the remaining n — m points are
associated with the void space is obvious:

Im fl

~ = ç[EIM(xi)][ fl Z(xi)],)~ (2.64)
j=1 j=m+1

where x’~ Xm+ 1,Xm+2, . . . ,x~. As we have emphasized, surface correlation functions
are not probability functions. However, by associating with the two-phase interface a
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finite thickness, a probabilistic interpretation can be given in the limit that the thick
ness tends to zero; see Sections 4.1, 4.2.1, and 12.4.3. Observe that since the indicator
functions in expression (2.64) are nonnegative, the surface correlation function is also
nonnegative, i.e.,

~>0, for all x~ mV. (2.65)

Such correlation functions and their generalizations have been studied for particle
systems (Torquato 1986a), as discussed in Chapter 4. In Chapters 4—6 and 12 we discuss
the determination of ~ and F~3 for particle models.

2.4 Lineal-Path Function

Another interesting and useful statistical measure is what we call the lineal-path func
tion ~ (Lu and Torquato 1992a). For statistically isotropic media, it is defined as
follows:

L~(z) = Probability that a line segment of length z lies wholly in (2 66)
phase i when randomly thrown into the sample.

In stochastic geometry, the quantity 4~ [1 — ~(z)] is sometimes referred to as the lin
ear contact distribution function (Stoyan et al. 1995). Figure 2.6 shows an event that
contributes to the lineal-path function. We see that L~1~(z) contains a coarse level of
connectedness information about phase i, albeit only along a lineal path of length z in
phase i. The lineal-path function is a lower-order microstructural function, since it is a
lower-order case of the canonical n-point correlation function discussed in Section 4.4.

The lineal-path function is a monotonically decreasing function of z, since the space
available in phase i to a line segment of length z decreases with increasing z. At the
extreme values of L~~~(z), we have that

L~(0) = ~j, L~(oc) = 0,

where ‘/~ is the volume fraction of phase i. The “tail” of L~~~(z) (i.e., large z behavior)
provides information about the largest lineal paths in phase i. If we define L~’2~(z) to
be the probability that a line segment of length z intersects any parts of the two-phase
interface when randomly thrown into the sample, then it is clear that

L~’~(z) +L~2~(z) +L~12~(z) = 1.

For three-dimensional media, we observe that L~(z) is equivalent to the area frac
tion of phase i measured from the projected image of a three-dimensional slice of
thickness z onto a plane, as depicted in Figure 2.8. It is a problem of long-standing
interest in stereology to find the projected area fraction or, equivalently, the lineal-path
function L~~~(z), for three-dimensional particle systems. Its evaluation for nontrivial mi
crostructures remains a challenging theoretical problem because of, in the language of
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phasei

0

~H

Figure 2.8 In two dimensions, the lineal-path function is the fraction of phase i obtained from
a projection of a slab of thickness z onto a line.

ci

Figure 2.9 Chords are the line segments between the intersections of an infinitely long line
with the two-phase interface.

~.TJnderwood (1970), “overlap” effects due to projection of the three-dimensional image
and “truncation” effects due to slicing the system (see Figure 2.8).
~ For statistically homogeneous but anisotropic media, L~~~(z) will depend not only

~on the magnitude of vector z but on its orientation. For statistically inhomogeneous
~ñiedia, L(t)(xi,x2) will depend on the absolute positions x1 and x2 of the end points of
~,the.vectorz =X2 X1.

~25 Chord-Length Density Function

quantity related to the lineal-path function L~1~(z) is the chord-length probability
• •.4~nsity function p~~~(z) (Matheron 1975, Torquato and Lu 1993). (The latter has been

-. also called the chord-length “distribution” function.) Chords are all of the line seg
•~ ments between intersections of an infinitely long line with the two-phase interface (see

J~igure 2.9). The density function p~(z) is defined for statistically isotropic media as

:‘ follows:
:. ~ p~(z) Probability of finding a chord of length between z and z + dz (2 67)

inphasei.
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Since it is a probability density function (having dimensions of inverse length), p~~~(z) ~
0 for all z, and it normalizes to unity, i.e.,

fp~(z)dz = 1. (2.68)

Knowledge of the chord-length density function is of basic importance in transport
problems involving “discrete free paths” and thus has application in Knudsen diffusion
and radiative transport in porous media (Ho and Strieder 1979, Tokunaga 1985, Tas
sopoulos and Rosner 1992). The functionp~(z) has also been measured for sedimentary
rocks (Thompson, Katz and Krohn 1987) for the purpose of studying fluid flow through
such porous media. The chord-length density function p~(z) is also a quantity of great
interest in stereology (Underwood 1970). For example, the mean chord (or intercept)
length is the first moment of p(~)(z).

We now show that p~~~(z) is related to the lineal-path function L~(z) using a simple
probability argument (Torquato and Lu 1993). First, we observe that the lineal-path
function L~~~(z) can be obtained by counting the relative number of times that a line
segment of length z is wholly in phase i when thrown randomly onto an infinite line in
the system. Denote by A the midpoint of the line segment. The probability that point A
is in phase i is simply ~j, the volume fraction of phase i. Second, given that the point A is
in phase i (it is then on a chord), what is the probability that point A is on a chord with
length between y and y + dy? Since the length fraction of a chord with length between
y andy +dy is

yp~(y)dy

f ypW(y)dy0

then the probability that the point A is on a chord with length betwe4i y and y + dy ~S?’~’~

this length fraction multiplied by ~b1, i.e.,
~yp(i) (y)dy

fyP~(y)dy

Third, just because point A of a line segment of length z (distinct from the length y) is in
phase i does not mean that the whole line segment is in phase i. The probability that a
line segment of length z is on a chord of length y under the condition that the point A
is on that chord is

(y—z)O(y—z)
y

where 0(x) is the Heaviside step function defined to be

0, ifx<0,
0~x) = . (2.69)

1, ifx~0.
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Now L(t) (z), the probability that the line segment of length ~ is entirely in phase i, can be
obtained by combining the results given immediately above. Integrating the probability
that the line segment is on chords with length between y andy + dy over all possible y,
we obtain

LW(z) = l~i J~.~°(y ~z)pW(y)O(y — z)dy (2.70)
.fo ~~~‘)d~v

Differentiating (2.70) yields

dIi~~(z) = ~ fp~(y)dy~ (2.71)

where £~ is the mean chord length for phase i given by

= fzp~(z)dz. (2.72)

The first derivative of the lineal-path function is related to the cumulative distribution
function G(z) associated withp(z), i.e., G(z) = P{~ ~ Z} =~(whereZ is the
associated continuous random variable). Differentiation of (2.71) and rearrangement
of terms gives

= ~d~L~0(z) (2.73)

Formula (2.73) establishes the connection between the chord-length probability density
function p~’~(z) and the lineal-path function L(1)(z). The determination of both of these
quantities for particle systems as well as digitized samples of real media is dealt with
in Chapters 5, 6, and 12.

It is important to note that the above relations are valid for statistically isotropic
systems of arbitrary microstructure. For such media it is simple to show that the mean
èhord length £~ is related to the slope of the two-point probability function S~1) at the
origin via the expression

= = W~ ~ ~, (2.74)
dS~ Wdl S

r=O

where we have used (2.34). For the first three space dimensions, we have

d=l,

d = 2, (2.75)

d=3.

~ results (2.75) are well known in stereology (Underwood 1970).

S
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For a three-dimensional isotropic medium we can use (2.75) to relate the specific
surface in three dimensions s(d = 3) to the interface perimeter per unit area s(d = 2)
(measured from a planar cut through the medium) and the number of interface points
per unit length s(d = 1) (measured from a linear cut through the medium). Since 4~
and ~b1 remain invariant when determined from (d — 1)-dimensional cuts through a
d-dimensional isotropic medium, then from (2.75) we immediately obtain

s(d=3)= ~s(d=2)=2s(d= 1). (2.76)

These results are also well known in stereology, albeit using the notation Sv s(d = 3),
LA s(d = 2) and Pj~ s(d = 1) (Underwood 1970).

2.6 Pore-Size Functions

The pore-size probability density function P(3) (also referred to as pore-size “distribu
tion” function) first arose to characterize the void or “pore” space in porous media
(Prager 1 963a). Actually, P(6) can be used to probe either phase 1 or phase 2 of general
random media consisting of two material phases. For simplicity, we will define P(8) for
phase 1, keeping in mind that it is equally well defined for phase 2. The function P(s)
for isotropic media is defined as follows:

P(6)d~5 = Probability that a randomly chosen point in Vi (cv) lies at a
distance between 3 and 3 + dc3 from the nearest point on the (2.77)
pore-solid interface.

Since it is a probability density function (having dimensions of inverse length), P(c~) ~ 0
for all 5 and it normalizes to unity, i.e.,

= 1. (2.78)

At the extreme values of P(8), we have that

P(0) = i—, P(oo) = 0, (2.79)

where s/cbi is the interfacial area per unit pore volume. The associated coniplementa?y
cumulative distribution function F(~3) = > c3) (where z~ is the associated continuous
random variable)

F(8) = J P(r)dr (2.80)

is a nonincreasing function of ~ such that

F(0) = 1, F(oo) = 0. (2.81)

Thus, F(c3) is the fraction of pore space that has a pore radius larger than ~3.
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Figure 2.6 shows an event that contributes to the pore-size density function. In
stochastic geometry, the quantity 1 — F(6) is sometimes referred to as the spherical
contact distribution function (Stoyan et al. 1995).

The moments of P(6), defined as

(6~) = f 6”P(~)d~, (2.82)

provide useful characteristic length scales of the random medium. Integrating by parts
and using (2.80) gives the alternative representation of the moments in terms of the
cumulative distribution function:

= n f 6’~’F(8)d~. (2.83)

Lower-order moments of P(c~) arise in bounds on the mean survival and principal
relaxation times (Prager 1 963a, Torquato and Avellaneda 1991).

For a three-dimensional system, P(8) is related to the probability of inserting a
~ sphere of radius c3 into the system. Thus, it contains a coarse level of three-dimensional

connectedness information about phase 1. The pore-size function, therefore, cannot
• be extracted from a two-dimensional cross-section of the material; it is an intrinsi

- cally three-dimensional descriptor. It is noteworthy that the mathematically well-defined
function P(6) is not the usual pore-size “distribution” function obtained experimentally

¶~‘, from mercury porosimetry (Scheidegger 1974, Dullien 1979).
• The quantities P(~) and F(s) are actually trivially related to the “void” nearest

neighbor probability density function Hv(r) and “void” exclusion probability Ev(r),
~“: respectively, studied by Torquato, Lu and Rubinstein (1990) for systems of spherical

• inclusions and defined in Section 2.8. For example, consider any system of interacting
- ~1. identical spheres of radius R. Then using the definitions (2.88) and (2.90) for Hy(r) and

Ev(r), it is clear that ~3 = r — R, and so

P(s) = 8> 0, (2.84)

• V F(6) = Ev(6 + R) 8 ~ 0. (2.85)

•~.•• Similarly, for spheres with a polydispersivity in size, P and F are related to the “void”
• - X•_,. nearest-surface functions h~ and ev (described in Section 2.8) via the relations

P(6) = hv(6) 6 ~ 0, (2.86)
ki

~ • V F(6)= ~ 6?0. (2.87)

We note that the pore-size functions are lower-order microstructural functions, since

‘~~:: the void nearest-neighbor and nearest-surface functions are as well (see Section 2.8).
In Chapters 4—6 and 12 we discuss the determination of the pore-size functions for

V ~àrticle models, as well as digitized media.
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2.7 Percolation and Cluster Functions

The formation of very large “clusters” of a phase in a heterogeneous material (on the
order of the system size) can have a dramatic influence on its macroscopic properties.
A cluster of phase i is defined as the part of phase i that can be reached from a point in
phase i without passing through phase j ~ i. A critical point, known as the percolation
threshold, is reached when a sample-spanning cluster first appears. Unfortunately, any
of the lower-order microstructural functions described thus far do not adequately reflect
information about nontrivial cluster formation in the system. Torquato, Beasley and
Chiew (1988) have introduced and represented the so-called two-point cluster function
C~(xi , x~), defined to be the probability of finding two points at x1 and x2 in the same
cluster of phase i . Thus, C~ is the analogue of S~, but unlike its predecessor, it con
tains nontrivial topological “connectedness” information. The measurement of C~ for
a three-dimensional material sample cannot be made from a two-dimensional cross-
section of the material, since it is an intrinsically three-dimensional microstructural
function.

Further mathematical details about C~ and other existing percolation-sensitive
quantities have been deferred until Chapters 9 and 10. Chapter 12 describes, among
other considerations, the evaluation of C~ from computer simulations.

2.8 Nearest-Neighbor Functions

All of the aforementioned statistical descriptors are defined for random media of arbi
trary microstructure. In the special case of random media composed of particles (phase
2) distributed randomly throughout another material (phase 1), there is a variety of
natural morphological descriptors. We describe some of them below for statistically
isotropic media composed of identical spherical particles of diameter D (or radius
R = D/2) at number density p distributed throughout another phase. (The reader is
referred to Chapter 3 for a treatment of the statistical mechanics of particle systems.)
We begin by defining nearest-neighbor functions.

In considering a many-body system of interacting particles, a key fundamental ques
tion to ask is the following: What is the effect of the nearest neighbor on some reference
particle in the system? The answer to this query requires knowledge of the probability
associated with finding the nearest neighbor at some given distance from a reference par
ticle, i.e., the “particle” nearest-neighbor probability density function Hp. (This has been
also called the nearest-neighbor “distribution” function.) Knowing Hp is of importance
in a host of problems in the physical and biological sciences, including transport pro
cesses in heterogeneous materials (Keller, Rubenfeld and Molyneux 1967, Rubinstein
and Torquato 1988, Rubinstein and Torquato 1989), stellar dynamics (Chandrasekhar
1943), spatial patterns in biological systems (McNally and Cox 1989), and the molecu
lar physics of liquids and amorphous solids (Reiss, Frisch and Lebowitz 1959, Bernal
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Figure 2.10 A schematic showing events that contribute to lower-order functions for random
arrays of spheres (phase 2). Shown is the “particle” nearest-neighbor probability density Hp
defined by (2.89), point/particle function G2 G~1~ defined by (2.120), and the surface-particle
function F5,, defined by (2.122).

(2.88)

I,

1964, Finney 1970, Zallen 1983, Torquato et al. 1990). Hertz (1909) was the first to
consider its evaluation for a system of spatially uncorrelated “point” particles, i.e., par
ticles whose centers are Poisson distributed (see Section 3.1.2). The calculation of Hp
for nonoverlapping particles is nontrivial.

A different nearest-neighbor function, Hv, arises in the scaled-particle theory of liq
uids (Reiss et al. 1959, Hefland, Reiss, Frisch and Lebowitz 1960). This quantity (defined
more precisely below) essentially characterizes the probability of finding a nearest
neighbor particle center at a given distance from an arbitrary point in the system.
Since Hv is nontrivial when the point is located in the space exterior to the particles,
we refer to it as the “void” nearest-neighbor probability density function.

There are other quantities closely related to Hv and Hp that we also consider.
~: These are the so-called exclusion probabilities E~ and Ep and the conditional pair

distributions G~ and Gp as defined below.
The nearest-neighbor functions Hv(r) and Hp(r) are defined as follows:

Hv(r)dr = Probability that at an arbitrary point in the system the center
of the nearest particle lies at a distance between r and r +dr.

Hp(r)dr = Probability that at an arbitrary particle center in the system
• .• the center of the nearest particle lies at a distance between (2.89)

‘~ ~• randr+dr.

‘ Note that since both Hy(r) and Hp(r) are probability density functions, they are nonneg
• • ative for all r, normalize to unity, and have dimensions of inverse length. Observe further

~-‘ that for statistically inhomogeneous media, Hv(r) and Hp(r) will depend also upon the
position of the arbitrary point and the location of the central particle, respectively.

~ Figure 2.10 shows an event that contributes to Hp(r).
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f2v

Figure 2.11 Schematic representations of the regions Qv(r) and c2p(r). Left panel: ≤2v(r) is the
spherical region of radius r. The sphere of radius r — D12 can be interpreted as a “test” particle
of the same radius. Right panel: Qp(r) is a sphere of radius r surrounding some reference
particle.

It is useful to introduce the associated dimensionless “exclusion” probabilities Ev(r)
and Ep(r) defined as follows:

Ev(r) = Probability of finding a region ~2y(r) (which is a d
dimensional spherical cavity of radius r centered at some
arbitrary point) empty of particle centers.

= Expected fraction of space available to a “test” sphere of
radius r — D/2 inserted into the system. (2.90)

Ep(r) = Probability of finding a region Qp(r) (which is a d
dimensional spherical cavity of radius r centered at some (2.91)

arbitrary particle center) empty of other particle centers.

Figure 2.11 gives a schematic representation of the regions c2v(r) and Qp(r). The first
and second lines of (2.90) are equivalent, since the region excluded to a particle center of
radius D by a “test” particle of radius r — D/2 is a sphere of radius r (see also Chapter 4).
Thus, the test particle serves to probe the space available to it. For this reason, the
density function H~ (r) can also be interpreted to be the expected surface area per unit
volume of the interface between available and unavailable spaces.

It follows that the exclusion probabilities are complementary cumulative distribution
functions associated with the density functions and thus are related to the latter via

Ev(r) = 1 — f (2.92)

and

Ep(r) = 1 — f Hp(x)dx. (2.93)

Thus, both of these functions are monotonically decreasing functions of r. The integrals
of (2.92) and (2.93) respectively represent the probabilities of finding at least one parti

-~i D ~-

0

0
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cle center in regions c2v(r) and Qp(r). Differentiating the exclusion-probability relations
with respect to r gives

Hv(r) = _:v (2.94)

and

Hp(r) (2.95)

Note that generalizations of these quantities describing events in which exactly n par
ticle centers are contained within the regions Q~(r) and Qp(r) have been studied by
Vezzetti (1975), Ziff (1977), and Truskett, Torquato and Debenedetti (1998) and by
Truskett et al. (1998), respectively.

It is helpful to write the probability density functions as a product of two different
functions. Specifically, for d-dimensional particles, let

Hv(r) = psi(r)Gv(r)Ev(r) (2.96)

and

Hp(r) = ps1(r)Gp(r)Ep(r), (2.97)

where
2yr&2rdI 1

si(r) = r(d/2) (2.98)

is the surface area of a single d-dimensional sphere of radius r. For example, for d = 1,
2, and 3, si(r) equals 2, 2jrr, and 4irr2, respectively.

Given definitions (2.88)—(2.92), the conditional pair “distribution” functions Gy and
Gp must have the following interpretations:

ps1(r)Gv(r)dr = Given that region ~2v(r) (spherical cavity of radius r)
is empty of particle centers, the probability of finding
particle centers in the spherical shell of volume s i(r)dr
encompassing the cavity.

= Average number of particles at a radial distance between
r and r+dr from the center of Qy(r), given that this region (2.99)
is empty of particle centers.

psi(r)Gp(r)dr = Given that region ~2p(r) (sphere of radius r encompass
ing any particle centered at some arbitrary position) is
empty of particle centers, the probability of finding other
particle centers in the spherical shell of volume s i(r)dr
surrounding the central particle.

= Average number of particles at a radial distance between
r and r+dr from the center of Qpfr), given that this region (2.100)
is empty of particle centers.
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The exclusion probabilities are related to the pair distribution functions via the
expressions

Ev(r) = exp [_ jr Psi(Y)Gv(Y)dY], (2.101)

Ep(r) = exp [_fPsi(Y)GP(Y)dY]~ (2.102)

which are obtained by use of (2.94)—(2.97). Combination of (2.94), (2.95), (2.101), and
(2.102) yields

H~(r) = psi(r)Gv(r)exp [— f Psi~)Gv~)dY] (2.103)

and

Hp(r) = psi(r)Gp(r)exp [_f Psi(Y)GP(Y)dY]. (2.104)

We see that once any one of the triplet Hv, Ey, Gv (Hp, Ep, Gp) is known, any of the other
the nearest-neighbor functions can be ascertained via the interrelations (2.92)—(2.97)
and (2.101 )—(2.104). The nearest-neighbor functions are lower-order microstructural
functions, since they are lower-order cases of the canonical n-point correlation function
discussed in Section 4.4

We note that there are exact conditions that the void quantities must obey when r
equals the sphere radius R for any system of identical spheres. By definitions (2.88)
and (2.90), we have that

Hy(R) = s, Ev(R) = ~i, (2.105)

where s and Øi are the specific surface and volume fraction of phase 1, respectively.
This expression combined with (2.96) yields

Gv(R) S (2.106)
psi(R)~1

These relations are true even if the spheres overlap to varying degrees. Most of the void
quantities at their extreme values are known exactly:

Ev(0) = Hy(0) = Gv(0) = 0, Ey(~c) = Hy(co) = 0.

Some of the particle quantities at their extreme values are known exactly:

Ep(0) = 1, Ep(c’o) = Hp(oc) = 0.

The behavior of the functions Hp and Gp at r = 0 and of Gy and Gp at r = ~ are
microstructure-dependent (see Chapters 5 and 6).

Consider the spatial moments of H~ and Hp. The moments of Hy are trivially re
lated to moments of the pore-size function P(s) for the special case of spheres (see
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Section 2.6). The nth moment of Hp(r) is defined as

rn~ = frflHP(r)dr. (2.107)

The lower limit of zero in the integral allows for particles that can get arbitrarily close
to one another, such as in a Poisson distribution of spheres. A particularly important
moment is the first moment £p m1, which is just the mean nearest-neighbor distance
between particles. In the special case of ensembles of statistically isotropic impenetrable
spheres of diameter D, the mean nearest-neighbor distance is given as

1’oO

Li’ = I rHp(r)dr, (2.108)
JD

which is equivalent to

p00

Lp = D + I Ep(r)dr
JD

p00 r pr 1
=D+ g~ expj— ~ psi(y)Gp(y)dy~dr. (2.109)

JD LJ0 J

Since, as we will see in Chapter 5, Ep > 0 for impenetrable spheres, it follows that
~: Lp>_D.

Finally, we would like to describe related nearest-neighbor functions. The nearest
neighbor functions discussed thus far have involved finding nearest centers of particles

~ at given locations. One can instead define nearest-neighbor functions in the same way
as before but in terms of finding nearest surfaces of particles (Lu and Torquato 1 992b).
Let us denote the surface counterparts by h~, ev, and gv in the case of the void quan

~ tities and by h~, ep, and gp in the case of the particle quantities. For spheres that are
monodispersed in size (i.e., identical), the “surface” quantities contain the same infor
mation as the “center” quantities. Indeed, for identical spheres of radius R, we have
that

V hv(r) = Hv(r + R), ev(r) = Ev(r + R). (2.110)

: However, for spheres with a polydispersivity in size, the surface quantities are more

• ~ :. meaningful, since the sphere with the nearest surface may not be the sphere with the
• ‘.. “~ nearest center.

V ,V,, As already remarked, the surface quantities are defined similarly to the center
~ ~ qi~antities except that the former are concerned with nearest surfaces. For example,

~,dllowing Lu and Torquato (1 992b), the probability densities for polydisperse sphere
systems are defined as follows:

- ‘V V hv(r)dr = Probability that the nearest particle surface lies at a dis
~‘ .~, tance between r and r + dr from an arbitrary point in the (2.111)

system.
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hp(r)dr = Probability that the nearest particle surface lies at a dis
tance between r and r + dr from the center of an arbitrary (2.112)
particle of radius R.

It is important to emphasize that the radius R of the reference particle in the particle
nearest-surface quantity h~ must be specified.

The corresponding exclusion probabilities are, as before, complementary cumulative
distribution functions associated with h~ and h~, i.e.,

ev(r) = 1 — fhv(x) dx (2.113)

and

ep(r) 1 — fh~(x) dx. (2.114)

In each case the lower integration limit is —oo to allow for polydispersivity with sizes
ranging to the infinitely large. Accordingly, r will generally lie in the interval (—oo, cc)
because the reference point may sometimes lie in the particle phase itself. This rather
bizarre notion can be readily understood by appealing to Section 4.2, which describes
the space available to “test” particles when added to a system of spheres of radius R.
Allowing a test particle to have a negative radius r (down to —R) enables it to penetrate
into the particle phase. It follows from (2.113) and (2.114) that

hv(r)_—~, hp(r)=—~~. (2.115)

The conditional pair functions gv and gp are defined through the following relations:

hv(r) = gv(r)ev(r), hp(r) = gp(r)ep(r). (2.116)

Notice that surface quantities gv and gp are defined differently from Gv and Gp in that
the former absorb the surface area terms not contained in the latter. Moreover, for
any polydisperse system of spheres, the void quantities evaluated at the origin are, by
definition, given as

hy(O) = s, ev(O) = &, gv(O) = s/~i. (2.117)

The quantity s/~b1 is the interface area per unit volume of phase 1.
One can compute spatial moments of either h~ or h~. The moments of h~ are triv

ially related to moments of the pore-size density function for systems of spheres (see
Section 2.6). The natural generalization of the first moment of Hp given by (2.108)
for monodisperse systems is the following definition for polydisperse systems for a
reference particle of radius R:

Ap = f rhp(r)dr —R. (2.118)
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For the special case of impenetrable spheres, this definition, after integration by parts,
is equivalent to

Ap=fe~(r)dr. (2.119)

We refer to Ap as the mean surface—surface distance.
:. The determination of the nearest-neighbor functions for monodisperse and polydis

perse sphere systems is taken up in Chapters 4—6.

29 Pointlq-Particle Correlation Functions

Consider statistically inhomogeneous media composed of N identical spherical par
tides of radius R (phase 2) distributed throughout another phase (phase 1). Let

{ri,.. . , r,~) denote the positions of q sphere centers and let ~ dridr~ . . . dry. The
T~• pointlq-partidle correlation (or “distribution”) function G~(x; r~) is defined as follows

(Torquato 1986b):

G~(x; r”)dr’~ = Probability of finding a point in phase i at x and the center
of a sphere in volume element dr1 about r1, the center of
another sphere in volume element dr2 about r2, ..., and (2.120)

the center of another sphere in volume element dr,q about
rq, where n = 1 + q.

• : ‘i’he correlation function G~(x; r~) is a hybrid quantity: It is a probability function with
‘~. respect to the position x and a joint probability density function (up to a trivial factor)

-~ ‘~ with respect to the positions ~ of the q particles. In light of this nature, it obeys the
normalization condition

P • N’
~ G~(x;r~~)dr~ = S~(x), (2.121)j (N—q)!

~ where S~(x)is the one-point probability function for phase i defined in Section 2.2.1.
N6te that ~(x; r~) divided by the right side of (2.121) is indeed a probability density
~ since it is nonnegative and normalizes to unity. Originally, ~ was denoted

:~ ~G~byTorquato(l986b).
• ~, For statistically homogeneous media, ~ depends only on the relative displace

z~ments Yi~ . , Yq’ where Yk = — r~. For isotropic media, it depends only on the distances
[between all of then points. Figure 2.10 shows an event that contributes to the two-point
~ quantity G2(y), where y = Ix — I. The point/q-particle correlation function arises in

bounds on the effective conductivity (Torquato 1 986b), effective elastic moduli (Quin
?tanilla and Torquato 1995), trapping constant (Rubinstein and Torquato 1988), and
~iuid permeability (Rubinstein and Torquato 1989).

Torquato (1986b) showed that the pointlq-particle correlation function can be ex
• ~p~ressed as a special ensemble average of the indicator function I(~)(x) for phase i given
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by (2.1) [see also (4.46) and (4.74)]. Using this expression, it is easy to demonstrate that

G~(x; r~) + G~2~(x; r’?) = pq(r’~),

where pq(r~) is the q-particle probability density function associated with finding q
spheres with configuration ~ described more fully in Chapter 3. We see that since
~ = S~, then we define P0 1. It is clear that

G~1~(x;r”)=O if Ix—rkl<R, k=1,...,n,

since the point x cannot be in any sphere for the G~P. The last two expressions then
give

= p’~(r”) if Ix—rkl <R, k = 1,. ..,n.

The asymptotic properties of the G~(x; r~) have been given by Torquato (1986b).
Chapters 4—6 discuss the determination of the point/q-particle correlation function
for monodisperse and polydisperse sphere systems.

2.10 Surface/Particle Correlation Function

The surface/particle correlation function F5~ (x; r1) for statistically inhomogeneous
systems of N identical spheres is defined as follows:

Fsp(x; r1) = Correlation function associated with a point being on the
interface at x and the probability of finding the center of (2.122)
a sphere in volume element dr1 about r1.

This function obeys the normalization condition

f Fsp(X; ri)dri = Ns(x), (2.123)

where s(x) is the local specific surface define 2.60). The n-point generalization of
this function is discussed in Chapter 4.

For homogeneous media, F5~ depends only on the displacement y = x — r1. For
isotropic media, it depends only on the distance y = . Figure 2.10 shows an event
that contributes to F5~(y). The surface/particle function ~ arises in rigorous bounds
on the fluid permeability of random beds of spheres (Torquato and Beasley 1987).



CHAPTER 3

Statistical Mechanics of
Many-Particle Systems

• •~ Statistical mechanics is the branch of theoretical physics that attempts to predict, by

• starting at the level of atoms, molecules, spins, or other small “particles,” the bulk prop-
• ‘-~ erties of systems in which a large number of these particles interact with one another.

V In other words, it links the microscopic properties of matter (molecular interactions
V and structure), as determined from the laws of quantum or classical mechanics, to its

macroscopic properties (e.g., pressure of a liquid). The province of statistical physics
is more general, extending to any situation in which one is interested in the collective
behavior of interacting entities, from population dynamics through solids, liquids, and
gases to cosmology as well as random heterogeneous materials. Systems composed of

V many interacting particles (albeit much larger than molecular dimensions) are often

useful models of random heterogeneous materials, and thus one can exploit the pow
erful machinery of statistical mechanics to study such materials. Moreover, as we will

V ~ ~èe in subsequent chapters, the formalism of statistical mechanics can be extended to
V ~iohparticulate systems.

The purpose of this chapter is to introduce foundational statistical-mechanical no-
• •: V tions and results that we will heavily employ in the remaining chapters of Part I. Readers

interested in a more general and comprehensive treatment of statistical mechanics are
V •~ referred to the books by Tolman (1979), Hansen and McDonald (1986), Hill (1987), and

•~•/•~ Huang (1987).
• The chapter begins with a review of well-established concepts and techniques, such

V as n-particle probability density functions to characterize structure, interparticle p0-

V •tentials, and the Ornstein—Zernike integral equation formalism. Many of these ideas
V are applied in subsequent chapters. Since the structure of particle systems at high

- çlensities is primarily determined by repulsive interactions between the particles, we
r devote an appreciable portion of this chapter to the discussion of hard-particle systems


