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Preface

Multifractal theory is essentially rooted in probability theory, though draws on
complex ideas from each of physics, mathematics, probability theory and statis-
tics. It has also been used in a wide range of application areas: dynamical systems,
turbulence, rainfall modelling, spatial distribution of earthquakes and insect pop-
ulations, financial time series modelling and internet traffic modelling.

I have approached the subject as a statistician and applied probabilist, being
interested initially in calculating fractal dimensions of spatial point patterns pro-
duced by earthquakes. Since the subject of multifractals draws on theory from a
number of disciplines and also has applications in a number of different areas,
there is an inevitable difficulty arising from different terminology, concepts, and
levels of technical rigor. I have attempted to pull together ideas from all of these
areas and place the material into a probabilistic and statistical context, using a
language that makes them accessible and useful to statistical scientists. It was my
intention, in particular, to provide a framework for the evaluation of statistical
properties of estimates of the Rényi fractal dimensions.

It should not be interpreted that the book is only of interest to statisticians.
The estimation of fractal dimensions from a statistical perspective is virtually
uncovered in other books. We attempt to categorise forms of bias as intrinsic or
extrinsic and describe their effect on the dimension estimates. Intrinsic biases are
those effects which are caused by an inherent characteristic of the probability
distribution, whereas extrinsic bias refers to those characteristics that are caused
by sampling and other methodological difficulties. Examples of such biases are
given using known mathematical and statistical models.

The main emphasis in the book is on multifractal measures. More recent de-
velopments on stochastic processes that are multiscaling and sometimes referred
to as ‘multifractal’ stochastic processes, compared to those self-similar stochastic
processes that are monoscaling, are peripheral to the main direction of material
contained in this book. These ‘multifractal’ stochastic processes are only men-
tioned briefly.

The first part of the book provides introductory material and different defini-
tions of a multifractal measure, in particular, those constructions based on lattice
coverings and point-centred coverings by spheres. In the second part, it is shown
that the so called ‘multifractal formalism’ for these two constructions can be jus-
tified using a standard probabilistic technique, namely the theory of large devia-
tions. The final part presents estimators of Rényi dimensions, of integer order two
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and greater, and discusses their properties. It also discusses various applications
of dimension estimation, and provides a detailed case study of spatial point pat-
terns of earthquake locations. A brief summary of some definitions of dimension,
and results from the theory of large deviations, is included in the Appendices.

One cannot hope to wrap up all of the information required by the statistician
in one book. Indeed that is not my intention. The Appendices include various
definitions of the dimension of a set, and some results from the theory of large
deviations. However, when further information is required, there are other very
substantial works that should be consulted. I will mention a few in particular.
The book by Falconer (1990) gives an excellent overview of fractals from a ge-
ometrical perspective. He gives a thorough treatment of the various definitions
of dimension and their relationships. The later book by Falconer (1997) contains
much new material and various techniques that are of use in studying the math-
ematics of fractals with more emphasis on measures. Ruelle (1989) gives a nice
introduction to dynamical systems, which have provided much of the motivation
for the study of multifractal theory. Ellis (1985) provides a detailed account of the
theory of large deviations, and the excellent and very readable book by Abarbanel
(1995) deals with non-linear data analysis from more of a physics perspective.

I have closely followed some definitions, statements of theorems, and other text
contained in the publications listed below. Particular subsections of this book for
which copyright permissions were requested are listed: from Mandelbrot (1989),
PAGEOPH, quoted text in x1.8; Cutler (1991), Journal of Statistical Physics,
x2.4.3, x2.7.5, x2.7.7; Holley & Waymire (1992), Annals of Applied Probability,
x6.3.2, x6.3.3, x6.3.4, x6.3.5, x6.3.11, x6.3.12, x6.3.14; Cutler (1997), Fields In-
stitute Communications, x10.5.1(2,3), x10.5.2, x10.5.3, x10.5.4; Falconer (1990),
Wiley, Chichester, various marked extracts in Appendix A; Ellis (1984), Annals
of Probability, xB.3.8, xB.3.14, xB.3.17; and Ellis (1985), Springer-Verlag, New
York, xB.3.1, xB.3.4, xB.3.5, xB.3.6, xB.3.11, xB.3.15. I would like to thank the
above authors and also others whose work I have referred to in the book. The fol-
lowing figures have been adapted, with permission, from Harte (1998), Journal of
Nonlinear Science: 1.6, 1.8, 1.7, 9.3, 11.4, 11.2, 11.1 and 11.3.

This book had its beginnings in a reading group at the Victoria University of
Wellington in 1993. Members of the group were Professor David Vere-Jones, and
Drs. Robert Davies, Thomas Mikosch and Qiang Wang. We were interested in the
estimation and interpretation of ‘fractal’ dimensions, in particular, in the earth-
quake and meteorological application areas. I would like to thank all members
of the group for their help, for the many interesting hours we had trying to inter-
pret various dimension plots, and their continued interest since then. I would also
like to thank Peter Thomson for his encouragement and interest in the project,
and would particularly like to thank David Vere-Jones for his help and continued
encouragement over a number of years.

David Harte
May 2001

© 2001 by Chapman & Hall/CRC Press, LLC



List of Figures

1.1 Construction of the Cantor Measure
1.2 Characterisation of the Cantor Measure
1.3 Scaling Characteristics of the Logistic Map with � � �1
1.4 Logistic Map: � = 3:569945672
1.5 Lorenz Attractor
1.6 Wellington Earthquakes Depth Cross-Section
1.7 Wellington Earthquake Epicentres: Shallow Events
1.8 Wellington Earthquake Epicentres: Deep Events

3.1 e�(q) for the Multinomial Measure with b = 10

3.2 Cantor Measure: Legendre Transform of ef(y) 
3.3 Cantor Measure: The Function yq
3.4 Cantor Measure: Legendre Transform of e�(q) 

6.1 A Moran Fractal Set
6.2 Multifractal Spectrum for the Log-Normal Cascade

7.1 Correlation Integral when q = 2 for the Normal Distribution
7.2 Correlation Integral when q = 2 for the Uniform Distribution
7.3 Correlation Integral for the Pre-Cantor Measure
7.4 Correlation Integrals for the Cantor Measure
7.5 �(y) for the Cantor Measure with p0 = 0:5

8.1 Variability of D2 for the Cantor Measure with p0 = 0:5
8.2 Estimate of D2 for the Uniform Distribution 
8.3 Estimate of D2 for the Cantor Measure with p0 = 0:5
8.4 Estimate of D2 for the Cantor Measure with p0 = 0:2
8.5 Dimension Estimates for the Cantor Measure with p0 = 0:5
8.6 Dimension Estimates for the Cantor Measure with p0 = 0:2

9.1 Uniform Random Variables: Boundary Effect
9.2 Uniform Random Variables: Rounding Effect
9.3 Cantor Measure plus White Noise

10.1 Multinomial Measures With and Without Gaps

© 2001 by Chapman & Hall/CRC Press, LLC



10.2 Estimated �(q) for the Cantor Measure with p0 = 0:2
10.3 Estimated f(y) for the Cantor Measure with p0 = 0:2
10.4 Simulated Moran Cascade Processes
10.5 Estimates of D2 for Moran Cascade Processes
10.6 Dimension Estimates for the Beta Distribution with � = �

10.7 Estimates of D2 for the Logistic Map with � Close to �1
10.8 Estimates of D2; � � � ; D5 for the Logistic Map with � � �1
10.9 Estimates of D2; � � � ; D5 for the Lorenz Attractor
10.10 Lorenz Attractor: Various Lag Lengths
10.11 Lorenz Attractor: Average Mutual Information
10.12 Estimates of D2 for Embeddings of the Lorenz Attractor
10.13 Estimates of D2 for Embeddings of White Noise
10.14 Graphs of Fractional Brownian Motion
10.15 Paths (2D ) of Fractional Brownian Motion

11.1 Kanto Earthquake Epicentres: Deep Events
11.2 Kanto Earthquake Epicentres: Intermediate Depth Events
11.3 Kanto Earthquake Epicentres: Shallow Events
11.4 Kanto Earthquakes Depth Cross-Section
11.5 Wellington Earthquake Dimension Estimates: Shallow Events
11.6 Wellington Earthquake Dimension Estimates: Deep Events
11.7 Kanto Earthquake Dimension Estimates: Shallow Events
11.8 Kanto Earthquake Dimension Estimates: Intermediate Depth

Events
11.9 Kanto Earthquake Dimension Estimates: Deep Events

© 2001 by Chapman & Hall/CRC Press, LLC



List of Notation

x section symbol

1 concatenation, e.g., (!1; � � � ; !n) 1 t = (!1; � � � ; !n; t) 

�j� substring, e.g., !jn is the first n digits in the sequence !
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8.1 Introduction
8.2 Generalised Grassberger-Procaccia Algorithm
8.3 Takens Estimator
8.4 Hill Estimator
8.5 Bootstrap Estimation Procedure
8.6 Discussion and Examples

9 Extrinsic Sources of Bias
9.1 Introduction
9.2 Imposed Boundary Effect
9.3 Rounding Effect
9.4 Effect of Noise

© 2001 by Chapman & Hall/CRC Press, LLC



10 Applications of Dimension Estimation
10.1 Introduction
10.2 More on Estimation and Interpretation
10.3 Spatial and Temporal Point Patterns
10.4 Dynamical Systems
10.5 Is a Process Stochastic or Deterministic?
10.6 Stochastic Processes with Powerlaw Properties

11 Earthquake Analyses
11.1 Introduction
11.2 Sources of Data
11.3 Effects Causing Bias
11.4 Results
11.5 Comparison of Results and Conclusions

IV APPENDICES

A Properties and Dimensions of Sets
A.1 Self-Similar Sets
A.2 Hausdorff Dimension
A.3 Box Counting Dimension
A.4 Packing Dimension

B Large Deviations
B.1 Introduction
B.2 Cramér’s Theorem
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CHAPTER 1

Motivation and Background

1.1 Introduction

An intuitive introduction is given in this chapter to a number of the main con-
cepts that will be discussed in the following chapters of the book. In x1.2 we
describe the difference between a fractal set and a multifractal measure. Fractal
and multifractal methods have been used extensively in the description of dynam-
ical systems which are introduced in x1.3. A distinguishing feature of processes
that have multifractal characteristics is that various associated probability dis-
tributions display powerlaw properties. Other application areas where powerlaw
scaling characteristics have been discussed extensively in the literature are in the
fields of turbulence, rainfall, and earthquake modelling. These are discussed in
x1.4, x1.5, and x1.6 respectively.

The character of this chapter is intentionally different from that of subsequent
chapters. The emphasis in this chapter is on a descriptive introduction, and often
terminology, in particular, ‘dimension’ and ‘fractal’ will be used loosely. Formal
definitions of most concepts will be given in subsequent chapters. Definitions of
various dimensions of a set, and some of their inter relationships, can be found
in Appendix A. A detailed and very elegant account can be found in the book by
Falconer (1990).

1.2 Fractal Sets and Multifractal Measures

The books by Mandelbrot (1977, 1983) have initiated considerable interest in de-
scribing objects with an extremely irregular shape. His examples included galax-
ies, lengths of coastlines, snowflakes, and the Cantor set. Some of these objects
have, what appear at least initially, some rather bizarre characteristics, for exam-
ple, coastlines of infinite length and snowflakes with an infinite surface area. This
tends to happen when the set is very irregular, and further, characteristics of the
set at a given level of magnification are essentially the same as those at other lev-
els of magnification apart from a scale factor; hence irregularity is repeated on
finer and finer levels ad infinitum. These sets are referred to as being self-similar
(see Appendix xA.1).

One way to describe the size of these sets is to calculate its ‘fractal’ dimension.
For example, the dimension of an irregular coastline may be greater than one but
less than two, indicating that it is not like a simple line and has space filling char-
acteristics in the plane. Likewise, the surface area of a snowflake may be greater
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than two but less than three, indicating that its surface is more complex than reg-
ular geometrical shapes, and is partially volume filling. A definition of what is a
fractal and hence ‘fractal’ dimension, is still not generally accepted. Intuitively,
a fractal set is an object that is extremely irregular, and has a ‘dimension’ that is
fractional. However, we are not so interested in fractal sets per se, but more in
measures supported on such sets. Often these measures will be probability mea-
sures. This may be made clearer in the following example.

Earthquake occurrence may also have fractal like characteristics. It is thought
that earthquakes occur on faults which are essentially a fracture in the earth’s
crust. A simple clean cut in a three-dimensional object would have a dimension
of two. However, consider the situation where small faults branch off larger faults,
and from these smaller faults, even smaller faults are found. And this replication
is repeated many times to a finer and finer level. If this hypothesis were true, then
one would expect the dimension to be greater than two but less than three; i.e., in
the vicinity of a large fault, the fracturing would have some volume filling char-
acteristics. However, within that fault network, there are certain areas that will
be much more active than others; i.e., have a greater probability of an earthquake
event. As such, we could think of the set of possible locations of where an earth-
quake could occur to be a fractal set, but on that fractal set is a probability measure
which describes the likelihood of an event. Usually this probability distribution is
extremely irregular to the extent that it does not have a density. The question of
interest is: how does one characterise and describe such a probability distribution?
This is one of the underlying themes of this book.

Examples of fractal sets with an associated probability measure can be easily
constructed. One of the most simple examples is the Cantor measure.

1.2.1 Example - Cantor Measure

The Cantor set is constructed by removing the middle third from the unit interval,
then the remaining two subintervals have their middle thirds removed, and this
continues ad infinitum, that is

K0 = [0; 1]

K1 =

�
0;

1
3

�
[
�
2
3
; 1

�
K2 =

�
0;

1
9

�
[
�
2
9
;
1
3

�
[
�
2
3
;
7
9

�
[
�
8
9
; 1

�
;

etc. The Cantor set is then defined as K =
T
1

n=0Kn. Note that Kn contains two
scaled copies of Kn�1, i.e.,

Kn =

�
Kn�1

3

�[�
2

3
+
Kn�1

3

�
n = 0; 1; � � � :

It can be seen that the Cantor set contains all numbers in the unit interval whose
base 3 expansion does not contain the digit 1.
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How do we describe the size of the Cantor set? It can be seen that the Lebesgue
measure ofKn is

�
2
3

�n
! 0 as n!1 . Another way is to calculate its dimension.

The basic idea of a dimension, d0, is that it relates to the number of covers that are
required to cover the set of interest. For example, 2 boxes of width 1

3
are required

to cover K1, 4 boxes of width 1
9

are required to cover K2, etc. That is, let NÆ(K)
be the number of boxes of width Æ that are required to cover the set K, then

logNÆn(K)

� log Æn

=
log(2

n
)

� log(3�n)
= log3 2;

where Æn = 3
�n. The number log3 2 is the dimension (both box and Hausdorff)

of the Cantor set. It can be seen that the required number of boxes scales with the
dimension, i.e., NÆn(K) � Æ

�d0
n

as n!1 .
The above description of dimension relates more closely to the box counting

dimension, though not exactly (see Definition A.3.1). There are many definitions
of dimension, some differences being whether the covers are disjoint or overlap-
ping, boxes or spheres, of a fixed width or variable width no greater than Æ, and
the manner in which the limit Æ ! 1 is taken; however, the basic idea of counts
of covers is the same. A summary can be found in Appendix A, and a fuller treat-
ment can be found in Falconer (1990).

Now extend the example further by allocating a mass or probability to each
subinterval at each division. In this example, we will allocate 2

3
of the existing

probability in an interval being divided to the right-hand subinterval, and 1
3

to the
left as in Figure 1.1. By construction, the Cantor set is closed and is therefore the
support of this measure. Hence the dimension of the support is log3 2. However, it
can be seen that this dimension would be the same regardless of how one allocated

n = 0
n = 1

n = 2

n = 3

Construction of Cantor Measure

Figure 1.1 Construction of the Cantor measure with 1

3
of the probability allocated to the

left subinterval and 2

3
allocated to the right.
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the probabilities. Therefore, how does one describe this probability distribution
supported by the Cantor set? Clearly the distribution does not have a density as
the Lebesgue measure of the set is zero.

Consider quantifying the rate of probability change in the first bar of Kn for
n = 1; 2; � � �  as follows. The width of this bar is Æn = 3

�n. Let the probability
measure at the nth step be denoted by �n, then it can be seen that, for all n,

log�n([0; 3
�n

])

log Æn

=
log(3

�n
)

log(3�n)
= 1:

Similarly, the last bar can be characterised, for all n, as

log�n([1� 3
�n
; 1])

log Æn

=
log((2=3)

n
)

log(3�n)
= 1� log3 2 � 0:3691:

Now we generalise the above description to all subintervals. Let Kn(y) be the set
containing subintervals of width Æn such that if J 2 Kn(y), then

log�n(J)

log Æn

= y:

Also let #Kn(y) be the number of subintervals of length Æn contained in Kn(y),
then it can be seen from Figure 1.1 that when n = 3, #K3(0:3691) = 1,

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Characterisation of Cantor Measure

y

f~
n(

y)

n = 3

n = 5

n = 10

n = 20

Figure 1.2 Characterisation of the Cantor measure with 1

3
of the probability allocated to

the left subinterval and 2

3
allocated to the right. The points are efn(y) for n = 3; 5; 10; 20,

and the solid line is limn!1
efn(y). The dotted line marks the dimension of the Cantor

set, i.e., log
3
2.
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#K3(0:5794) = 3, #K3(0:7897) = 3, and #K3(1) = 1. Thus the number
of boxes of width Æ3 = 3

�3 that are required to cover, for example, K3(0:7897)

is three. Now consider only those values of y where #Kn(y) > 0, where we
define efn(y) as

e
fn(y) =

log#Kn(y)

log Æn

:

The function efn(y) is plotted in Figure 1.2 for n = 3, 5, 10, and 20. The functione
f(y) = limn!1

e
fn(y) is called the multifractal spectrum, and is also plotted in

Figure 1.2. It can be seen that if the measure was allocated evenly at each division,
i.e., 1

2
of the probability to the left and right, then the multifractal spectrum would

exist at only one point, i.e., ef(log3 2) = log3 2. This does not coincide with the
maximum of the graph in Figure 1.2, and the difference between the two forms
of ef(y) reflects the difference between the two limiting probability distributions.
There are a number of interpretations of ef(y), including rates of probability con-
vergence and ‘box like’ dimensions, and these will be discussed in the following
chapters.

It will also be shown that these (and other) probability distributions can also be
described by a family of dimensions, known as the Rényi dimensions, which are
also related to the multifractal spectrum. In Part II theoretical properties of these
dimensions will be discussed and in Part III methods of estimating the Rényi
dimensions will be discussed.

Sets that are irregular can often have different values for different definitions
of dimension, e.g., Hausdorff, box, and packing (see Definitions A.2.3, A.3.1 and
A.4.2, respectively). The box counting dimension, while it is nice from a con-
ceptual viewpoint, has an unfortunate property, in that the dimension of a set has
the same value as the closure of the set. For example, the box dimension of the
rational numbers on the real line is one. While the Hausdorff dimension is more
difficult to deal with, it has more satisfactory mathematical properties. A sum-
mary of definitions and relationships between various dimensions can be found in
Appendix A.

The definition of a fractal set originally given by Mandelbrot (1977) was one
whose Hausdorff dimension was greater than its topological dimension. Taylor
(1986) gives further discussion, and suggests a modification to sets where the
Hausdorff and packing dimensions are both equal. If they are not, then the set
is so irregular that it may not be able to be described. However, some irregular
sets are not fractal according to the above definition. As Stoyan & Stoyan (1994)
point out, irregular sets with positive area (e.g., islands) are not fractal, though
their boundaries may be fractal (i.e., coastline).

The essential difference between a fractal and a multifractal is that the former
refers to a set and the latter refers to a measure. As with fractal sets, a multifrac-
tal measure may also be extremely irregular with singularities of possibly many
different orders. This measure may or may not be supported by a fractal set. One
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question is: can we partition the support into a multiple number of fractal sets,
hence the name multifractal, such that on each individual partition, the order of
the singularity of the measure is the same, i.e., the measure is homogeneous, or
a unifractal measure on each partition? If this is possible, we would refer to the
measure as being multifractal in some sense; the ‘sense’ being what is precisely
meant by ‘fractal’. This is essentially what was being done in Example 1.2.1.

We can formalise the above discussion in the context of a probability space
(X ;B(X ); �). For our purposes, it will be sufficient to assume that X � R

d , and
B(X ) are the Borel subsets of X . In Example 1.2.1, X = [0; 1], and the support
of the Cantor measure � has dimension (both box and Hausdorff) of log3 2. The
dimension of the support is independent of the manner in which the probability is
allocated. We are particularly interested in those situations where the probability
measure on B(X ), denoted by �, is extremely irregular, and the distribution is
not differentiable, with singularities of possibly many different orders. Such a
measure will be said to be multifractal.

Much of the intuition for the development of multifractal theory has originated
in the physics literature. Some applications of multifractal theory are discussed in
the following sections, in particular, dynamical systems, turbulence, rainfall and
earthquakes. In x1.8 we summarise the main features. The chapter concludes by
outlining the direction for the remainder of the book.

1.3 Dynamical Systems

Dynamical systems can take the form of an iterative map or a set of differential
equations, though the latter can be re-expressed, as follows, in the form of an
iterative map. Let X be a Borel subset of Rd and consider the transformation

T� : X �! X ;

where � is a vector of parameters that modifies the transformation. If x(t0) 2 Rd

is an initial location, then x(tn) = T
n

�
(x(t0)), for n = 1; 2; � � � , forms a deter-

ministic sequence of known locations, and is referred to as an iterative map. In
discrete time iterative maps, tn = n. Alternatively, the process may be continuous
(in time) and be described by a set of differential equations of the form

dx

dt

= W�(x(t));

where t 2 R, x(t) 2 Rd , and � is some fixed vector of parameters. Such a process
can be approximated by an iterative map by letting h = tn+1 � tn be sufficiently
small, then

x(tn+1) = T�(x(tn)) � x(tn) + hW�(x(tn)) n 2 Z: (1.1)

Dynamical systems often have one or more of the following characteristics.
1. If x(t0) is perturbed a very small amount �, the resultant trajectory path

x
0

(tn) = T
n

�
(x(t0) + �)
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could diverge and be very different on a point by point basis compared to one
starting at x(t0). Such a system is said to be chaotic.

2. Many of these systems have the property that if they are observed for a suf-
ficient length of time, the set that contains the trajectory path of the evolving
system will ‘look’ the same for many different starting values x(t0). Further,
the trajectory path remains within that set, i.e., points within the set are mapped
back onto points within the set. This set is referred to as the attracting set and
is described more precisely by Eckmann & Ruelle (1985). The trajectory path
may be periodic, however, this need not necessarily be the case.

3. The transformation T� often has another level of instability, in that as � is
changed, the characteristics of the system may change through a series of
(abrupt) bifurcation points where the shape and other characteristics of the
attracting set can change considerably.

Dynamical systems are deterministic, at least theoretically, in that, if we know
x(t0), we can calculate its position at any point in the future. However, from a
practical perspective such calculations are generally not possible, due to the finite
nature of computer arithmetic. This is interesting, because in chaotic systems (i.e.,
if x(t0) is perturbed only a small amount, the resultant trajectory path can be very
different) the exact trajectory path could be quite different but the attracting set
would be the same.

If x(t0) is unknown, the process could also be thought of as stochastic. Given
that x(t0) is within the basin of attraction (i.e., will eventually move into the
attracting set), then we know that we will ‘find’ the particle somewhere within
that set. Can we describe the probability that the particle is in a set A, i.e., �(A)?
That is, can we observe a process evolving in time, and use this to describe the
spatial characteristics of the measure �? In this situation we need to assume that
the measure is invariant under the mapping, i.e., � = T

�1
�

�, and the system is
ergodic, so that time averages converge �-almost all x(t0) 2 X .

There will probably be parts of the attracting set, as seen in the following exam-
ples, that are visited frequently and other parts that are visited very infrequently.
Effectively, we have a measure � supported on a set that is possibly very irregular,
and the measure itself could also be extremely irregular. One way to describe the
size of the attracting set and the spatial characteristics of � is to calculate various
‘generalised dimensions’, a method first used and advocated by physicists (see
Grassberger, 1983 and Hentschel & Procaccia, 1983).

For the remainder of this section, some examples of dynamical systems are
briefly discussed.

1.3.1 The Cantor Map

Consider an infinite sequence (or experimental outcome) of zeros and twos de-
noted symbolically as � � � ; !�2; !�1; !0; !1; !2; � � � . Each !n is independent
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with probability p0 of being zero and p2 = 1� p0 of being two. Let

x(n) = (0:!n!n+1!n+2 � � � )3;

where n 2 Z and the right-hand side represents the base 3 fractional expansion
(triadic) of x(n). Then x(n+ 1) is related to x(n) by a shift operator, i.e.,

x(n+ 1) = 3x(n)� b3x(n)c;

where bxc is interpreted as the largest integer not greater than x. This defines a
discrete iterative map on [0; 1] that has been operating for an infinite amount of
time. The Cantor measure of Example 1.2.1 describes the relative proportion of
time that the process visits subsets of the unit interval.

1.3.2 Logistic Map

The logistic map T� : [0; 1]! [0; 1] is discrete and is defined as T�(x) = �x(1�
x), giving a recurrence relation

x(n+ 1) = �x(n)(1� x(n)); 0 � � � 4:

If x is a period p point of T�, i.e., T p

�
(x) = x, and p is the least positive integer

with this property, then x is termed stable or unstable if j(T p

�
)
0
(x)j (i.e., Jacobian)

is less than or greater than one, respectively. Stable points attract nearby orbits,
unstable points reject them.

There is an interesting sequence of bifurcations occurring with this map as �
increases to �1 � 3:57. When 0 < � < �1, T� can have a number of different
behaviours: an unstable fixed point at zero, a non-zero stable fixed point, or a
stable orbit of period 2

q where q 2 Z+ and � = �q with �q < �q+1 < �1. When
� = �1 the attracting set is of the Cantor type, see Figure 1.4. The attractor is
invariant under T� when � = �1 . There is no dependence on initial conditions
(not chaotic) and the Hausdorff dimension can be estimated as 0:532 � � �  (see
Falconer, 1990, page 173).

In Figure 1.4, it can be seen that the iterates flip from side to side, i.e., will
be somewhere in the band between 0:7 and 1:0 , then somewhere in the band be-
tween 0:3 and 0:7 , etc. A series of  200;000 was simulated, and a histogram of the
outcomes between 0:4 and 0:6 have been plotted in Figure 1.3 (top histogram).
Depending on the ‘scale’ with which one views the picture, we see a certain num-
ber of intervals that appear well populated, and others with no outcomes. More
specifically, there are three populated intervals, or clusters of points, each sepa-
rated from other clusters by a distance of at least 0:03. The second histogram in
Figure 1.3 is an enlargement of the first cluster. Enlargements of the first clus-
ters are repeated in the third and last histograms. In each of the enlargements, we
notice that the overall structure is the same, both the relative separation between
the clusters and the relative number of points in each cluster. Compare this to the
scaling characteristics of the Cantor measure when p0 =

1
3

in Figure 1.1, where
the differences between the probabilities are increasing at each iteration. A similar
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Figure 1.4 Logistic Map when � = 3:569945672 � �1. A series of length 1500 has been
generated with x(0) = 0:8. Only x(t) for t = 1001; � � � ; 1500 have been plotted, giving
the process sufficient time to stabilise to an orbit within the attracting set.

scaling occurs for the points between 0:7 and 1:0. The histograms in Figure 1.3
suggest that the underlying invariant measure � is supported on a self-similar like
set with scaling parameter that is approximately equal to six.

May (1976, 1987) suggests using the logistic map as a possible model of bio-
logical populations, particularly those that die out from generation to generation.
This would occur with insects that effectively die out over winter. Such itera-
tive mathematical models were also discussed earlier by Moran (1950) in a more
general context. He also discussed when the process would be stable with inter-
pretations in the biological context.

1.3.3 Lorenz Attractor (Lorenz, 1963)

The Lorenz time evolution x(t) = (x1(t); x2(t); x3(t)) 2 R
3 is defined by the

equations

W�(t) =
dx

dt

=
d

dt

0
@x1
x2

x3

1
A =

0
@ �1(x2 � x1)

�3x1 � x2 � x1x3

x1x2 � �2x3

1
A
: (1.2)

Figure 1.5 is plotted using the approximation given by Equation 1.1, and using
a first order difference to estimate the derivatives (i.e., Euler’s method). With the
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Figure 1.5 The point (1; 1; 1) is transformed using Equation 1.1 with h = 0:01. The
trajectory path from iteration 1;001 to 11;000 is plotted.

values of �1 = 10, �2 =
8
3

and �3 = 28, the trajectories are concentrated onto an
attractor of a highly complex form, consisting of two discs of spiraling trajecto-
ries. It is chaotic and appears to be fractal, with estimates suggesting a dimension
of approximately 2.06. Rotating the plot in three dimensions reveals that the discs
are relatively thin, consistent with a dimension of approximately two.

Lorenz (1963) wished to model the thermal convection of a fluid when heated
from below, cooling at an upper boundary and then falling, thus circulating in
cylindrical rolls. Abarbanel (1995) gives a nice background discussion of the
equations and their application in the meteorological context. He notes that the
parameter values often used for analysis of the equations are quite different from
those which are valid when modelling atmospheric behaviour. Falconer (1990)
also gives a brief introduction to the equations from an atmospheric modelling
perspective. See also Lorenz (1993), Eckmann & Ruelle (1985, page 622) and
Ruelle (1989, page 9) for further discussion.

Many other dynamical systems are discussed in the literature. Some examples
are the Hénon map (Falconer, 1990; Ruelle, 1989), the bakers’ map (Falconer,
1990), Rössler attractor (Ruelle, 1989), Ikeda map (Abarbanel, 1995) and the
Kaplan-Yorke map.

The literature on dynamical systems and chaos is vast. There are many descrip-
tive non-mathematical accounts, books containing many quite beautiful pictures
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of trajectory paths and attracting sets, and others with more detailed technical
accounts. Lorenz (1993) gives a nice descriptive overview of chaotic systems.
Very good rigorous introductions are provided by Ruelle (1989), Rasband (1990),
Abarbanel (1995), and Falconer (1990). Eckmann & Ruelle (1985) is still an im-
portant review article, providing a greater depth of detail. Cvitanović (1993), Ott
et al. (1994) and Hao (1990) contain collections of reprints of important pub-
lished papers. The volume by Hao (1990) also contains an extremely extensive
bibliography. Ott et al. (1994) also contains a few preliminary chapters providing
an introduction to the subject. More mathematical perspectives have often been
provided in papers co-authored by David Ruelle. A collection of his papers can be
found in Ruelle (1995). Isham (1993) gives a nice introduction from a more statis-
tical perspective. Chatterjee & Yilmaz (1992) review a variety of applications of
dynamical systems in different branches of science, and Berliner (1992) discusses
the relationship between deterministic chaotic systems and stochastic systems.

1.4 Turbulence

One of the main subject areas that has provided the physical intuition for the de-
velopment of a theory of multifractals is the desire to describe the nature of energy
dissipation in a turbulent fluid flow. Falconer (1990, x18.3) provides a good exam-
ple of water slowly flowing from a tap where the flow is smooth or laminar. As the
flow is increased, the flow becomes turbulent or irregular, with ‘eddies’ at various
scales, and varying flow velocities. Cascade models are based on the assumption
that kinetic energy is introduced into the system on a large scale (e.g., storms, stir-
ring a bowl of water), but can only be dissipated in the form of heat on very small
scales where the effect of viscosity, or friction between particles, becomes impor-
tant. These models assume that energy is dissipated through a sequence of eddies
of decreasing size, until it reaches sufficiently small eddies where the energy is
dissipated as heat.

A good historical account of the development of the theory of turbulence is
given by Monin & Yaglom (1971), from which much of the following has been
drawn. The theory starts with the work of Reynolds in the late 19th century. The
Reynolds number is defined as R = UL=�, where U and L are characteristic
scales of velocity and length in the flow and � is the kinematic viscosity of the
fluid. Therefore,R is the ratio of typical values of inertial and viscous forces act-
ing within the fluid. The inertial forces produce a transfer of energy from large
to small scale components (inhomogeneities), while the viscous forces have the
effect of smoothing out the small scale inhomogeneities. Hence flows with a suf-
ficiently small value ofR will be laminar, and sufficiently large may be turbulent.

In the 1920s, Richardson developed a qualitative argument where he assumed
that developed turbulence consisted of a hierarchy of ‘eddies’ (i.e., disturbances
or inhomogeneities) of various orders. The eddies arise as a result of a loss of
stability of larger eddies, and in turn also lose their stability and generate smaller
eddies to which their energy is transferred; hence a cascade type process. Once
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the scale becomes sufficiently small, then R is small, hence a laminar flow, with
considerable dissipation of the kinetic energy into heat.

Taylor in the 1930s introduced the concepts of homogeneous and isotropic tur-
bulence, determined by the conditions that all the finite dimensional probability
distributions of the fluid mechanical quantities at a finite number of space-time
points are invariant under any orthogonal transformation. While the assumptions
of homogeneity and isotropy are not satisfied in the real situation (e.g., boundary
conditions), they provide a useful description of the properties at small scales with
a sufficiently high Reynolds numberR.

Let �(x; t) be the rate of energy dissipation per unit volume and unit time at
location x and time t. Further, assuming that the turbulence has reached a steady
state in time, then the energy dissipation per unit time in a sphere of radius Æ
centred at x, SÆ(x), is

�[SÆ(x)] =
3

4�Æ3

Z
S
Æ
(x)

�(x; t)dx:

Kolmogorov (1941) argued that the statistical regime of sufficiently small scale
fluctuations of any turbulence with a very high Reynolds number may be taken to
be homogeneous and isotropic, and practically steady over a period of time. Thus
his assumption that the average energy dissipation per unit time is constant over
any domain. Let this value be denoted by �. Note, however, that �(x; t) is random
in nature, and hence the measure of energy dissipation �[SÆ(x)] is also random.

Kolmogorov (1941) further argued that the statistical regime of sufficiently
small-scale components of velocity with R sufficiently large is determined only
by � and �. He argued that the greatest scale that viscosity will still have an effect
is l = (�

3
=�)

1=4. Hence, there is a range many times greater than l but much
less than L where the statistical regime is determined by a single parameter �. Let

Uij(x) be the velocity component (random variable) in the direction
�!
xixj at the

point x. Kolmogorov then deduced that for arbitrary points x1 and x2

E
�
jU12(x1)� U12(x2)j

2
�
= c (�jx1 � x2j)

2=3
;

where l� jx1 � x2j � L, and c is a universal constant.
Subsequently, it was argued that the variation of energy dissipation, �[SÆ(x)],

should increase without limit as Æ decreases. Kolmogorov (1962) modified the
previous ‘2/3rds law’ by assuming that log�[SÆ(x)] has a normal distribution
with a variance that is a function of x and that it increases as Æ decreases. This
had the effect of treating � as a random cascade. This argument is used in the
literature on rainfall fields discussed below.

As already noted, Monin & Yaglom (1971) provide a detailed historical account
of the theory of turbulence. Further discussions can also be found in Mandelbrot
(1974), Paladin & Vulpiani (1987), Meneveau & Sreenivasan (1991), Bohr et al.
(1998), Frisch (1991), Mandelbrot (1998), and collections of papers contained in
Friedlander & Topper (1961) and Hunt et al. (1991).
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1.5 Rainfall Fields

A similar cascade argument, to that used for turbulence, has also been applied
more recently to rainfall by Schertzer & Lovejoy (1987), Lovejoy & Schertzer
(1985, 1990) and Gupta & Waymire (1990, 1993). From Gupta & Waymire (1990):

These can be viewed generically as ‘clusters’ of high rainfall intensity rainfall cells
embedded within clusters of lower intensity small mesoscale areas, which in turn are
embedded within clusters of still lower intensity large mesoscale areas, which are em-
bedded within some synoptic-scale lowest intensity rainfall field.

Gupta & Waymire (1990) give a generalisation to the argument of Kolmogorov
(1962) outlined in x1.4. They assume that for a given x, the random measure �
satisfies a more general scaling form given by

�[SrÆ(x)]
d
=W (Æ)�[Sr(x)] (1.3)

for Æ � 1, and l � r � L, where
d
= denotes equality of probability distributions,

SÆ(x) is a sphere of radius Æ centred at x and W (Æ) is a random function of Æ.
They show that W (Æ) can be characterised by

W (Æ) = expfZ(� log Æ) + � log Æg;

whereZ(t) is a stochastic process with stationary increments, and � is an arbitrary
number greater than zero.

1.5.1 Simple Scaling

If the process Z(t) = 0 for all t, then �[SÆ(x)] satisfies a simple scaling relation

�[SrÆ(x)]
d
= Æ

�
�[Sr(x)]: (1.4)

Let r = 1, and take expectations on both sides (i.e., of �) as follows to give

logE[�q [SÆ(x)]] = q� log Æ + logE[�q[S1(x)]]

where q 2 R. Assuming that E[�q [S1(x)]] is finite, then for sufficiently small Æ,

1

q � 1

logE
�
�
q�1

[SÆ(x)]

�
log Æ

� �: (1.5)

1.5.2 Example - Brownian Multiplier

The model considered by Kolmogorov (1962) and Oboukhov (1962) was a special
case of that in Equation 1.3. They assumed that Z(t) = �B(t), where � > 0

and B(t) is Brownian motion. Now consider the following heuristic argument.
Assume that W (Æ) is independent of �[Sr(x)]. Let r = 1, and take expectations
on both sides (i.e., of � and W ) to give

logE[�q [SÆ(x)]] = logE[exp(q�B(� log Æ) + q� log Æ)] + logE[�q [S1(x)]]
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where q 2 R. Assuming that E [�q [S1(x)]] is finite, then for sufficiently small Æ,

1

q � 1

logE
�
�
q�1

[SÆ(x)]

�
log Æ

� �
(q � 1)�

2

2
+ �: (1.6)

The left-hand sides of Equations 1.5 and 1.6 have the form of a Rényi dimen-
sion of order q, to be defined in Chapter 2. It can be seen from Equation 1.5 that,
in the case of simple scaling, all Rényi dimensions are the same; whereas from
Equation 1.6, in the case where the scaling contains a stochastic component, the
Rényi dimensions are all different. Similar behaviour occurs with the Cantor mea-
sure of Example 1.2.1. It will be shown in Example 2.2.1 that if the probability is
allocated unevenly as in Figure 1.1, then the Rényi dimensions will be different;
whereas if the probability is allocated evenly (i.e., 1

2
to each subinterval), then the

Rényi dimensions will all be the same.
There is a subtle distinction between the random measures of this section and

the Cantor measure as constructed in Example 1.2.1. The Cantor measure is con-
structed in a deterministic iterative manner, whereas a random measure is more
complicated and is constructed in an iterative stochastic manner. The Cantor mea-
sure is a special case of the family of multinomial measures, which will be dis-
cussed more fully in Chapter 3. The random measures discussed above in the
context of rainfall and turbulence are examples of random cascades, and will be
discussed more fully in Chapter 6.

The simple scaling relation given by Equation 1.4 is quite similar to that of
a self-similar stochastic process (Samorodnitsky & Taqqu, 1994). A stochastic
processX(t) is said to be self-similar if its finite dimensional distributions satisfy
the scaling relation

X(Æt)
d
= Æ

H
X(t) (1.7)

for all Æ > 0, t 2 R and 0 < H < 1 (see x10.6.2 for further details). An example
of such a process is the increments of fractional Brownian motion (Mandelbrot
& Van Ness, 1968). When H >

1
2

the process displays long range dependence
(Beran, 1994), when H =

1
2

the increments of fractional Brownian motion are
simply white noise, and when H <

1
2

there is short range dependence with nega-
tive autocorrelations. More recently, work has been done on stochastic processes
satisfying a more general analogue of the scaling relationship in Equation 1.3, i.e.,

X(Æt)
d
= W (Æ)X(t):

These processes are peripheral to the main direction of material contained in this
book and will be discussed only briefly in x10.6.

1.6 Earthquake Modelling

A number of the world’s larger cities are located in seismically active zones. Loss
of life caused by earthquakes during the 20th century was immense. As recently
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as 1976, approximately 240,000 people died in the Tangshan, China, earthquake
(28 July 1976). Other large events with a corresponding large loss of life also
occurred in San Francisco (18 April 1906; 3,000 died), Tokyo (1 September 1923;
140,000 died), Mexico City (19 September 1985; 8,000 died), and Izmit, Turkey
(17 August 1999; 17,000 died).

Earthquake prediction and forecasting has had periods of very active research
in the last 100 years. In the 1970s, there was a great deal of optimism in the scien-
tific community that individual earthquake events could be predicted. This coin-
cided with considerable developments in the understanding of the earth’s structure
(plate tectonics) and also in better catalogues of located earthquake events. This
optimism quickly diminished though, and some scientists now believe that the
problem is so complex that individual earthquake events cannot be predicted (see
Aki, 1989; Kagan, 1997; Geller, 1997; Geller et al., 1997; Wyss et al., 1997; and
Kagan, 1999). However, many still hope that useful forecasts of relative prob-
abilities can be made. These may consist of contour maps, rather like those of
the weather maps, comparing the relative probabilities of an event greater than
a given magnitude, in different areas or regions. Vere-Jones (1995) gives a re-
view of earthquake forecasting and Vere-Jones (2000) gives a brief introduction
to seismology from a statistical perspective. More detailed general accounts of the
subject are provided by Lay & Wallace (1995) and Scholz (1990).

Mathematical models that describe the fracturing process are relatively prim-
itive compared to models that describe the evolution and behaviour of weather
systems. Some models postulate that there are ‘elementary dislocations’ occur-
ring all of the time. Periodically, the occurrence of a number of these dislocations
will cause a cascade of further elementary dislocations. If the cascade is suffi-
ciently large, an earthquake will be detected by a sufficiently sensitive seismic
network.

There are a number of powerlaw relationships describing seismicity that empir-
ical evidence tends to support. These include the magnitude distribution of events
(Gutenberg-Richter law) and the decay over time in the number of events after a
large mainshock (Omori’s law). The intuitive motivation for estimating the fractal
dimension of spatial point patterns generated by earthquakes is that the pattern
may be self-similar in some sense. That is, clusters may be repeated within clus-
ters on a finer and finer level (see, for example, Figure 6.1). Though some clusters
may be more active than others, in the same way that the Cantor measure is not
necessarily uniform over its support. It was also thought that major fractures occur
along major faults, the most dramatic being the tectonic plate boundaries. Within
major fault systems there are smaller faults that branch off, and from these smaller
fault networks; again with the possibility of generating some sort of self-similar
hierarchy of networks.

Dimension estimates in the earthquake context are primarily descriptive in na-
ture. If the earthquake process really did display fractal like characteristics, then
it would be desirable for one’s models of the fracture process and those for fore-
casting of event probabilities also to display similar fractal characteristics.
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However, there is an inherent contradiction in calculating dimensions of point
patterns. A finite set of point locations theoretically has dimension zero. Hence,
what characteristics are the dimension estimates describing? This question de-
pends on the underlying model that one has in mind, and will be discussed further
in Chapter 11.
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Wellington Earthquakes Depth Cross−Section

Figure 1.6 Depth cross-section of Wellington earthquake locations between 1985 and
1994, with magnitude � 2 and depth < 95 km. The plot contains 15;410 events. The
picture shows the Pacific Plate subducting the Australian Plate. The angle of view is (ap-
proximately) from the southwest to the northeast.
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1.6.1 Wellington Earthquake Catalogue

The Wellington Earthquake Catalogue contains events from an area of central
New Zealand. For our analyses in Chapter 11, events have been selected with
magnitude � 2 between 173:6

ÆE and 176
ÆE, 42:0ÆS and 40:4

ÆS, and occurring
between 1 January 1978 and 31 December 1995. The catalogue is maintained
by the Institute of Geological and Nuclear Sciences, Wellington (see Maunder,
1994).

The surface of the earth consists of large tectonic plates, for example the North
American, Eurasian, Pacific and Australian Plates (see Sphilhaus, 1991). Most
earthquake activity in the world is located in the vicinity of these plate bound-
aries, and is caused by the movement of one plate relative to the other. New
Zealand is located on the boundary of the Australian and Pacific tectonic plates.
In the Wellington Region, the Pacific Plate subducts the Australian Plate, that is,
the Pacific Plate is drawn beneath the Australian Plate. The two lines of events in
Figure 1.6 roughly mark the location of the friction boundary of the subducting
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Wellington Earthquake Epicentres: Shallow Events

Figure 1.7 Wellington earthquake epicentres between 1985 and 1994, with magnitude � 2
and depth < 40 km. The deepest events are in the lightest shade of gray and the most
shallow events are the darkest. The plot contains 10;801 events.
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Wellington Earthquake Epicentres: Deep Events

Figure 1.8 Wellington earthquake epicentres between 1985 and 1994, with magnitude � 2
and depth � 40 km. The deepest events are in the lightest shade of gray and the most
shallow events are the darkest. The plot contains 4;952 events.

Pacific Plate. It can also be seen that most of the events with a depth � 40 km
are associated with the subduction process, whereas those more shallow events
appear to have a more widespread distribution. We use 40 km as a boundary be-
tween shallow and deep events for the Wellington Catalogue. The lines of events
occurring at 5, 12 and 33 km mark shallow events with a poorly determined depth.

Figures 1.7 and 1.8 are epicentral plots of shallow and deep events, respectively.
The subduction process is also evident in Figure 1.8, where the deeper events tend
to occur to the northwest. Notice also that the shallow events appear to be more
clustered, and spread more widely over the region.

There are many problems in estimating fractal dimensions using ‘real’ data. For
example, the earthquake locations contain location errors which may not even be
homogeneous over the analysed region. There are also boundary effects caused by
the inability of the seismic network to accurately detect events that are too distant.
These problems are discussed more fully in the analyses of Chapter 11.
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1.7 Other Applications

Many of the applications of multifractal measures have been to describe physical
processes like turbulence, dynamical systems, rainfall and earthquakes. Paladin
& Vulpiani (1987) give a review of the application of multifractals to a number
of fields in physics, including turbulence. Scholz & Mandelbrot (1989) contain a
collection of papers on the application of fractal ideas in geophysics.

Some have also postulated that global climate is determined by a chaotic dy-
namical system of relatively low dimensionality (see Nicolis & Nicolis, 1984). An
observed time series, like daily maximum temperatures in Wellington, NZ, could
be thought of as a projection of this dynamical system to an observation space of
lower dimension. Using such observed data, is it possible to determine the ‘di-
mension’ of the global system? This problem will be briefly discussed in x10.4.4.
If the process is not deterministic, but stochastic, then we would expect it to have
an infinite number of degrees of freedom (see x10.5). Using local temperature
data, Wang (1995) attempted to determine whether there was evidence that these
data were generated by a system of relatively low dimensionality. He concluded
that his estimates of low dimensionality could be explained by statistical biases.

Parallel developments to the theory of multifractal measures have occurred
with self-similar stochastic processes (Equation 1.7). The increments of these pro-
cesses can be distributed as a stable law, or may have long range dependence. Var-
ious associated auxiliary processes (level crossings, etc.) have fractal like charac-
teristics and will be discussed only briefly in x10.6. These processes have been
used to model financial data (Mandelbrot, 1997) and internet traffic (Willinger et
al., 1995; Resnick, 1997; Willinger & Paxson, 1998; and Park & Willinger, 2000).

Self-similar stochastic processes are somewhat peripheral to the material we
discuss in this book because the primary focus of interest with these models is
in their long range dependence and heavy tail characteristics. The fractal char-
acteristics of the associated auxiliary processes appear to be of only secondary
importance. Further, self-similar stochastic processes only satisfy a monoscaling
law. More recently, the monoscaling aspect of self-similar stochastic processes
has been extended to processes that are multiscaling, which have been referred to
as ‘multifractal’ stochastic processes. These will be briefly discussed in x10.6.5.

1.8 Concept of Multifractals

In this chapter, examples of dynamical systems, turbulence, rainfall processes and
earthquake events have been briefly discussed. Consider these examples in the
context of a measure space (X ;B(X ); �). In the case of the Cantor measure in
Example 1.2.1, X = [0; 1], and the support of the measure � was the Cantor set
which has a ‘fractal’ dimension of log3 2 (both box and Hausdorff). In the case
of the dynamical systems, X � R

d is the phase space. The measure �(A) can
be thought of as the probability of the set A 2 B(X ) containing the trajectory at
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any given instant. In the discussion about turbulence, � was a measure of energy
dissipation, and was assumed to be random in nature.

In each of these examples, the support of the measure � could be extremely
irregular and have zero Lebesgue measure. The measure itself could also be ex-
tremely variable and have singularities of many different orders. As such, these
measures do not have an associated density. How does one characterise such mea-
sures? Many of these measures have multifractal like properties. An intuitive in-
troduction to multifractals is given in this section. Some of the concepts are rather
loosely defined, and the material will be covered more rigorously in later chapters.

Consider a lattice covering of X by d-dimensional boxes of width Æn, where
BÆn(x) is the box that contains the point x. The sequence Æn ! 0 as n ! 1.
Then consider another mapping

Un : X �! R;

where Un(x) = � log�[BÆn(x)] if �[BÆn(x)] > 0. Let Yn(x) be a rescaled
version of Un(x), i.e.,

Yn(x) =
Un(x)

� log Æn

;

The variable Yn describes the local or individual box behaviour of the measure �.
In most situations, the limiting probability distribution of Yn is trivial, that is,

there exists a number y0 such that

lim
n!1

PrfYn = yg = 0 if y 6= y0:

Another way to characterise Yn is to describe the rate at which the probability
tends to zero, i.e., the number of boxes where Yn has some given rate (as in
Example 1.2.1). This is referred to as the multifractal spectrum, ef(y), which can
be expressed as

e
f(y) = lim

�!0
lim
n!1

logfbox count at nth stage with +ve � and jYn � yj < �g

� log Æn

:

While ef(y) is similar to a box counting dimension, it is not necessarily the same,
as the set that is being covered by boxes of decreasing widths is also changing its
nature as n ! 1. Let Nn be the number of boxes at the nth stage with positive
� measure. Then

e
f(y) = lim

n!1

logNn

� log Æn

+ lim
�!0

lim
n!1

logPrfjYn � yj < �g

� log Æn

: (1.8)

The first term is the box counting dimension of the support of �. Given that
y 6= y0, the second term is the powerlaw rate that the probability function of Yn
approaches zero. It is this second term that the theory of large deviations focuses
on describing, and in that context is often referred to as the entropy function.

© 2001 by Chapman & Hall/CRC Press, LLC



Now consider a rescaled cumulant generating function of Un(x), denoted bye
�(q), as

e
�(q) = lim

n!1

logE[exp(�(q � 1)Un(X))]

log Æn

= lim
n!1

logE
�
�
q�1

[BÆn(X)]

�
log Æn

:

Here the expectation acts on the random variable X with probability distribution
given by �. In the case of the processes discussed in x1.4 and x1.5, � is the random
variable, but the form of the function is essentially the same. It should be noted
that e�(q) will appear in two different contexts. Firstly, the Rényi dimensions aree
Dq = e

�(q)=(q � 1) . Recall that these occurred in Equations 1.5 and 1.6, simple
scaling and more complex scaling, respectively. In the case of simple scaling, all
Rényi dimensions were the same, whereas they were different in the case of com-
plex scaling. Also recall that the dimension of the support of the Cantor measure
in Example 1.2.1 is invariant to the way that the probability is allocated. It is these
Rényi dimensions that change according to the manner in which the probability is
allocated within the Cantor set. The second context is that the rescaled cumulant
generating function is a type of global average and occurs in the theory of large
deviations, which will be used in Part II of the book.

The global averaging or Rényi dimensions, given by e�(q) or eDq , respectively,
are often related to the multifractal spectrum, ef(y), by a Legendre transform. We
are interested when such a relationship holds. In these situations, we will think
of � as a multifractal measure in a weak sense; formal definitions will be given
in Chapter 2. The same relationship often holds between the rescaled cumulant
generating function and what is called the entropy function (i.e., the last term on
the right-hand side of Equation 1.8) in the theory of large deviations. We will
therefore use that theory to determine necessary conditions for the measure � to
be a multifractal measure in a weak sense.

For some measures it can be shown that ef(y) has a considerably stronger inter-
pretation, that is, ef(y) = dim

H

e
F (y), where

e
F (y) =

n
x : lim

n!1
Yn(x) = y

o
=

�
x : lim

n!1

log�[BÆn(x)]

log Æn

= y

�
;

and dim
H

is the Hausdorff dimension. Hence in this case, the partition alluded
to in x1.2 is eF (y), and the ‘fractal’ dimension is the Hausdorff dimension. From
Mandelbrot (1989), who uses the notation f(�) in place of ef(y):

A multifractal measure can be represented as the union of a continuous infinity of ad-
dends. Each addend is an infinitesimal ‘unifractal measure’. It is characterised by a
single value of �, and is supported by a fractal set having the fractal dimension f(�).
The sets corresponding to the different �’s are intertwined.

Describing the measure � by lattice coverings is not the only possible method.
One may also describe local behaviour by considering
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log�[SÆ(x)]

log Æ

where SÆ(x) is a sphere of radius Æ centred at the point x. An analogous definition
to e�(q) for global averaging can also be made. We will refer to this framework as
a point centred construction.

The case described above is where � is a probability measure. Another possi-
bility is that � is a random measure constructed by a cascade process. This case
arises in the context of turbulence, which was discussed in x1.4 .

We have briefly outlined above two methods of characterising multifractal be-
haviour: one with a lattice based construction and the other with a point centred
construction. Both relate local behaviour to global averaging. Further, ‘fractal’
dimension can be interpreted in a weak or strong sense. In the literature, these
are often referred to as coarse and fine grained, respectively (see Falconer, 1997).
Definitions of multifractal measures, and methods of construction will be given
in Chapter 2.

1.9 Overview of Book

The book is split into three parts.

Part I - Introduction and Preliminaries

In this chapter we have described various characteristics of a multifractal measure,
denoted by �. The measure could be constructed in a deterministic manner as for
the Cantor set in Example 1.2.1, or may be random as in x1.4 and x1.5. It could
be supported by a fractal set whose dimension will be invariant to the manner in
which the measure is allocated within the set. We can describe the distribution of
the measure by investigating its local or global behaviour, and in some situations
these will be related by a Legendre transform. The same relationships hold in the
theory of large deviations (i.e., between e�(q) and the entropy term in Equation
1.8). The Rényi dimensions are based on the global (averaging) behaviour. Es-
timates of ‘fractal’ dimensions in empirical studies are, in general, estimates of
these Rényi dimensions. From such estimates it is possible, at least theoretically,
to estimate the multifractal spectrum e

f(y).
In this chapter, various technical terms have been used in a sometimes rather

loose manner. In Chapter 2 definitions of a multifractal measure in both a weak
and strong sense, and also using lattice based and point centred spherical con-
structions, will be defined. In the case of the multinomial measures, which the
Cantor measure is a special case, the Legendre transform relationship between the
rescaled cumulant generating function e�(q) and the multifractal spectrum e

f(y)

can be demonstrated relatively easily using Lagrange multipliers. This example
will be discussed in Chapter 3.
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Part II - Multifractal Formalism Using Large Deviations

In Part II, we use the Gärtner-Ellis theorem of large deviations as a foundation
to provide a parallel development of lattice based and point centred constructions
in Chapters 4 and 5, respectively. The Gärtner-Ellis theorem of large deviations
and other related results are reviewed in Appendix B. Note that we use tildes on
�(q) and f(y) in the lattice based constructions and no tildes in the point centred
construction. We want to determine fairly general conditions under which the
global and local behaviours of a measure are related via a Legendre transform. We
are also interested in determining under what conditions the multifractal spectrum
can be interpreted as a Hausdorff dimension.

Given the lattice based and point centred constructions, under what conditions
do the global and local behaviours of the two constructions coincide? This ques-
tion will be discussed at the end of Chapter 5. Part II concludes with Chapter 6,
which reviews other cascade constructions, some of which cannot be satisfactorily
described using the framework of large deviations.

Part III - Estimation of the Rényi Dimensions

In Part III, the emphasis is on the estimation of the Rényi dimensions. In the
preceding discussion, we have referred to both lattice based and point centred
multifractal constructions. In the context of estimation, both are different. If es-
timating the Rényi dimensions in a lattice based situation, one would cover by
a lattice system of boxes, counts taken, and averaged accordingly. In the point
centred case, one analyses interpoint distances. In fact E

�
�
q�1

[SÆ(X)]

�
, which

is the expectation term that appears in the rescaled cumulant generating function
in the point centred situation, is simply the probability distribution function of an
interpoint distance of order q (say Y ) when q = 2; 3; � � � ; i.e., PrfY � yg =

FY (y) = E
�
�
q�1

[Sy(X)]

�
. An interpoint distance of order q (i.e., Y ) will be

defined in Chapter 2. Hence the Rényi dimensions are essentially the powerlaw
exponent of the probability function FY (y) assuming such an exponent exists,
i.e., FY (y) � y

�(q). At this point, the problem looks relatively easy, one simply
draws a sample of many interpoint distances of order q, estimates �(q), doing
it for a number of values of q. One can then partially reconstruct the multifrac-
tal spectrum. Unfortunately the problem is not quite as easy, mainly because of
various forms of bias in the estimates of �(q).

In Chapter 7, the correlation integral is defined and related back to the definition
of Rényi dimensions in Chapter 2. Intrinsic features of the correlation integral
can cause bias in the estimation of the correlation exponents, and are discussed
in Chapter 7. These are particularly evident when the measure is supported on
certain self-similar sets. This causes the function FY (y) to have an oscillatory
like behaviour which is periodic on a logarithmic scale. This means that FY (y)
only has powerlaw behaviour in an average sense.
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We have generally used a modified Hill estimator for estimating the Rényi di-
mensions. This is described in Chapter 8, along with some other methods of es-
timation. In Chapter 9, we describe various extrinsic sources of bias, that is, not
inherent to the correlation integral itself, but possibly due to sampling strategies,
and other data handling deficiencies. These errors are analogous to non-sampling
error in sample surveys. The three main problems here are noise or error in the
data, rounding of data, and the boundary effect. The boundary effect often occurs
in estimation methods that are based on interpoint distances. Both the rounding
and the noise in the data have the effect of blurring out the fine scale informa-
tion. Since dimensions are a limiting concept as interpoint distances become very
small, these forms of bias can be quite serious.

In Chapter 10, the Rényi dimensions are estimated using data that have been
simulated from various statistical and mathematical models. In some of these
models, the dimensions can be calculated analytically, and in others, estimates
have been made by many researchers, and there is some consensus on what the
actual values are. Even in these analyses, both the intrinsic and extrinsic forms
of bias are evident. These forms of bias also need to be disentangled from those
of the estimator itself. Using models with at least partially understood properties
helps in understanding general estimation problems.

Part III concludes with Chapter 11, where Rényi dimensions are estimated
using earthquake hypocentre locations of events occurring in New Zealand and
Japan. These data are interesting, not only from the perspective of earthquake
forecasting, but also because they contain many of the forms of bias discussed in
Part III of the book.
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CHAPTER 2

The Multifractal Formalism

2.1 Introduction

In this chapter we give definitions of the Rényi dimensions and multifractal spec-
trum in both lattice based and point centred settings. Definitions are also given of
the so called multifractal formalism. Related results from the literature are also
reviewed.

Let X be a Borel subset of Rd and B(X ) be the Borel sets of X . We are in-
terested in the probability space (X ;B(X ); �), where the non-atomic probability
measure � may be concentrated on a subspace of X of lower dimension than d.
For example, in the case of the Lorenz attractor (x1.3.3), d = 3 , however, it ap-
pears that the attracting set is mostly concentrated on two discs (see Figure 1.5),
which empirical studies indicate have dimension slightly greater than 2. The mea-
sure �(A) gives the probability of finding the trajectory in the set A at any given
time.

Note that if we wish to describe the spatial characteristics of a trajectory path
based on observations of the process over time, then assumptions of invariance
and ergodicity are required. The notion of invariance means that the measure �
is unchanged under the transformation given by Equation 1.1, i.e., � = �T

�1
� .

Ergodicity means that averages over time (i.e., averages of repeated operations of
T�) are the same as the corresponding spatial averages for �-almost all x. Further
detailed discussion of these ideas can be found in the texts by Walters (1982) and
Billingsley (1965).

We consider two multifractal constructions.

1. The case whereX is covered by a succession of lattices of d-dimensional boxes
of diminishing width Æn as n!1. We will refer to this as the lattice case.

2. The case where �[SÆ(x)] is analysed for all x such that �[SÆ(x)] > 0, where
SÆ(x) is a closed sphere of radius Æ centred at x. We will refer to this as the
point centred case.

Functions that relate to the lattice case, and may be confused with the point cen-
tred case, will be over struck with a tilde.

In both cases, we want to describe global and local behaviour. The underpin-
ning concepts of global behaviour are based on the work by the Hungarian mathe-
matician Alfréd Rényi on information theory. A brief review of this work is given
in x2.2, which forms the basis of the Rényi dimensions in x2.3 and x2.4. Local
behaviour is described by the multifractal spectrum, to be defined in x2.5.
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The multifractal formalism involves a relationship between global (Rényi di-
mensions) and local behaviours (multifractal spectrum) in the form of a Legendre
transform. We will refer to this as the weak case. The strong case is where the
multifractal spectrum can be interpreted as a family of Hausdorff dimensions.
Definitions of the multifractal formalisms in both weak and strong senses will be
given in x2.5.

Our definitions are not the only way to describe the multifractal formalism.
There are various definitions, each with their inherent difficulties and weaknesses.
Sections 2.6 and 2.7 review these problems and other results that relate to lattice
based and point centred constructions respectively.

Note the difference between the random measures alluded to in the discus-
sion about turbulence in x1.4 and the probability measures being discussed in this
chapter. In this chapter and Chapters 4 and 5, � will always be a probability mea-
sure. The discussion about random measures started in x1.4 will be taken up again
in Chapter 6.

2.2 Historical Development of Generalised Rényi Dimensions

The Rényi dimensions originate from information theory. This theory arises in
connection with the transmission of information, in particular, the length of a
binary representation of that information. Say a set E has n elements. If n = 2N ,
whereN 2 Z+, each element can be labelled by a binary number havingN digits.
As such, Hartley defined log2 n as the necessary information to characterise E.

Now assume that E = E1 + E2 + � � � + Eb, where E1; � � � ; Eb are pairwise
disjoint finite sets. An experiment is performed, which consists of independently
and randomly allocating the n elements to the b subsets (Ek, k = 1; � � � ; b) ac-
cording to the probabilities pk. The amount of information generated by such an
experiment about the probability distribution P = (p1; � � � ; pb) is

H1(P ) = �

bX
k=1

pk log2 pk:

This is known as Shannon’s formula.
Rényi (1965) showed that Shannon’s formula can also be derived as follows.

Assume that there is a particular element of interest, however, we do not know
which of the n elements it is. A sequence of the above experiments are performed,
where the n elements are independently and randomly allocated to the b subsets
(Ek, k = 1; � � � ; b) according to the probabilities pk. We are only told after each
experiment which subset each element is allocated to and which subset contains
the unknown element of interest. The first experiment produces a partition �1,
the 2nd experiment produces a partition �2, etc. Let �(m) denote the cross prod-
uct of the m partitions generated by the first m independent experiments. Each
element can be thought of as taking a path of length m through �(m). The un-
known element will be determined uniquely when its path is unique with respect
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to all other elements. Let P ?
nm be the probability that this unknown element can

be uniquely identified after m experiments, i.e., its path is unique. Define

e1(n; �) = min fm : P ?
nm � 1� �g ;

where 0 < � < 1, then Rényi showed that

lim
n!1

log2 n

e1(n; �)
= H1(P ):

A heuristic interpretation is as follows. The total amount of information re-
quired to characterise E is log2 n. Each experiment gives H1(P ) information,
therefore, if n is sufficiently large, approximately (log2 n)=H1(P ) experiments
are required.

An axiomatic approach can also be taken to determine the form of the function
H1(P ), where it can be shown that it is the only function that has the required
properties. One such property is the additive property. Consider two different
probability distributions with which to partition E,

P = (p1; � � � ; pb) and Q = (q1; � � � ; qa):

Let P ? Q be the distribution of the terms pjqi, i = 1; � � � ; a; j = 1; � � � ; b, then
H1 satisfies an additive property, i.e.,

H1(P ? Q) = H1(P ) +H1(Q): (2.1)

Using the above context, Rényi extended the notion of information to higher
orders (Rényi, 1965). Let P (q)

nm denote the probability that each class of �(m)

contains less than q elements, i.e., each possible path of length m contains less
than q elements taking the same route. Let

eq(n; �) = min
n
m : P (q)

nm � 1� �

o
q = 2; 3; � � � ;

then Rényi showed that

lim
n!1

log2 n

eq(n; �)
=

�
1�

1

q

�
Hq(P ) q = 2; 3; � � � ;

where

Hq(P ) =
�1

q � 1
log2

bX
k=1

p

q
k:

Further, limq!1Hq(P ) = H1(P ) and Hq(P ) satisfies the additive property of
Equation 2.1. As with H1(P ), the functional form of Hq(P ) can be argued from
a pragmatic perspective or from an axiomatic approach (see Rényi, 1965, 1970).
See Rényi (1970, page 581) for further discussion of the case where q < 0.

Rényi (1959) introduced the idea of dimension as follows. Consider a random
variableX taking countably many values xk with probability pk = PrfX = xkg.
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Then we could define the information contained in the value of X as

H1(P ) = �

1X
k=1

pk log2 pk

and

Hq(P ) =
�1

q � 1
log2

1X
k=1

p

q

k q 6= 1:

However, when the distribution of X is continuous, the amount of information
would be infinite, assuming the value of X can be determined exactly.

Rényi (1959) then described X in terms of a discrete random variable Xn =
bnXc=n, where bxc denotes the integer part of x, and investigated the behaviour
as n!1. Let Pn = (p1; p2; � � � ) be the probability distribution of Xn. Then he
defined the dimension of the distribution of X as

dq = lim
n!1

Hq(Pn)

log2 n
:

This is telling us how fast the information of X is tending to infinity. See Rényi
(1970, page 588) for further discussion of this dimension.

2.2.1 Example

LetX be a random variable that is sampled from a distribution given by the Cantor
measure as in Example 1.2.1. Consider a similar situation as in Example 1.3.1,
though where we have an infinite one sided sequence !1; !2; � � � of zeros and
twos with probabilities p0 and p2. Consider the random variable X , written with
a base 3 fractional representation (triadic) as X = (0:!1!2!3 � � � )3.

Then let

X1 = (0:!1)3;

X2 = (0:!1!2)3; and
...

Xn = (0:!1!2 � � �!n)3 =
b3nXc

3n
:

At each step, one more digit in the triadic expansion of X is revealed. At what
rate are we accumulating information about the Cantor measure � as n increases?

Let Pn be the probability distribution of the discrete random variable Xn,
which can take 2n possible values, say xk where k = 1; � � � ; 2n. In the case
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where q 6= 1,

Hq(Pn) =
�1

q � 1
log2

2nX
k=1

(PrfXn = xkg)
q

=
�1

q � 1
log2 (p

q
0 + p

q
2)
n

=
�n

q � 1
log2 (p

q
0 + p

q
2) :

Hence the Rényi dimensions for q 6= 1 are

dq = lim
n!1

Hq(Pn)

log2(3
n)

=
�1

q � 1
log3 (p

q
0 + p

q
2) :

Similarly, when q = 1,

d1 = lim
n!1

H1(Pn)

log2(3
n)

= �(p0 log3 p0 + p2 log3 p2):

In Example 1.2.1 we described the size of the support of the Cantor measure
by its dimension, though this was invariant to the way that the measure was allo-
cated within the support. Using the Rényi dimensions, we can also characterise
the way that the measure is allocated. In the following sections, we define the
Rényi dimensions in a more general context.

2.3 Generalised Rényi Lattice Dimensions

Consider a lattice covering of the support of � by d-dimensional boxes of width
Æn that are half open to the right, usually with a node anchored at the origin. The
kth box is denoted by BÆn(k), where k 2 Kn and Kn = fk : �[BÆn(k)] > 0g.
We evaluate successive lattice coverings for some sequence fÆng, where Æn ! 0
as n!1.

In the context of information theory, as developed by Rényi, we could think
of the situation as follows. Let Fn be the �-field generated by all boxes BÆn(k),
where k 2 Kn. We are then interested in the probability space (X ;Fn; Pn), where
Pn(A) = �(A) for A 2 Fn. Summing over all possible outcomes is equivalent
to summing over all lattice boxes. Hence for q 6= 1,

Hq(Pn) =
�1

q � 1
log2

X
k2Kn

�
q [BÆn(k)]:

The dimensions are then defined by scaling by the box widths.
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2.3.1 Definition

Let Kn = fk : �[BÆn(k)] > 0g. Define e�(q) as

e
�(q) = lim

n!1

log
P

k2Kn
�
q[BÆn(k)]

log Æn
�1 < q <1; (2.2)

if the limit exists. Note that �1 is allowed as a limiting value.
Let k(x) denote the index of the box that contains the point x, then BÆn(k(x))

is the box that contains x. To avoid notation becoming clumsy, BÆn(k) will be
interpreted as the kth box, and BÆn(x) as the box that contains the point x. It can
be seen that the summation term in Equation 2.2 is just E

�
�
q�1[BÆn(X)]

�
, where

the expectation is taken with respect to the probability measure �.

2.3.2 Definition

The Generalised Rényi Lattice Dimensions, eDq, are defined as

e
Dq =

8>>><>>>:
lim
n!1

P
k2Kn

�[BÆn(k)] log�[BÆn(k)]

log Æn
q = 1

e
�(q)

q � 1
q 6= 1

(2.3)

when the limit exists for q = 1 and whenever e�(q) exists for q 6= 1 .
Note that e�(1) = 0. Further, if the box counting dimension (Definition A.3.1)

of the support of � exists, then it is eD0, where

e
D0 = lim

n!1

log#Kn

� log Æn

and #Kn is the cardinality of Kn, i.e., the number of boxes with positive � mea-
sure.

So far, we have interpreted e�(q) as a global average or a measure of informa-
tion as in information theory. However, there is a third interpretation which we
will appeal to in Chapter 4, where it will be interpreted as a rescaled cumulant
generating function.

2.3.3 Theorem (Beck, 1990)

The following hold for arbitrary probability measures:

1. e
Dr � e

Dq for any r > q; q; r 2 R.

2.
r

r � 1

q � 1

q

e
Dq � e

Dr � e
Dq

for r > q > 1 or 0 > r > q.
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Beck (1990) refers to a measure � as having minimum uniformity if

q � 1

q

e
Dq =

r � 1

r

e
Dr = constant;

or maximum uniformity if eDq = e
Dr = constant:

2.3.4 Example

Consider the Cantor measure as in Examples 1.2.1 and 2.2.1. When the measure is
not allocated uniformly over the Cantor set, e.g., p0 = 1� p2 =

1
3

as in Example

1.2.1, it can be seen that e�(q) = � log3(p
q
0 + p

q
2), and so e

Dq = e
�(q)=(q � 1).

In the case where the measure is allocated uniformly over the Cantor set, i.e.,
p0 = 1�p2 =

1
2

, then e�(q) = (q�1) log3 2, and so e
Dq = log3 2 for all q. This is

the case of maximum uniformity referred to in Theorem 2.3.3, and e
Dq is simply

the dimension of the Cantor set.

2.4 Generalised Rényi Point Centred Dimensions

The second multifractal formalism that we study is based on coverings by spheres
with centres within the support of the measure �. Part of the reason for such a
construction was the desire for a more efficient algorithm with which to estimate
fractal dimensions. We very briefly outline the general argument here, but return
to a more complete discussion of estimation in Part III of the book.

If we were to estimate the box counting dimension of some observed process,
we could cover it with a lattice system of boxes of width Æn, and count the num-
ber of boxes Nn that are occupied. This would be done for a sequence of smaller
and smaller widths fÆng. One would then plot logNn versus log Æn. If Æn is suf-
ficiently small, then this plot should be a straight line, whose slope is an estimate
of the box counting dimension. However, there is much wasted effort in this algo-
rithm, particularly as Æn gets quite small, because most boxes are never visited by
the process. It should also be noted that estimating the dimension of the support
of �, based on observed data, is extremely difficult, because parts of the support
may be very rarely visited by the process.

Grassberger and Procaccia (1983a, b, c) suggested an alternative method. Given
a sequence of random locations X1; X2; � � � , estimate the probability distribution
of the interpoint distances, and then estimate the powerlaw exponent (‘fractal’
dimension) of this probability distribution. That is, take many pairs of independent
samples of points, and estimate PrfkX1�X2k � Æg as a function of Æ. As in the
box counting case, plot logPrfkX1 � X2k � Æg versus log Æ and estimate the
slope of the line. This was then referred to as the correlation dimension. However,
note that

PrfkX1 �X2k � Æg =

Z
�[SÆ(x)]�(dx) = E[�[SÆ(X)]] ; (2.4)
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where SÆ(x) is a closed sphere of radius Æ centred at x, and the expectation is
taken with respect to the probability measure �. So, as in the lattice case, we are
estimating the powerlaw exponent of the first order moment, but instead of all
spheres having equal weight as the boxes in the lattice case, they are weighted
roughly according to the probability that the process visits that part of the space.

In general, we consider the (q � 1)th order moment

E
�
�
q�1[SÆ(X)]

�
=

Z
�
q�1[SÆ(x)]�(dx):

For given values of q, the Rényi point centred dimensions describe the powerlaw
behaviour of

�
E
�
�
q�1[SÆ(X)]

�	q�1
as Æ ! 0. Cutler (1991) described these

dimensions using properties of Lq norms.

2.4.1 Definition

Let �1 < q < 1 and XÆ = fx 2 X : �[SÆ(x) > 0g. Then the point centred
correlation exponents are defined as

�(q) = lim
Æ!0

log
hR
XÆ

�
q�1[SÆ(x)]�(dx)

i
log Æ

(2.5)

given that the limit exists. Note that �(q) = �1 is allowed as a limiting value.
Upper and lower limits are sometimes analysed when the limit in Equation 2.5

fails to exist. Note that if �(q) = �1 for some q < 0, then E[�q [SÆ(X)]] ! 1

as Æ ! 0 faster than a powerlaw rate (e.g., exponential).

2.4.2 Definition

The Generalised Rényi Point Centred Dimensions are denoted by Dq, where

Dq =

8>>>><>>>>:
�(q)

q � 1
q 6= 1

lim
Æ!0

R
XÆ

log�[SÆ(x)]�(dx)

log Æ
q = 1;

(2.6)

when the limit exists for q = 1 and whenever �(q) exists for q 6= 1.
While part of Grassberger & Procaccia’s (1983a, b, c) motivation for calculat-

ing D2 was to use a more efficient algorithm than that used to calculate eD0, they
are both describing quite different characteristics of the observed process. The
box counting dimension of the support of � describes the geometric dimension or
size of the support, while the Rényi dimensions Dq (and e

Dq ; q 6= 0) describe the
non-uniformity of the measure.
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2.4.3 Note (Cutler, 1991, Page 662)

If � has a bounded Radon-Nikodym derivative with respect to the uniform mea-
sure across its support (i.e., �(E) =

R
E
g(x)dx where jg(x)j � K), then Dq will

be constant for all q > 0. However, when � has singularities, the Rényi dimen-
sions are not the same, and reflect the nature of the singularities. In this situation,
Dq (q 6= 1) is a decreasing function of q.

This note is the analogue to Theorem 2.3.3 in the lattice case.

2.4.4 Example

Let � be the uniform measure on [0; 1]. Then for 0 < Æ <
1
2

,

�[SÆ(x)] =

8<:
Æ + x x < Æ

2Æ Æ � x � 1� Æ

Æ + 1� x x > 1� Æ;

and hence for q 6= 0 and 0 < Æ <
1
2

E
�
�
q�1[SÆ(X)]

�
=

Z 1

0

�
q�1[SÆ(x)]�(dx)

=

Z Æ

0

(Æ + x)q�1dx+

Z 1�Æ

Æ

(2Æ)q�1dx +

Z 1

1�Æ

(Æ + 1� x)q�1dx

= (2Æ)q�1
�
1 +

2Æ

q

�
2� q � 21�q

��
:

Note that for q < 0, E
�
�
q�1[SÆ(X)]

�
! 1 as Æ ! 0. �(q) describes the

powerlaw behaviour of E[�q[SÆ(X)]] as Æ ! 0. It can be seen that �(q) =
limÆ!0 �Æ(q) = q � 1, therefore Dq = 1 for all q 6= 0, consistent with Note
2.4.3.

The probability distribution of interpoint distances described by Equation 2.4
can be extended to a sample of q independent points. This relationship forms the
basis of the method we use to estimate Dq in Part III of the book.

2.4.5 Theorem - Distribution of qth Order Interpoint Distance

Let X1; X2; � � � ; Xq be a sample of independent random variables drawn from
the probability distribution �, and define Y as

Y = maxfkX1 �Xqk; kX2 �Xqk; � � � ; kXq�1 �Xqkg:

Then for q = 2; 3; 4; � � �Z
�[SÆ(x)]

q�1
�(dx) = PrfY � Æg:
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Proof. Let 1(A) be one if A is true and zero otherwise, then

�[SÆ(x)] =

Z
1(kx1 � xk � Æ)�(dx1) = PrfkX1 � xk � Æg:

Further,

�
q�1[SÆ(x)]

=

Z
� � �

Z
1(kx1 � xk � Æ) � � �1(kxq�1 � xk � Æ)�(dx1) � � ��(dxq�1)

=

Z
� � �

Z
1(maxfkx1 � xk; � � � ; kxq�1 � xkg � Æ)

��(dx1) � � ��(dxq�1);

and so it follows thatZ
�
q�1[SÆ(x)]�(dx)

=

Z Z
� � �

Z
1(maxfkx1 � xqk; � � � ; kxq�1 � xqkg � Æ)

��(dx1) � � ��(dxq�1)�(dxq)

= PrfY � Æg:

2.5 Multifractal Spectrum and Formalism

Here we describe local behaviour of the measure �, that is, the behaviour on
individual lattices or spheres.

2.5.1 Definition

Let

Kn(y; �) =

�
k : y � � <

log�[BÆn(k)]

log Æn
� y + �

�
:

The Multifractal Spectrum in the lattice case, denoted by e
f(y), is defined to be

e
f(y) = lim

�!0
lim
n!1

log#Kn(y; �)

� log Æn
(2.7)

for y > 0, allowing for ef(y) = �1 when #Kn(y; �) = 0.
The function e

f(y) can be expressed differently. Let BÆn(k(x)) denote the box
that contains the point x; i.e., x is contained in the k(x)th box. To avoid notation
becoming too clumsy, we will simply denote this as BÆn(x), if in the given con-
text, it cannot be confused with BÆn(k) where k 2 Kn. Note that �[BÆn(x

0)] is
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constant for all x0 2 BÆn(x), therefore,

#Kn(y; �) =

Z
eFn(y;�)

�(dx)

�[BÆn(x)]
;

where

e
Fn(y; �) =

�
x 2 X : y � � <

log�[BÆn(x)]

log Æn
� y + �

�
:

Therefore, ef(y) can also be expressed as

e
f(y) = lim

�!0
lim
n!1

1

� log Æn
log

Z
eFn(y;�)

�(dx)

�[BÆn(x)]
: (2.8)

Equation 2.8 provides the format for the analogue to Equation 2.7 for the mul-
tifractal spectrum in the point centred situation.

2.5.2 Definition

Let

FÆ(y; �) =

�
x 2 X : y � � <

log�[SÆ(x)]

log Æ
� y + �

�
:

The Multifractal Spectrum in the point centred case, denoted by f(y), is defined
as

f(y) = lim
�!0

lim
Æ!0

1

� log Æ
log

Z
FÆ(y;�)

�(dx)

�[SÆ(x)]
(2.9)

for y > 0, with the convention that log 0 = �1, hence allowing f(y) = �1

when the integral is zero.

2.5.3 Note

Note the similarity between Equations 2.8 and 2.9 when �[SÆ(x)] � const for all
x 2 FÆ(y; �). Then Z

FÆ(y;�)

�(dx)

�[SÆ(x)]
�
�[FÆ(y; �)]

const
;

which is roughly the number of spheres needed to cover FÆ(y; �).

2.5.4 Definition

1. The measure � will be said to be a multifractal measure satisfying the lattice
formalism in a weak sense if e�(q) and e

f(y), as defined by Equations 2.2 and
2.7 respectively, exist and satisfy the Legendre transform paire

�(q) = inf
y

n
qy � e

f(y)
o
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and e
f(y) = inf

q

n
qy � e

�(q)
o
:

2. The measure � will be said to be a multifractal measure satisfying the lattice
formalism in a strong sense if it does in a weak sense, and for ef(y) > 0,

dim
H

e
F (y) = e

f(y);

where eF (y) = fx 2 X : limn!1 Yn(x) = yg, dim
H

is the Hausdorff dimen-
sion, and

Yn(x) =
log�[BÆn(x)]

log Æn
: (2.10)

It may be tempting to argue that ef(y) = dim
B

e
F (y) since ef(y) involves some

sort of box covering. This is not necessarily the case, as the limit in Equation 2.7
not only determines the nature of the set in question but also the size of the lattice
covering. In the case of dim

B

e
F (y), the set eF (y) is defined quite separately to

the size and number of covers used to determine the box dimension. Further, it is
often the case that sets of the form of eF (y) are dense, in which case dim

B

e
F (y) =

dim
B

supp(�).
Note that ef(y) is sometimes referred to as the coarse grained multifractal

spectrum, and dim
H

e
F (y) or dim

P

e
F (y) as the fine grained multifractal spec-

trum, where dim
H

and dim
P

denote the Hausdorff (Definition A.2.3) and packing
(Definition A.4.2) dimensions respectively.

2.5.5 Definition

1. The measure � will be said to be a multifractal measure satisfying the point
centred formalism in a weak sense if �(q) and f(y), as defined by Equations
2.5 and 2.9 respectively, exist and satisfy the Legendre transform pair

�(q) = inf
y
fqy � f(y)g

and

f(y) = inf
q
fqy � �(q)g :

2. The measure � will be said to be a multifractal measure satisfying the point
centred formalism in a strong sense if it does in a weak sense, and for f(y) > 0,

dim
H
F (y) = f(y);

where F (y) = fx 2 X : limÆ!0 YÆ(x) = yg, dim
H

is the Hausdorff dimen-
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sion, and

YÆ(x) =
log�[SÆ(x)]

log Æ
: (2.11)

Notice the difference between the sets e
Fn(y; �) and e

F (y) and also between
FÆ(y; �) and F (y). The sets eFn(y; �) and FÆ(y; �) describe the local behaviour in
a pre-limiting sense, while eF (y) and F (y) describe the limiting local behaviour.

In a series of recent papers by Mandelbrot & Riedi, they introduce the inverse
measure of �, say �

�, where the multifractal spectrums are related by the ‘in-
version formula’ f�(y) = yf(1=y). Further discussion can be found in Riedi &
Mandelbrot (1997, 1998) and Mandelbrot & Riedi (1997).

2.6 Review of Related Lattice Based Results

In our definitions of ef(y) and e�(q) in the lattice case, the limit has been taken with
respect to a predetermined sequence fÆng ! 0 as n ! 1. However, the limits
may not exist for all sequences (Æ ! 1). Another situation is the case where
lim inf and lim sup as in Equation 2.2 are not the same. In this section, we review
results relating to these two situations.

2.6.1 Alternative Relationship (Falconer, 1990, x17.1)

Falconer defines e�(q) differently, as

e
�(q) = lim

Æ!0

log
P

k2Kn
�
q[BÆ(k)]

log Æ
; (2.12)

i.e., the limit is assumed to exist for all possible sequences. Note in our formula-
tion, assumptions about the nature and existence of e�(q) will be made (Chapter
4), and from this, the behaviour of ef(y) will be deduced. Falconer (1990) poses
the problem from the opposite direction. For 0 � y < 1, assume that ef(y)
in Equation 2.7 exists but with Æ ! 0 (i.e., for all sequences). Then Falconer
(1990) shows that the limit e�(q) given by Equation 2.12 exists, and that e�(q) =

infy
�
qy � e

f(y)
	

.
However, the limit is sometimes dependent on the sequence Æn, as shown by

Riedi (1995) in the following example.

2.6.2 Example (Riedi, 1995, x4.1)

Let � be the Cantor measure as in Example 2.3.4. Then when Æn = 3�n, e�(q) =
� log3(p

q
0 + p

q
2) for all q 2 R. However, Riedi (1995) shows that

lim inf
Æ!0

log
P
0

k �
q [BÆ(k)]

log Æ
= �1; (2.13)
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when q < 0, and where the prime on the summation indicates that it is to be taken
over those boxes with positive � measure.

This is done as follows. For every n 2 N, one can select a hn 2 N satisfying
both phn2 � ( 1

2
3�n)n and hn � n+1. Then let Æn = 3�n(1� 3�hn). A Æn-mesh

is applied to [0; 1], pivoting as usual at the origin. By construction, the last box,
say BÆn(�), only intersects with [0; 1] a very small amount, i.e.,

BÆn(�) \ [0; 1] =
�
1� 3�hn ; 1

�
;

which is the last triadic interval of width 3�hn . Therefore,

�[BÆn(�)] = p
hn
2 �

�
3�n

2

�n

< Æ
n
n ;

since 1� 3�hn > 1
2

. Thus, when q < 0,
P
0

k �
q [BÆn(k)] > Æ

nq
n . Hence

log
P
0

k �
q [BÆn(k)]

log Æn
< nq

and, hence, Equation 2.13.

2.6.3 Overlapping Boxes (Riedi, 1995)

Riedi defines a system of overlapping boxes where Æ ! 0 for all sequences, so
that the anomaly of Example 2.6.2 is avoided. Denote the kth box in the Æ-mesh
as BÆ(k), but let Æ ! 0 continuously rather than discretely as in Definition 2.3.1.
In particular,

BÆ(k) = [k1Æ; (k1 + 1)Æ)� � � � � [kdÆ; (kd + 1)Æ)

where (k1; � � � ; kd) are the grid coordinates of the kth box. Let KÆ = fk :
�[BÆ(k)] > 0g. Riedi (1995) defines a system with the same number of boxes,
#KÆ, but three times the width, hence overlapping. Denote the kth box as BÆ(k)
where

BÆ(k) = [(k1 � 1)Æ; (k1 + 2)Æ)� � � � � [(kd � 1)Æ; (kd + 2)Æ)

and k 2 KÆ; i.e., k takes the same values as the lattice index in BÆ(k).
He then defines the e�-function as

e
�
R
(q) = lim inf

Æ!0

1

log Æ
log

X
k2KÆ

�
q
�
BÆ(k)

�
:

We add the subscript R to distinguish it from e
�(q). If lim infÆ!0 can be replaced

by limÆ!0 for a particular q, then e�
R
(q) is said to be grid regular. Similarly,

e
f
R
(y) = lim

�!0
lim sup
Æ!0

log#KÆ(y; �)

� log Æ
;
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where

KÆ(y; �) =

(
k 2 KÆ : y � � <

log�
�
BÆ(k)

�
log Æ

� y + �

)
:

Again, ef
R
(y) is said to be grid regular if lim supÆ!0 can be replaced by limÆ!0.

He then shows that e
�
R
(q) = inf

y

n
qy � e

f
R
(y)
o

q 6= 0:

Also, if e�
R
(q) is grid regular, differentiable and convex on R, then

e
f
R
(y) = lim

�!0
lim
Æ!0

log#KÆ(y; �)

� log Æ
= inf

q

n
qy � e

�
R
(q)
o
:

Further, if e�
R
(q) is differentiable at q 6= 0 and if yq = e

�
0

R
(q), thene

�
R
(q) = qyq � e

f
R
(yq):

2.6.4 Upper and Lower Bounds

Brown et al. (1992) analyse lattice coverings of the unit interval. They investigated
conditions under which the Hausdorff and packing dimensions of the following
sets can be determined:n

x 2 [0; 1) : lim inf
n!1

Yn(x) � y

o
;

n
x 2 supp(�) : lim inf

n!1
Yn(x) � y

o
;�

x 2 [0; 1) : lim sup
n!1

Yn(x) � y

�
; and

�
x 2 supp(�) : lim sup

n!1

Yn(x) � y

�
;

where Yn(x) is given by Equation 2.10.

2.7 Review of Related Point Centred Results

In this section, we briefly review some results relating to point centred construc-
tions. Generally, these results describe relationships between the lower and upper
limits of the local behaviour of the measure and the Hausdorff and packing di-
mensions, respectively.

2.7.1 Theorem (Young, 1982; Pesin, 1993)

Let SÆ(x) be a closed sphere of radius Æ centred at x. If � is a probability measure
on B(X ) and if

lim
Æ!0

log�[SÆ(x)]

log Æ
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exists and is constant for � almost all x, then the limit is given by � where

� = inffdim
H
(E) : �(E) = 1g: (2.14)

Note that E is generally not closed, and therefore the Hausdorff dimension of
the support of � may be strictly larger than �.

In a series of papers, Cutler (1986, 1991) and Cutler & Dawson (1989) have
given a more detailed description of the local behaviour of the measure � and its
relationship with the Hausdorff and packing dimensions. In Definition 2.5.5, we
simply defined F (y) assuming that limÆ!0 YÆ(x) existed. Cutler considers the
individual lim inf and lim sup limits, defined below, which appear to be related
to the Hausdorff and packing dimensions respectively. These are then related to
dimension distributions. These ideas were also discussed earlier by Gács (1973).

2.7.2 Definitions (Cutler, 1991)

1. Define the probability measures �
H

and �
P

as

�
H
([0; y]) = supf�(E) : dim

H
(E) � yg

and

�
P
([0; y]) = supf�(E) : dim

P
(E) � yg

respectively.

2. The measure � is said to be dimension regular if �
H
= �

P
.

3. The measure � is of exact Hausdorff (respectively, exact packing) dimension if
there exists y1 � 0 such that �

H
= Æy1 (respectively, �

P
= Æy1) where Æy1 is

the unit mass at y1.

4. Define the local mappings Yinf : X ! [0;1] and Ysup : X ! [0;1] as

Yinf(x) = lim inf
Æ!0

log�[SÆ(x)]

log Æ

and

Ysup(x) = lim sup
Æ!0

log�[SÆ(x)]

log Æ
:

The dimension distributions �
H

and �
P

are defined above. The following result
states that limÆ!0 YÆ(x), which determines the local behaviour of �, exits �-a.s.
iff the two dimension distributions are the same. As such there is an explicit rela-
tionship between the Hausdorff dimension and lim inf and the packing dimension
and lim sup.

© 2001 by Chapman & Hall/CRC Press, LLC



2.7.3 Theorem (Cutler, 1991)

Yinf(x) = Ysup(x) �-a.s. if and only if � is dimension regular. Further, � is of
exact Hausdorff (respectively, packing) dimension y1 if and only if Yinf = y1

�-a.s. (respectively, Ysup = y1 �-a.s.).

2.7.4 Corollary (Cutler, 1991)

The limit

lim
Æ!0

log �[SÆ(x)]

log Æ
= y1 = constant

�-a.s. if and only if � is dimension regular and of exact dimension y1. In this case
y1 = �, where � is given by Equation 2.14.

2.7.5 Theorem (Cutler, 1991, Page 657)

Define the sets

Ginf(y) = fx : Yinf(x) � yg

and

Gsup(y) = fx : Ysup(x) � yg:

The following relations hold:

1. dim
H
Ginf(y) � y and dim

P
Gsup(y) � y, and

2. �
H
([0; y]) = �[Ginf(y)] and �

P
([0; y]) = �[Gsup(y)].

Alternatively, one might considerG0sup(y) = fx : Ysup(x) � yg. Then F (y) =
Ginf(y) \G

0

sup(y).

2.7.6 Average Local Behaviour

If a point X is chosen randomly with respect to �, then Yinf(X) and Ysup(X)
may be regarded as random variables with distributions �

H
and �

P
, respectively.

Define the average Hausdorff and packing local limits respectively by

E[Yinf(X)] =

Z
Yinf(x)�(dx) =

Z
1

0

y �
H
(dy);

and

E[Ysup(X)] =

Z
Ysup(x)�(dx) =

Z
1

0

y �
P
(dy):

E[Yinf(X)] = E[Ysup(X)] if and only if � is dimension regular. If � is also of
exact dimension �, then � = E[Yinf(X)] = E[Ysup(X)].
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The two means described above have a similar interpretation to D1, and in
many situations will be the same. If the measure is dimension regular, then the
only remaining difference is the interchanging of the integration and the limit
in Æ.

Cutler (1991) also defines the Lq norm of �[SÆ(x)] and relates it to the Rényi
dimensions Dq. An analogous result to that of Theorem 2.3.3 in the lattice case
follows.

2.7.7 Theorem (Cutler, 1991, Page 659)

Let � be a probability measure on the Borel sets, B(X ), of a compact set X � R
d .

Also let ��(q) and �
+(q) be the same as �(q) in Equation 2.5 except where

limÆ!0 is replaced by lim infÆ!0 and lim supÆ!0, respectively. Then the fol-
lowing hold.

1. For q 6= 1, �
1

q � 1
�
�(q)

�
and

�
1

q � 1
�
+(q)

�
are decreasing as functions of q.

2. For all r and q such that r < 1 < q,

1

r � 1
�
�(r) � E[Yinf(X)] and E[Ysup(X)] �

1

q � 1
�
+(q):

3. If � is dimension regular then, whenever r < 1 < q,

1

r � 1
�
�(r) � E[Yinf(X)] = E[Ysup(X)] �

1

q � 1
�
+(q):

Cutler (1995) discusses further results of dual representations of the Hausdorff
and packing dimensions in terms of the lower and upper local mappings Yinf(x)
and Ysup(x), respectively. This is done in both a ‘strong’ and a ‘weak’ sense.

Pesin (1993) and Olsen (1994, pages 24–26) discuss various alternative defini-
tions of generalised dimensions and their relationships.
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CHAPTER 3

The Multinomial Measure

3.1 Introduction

The multinomial measure is a generalised version of the Cantor measure dis-
cussed in Example 1.2.1. For this example we derive expressions for both e�(q)
as in Equation 2.2, and the multifractal spectrum ef(y) as in Equation 2.7. We
then show that e�(q) and ef(y) are indeed related via the Legendre transform. This
is done relatively simply using Lagrange multipliers. The Legendre transform also
appears in the theory of large deviations, and in Part II of the book we show that
this theory can be used to derive sufficient conditions for the Legendre transform
relationships to hold in a more general setting.

A multinomial measure is constructed on the unit interval by repeatedly divid-
ing the interval and reallocating mass. The unit interval is initially divided into b
subintervals of equal length, where b � 2. Each of these subintervals is then di-
vided into b further subintervals, etc. Each subinterval at the nth iteration can be
characterised uniquely by a b-adic rational number of length n. Further, the value
of the measure on a subinterval can also be defined in terms of the mix of digits
in the respective b-adic number. This example has been discussed by Mandelbrot
(1989).

3.1.1 Construction of the Measure

Let 
 = f0; 1; � � � ; (b � 1)g where b 2 f2; 3; � � � g and is fixed. Assign to each
element ! 2 
 a probability p! such that

b�1X
!=0

p! = 1:

Also let 
0 = f! 2 
 : p! > 0g, s = #
0, and 
n and 
n

0 be the nth cross
products of 
 and 
0 respectively.

Further consider an iterative scheme on the unit interval [0; 1], and the con-
struction of a probability measure �. At the first iteration, divide [0; 1] into b
non-overlapping closed subintervals. The total mass (or probability) is then al-
located to each of the subintervals according to the proportions p0; � � � ; pb�1. At
each subsequent iteration, each subinterval is divided into b further subintervals.
Again, the total mass contained in an interval before being divided is allocated
to each of the subintervals according to the proportions p0; � � � ; pb�1. After n6
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iterations, [0; 1] has been divided into bn subintervals, each of equal length; of
which sn contain non-zero mass.

By considering the sequences! 2 
n as b-adic rational numbers on the interval
[0; 1], each sequence represents one of the bn subintervals (of width Æn = b�n); in
that, the base b expansion of all numbers in the interior of a particular subinterval
will have the same first n digits. Subintervals at the nth stage will be represented
as Jn(!), where

Jn(!) =

24 nX
j=1

!j

bj
; b�n +

nX
j=1

!j

bj

35 ;
and !j 2 
. The probability measure, �, attributable to a particular interval is
then

�[Jn(!)] = p!1 � � � p!n

= p
n�0(!)
0 p

n�1(!)
1 � � � p

n�
b�1(!)

b�1 ; (3.1)

where ��(!) is the fraction of digits that equal � in the sequence ! 2 
n. There-
fore, the nth cross product of 
0 is 
n

0 = f! 2 
n : �[Jn(!)] > 0g.

3.1.2 Example

An example of a multinomial measure is the Cantor measure as in Example 1.2.1.
For that particular case b = 3, p0 = 1

3
, p1 = 0, and p2 = 2

3
; thus s = 2.

3.2 Local Behaviour

A probability measure was constructed on a set with zero Lebesgue measure in
Example 1.2.1. Such a measure does not have a probability density function. An
alternative way to characterise such a measure is to describe what we will refer to
as its local behaviour.

For a given n, consider those intervals Jn(!) with non-zero measure, i.e., ! 2


n

0 . For these intervals, their local behaviour is described by Yn(!), where

Yn(!) =
log�[Jn(!)]

log Æn

=
�1

n
log

b

24 Y
�2
n

0

pn��(!)
�

35
= �

X
�2
0

��(!) logb p�: (3.2)

We wish to treat Yn as a discrete random variable. That is, if we were to randomly
select an interval Jn(!) from those that have positive measure, each with equal
probability, what is the probability that Yn is equal to y, i.e., PrfYn = yg?6
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The problem can be simplified by noticing its discrete nature. For example, let
b = 2 and n = 4 , then ��(!) = 0; 1

4
; 1
2
; 3
4

or 1 (� = 0; 1) . The above probability
distribution then can be reduced to an expression in terms of the number of subin-
tervals where �0 and �1 take on particular values. For example, if �0 = �1 =

1
2

,
then there are 6 possible b-adic rational expansions of length n = 4 with these
values:

0:0011 0:0101 0:0110
0:1010 0:1100 0:1001:

Define the set of (b� 1) vectors 	(y) as

	(y) =

(
(�0; � � � ; �b�1) : y = �

X
!2
0

�! log
b
p! and

X
!2
0

�! = 1

)
; (3.3)

and a subset 	n(y) as

	n(y) =
�
(�0; � � � ; �b�1) 2 	(y) : n�! is a non �ve integer 8! 2 
0

	
:

Note that if s = 2 and p!1 6= p!2 , where 
0 = f!1; !2g, then  	(y) contains a
unique point. Given particular values of (�0; � � � ; �b�1) 2 	n(y), the number of
subintervals at the nth step with these values, denoted by Nn(�0; � � � ; �b�1) is

Nn(�0; � � � ; �b�1) =
n!

(n�0)! � � � (n�b�1)!
:

It therefore follows that

PrfYn = yg =

8>><>>:
0 if 	n(y) = ;

1

sn

X
(�0;��� ;�b�1)2	n(y)

Nn(�0; � � � ; �b�1) if 	n(y) 6= ;:

Note that PrfYn = yg ! 0 unless y = y0 = (1=s)
P

!2
0
log

b
p!. However,

the unit interval can be partitioned into various parts according to the powerlaw
rates at which PrfYn = yg tends to zero.

3.2.1 Multifractal Spectrum

The multifractal spectrum, denoted by ef(y), describes convergence rates of the
probability distribution of Yn. The number of subintervals at the nth stage with
positive � measure where Yn = y is sn PrfYn = yg and the widths of the subin-
tervals are Æn = b�n (see Figure 1.2). Hence, in the present example the multi-
fractal spectrum is

ef(y) = lim
n!1

log (sn PrfYn = yg)

� log Æn
(3.4)

= lim
n!1

1

n
log

b

X
(�0;��� ;�b�1)2	n(y)

Nn(�0; � � � ; �b�1):
6
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Note that

max
(�0;��� ;�b�1)2	n(y)

Nn(�0; � � � ; �b�1)

�
X

(�0;��� ;�b�1)2	n(y)

Nn(�0; � � � ; �b�1)

� (#	n(y)) max
(�0;��� ;�b�1)2	n(y)

Nn(�0; � � � ; �b�1)

and #	n(y) � (n+ 1)b. Therefore

ef(y) = max
(�0;��� ;�b�1)2	(y)

lim
n!1

1

n
log

b
Nn(�0; � � � ; �b�1):

It follows from Stirling’s approximation that

lim
n!1

1

n
log

b
Nn(�0; � � � ; �b�1) = �

X
!2
0

�! logb �!; (3.5)

hence

ef(y) = max
(�0;��� ;�b�1)2	(y)

�
X
!2
0

�! logb �!: (3.6)

The form of the function ef(y), as in Equation 3.4, is like a box counting dimen-
sion in that it is the number of covering boxes required divided by the box width
where this width tends to zero. However, it is also different from a box counting
dimension, as the nature of the set being covered is also changing as n tends to
infinity.

3.3 Global Averaging and Legendre Transforms

An alternative way to describe the measure � is to use a global average of qth
powers of �, or qth moment. We first define this and then show that the global
averages and local behaviour are related by a Legendre transformation.

3.3.1 Global Averaging

In this example, the correlation exponents defined by Equation 2.2 can be ex-
pressed as

e�(q) = lim
n!1

log
P

!2
n
0

�q[Jn(!)]

log Æn
; (3.7)

6
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where q 2 R and Æn = b�n is the subinterval width. It then follows that

e�(q) = lim
n!1

�1

n
log

b

" X
!12
0

� � �
X

!n2
0

pq
!1
� � � pq

!n

#
= � log

b

X
!2
0

pq
!
: (3.8)

In the literature, e�(q) is often denoted by �(q). The reason for using � is that in
Part III of the book, we consider estimation techniques for �(q). Using � instead
of � makes it easier to distinguish between the real value �, a sample estimate b�,
and an estimator �.

3.3.2 Example

Consider the case of the multinomial measure with b = 10. If we used a small
value of b, say two or three, then a relatively large value of one p! would nec-
essarily mean smaller values of all other p!’s. We consider three scenarios: the
first is where p! = 0:1 for all ! (i.e., ! = 0; � � � ; 9). This will simply produce the
uniform distribution. The corresponding plot of e�(q) is the straight line with slope
one in Figure 3.1. The second scenario is where all values of p! = 0:111 except

−2 0 2 4 6

−
6

−
4

−
2

0
2

q

θ~
(q

)

θ~(q) for Multinomial Measure with b = 10

Figure 3.1 The straight (solid) line represents the case where p! = 0:1 for all ! (i.e., ! =

0; � � � ; 9). The dashed line is where p! = 0:111 for all !, except one that is equal to 0:001;
and the dotted line is where all p!’s are equal to 0:07, except one that is equal to 0:37.6
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one that is equal to 0.001. This is like the uniform distribution, but it has small
areas where there is very small (non-zero) measure. The corresponding graph ofe�(q) has the line dropping more sharply for q < 0 but similar to that of the uni-
form measure for q > 0. The last case is where all p!’s are equal to 0.07, except
one that is equal to 0.37. In this case the plot of e�(q) drops away more sharply for
q > 0, but is fairly similar to that of the uniform measure for q < 0.

When all non-zero p!’s are equal, the measure will be uniformly distributed
over the support of �. In this situation, it follows from Equation 3.8 that e�(q) will
be a straight line with slope eD0. When the measure is not uniformly distributed
over its support, e�(q) becomes concave downwards, i.e., the two ends of the line
are pulled downwards remaining anchored at q = 0, but with the line still in-
creasing as q increases. For q > 0 and increasing, the line will be pulled further
down from that representing the uniform case if there are areas that contain much
greater measure relative to other areas. Conversely, for q < 0 and decreasing, the
line will be pulled further down from that representing the uniform case if there
are areas that contain very small non-zero amounts of measure. In summary, the
function e�(q), therefore, could be interpreted as the extent to which the measure
deviates from a measure uniformly distributed on its support. When q > 0, it
describes the abundance of areas of relatively high measure, and when q < 0, it
describes areas containing relatively small but non-zero measure. This behaviour
relates to the ideas expressed in Theorem 2.3.3.

3.3.3 Legendre Transform

We now show that the relationship between ef(y) and e�(q) takes the form of a
Legendre transform. Starting with ef(y) as in Equation 3.6, we maximise

�
X
!2
0

�! log
b
�! ;

subject to the constraint that (�0; � � � ; �b�1) 2 	(y), i.e.,X
!2
0

�! = 1 (3.9)

and

y = �
X
!2
0

�! log
b
p!: (3.10)

Using two Lagrange multipliers, � and q, consider the function

Q = �
X
!2
0

�! log
b
�! + q

 
y +

X
!2
0

�! logb p!

!
+ �

 
�1 +

X
!2
0

�!

!
:

6
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Then

@Q

@�!
= � log

b
�! � 1 + q log

b
p! + �; ! 2 
0: (3.11)

Using the two constraints and @Q=@�! = 0, we solve for �! , ! 2 
0. We have
s + 2 equations, and s + 3 parameters; i.e., s �!’s, �, q and y, where s = #
0.
We express y as a function of q, yq. Setting Equation 3.11 equal to zero gives

log
b
�! = �� 1 + q log

b
p!;

that is, �! = b��1pq
!
: From Equation 3.9 it follows thatX

!2
0

�! =
X
!2
0

b��1pq
!
= 1:

Therefore, the maximum will occur for a given y and q when

�! =
pq
!P

i2
0
pq
i

; ! 2 
0: (3.12)

From Equations 3.10 and 3.12

yq =
�1�P
i2
0

pq
i

� X
!2
0

pq
!
log

b
p!:

Then, from Equation 3.6

ef(yq) = �
X
!2
0

pq
!�P

i2
0
pq
i

� log
b

 
pq
!P

j2
0
pq
j

!

=
�q�P
i2
0

pq
i

� X
!2
0

pq
!
log

b
p! + log

b

X
j2
0

pq
j

=
�q�P
i2
0

pq
i

� X
!2
0

pq
!
log

b
p! � e�(q): (3.13)

Thus, e�(q) = qyq � ef(yq) = � log
b

X
!2
0

pq
!
: (3.14)

This is a solution to the Legendre transform, given by e�(q) = infy
�
qy � ef(y)	.

The function yq expresses the values of y where the infimum is attained (i.e.,
where the function ef(y) is maximised) as a function of q. Note that

ymin = lim
q!1

yq = min
!2
0

(� log
b
p!); (3.15)

and

ymax = lim
q!�1

yq = max
!2
0

(� log
b
p!): (3.16)

6
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−
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−
2 

−
1

0
 1

y

f~
(y

)

Cantor Measure: Legendre Transform of f
~(y)

Figure 3.2 ef(y) for the multinomial measure with p0 =
1

3
, p1 = 0 and p2 =

2

3
(solid line).

The slopes of the dotted lines are q = �3;�2; � � � ; 2; 3. The smallest distance between
the dotted lines and the curve ef(y), occurs at the value of yq (see Figure 3.3), where the
derivative of the function ef(y) is equal to q. These minimum distances at yq are marked by
the dashed vertical lines, the lengths of which are the values of e�(q) = infy

�
qy � ef (y)	.

3.3.4 Example - Cantor Measure

Let b = 3 and p0 = 1
3

, p1 = 0 and p2 = 2
3

. The Legendre transform of ef(y)
and the function yq are plotted in Figures 3.2 and 3.3, respectively. Notice that the
infimum occurs when the function ef(y) and the lines qy have the same slope (i.e.,
slope = q). The reverse Legendre transform is plotted in Figure 3.4.

3.4 Fractal Dimensions

Define the mapping gn : [0; 1]! 
n, where gn(x) represents the first n digits in
the b-adic expansion of the number x. We want to evaluate the box or Hausdorff
dimensions of the set

eF (y) = nx 2 [0; 1] : lim
n!1

Yn(gn(x)) = y
o
:

6
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4 

0.
6 

0.
8 

1.
0

q

y q
Cantor Measure: The Function yq

Figure 3.3 The function yq for the multinomial measure with p0 =
1

3
, p1 = 0 and p2 =

2

3
.

The slope of the function ef(y) (see Figure 3.2) at y = yq is q. The two asymptotes, ymin =

limq!1 yq and ymax = limq!�1 yq , are the values at which the function ef(y) cuts the
horizontal axis.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

q

θ~
(q

)

Cantor Measure: Legendre Transform of θ~(q)

Figure 3.4 e�(q) is plotted (solid line). As q becomes large and positive, e�(q) tends to the
line qymin, and as q becomes large and negative, e�(q) tends to the line qymax (diagonal
dashed lines). The dotted lines each have slope y = yq , q = �3;�2; � � � ; 2; 3 (see Figure
3.3). The derivative of e�(q) is yq . The smallest distance (vertical dashed lines), ef(y),
between the curve e�(q) and a line qy (i.e., a line with slope y) will occur at q when the
slope of the line is yq; i.e., ef(yq) = qyq�

e�(q) is the solution to ef(y) = infq

�
qy� e�(q)	.6
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3.4.1 Eggleston’s Theorem (Eggleston, 1949)

Let ��(x) be the asymptotic proportion of digits that equal � in the base b expan-
sion of x, and

M(�0; � � � ; �b�1) =
�
x 2 [0; 1] : �0(x) = �0; � � � ;�b�1(x) = �b�1

	
;

where
P

!2
 �! = 1. Then the Hausdorff dimension of M(�0; � � � ; �b�1) is

dim
H
M(�0; � � � ; �b�1) = �

X
!2
0

�! logb �!: (3.17)

See also Falconer (1990, x10.1).
It is known that almost all numbers (in the Lebesgue sense) are normal to all

bases; i.e., the setM( 1
b
; � � � ; 1

b
) has Lebesgue measure one and, therefore, dimen-

sion one. This is consistent with Equation 3.17. Note that if �! > 0 for all ! 2 
,
the set M(�0; � � � ; �b�1) is dense on [0; 1] and, hence, dim

B
M(�0; � � � ; �b�1)

is one. This is an unfortunate deficiency of the box counting dimension (see
Proposition A.3.4 and Example A.3.5).

3.4.2 Example

Consider the special case where s = #
0 = 2, then 9i; j : i 6= j with pi = 1�pj,
and such that all pm = 0 where m 6= i and m 6= j. Then it follows from Equation
3.2 that

Yn(!) =

(
��i(!) logb

�
pi
pj

�
� log

b
pj if pi 6= pj

� log
b
pj if pi = pj :

In this case it can be seen that, given pi and pj and pi 6= pj , eF (y) can be expressed
in terms of unique values of �i(!) and hence �j(!). That is,eF (y) = fx 2 [0; 1] : �i(x) = �i;�j(x) = �j ; and �m(x) = 0 8m 6= i; jg :

Note that y is related to �i and �j through Equation 3.10, i.e., y = ��i logb pi �
�j logb pj . The set 	(y), given by Equation 3.3, consists of a unique point if s = 2
and pi 6= pj and, hence, it follows from Equation 3.6 that

ef(y) = �
X
!2
0

�! log
b
�! =

�
��i logb �i � �j logb �j pi 6= pj
� log

b
pj pi = pj :

From Equation 3.17, dim
H

eF (y) = ef(y).
3.5 Point Centred Construction

The method of describing the multifractal characteristics of the multinomial mea-
sure in this chapter is based on a system of lattice (fixed width) coverings. What is
the relationship between these results and those that one may derive from a system
of point centred coverings? We briefly investigate this question in this section.6
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3.5.1 Example

Consider the Cantor measure, as in Example 1.2.1, with b = 3, p0 = 1 � p2
and p1 = 0. Here we let p0 take any value between zero and one. The measure
is supported by the Cantor set, which has the characteristic middle third gaps. At
each division, the subintervals on the left and right receive p0 and p2 of the mass
respectively. Let �n be the measure distribution on Kn at the nth stage of this
process (see Equation 3.1).

The expectation E
�
�q�1[SÆ(X)]

�
, where X is a random variable selected from

the distribution �, can be calculated by initially evaluating E
�
�q�1
n

[SÆ(X)]
�
. Each

subinterval with non-zero measure has a uniform density (as in Example 2.4.4),
and so one can express the integral, which we will denote as An(q; Æ), as a sum
over these intervals, i.e.,

An(q; Æ) =
X
!2
n

0

Z
x2Jn(!)

�q�1
n

[SÆ(x)]�n(dx);

for sufficiently small Æ (i.e., Æ < 3�n); where 
n

0 contains all permutations of
length n of the digits 0 and 2, and Jn(!) is the subinterval based on the b-adic
sequence ! 2 
n

0 . However,

Dq 6= lim
Æ!0

log flimn!1An(q; Æ)g

log Æ

because when the first limit in n is taken, the gaps are getting smaller. If Æ remains
fixed, then there reaches a point where the covering spheres have radius Æ that
completely spans the gap, and covers part of the support on the other side. The
limits cannot be interchanged either. For a fixed finite value of n, �n consists of
a collection of essentially uniform type measures separated by gaps. Taking the
limit in Æ on this measure will simply give Dq = 1 for all q, as in Example 2.4.4.

Consider just the case where q = 2. In order to find an analytic solution for
D2, we need to return to the ideas at the start of x2.4, in particular, Equation 2.4.
Let the independent random variables X1 and X2 be drawn from the distribution
(�n) on Kn. Then from Equation 2.4,Z

�n[SÆ(x)]�n(dx) = PrfjX1 �X2j � Æg:

Let hn(y) be the density of X1 �X2 and gn(y) be the density of jX1 �X2j. At
the start, the distribution on K0 is just the uniform distribution, and so

h0(y) = 1� jyj �1 � y � 1

g0(y) = 2� 2y 0 � y � 1:

For each n, hn(y) is a scaled copy of hn�1(y), in that hn�1(y) is contracted onto
the interval

�
� 1
3
; 1
3

�
. Copies of this contraction are also placed on the intervals�

�1;� 1
3

�
and

�
1
3
; 1
�
. The inner copy contains p20 + p22 of the mass, the outer two6
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p0p2 each, thus hn(y) satisfies the recurrence relation

hn(y) =

(
3(p20 + p22)hn�1(3y) 0 � jyj � 1

3

3p0p2hn�1(3jyj � 2) 1
3
� jyj � 1:

Consequently,

gn(y) =

8>><>>:
3(p20 + p22)gn�1(3y) 0 � y � 1

3

3p0p2gn�1(2� 3y) 1
3
� y � 2

3

3p0p2gn�1(3y � 2) 2
3
� y � 1:

The probability distribution of the absolute interpoint distances then satisfies the
following recurrence relation:

Gn(y) =

8>><>>:
(p20 + p22)Gn�1(3y) 0 � y � 1

3

1� p0p2 � p0p2Gn�1(2� 3y) 1
3
� y � 2

3

1� p0p2 + p0p2Gn�1(3y � 2) 2
3
� y � 1:

(3.18)

It follows that Gn(y) = (p20 + p22)
nG0(3

ny) for 0 < y < 3�n, where G0(y) =
2y � y2. Let G

1
(y) be the limiting probability distribution, then

D2 = lim
y!0

logPrfjX1 �X2j � yg

log y
= lim

y!0

G
1
(y)

log y
:

By construction, G
1
(3�n) = (p20 + p22)

nG0(1) = (p20 + p22)
n. Therefore, for

all y such that 3�(n+1) � y � 3�n,

(p20 + p22)
n+1 � G

1
(y) � (p20 + p22)

n;

consequently

log[(p20 + p22)
n+1]

log(3�n)
�

logG
1
(y)

log y
�

log[(p20 + p22)
n]

log(3�(n+1))
:

Taking limits in n implies that

D2 = lim
y!0

logG
1
(y)

log y
= � log3(p

2
0 + p22) = eD2:

In fact, it is easy to see that the above argument holds for any multinomial
measure with gaps for all interpoint distances of order q, i.e., Dq = eDq for q =
2; 3; � � � .

6
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PART II

MULTIFRACTAL FORMALISM USING
LARGE DEVIATIONS

© 2001 by Chapman & Hall/CRC Press, LLC



CHAPTER 4

Lattice Based Multifractals

4.1 Introduction

In this chapter, sufficient conditions are deduced under which the multifractal
lattice formalism holds, in both weak and strong senses (Definition 2.5.4). In this
section an outline of the overall argument is given.

Let X be a subset of Rd and B(X ) be the Borel subsets of X . We are interested
in the probability space (X ;B(X ); �), where the measure � is assumed to be non-
atomic and may be concentrated on a subspace ofX of lower dimension than d. In
this chapter we consider the case whereX is covered by a succession of lattices of
d-dimensional boxes that are half open to the right and of width Æn. The kth box is
denoted by BÆn(k), where k 2 Kn and Kn = fk : �[BÆn(k)] > 0g. We evaluate
successive lattice coverings for some sequence fÆng, where Æn ! 0 as n ! 1 .
Using this system of lattices, we evaluate the local behaviour of the measure �
denoted by Yn which, as in Equation 2.10, will be the ratio of the logarithm of the
measure within a given box divided by the logarithm of the box width.

Note that in the multinomial example of Chapter 3, the covering consisted of
closed intervals, i.e., closed versions of the b-adic intervals. The reason for this
discrepancy will be discussed in Example 4.5.11.

To appeal to the theory of large deviations, it is easiest to define an auxiliary
probability space (X ;Fn; �

(n)), where Fn is the sub �-field generated by the lat-
tice boxes at the nth stage, and �(n) is an arbitrary probability measure describing
the way in which the boxes are sampled. We then treat Yn as a random variable,
where Yn : X ! R.

The weak multifractal formalism involving the Legendre transform relation-
ships can be deduced by appealing to the Gärtner-Ellis theorem of large devia-
tions. In this case, Yn converges to a degenerate point that is dependent on the
particular form of the sampling measure �

(n). The convergence is similar to a
weak law of large numbers, but at an exponential rate. It will be shown that the
multifractal spectrum e

f(y) is related to the entropy function which describes rates
of convergence, and that e�(q) is related to a rescaled cumulant generating func-
tion of Yn. The required mathematical framework is established in x4.2 for an
arbitrary sampling measure. In x4.3 the case of the uniform sampling measure is
discussed, and in x4.4 a family of sampling measures is defined in such a way that
the rescaled cumulant generating functions and entropy functions for individual
members of the family are related via simple shift type transformations.
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In x4.5 we determine sufficient conditions under which ef(y) is equal to the
Hausdorff dimension of the local behaviour of �. In order to achieve this, we
require the sampling measure �(n) to have an extension to �

(1), where �(1) is
the inductive limit of �(n). That is, we now are considering the behaviour of Yn
on the probability space (X ;B(X ); �(1)). In this situation, Yn convergences to
the degenerate point almost surely. It also turns out to be easier to characterise
the local behaviour of the measure �

(1) rather than that of �. Since we have
almost sure convergence, then the sets describing the local behaviour of � can be
shown to be the same as certain sets describing the local behaviour of �(1), apart
from a set of measure zero. Thus, the problem essentially reduces to determining
the Hausdorff dimension of the local behaviour of �(1). This can be deduced by
appealing to a theorem by Billingsley (1965), and then relating back to the local
behaviour of the measure �.

4.2 Large Deviation Formalism

In the multinomial example of Chapter 3, it was seen that one way of characteris-
ing the measure � was to describe its local behaviour, Yn, given by Equation 3.2.
However, treating Yn as a random variable, it was shown that it had a degenerate
distribution. Information could still be gleaned by characterising the convergence
rate of Yn. This is the problem described by the theory of large deviations. An
introduction to the theory of large deviations is given in Appendix B where state-
ments of results that are used in this chapter can be found. In this section, a gen-
eral probability framework is defined for Yn, which will form the basic structure
for discussions in the subsequent sections. We start with the auxiliary probability
space (X ;Fn; �

(n)), where �(n) is some arbitrary sampling measure.
In order to describe the behaviour of �, we define a sequence of measurable

mappings fUng; n = 1; 2; � � � , where

Un : (X ;Fn)! (R;B(R)); (4.1)

as

Un(x) =

�
� log�[BÆn(k(x))] if k(x) 2 Kn

0 if k(x) =2 Kn;

where k(x) is interpreted as the index k of the box that contains the point x. Also
define the functions fYng, n = 1; 2; � � � as

Yn(x) =
Un(x)

� log Æn
:

Note that Yn has been defined in terms of x 2 X , but is the same for all x in
the same lattice box. We want to describe the behaviour of the measure � by
investigating the size of the set�

BÆn : �� < Yn � y � �

	
=

[
k2Kn(y;�)

BÆn(k);
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see Definition 2.5.1, the size being the value of the measure �
(n) on that set;

i.e., �(n)fBÆn : �� < Yn � y � �g for various values of y. Different sampling
measures will presumably select different characteristics.

Using the theory of large deviations to describe the mapping Yn involves the
following main steps. One first defines the cumulant generating function, denoted
by C(q). This is essentially a more general version of e�(q). The theory of large
deviations is based on arguments of convexity. Therefore, to proceed further we
need to assume that C(q) has the required properties that will be specified in the
Extended Hypotheses. Then one defines the entropy function I(y) which is simply
the Legendre transform of C(q). Again, I(y) is a more general version of ef(y).
If sufficient conditions hold, the degenerate point to which Yn converges can be
easily calculated using C(y). In fact, the convergence occurs at an exponential
rate. The entropy function I(y) describes the rates of convergence, which will be
characterised by the large deviation bounds.

4.2.1 Rescaled Cumulant Generating Function

From Equation B.5, the Rescaled Cumulant Generating Function is C(q), if the
limit (n!1) exists, where

C(q) = lim
n!1

1

� log Æn
logEn

�
e
qUn
�
;

and En indicates that the expectation is to be taken with respect to the sampling
measure �(n). Therefore,

C(q) = lim
n!1

1

� log Æn
log

 X
k2Kn

�
�q[BÆn(k)]�

(n)[BÆn(k)]

!
; (4.2)

for q 2 R. Note that we allow +1 as a limit value. Further, let

I(y) = sup
q2R

fqy � C(q)g; y > 0: (4.3)

I(y) may take the value of +1, and is referred to as the Legendre transform of
C(q).

It can be seen that C(q) is similar in nature to the global average e�(q) defined
in Definition 2.3.1. In fact e�(q) is the special case when the sampling measure
gives each box equal weight. We consider this case in x4.3.

4.2.2 Extended Hypotheses

Assume that there exists a sequence fÆng, with Æn ! 0 as n!1, such that

1. C(q) satisfies Hypotheses B.3.8, and

2. C(q) is differentiable on the interior of its domain, intD(C) = intfq 2 R :
C(q) <1g, and C(q) is steep (Definition B.2.1).
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The arguments of this chapter require that C(q) satisfies the above Extended
Hypotheses. Generally, C(q) will not satisfy these conditions for any arbitrary
sequence fÆng. In the case of the multinomial measures in Chapter 3, Æn = b

�n.
Given that C(q) is sufficiently well behaved, as in Extended Hypotheses 4.2.2

above, then it can be shown that Yn converges exponentially to a point y0 that can
be deduced from the rescaled cumulant generating function. Say Yn represents
a partial mean, i.e., a partial sum divided by n. Then exponential convergence
(Definition B.3.13) is just a weak law of large numbers, but where the conver-
gence occurs at an exponential rate. A more familiar situation where these ideas
are applied to sums of independent normal random variables can be found in
Appendix B, Example B.2.4. This similarity with the weak law of large numbers
will be described further in x4.3.

4.2.3 Theorem - Exponential Convergence

If C(q) satisfies the Extended Hypotheses 4.2.2, then I(y) has a unique minimum
at y0 = C

0(0) such that I(y0) = 0. Further, Yn
exp
�! y0 with respect to �(n) (see

Definition B.3.13), and

C(q) = sup
y

fqy � I(y)g: (4.4)

Proof. Given Hypotheses B.3.8, it follows from Theorem B.3.10 that infy I(y) =
0. Further, since C(q) is differentiable (Extended Hypotheses 4.2.2) on intD(C)
which is non-empty and contains the point q = 0 (Hypotheses B.3.8), it follows
from Theorem B.3.14 that I(y) has a unique minimum at y0 = C

0(0) and Yn
exp
�!

y0. Equation 4.4 follows from Theorem B.3.17.

Since I(y) > 0 for all y 6= y0, I(y) is the powerlaw exponent (i.e., ÆI(y)n ) with
which �(n)fBÆn : �� < Yn � y � �g approaches zero for all y 6= y0. We express
this formally in the next theorem.

4.2.4 Theorem - Large Deviation Bounds

If C(q) satisfies the Extended Hypotheses 4.2.2, then

lim
n!1

log �(n)fBÆn : �� < Yn � y � �g

� log Æn
= � inf

z2(y��;y+�]
I(z)

where � > 0 and (y � �; y + �] � D(I). Further, taking limits in � gives

lim
�!0

lim
n!1

log �(n)fBÆn : �� < Yn � y � �g

� log Æn
= �I(y) for y 2 intD(I):

(4.5)

Proof. Given that (1) of the Extended Hypotheses 4.2.2 is valid, then the Gärtner-
Ellis Theorem B.3.10 ensures that the upper large deviation bound is valid. Sim-
ilarly, given (2) of the Extended Hypotheses 4.2.2, the Gärtner-Ellis Theorem
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B.3.10 ensures that the lower large deviation bound is valid, and that I(y) is con-
vex and closed. It then follows from Lemma B.3.12 that I(y) is continuous on
D(I). The first equation then follows from Theorem B.3.6. Equation 4.5 follows
by taking limits in �.

4.3 Uniform Spatial Sampling Measure

In this section, the results of x4.2 are applied to the case where the sampling
measure is uniform. We mean uniform in the sense that, in the pre-limiting case
(finite n in �(n)), each box that contains non-zero �mass is given the same weight
by the sampling measure. For this case denote the sampling measure �(n) as �(n)0

where

�

(n)
0 [BÆn(k)] =

8><>:
1

#Kn

k 2 Kn

0 k =2 Kn:

Similarly, denote C(q) and I(y) as C0(q) and I0(y), respectively. This is the
situation most often considered in the literature.

4.3.1 Theorem - Rescaled Cumulant Generating Function

If e�(0) exists, or equivalently�1 2 D(C0), then

C0(q) = e�(0)� e�(�q); (4.6)

where e�(q) is given in Definition 2.3.1.

Proof. From Equation 4.2,

C0(q) = lim
n!1

1

� log Æn
log

 
1

#Kn

X
k2Kn

�
�q [BÆn(k)]

!
:

Since C0(�1) = e�(0), then �1 2 D(C0) iff e�(0) exists and is finite. Therefore,

C0(q) = lim
n!1

log#Kn

log Æn
� lim

n!1

1

log Æn
log

X
k2Kn

�
�q [BÆn(k)]

= e
�(0)� e�(�q) if � 1 2 D(C0)

for q 2 D(C0).

4.3.2 Corollary - Exponential Convergence

If C0(q) satisfies the Extended Hypotheses 4.2.2 then Yn
exp
�! y0 = C

0
0(0). Fur-

ther, I0(y0) = 0 is the unique minimum of I0(y).
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Proof. Since C0(q) satisfies the Extended Hypotheses 4.2.2, 0 2 intD(C0). Fur-
ther, C0 is differentiable on the interior of D(C0), hence y0 exits. The result then
follows from Theorem 4.2.3.

4.3.3 Example

Consider again the multinomial example of Chapter 3. In this case, the boxes
or subintervals at the nth stage are more easily characterised by !, a string of
digits of length n, i.e., ! 2 
n. Jn(!) is the interval characterised by !. Intervals
with non-zero measure are characterised by ! 2 
n

0 and have width Æn = b
�n.

Therefore, for ! = (!1; � � � ; !n) 2 
n
0 where !i 2 
0,

Yn(!) =
log�[Jn(!)]

log Æn
=

log (
Qn

i=1 p!i)

log b�n
=

1

n

nX
i=1

logb p!i ;

and hence, in this example, Yn can be written explicitly as a partial sum. This
converges exponentially to y0 where, from Equation 4.6,

y0 = C
0

0(0) =
�1

#
0

X
!2
0

logb p!:

Hence if we sample with equal weight, then Yn
exp
�! y0, thus satisfying a weak

law of large numbers.

4.3.4 Corollary - Large Deviation Bounds

Given that C0(q) satisfies the Extended Hypotheses 4.2.2, then

lim
�!0

lim
n!1

log �
(n)
0 fBÆn : �� < Yn � y � �g

� log Æn
= �I0(y) for y 2 intD(I0):

Further, if �1 2 D(C0), then

I0(y) = �e�(0)� e
f(y); (4.7)

where ef(y) is given by Equation 2.7.

Proof. The double limit follows from Theorem 4.2.4. Equation 4.7 follows from
Equation 4.3 and the relationship

�

(n)
0 fBÆn : �� < Yn � y � �g =

#Kn(y; �)

#Kn

; (4.8)

where Kn(y; �) is given in Definition 2.5.4.

The following corollary establishes conditions under which � is a multifractal
measure in a weak sense (Definition 2.5.4).
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4.3.5 Corollary - Legendre Transform Pair

Given thatC0(q), or equivalently e�(0)�e�(�q), satisfies the Extended Hypotheses
4.2.2 and �1 2 D(C0), then

e
f(y) = inf

q

n
qy � e�(q)o ; (4.9)

and e
�(q) = inf

y

n
qy � e

f(y)
o
: (4.10)

Proof. Note that I0(y) is defined as the Legendre transform ofC0(q), i.e., I0(y) =
supqfqy�C0(q)g. Given that C0(q) satisfies the Extended Hypotheses 4.2.2 and
�1 2 D(C0), then it follows from Equations 4.6 and 4.7 that

�e�(0)� e
f(y) = sup

q

fqy +�e�(0) + e�(�q)g;
and hence Equation 4.9. Similarly from Equation 4.4,C0(q) = supyfqy�I0(y)g
and using the same substitutions gives Equation 4.10.

Heuristically, one might argue that if Æ�
ef(y)

n is roughly the number of boxes
where � is of the order Æyn, thenX

k2Kn

�
q [BÆn(k)] �

X
y

Æ
qy
n Æ

�ef(y)
n � Æ

infyfqy�ef(y)g
n

and therefore e
�(q) = inf

y

n
qy � e

f(y)
o
:

These relationships are not so simple, and depend on arguments of convexity.
Consider an example where e�(q) is not differentiable, and the Legendre transform
relationships given in this chapter do not hold.

4.3.6 Example (Holley & Waymire, 1992)

Let X = [0; 1] � [0; 1]. Initially, cover X with a b � b Æn-mesh. At each itera-
tion, partition each box into b2 further boxes. At the nth iteration Æn = b

�n and
#Kn = b

2n. Let � = 1
2�1 � Æ0 +

1
2�2, where �1 is a one-dimensional Lebesgue

measure on [0; 1], Æ0 is the Dirac unit mass at zero and �2 is the Lebesgue measure
on [0; 1]� [0; 1]. ThenX

k2Kn

�
q [BÆn(k)] = b

n

�
1

2
b
�n +

1

2
b
�2n

�q

+ (b2n � b
n)

�
1

2
b
�2n

�q

=

�
1

2
b
�2n

�q

b
n(bn + 1)q + b

n(bn � 1)

�
1

2
b
�2n

�q

:
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It is easy to see that if q < 1, the summation tends to infinity as n ! 1. The
purpose of the exercise is to determine the rate at which this occurs.

There are two situations, q � 1 and q � 1. Firstly consider q � 1, soX
k2Kn

�
q [BÆn(k)] =

�
1

2
b
�2n

�q

b
2n
h
b
n(q�1)(1 + b

�n)q + (1� b
�n)
i
;

(4.11)

and thus the term in square brackets tends to one as n!1. Therefore,

e
�(q) = lim

n!1

log
P

k2Kn

�
q[BÆn(k)]

log(b�n)

= 2(q � 1)� lim
n!1

1

n

logb

h
b
n(q�1)(1 + b

�n)q + (1� b
�n)
i

= 2(q � 1) for q � 1:

For q � 1, we rearrange Equation 4.11 to giveX
k2Kn

�
q [BÆn(k)] =

�
1

2
b
�2n

�q

b
2n
b
n(q�1)

h
(1 + b

�n)q + (1� b
�n)b�n(q�1)

i
:

Similarly,

e
�(q) = lim

n!1

log
P

k2Kn

�
q[BÆn(k)]

log(b�n)

= (q � 1) + lim
n!1

1

n

logb

h
(1 + b

�n)q + (1� b
�n)b�n(q�1)

i
= q � 1 for q � 1:

We thus have e
�(q) =

�
2(q � 1) if q � 1
q � 1 if q � 1:

It can be seen from Equation 2.7 that

e
f(y) =

8<:
1 if y = 1
2 if y = 2

�1 otherwise,

and

dimH

�
x : lim

n!1

log�[BÆn(x)]

log Æn
= y

�
=

8<:
1 if y = 1
2 if y = 2
0 otherwise.

Note that e�(q) is continuous but not differentiable and that

e
f(y) 6= inf

q

n
qy � e�(q)o =

�
y if 1 � y � 2

�1 otherwise.
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4.4 A Family of Sampling Measures

The points to which the sequence Yn converges exponentially are dependent on
the sampling measure. By considering a family of sampling measures, we get a
family of limit points. The relationships described in this section are not required
to determine conditions for which � is a multifractal measure in a weak sense (see
Corollary 4.3.5). However, they do form the basis of the ideas that are required to
describe requirements for � to be a multifractal measure in a strong sense.

4.4.1 Definition

Define the set function Mm as

Mm(B) =

�
�
m(B) if �(B) 6= 0

0 if �(B) = 0;
(4.12)

where m 2 R and B 2 B(X ). Then the family of sampling measures is defined
as

�
(n)
m (A) =

P
j2Kn

Mm[A \ BÆn(j)]P
k2Kn

�
m[BÆn(k)]

A 2 Fn; (4.13)

where m is a number such that �m 2 intD(C0).
In this case, denote C(q) and I(y) as Cm(q) and Im(y), respectively. The case

where m = 0 is the uniform measure considered in the previous section. When
m = 1, each box receives weight proportional to the probability of the process
visiting that box. When m < 0, the boxes are sampled with an inverse probability
to the amount of time the process spends in each box.

4.4.2 Theorem - Rescaled Cumulant Generating Function

If �m 2 D(C0), then

Cm(q) = C0(q �m)� C0(�m); (4.14)

henceD(Cm) = fq : C0(q �m) <1g. Also,

Im(y) = C0(�m) +my + I0(y): (4.15)

Proof. Equation 4.14 follows by inserting �(n)m into Equation 4.2 and simplifying.
From Equations 4.3 and 4.14,

Im(y) = sup
q

fqy � C0(q �m) + C0(�m)g

= C0(�m) + sup
q
f(q +m)y � C0(q)g

= C0(�m) +my + I0(y):
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From Equations 4.14 and 4.15, it can be seen that Cm(q) and Im(y) are related
to C0(q) and I0(y), respectively, by a shift type transformation. Using Equations
4.7 and 4.6 we can further relate Cm(q) and Im(y) to e�(q) and the multifractal
spectrum e

f(y), respectively.

4.4.3 Lemma

Given that C0(q) satisfies the Extended Hypotheses 4.2.2 and �m 2 intD(C0),
then Cm(q) satisfies the Extended Hypotheses 4.2.2. Further, Im(y) is continuous
on D(I0).

Proof. Equations 4.14 and 4.15 hold if �m 2 D(C0). However, the hypotheses
require that 0 2 intD(Cm), which is satisfied if �m 2 intD(C0). The other
requirements on Cm(q) follow directly from Equation 4.14. Continuity of Im(y)
follows from Equation 4.15 and continuity of I0.

4.4.4 Corollary - Exponential Convergence

If C0(q) satisfies the Extended Hypotheses 4.2.2, and �m 2 intD(C0), then

Yn
exp
�! ym with respect to �

(n)
m , where ym = C

0
m(0) = C

0
0(�m). Further,

Im(ym) = 0 is the unique minimum of Im(y).

Proof. Follows directly Theorem 4.2.3 and Lemma 4.4.3.

4.4.5 Corollary - Large Deviation Bounds

Given that C0(q) satisfies the Extended Hypotheses 4.2.2 and �m 2 intD(C0),
then

lim
�!0

lim
n!1

log �
(n)
m fBÆn : �� < Yn � y � �g

� log Æn
= �Im(y) for y 2 intD(I0):

Further, if �1 2 D(C0) then

Im(y) = �e�(m) +my � e
f(y): (4.16)

Proof. The double limit follows from Theorem 4.2.4 and Lemma 4.4.3. If �1 2
D(C0), then e�(0) exists and is finite, hence Equation 4.16 follows from Equations
4.15, 4.7 and 4.6.

4.4.6 Note

Note that Equation 4.16 gains plausibility by the following approximation:X
k2Kn(y;�)

�
m[BÆn(k)] � Æ

my
n #Kn(y; �);

© 2001 by Chapman & Hall/CRC Press, LLC



where Kn(y; �) is given in Definition 2.5.4. Then,

lim
�!0

lim
n!1

log �
(n)
m fBÆn : �� < Yn � y � �g

� log Æn

= lim
�!0

lim
n!1

1

� log Æn
log

 P
k2Kn(y;�)

�
m[BÆn(k)]P

k2Kn

�
m[BÆn(k)]

!

� lim
�!0

lim
n!1

1

� log Æn
log (Æmy

n #Kn(y; �)) + e�(m)

= �my + e
f(y) + e�(m):

4.4.7 Corollary

Given that C0(q) satisfies the Extended Hypotheses 4.2.2 and �m 2 intD(C0),
then ym = C

0
m(0) = C

0
0(�m) is the unique value of y at which the infimum is

attained in e�(m) = infy
�
my� ef(y)	. Further, ym is a continuous function of m

for all m where �m 2 intD(C0).

Proof. Continuity of ym follows from the hypothesis that C0(q) is differentiable
on intD(C0). From Corollary 4.4.4,

inf
y
Im(y) = Im(ym) = 0;

where ym is unique. From Equation 4.16,

inf
y
Im(y) = inf

y

n
�e�(m) +my � e

f(y)
o
= 0;

hence the result.

4.4.8 Corollary

Given thatC0(q), or equivalently e�(0)�e�(�q), satisfies the Extended Hypotheses
4.2.2 and �1 2 D(C0), then the measure � is a multifractal measure satisfying
the lattice formalism in a weak sense (Definition 2.5.4). Further, the value of y
where e�(q) = infy

�
qy � e

f(y)
	

occurs at yq = e
�
0(�q) for�q 2 intD(C0).

Proof. The first statement follows from Corollary 4.3.5. Solution of the infimum
follows from Equation 4.6 and Corollary 4.4.7.

4.4.9 Example

Consider the same situation as in Example 4.3.3, but where the sampling measure
is �(n)m . In this case there is a series of limit points ym, where

© 2001 by Chapman & Hall/CRC Press, LLC



ym = C
0

m(0) =
�1�P
i2
0

p

q
i

� X
!2
0

p
q
! logb p!;

the same as yq derived in Chapter 3, where Lagrange multipliers were used.
The results so far are somewhat analogous to a weak law of large numbers (see

Example 4.3.3). We have shown that under certain conditions, given by Extended
Hypotheses 4.2.2, e�(q) and e

f(y) are related via Legendre transforms. That is,
global averaging is related to the local behaviour of the measure �. The multifrac-
tal spectrum e

f(y) is a dimension in the sense that it is a powerlaw exponent of the
probability distribution of the local behaviour of the measure �. However, it is not
necessarily a geometrical dimension (e.g., Hausdorff, box, packing) of some pre-
defined set. The interpretation of ef(y) as a Hausdorff dimension depends on the

extension of �(n)m to B(X ). In this sense, results relating to Hausdorff dimensions
are more analogous to a strong law of large numbers. We develop these ideas in
the next section.

4.5 Hausdorff Dimensions

We have denoted BÆn(k) as the kth box in the lattice covering. The measure

�

(m)
n was defined on Fn, the sub-�-field generated by boxes at the nth stage.

Now consider a point x 2 X . We will be interested in the box that contains this
point. It is contained by the box with index k(x), i.e., the box BÆn(k(x)). To
avoid notation becoming too clumsy, we will simply denote this as BÆn(x), if in

the given context, it cannot be confused with BÆn(k). Further, let �(1)
m be the

inductive limit measure of �(n)m as n!1.

4.5.1 Definition

For y > 0, define the sets eF (y) and eFm(y) as

e
F (y) =

n
x 2 X : lim

n!1
Yn(x) = y

o
=

�
x 2 X : lim

n!1

log�[BÆn(x)]

log Æn
= y

�
;

(4.17)

and

e
Fm(y) =

(
x 2 X : lim

n!1

log �
(1)
m [BÆn(x)]

log Æn
= y

)
:

In this section we evaluate the Hausdorff dimension of eF (y). This involves a
couple of steps. The argument is based on the behaviour of the sampling measure
�

(n)
m defined in x4.4. However, here we require the extension of that measure to
B(X ). As a consequence, Yn ! ym = C

0
0(�m) �

(1)
m -a.s., and hence we have

something more akin to a strong law of large numbers. This is useful, because it
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can then be shown that the sets eF (ym) and eFm(mym� e�(m)) are the same, apart

from a set of measure zero. Therefore, we can study the local behaviour of �(1)
m .

We then apply a theorem due to Billingsley to determine the Hausdorff dimension
of eFm(mym � e�(m)). This is then related back to the set of interest, eF (y).

4.5.2 Extension Theorem

Assume that �(n)m is consistent, i.e.,

�
(n+1)
m (E) = �

(n)
m (E) 8E 2 Fn and n = 1; 2; � � � ;

and

�
(1)
m (E) = �

(n)
m (E) 8E 2 Fn and n = 1; 2; � � � ;

where �(1)
m is the inductive limit measure of �(n)m as n ! 1. Then �

(1)
m is a

unique extension of �(n)m to B([0; 1]d).

Proof. If E 2 Fn ) E 2 Fn+1. The result follows from the Kolmogorov
extension theorem (Rényi, 1970, page 286; Breiman, 1968, page 24).

4.5.3 Lemma

Assume that �(n)m is consistent as in Theorem 4.5.2. Then Yn ! ym �

(1)
m -a.s., or

equivalently �(1)
m

� e
F (ym)

�
= 1.

Proof. It follows from Theorem 4.5.2 that �(1)
m is a unique extension of �(n)m to

B(X ). Hence, from Theorem B.3.15, Yn ! ym �

(1)
m -a.s.

4.5.4 Lemma

Assume that �(n)m is consistent as in Theorem 4.5.2. Thene
F (ym) � e

Fm

�
mym � e�(m)

�
:

Further, that part where there is no intersection has measure zero, i.e.,

�
(1)
m

h e
Fm(mym � e�(m)) n eF (ym)

i
= 0:

Proof. For all x 2 eF (ym)

lim
n!1

log �
(1)
m [BÆn(x)]

log Æn
= lim

n!1

log �
(n)
m [BÆn(x)]

log Æn

= lim
n!1

�
log�m[BÆn(x)]

log Æn
�

P
k log�

m[BÆn(k)]

log Æn

�
= mym � e�(m):
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Thus eF (ym) � e
Fm

�
mym � e�(m)

�
. The second statement follows from Lemma

4.5.3.

We need a result due to Billingsley (1965). We initially give a generalisation of
the Hausdorff dimension, then Billingsley’s theorem.

4.5.5 Generalised Hausdorff Dimension Definition (Cutler, 1986)

Suppose that (X ;B(X ); �) is a probability space where X � R
d and B(X ) con-

tains the Borel sets of X . Then define the Generalised s-Dimensional Hausdorff
Measure of F � X as

Gs(F ) = lim
Æ!0

inf
fUig

(
1X
i=1

�(Ui)
s : �(Ui) � Æ and F �

1[
i=1

Ui

)
:

The Generalised Hausdorff Dimension with respect to the measure �, dim�(F ),
is

dim�(F ) = inffs : Gs(F ) = 0g = supfs : Gs(F ) =1g:

In what follows, we use lattice coverings by b-adic cubes. A lattice covering
of d-dimensional b-adic cubes at the nth level has boundaries determined by the
b-adic rational expansions of length n, but where each boundary is open on the
right.

4.5.6 Billingsley’s Theorem (Billingsley, 1965; Cutler, 1986, Page 1477)

If � and � are non-atomic probability measures on B([0; 1]d) and

G(y) �

�
x : lim

n!1

log �[Bn(x)]

log�[Bn(x)]
= y

�
;

where Bn(x) is the d-dimensional b-adic cube of volume b�nd containing x, then

dim�G(y) = y dim� G(y):

4.5.7 Corollary (Billingsley, 1965; Cutler, 1986, Page 1477)

Assume that � and � are non-atomic probability measures on B([0; 1]d), G(y)
is as in Theorem 4.5.6, and �[G(y)] > 0. Then dim� G(y) = 1. Further, let �
denote the Lebesgue measure. Then

dimH G(y) = d dim�G(y) = dy:
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4.5.8 Lemma

Assume that �(n)m is consistent as in Theorem 4.5.2. Let �(1)
m , the inductive limit

of �(n)m , be a non-atomic probability measure on B([0; 1]d). Then,

dimH

e
Fm

�
mym � e�(m)

�
= mym � e�(m):

Proof. In Corollary 4.5.7, let � = �

(1)
m . From Lemma 4.5.4,

�
(1)
m

h e
Fm(mym � e�(m))

i
= 1:

The result follows by noting that G(y=d) = e
Fm(y).

4.5.9 Theorem

Let X = [0; 1]d and BÆn(k) form a system of b-adic cubes of width Æn = b
�n,

where b is an integer � 2. Given C0(q) satisfies the Extended Hypotheses 4.2.2,

�m 2 intD(C0) and �1 2 D(C0), and �

(n)
m is consistent as in Theorem 4.5.2,

then

dimH

e
F (ym) = e

f(ym);

where ym = C
0
m(0) = C

0
0(�m).

Proof. From Lemmas 4.5.4 and 4.5.8, dimH

e
F (ym) = mym � e

�(m). From
Corollary 4.4.4, Im(ym) = 0, and hence the result follows from Equation 4.16.

4.5.10 Corollary

Let X = [0; 1]d and BÆn(k) form a system of b-adic cubes of width Æn = b
�n,

where b is an integer � 2. Given that C0(q) satisfies the Extended Hypotheses

4.2.2, �1 2 D(C0), and for all m such that �m 2 D(C0), �
(n)
m is consistent as

in Theorem 4.5.2, then

dimH

e
F (y) = e

f(y) for y 2 (ymin; ymax);

where ymin = limm!qmax ym, ymax = limm!qmin ym, (qmin; qmax) = D(C0)
and ym = C

0
0(�m).

Proof. From Theorem 4.5.9, dimH
e
F (ym) = e

f(ym). The result follows because
ym = C

0
0(�m) is a continuous function of m taking all values on (ymin; ymax).

4.5.11 Example - Multinomial Measures

The multinomial measures of Chapter 3 fit into this framework, with X = [0; 1]
and Æn = b

�n where b is a positive integer � 2. In this chapter the boxes were
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denoted by BÆn(k) where k is some arbitrary index. In this example it is easier to
denote the boxes by Jn(!) where ! 2 
n, a space of sequences of length n (see
Chapter 3). However, the lattice system Jn(!), ! 2 
n, refers to the same lattice
system as the BÆn(k)’s, except that Jn(!) is a closed interval, and BÆn(k) is half
open. By specifying BÆn(k) to be half open ensures that each x 2 X belongs to
a unique box, and hence eF (y) in Equation 4.17 is well defined. In the case of the
multinomial measures, the b-adic expansion of a number x allocates it to a unique
box. In the case of the multinomial measures, the boundaries of the intervals have
zero measure, and hence the functions e�(q) and ef(y) will be the same under either
covering regime.

In the current example,Fn could also be defined as the sub-�-field generated by
the non-overlapping intervals Jn(!), ! 2 
n. Thus if A 2 Fn, then A\Jn(!) =
; or A \ Jn(!) = Jn(!). The measure � is defined on Fn by Equation 3.1. By
construction, it is clear that it has an extension to B([0; 1]) .

Now consider the family of sampling measures. Recall that 
0 = f! 2 
 :
p! > 0g and hence 
n

0 = f! 2 
n : �[Jn(!)] > 0g. Let A 2 Fn. Then
A 2 Fn+1, hence

�
(n+1)
m (A) =

P
!2
n+1

0

Mm[A \ Jn+1(!)]

(
P

!2
0
p
m
! )n+1

=

P
!2
n

0

P
�2
0

Mm[A \ Jn+1(! 1 �)]

(
P

!2
0
p
m
! )n+1

where ! 1 � is to be interpreted as the concatenation of the digit � to the end
of the n length sequence ! and the set function Mm is defined by Equation 4.12.
Recall that A 2 Fn, hence for a given ! 2 
n

0 , if A \ Jn+1(! 1 �) 6= ; for a
given � 2 
0, then A \ Jn+1(! 1 �) 6= ; for all � 2 
0. Therefore,

�
(n+1)
m (A) =

P
!2
n

0
Mm[A \ Jn(!)]

P
�2
0

p
m
�

(
P

!2
0
p
m
! )n+1

= �
(n)
m (A):

Hence �(n)m is consistent. By Theorem 4.5.2, �(n)m has an extension to B([0; 1])
denoted by �(1)

m . From Equation 3.8,e
�(q) = � logb

X
!2
0

p
q
!;

and from Equation 4.6, C0(q) = e�(0)� e�(�q). Hence

I0(y) = sup
q

fqy � C0(q)g = e
D0 � inf

q

n
qy � e�(q)o :

Given continuity of I0(y), then I0(y) = e
D0 � e

f(y), and further dimH

e
F (y) =e

f(y). The Legendre transform relationships in Equations 4.9 and 4.10 are shown
graphically in Figures 3.2, 3.3 and 3.4.
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CHAPTER 5

Point Centred Multifractals

5.1 Introduction

In this chapter we follow a parallel development to that in Chapter 4, though use
a point centred construction instead. That is, we are interested in the relationship
between the functions f(y) and �(q) defined by Equations 2.9 and 2.5, respec-
tively, and when f(y) can be interpreted as a Hausdorff dimension.

In Chapter 4, the behaviour of the measure was analysed by covering the set
X � R

d by d-dimensional boxes of width Æn, where Æn ! 0 as n ! 1. A
sub-�-field, Fn, was then generated by the lattice boxes at the nth stage. Rela-
tionships were then derived by defining a family of sampling measures on Fn. In
this chapter, a family of sampling measures are also defined, but all members of
the family are on the same measure space, i.e., (X ;B(X )).

In x5.2, the large deviation formalism is defined for a general sampling mea-
sure. In x5.3, a family of sampling measures is defined, and in x5.4 conditions
are given under which f(y) can be interpreted as a Hausdorff dimension. These
three sections closely follow the line of argument in Chapter 4. Less explanation
is given in this chapter, as it is assumed that the reader has already studied the
material in Chapter 4.

In x5.5, relationships between the lattice and point centred constructions are in-
vestigated. Of particular interest are the questions: when are the Rényi dimensions
and multifractal spectrums the same in both constructions. Another difference be-
tween the two constructions is the nature and existence of the limits in Æ, and the
width of the covering lattices or spheres. These will also be discussed in x5.5.

5.2 Large Deviation Formalism

We base our construction on the probability space (X ;B(X ); �(Æ)) where B(X )
are the Borel sets of X � R

d , and �(Æ) is some general sampling measure, which
is a function of Æ. Note the difference with the construction based on lattices in
x4.2, where we had a sequence of probability spaces (X ;Fn; �(n)). Here we have
the one measure space (X ;B(X )), but with the probability measure �(Æ) changing
with Æ.

Define the measurable functions fUÆgÆ>0 where

UÆ : (X ;B(X ))! (R;B(R));
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as

UÆ(x) =

�
� log�[SÆ(x)] if �[SÆ(x)] > 0
0 if �[SÆ(x)] = 0;

where SÆ(x) is a d-dimensional closed sphere of radius Æ centred at x. Also define
the functions fYÆgÆ>0 as

YÆ(x) =
UÆ(x)

� log Æ
:

We are interested in the behaviour of YÆ on the probability space (X ;B(X ); �(Æ))
as Æ ! 0.

Let XÆ = fx 2 X : �[SÆ(x)] > 0g. XÆ is sometimes referred to as the Æ-
parallel body of the support of � or a sausage set. It follows from Falconer (1990,
Proposition 3.2) that

eD0 = dimB supp(�) = d� lim
Æ!0

logVold(XÆ)
log Æ

if the limit exists, and Vold(XÆ) is the d-dimensional volume of XÆ .
Note that all references to C(q), I(y), Cm(q) and Im(y) are to those defined

within this chapter, and do not refer to those in Chapter 4.

5.2.1 Rescaled Cumulant Generating Function

Using Equation B.5, it follows that the Rescaled Cumulant Generating Function
is C(q), q 2 R, if the limit (Æ ! 0) exists, where

C(q) = lim
Æ!0

logE
�
eqUÆ(x)

�
� log Æ

;

and the expectation is taken with respect to the sampling measure �(Æ). Therefore,

C(q) = lim
Æ!0

log
R
XÆ

��q[SÆ(x)]�
(Æ)(dx)

� log Æ
: (5.1)

Note that we allow +1 as a limit value. Further, let

I(y) = sup
q2R

fqy � C(q)g; y > 0: (5.2)

I(y) may also take the value +1, and is referred to as the Legendre transform of
C(q).

5.2.2 Extended Hypotheses

1. C(q) satisfies Hypotheses B.3.8.

2. C(q) is differentiable on the interior of the D(C) = fq 2 R : C(q) < 1g,
and C(q) is steep (Definition B.2.1).
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5.2.3 Theorem - Exponential Convergence

If C(q) satisfies the Extended Hypotheses 5.2.2, then I(y) has a unique minimum
at y0 = C 0(0) such that I(y0) = 0. Further, YÆ

exp
�! y0 with respect to �(Æ) (see

Definition B.3.13), and

C(q) = sup
y

fqy � I(y)g: (5.3)

Proof. Given the Extended Hypotheses 5.2.2, the argument follows in exactly the
same way as for Theorem 4.2.3.

5.2.4 Theorem - Large Deviation Bounds

If C(q) satisfies the Extended Hypotheses 5.2.2, then

lim
�!0

lim
Æ!0

log �(Æ)fx : �� < YÆ(x)� y � �g

� log Æ
= �I(y) for y 2 intD(I):

(5.4)

Proof. Given the Extended Hypotheses 5.2.2, the argument follows in exactly the
same way as in Theorem 4.2.4.

5.3 A Family of Sampling Measures

A family of sampling measures can be defined in a similar manner as in x4.4 so
that different limits are realised depending on the sampling measure.

5.3.1 Definition

Define a family of sampling measures �(Æ)m as

�(Æ)m (E) =

R
E\XÆ

�m�1[SÆ(x)]�(dx)R
XÆ

�m�1[SÆ(x)]�(dx)
; (5.5)

where m 2 R, Æ is fixed, and E 2 B(X ).
In this case, C(q) and I(y) will be denoted as Cm(q) and Im(y), respectively.

Note that unlike the family in x4.4 which is defined on a sub-�-field, here �(Æ)m is
defined on B(X ).

5.3.2 Theorem - Rescaled Cumulant Generating Function

If �(0) exists, or equivalently�1 2 D(C0), then

C0(q) = �(0)� �(�q);

where �(q) is given in Definition 2.4.1. Further, if �m 2 D(C0), then

Cm(q) = C0(q �m)� C0(�m); (5.6)
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and

Im(y) = C0(�m) +my + I0(y): (5.7)

Proof. Inserting �(Æ)m into Equation 5.1 and letting m = 0 and q = �1, one gets
C0(�1) = �(0), i.e., �(0) exists iff �1 2 D(C0). Thus, C0(q) = �(0) � �(�q)

if �1 2 D(C0). Similarly, inserting �(Æ)m into Equation 5.1 and rearranging gives
Equation 5.6, given that �m 2 D(C0). Equation 5.7 follows in the same manner
as in Theorem 4.4.2.

5.3.3 Lemma

Given that C0(q) satisfies the Extended Hypotheses 5.2.2 and �m 2 intD(C0),
then Cm(q) satisfies the Extended Hypotheses 5.2.2. Further, Im(y) is a continu-
ous function on D(I0).

Proof. As for Lemma 4.4.3.

5.3.4 Corollary - Exponential Convergence

If C0(q) satisfies the Extended Hypotheses 5.2.2 and �m 2 intD(C0), then
YÆ

exp
�! ym with respect to �

(Æ)
m , where ym = C 0m(0) = C 00(�m). Further,

Im(ym) = 0 is the unique minimum of Im(y).

Proof. Follows directly from Theorem 5.2.3 and Lemma 5.3.3.

5.3.5 Note

If �(0) exists (Equation 2.5), then it follows from Equation 2.9 that

f(y) = ��(0) + lim
�!0

lim
Æ!0

log �
(Æ)
0 fx 2 X : �� < YÆ(x)� y � �g

� log Æ
; (5.8)

allowing for f(y) = �1 when �(Æ)0 fx 2 X : �� < YÆ(x)� y � �g = 0.

5.3.6 Corollary - Large Deviation Bounds

Given that C0(q) satisfies the Extended Hypotheses 5.2.2, then for all m such that
�m 2 intD(C0), and for all y 2 intD(I0)

lim
�!0

lim
Æ!0

log �
(Æ)
m fx 2 X : �� < YÆ(x)� y � �g

� log Æ
= �Im(y):

Further, if �1 2 D(C0), then

Im(y) = ��(m) +my � f(y); (5.9)

where �(m) and f(y) are given by Equations 2.5 and 2.9, respectively.
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Proof. The double limit follows from Theorem 5.2.4. Given �1 2 D(C0), then
�(0) exists and is finite. Together with Equation 5.8, it then follows that I0(y) =
�f(y)� �(0). Substituting into Equation 5.7 gives Equation 5.9.

5.3.7 Corollary

Given that C0(q) satisfies the Extended Hypotheses 5.2.2 and �m 2 intD(C0),
then ym = C 0m(0) = C 00(�m) is the unique value of y at which the infimum is
attained in �(m) = infy fmy � f(y)g. Further, ym is a continuous function of m.

Proof. In the same way as for Corollary 4.4.7.

5.3.8 Corollary

Given that C0(q) satisfies the Extended Hypotheses 5.2.2 and �1 2 D(C0),
then the measure � is a multifractal measure satisfying the point centred formal-
ism in a weak sense (Definition 2.5.5). Further, the value of y where �(q) =
infy fqy � f(y)g occurs at y = �0(�q) for �q 2 intD(C0).

Proof. The argument follows in the same manner as for Corollary 4.4.8.

5.4 Hausdorff Dimensions

In this section we follow a similar line of argument as was done in x4.5, where con-
ditions were determined under which ef(y) could be interpreted as the Hausdorff
dimension of eF (y). In x4.5, we appealed to a result by Billingsley (1965). The
analogue in the present context is a result due to Young (1982).

5.4.1 Definition

For y > 0, define the sets F (y) and Fm(y) as

F (y) =

�
x 2 X : lim

Æ!0
YÆ(x) = y

�
=

�
x 2 X : lim

Æ!0

log�[SÆ(x)]

log Æ
= y

�
(5.10)

and

Fm(y) =

(
x 2 X : lim

Æ!0

log �
(0+)
m [SÆ(x)]

log Æ
= y

)
;

respectively, where �(0
+)

m is the inductive limit measure of �(Æ)m as Æ ! 0.
For the argument to work, we are interested in the behaviour of YÆ on the prob-

ability space (X ;B(X ); �
(0+)
m ). Under satisfactory conditions, it will be shown

that F (ym) � Fm(mym� �(m)). To do this, a few regularity conditions must be
satisfied.
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5.4.2 Lemma

Assume that C0(q) satisfies the Extended Hypotheses 5.2.2 and �1 2 intD(C0).

Further, for all m such that �m 2 intD(C0), we assume that �(0
+)

m [F (ym)] = 1
and that the following two relationships hold for all x 2 F (ym):

lim
Æ!0

log
R
SÆ(x)

�m�1[SÆ(z)]�(dz)

log Æ
= lim

Æ!0

log�m[SÆ(x)]

log Æ
(5.11)

and

lim
Æ!0

log �
(0+)
m [SÆ(x)]

log Æ
= lim

Æ!0

log �
(Æ)
m [SÆ(x)]

log Æ
: (5.12)

Then F (ym) � Fm(mym��(m)) where ym = C 0m(0) = C 00(�m). Further, that
part where there is no intersection has measure zero, i.e.,

�(0
+)

m

�
Fm(mym � �(m)) n F (ym)

�
= 0:

Proof. Since �1 2 D(C0), then �(0) exists. Since also �m 2 intD(C0), then
both �(m) and ym exist. Now consider those x 2 F (ym), then

lim
Æ!0

log �
(0+)
m [SÆ(x)]

log Æ
= lim

Æ!0

log
R
SÆ(x)

�m�1[SÆ(x)]�(dz)

log Æ
� �(m)

= mym � �(m):

Hence F (ym) � Fm(mym � �(m)). Since �(0
+)

m [F (ym)] = 1, the last statement
follows.

Note the difference between the above result and Lemma 4.5.4 in the lat-
tice based constructions. In the lattice case, given consistency and the Extension
Theorem 4.5.2, �(1)

m [F (ym)] = 1 follows from Theorem B.3.15. In the point cen-
tred case, Equation 5.12 is a weaker condition than the consistency conditions of

the Extension Theorem 4.5.2 and hence we also require that �(0
+)

m [F (ym)] = 1.
Equation 5.11 is a type of smoothness condition.

5.4.3 Theorem (Young, 1982)

Let � be a finite non-atomic Borel measure on Rd and F � R
d be �-measurable

and have �(F ) > 0. Suppose that for every x 2 F ,

�1 � lim inf
Æ!0

log �[SÆ(x)]

log Æ
� lim sup

Æ!0

log �[SÆ(x)]

log Æ
� �2:

Then �1 � dimH F � �2.
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5.4.4 Corollary

Let �(0
+)

m be a finite non-atomic Borel measure and �(0
+)

m [Fm(mym��(m))] > 0.
Then for all m such that �m 2 intD(C0),

dimH Fm(mym � �(m)) = mym � �(m):

Proof. Follows from Theorem 5.4.3.

5.4.5 Theorem

Assume that the conditions of Lemma 5.4.2 are satisfied, and �
(0+)
m is a non-

atomic probability measure. Then dimH F (ym) = f(ym), where ym = C 0m(0) =
C 00(�m).

Proof. From Lemma 5.4.2, F (ym) � Fm(mym � �(m)). Also by assumption,

�
(0+)
m [F (ym)] = 1, and so it follows from Corollary 5.4.4 that

dimH F (ym) = mym � �(m):

Since Im(ym) = 0, and inserting into Equation 5.9, one gets f(ym) = mym �

�(m).

5.4.6 Corollary

Given that all conditions of Lemma 5.4.2 are satisfied, and �(0
+)

m is a non-atomic
probability measure, then

dimH F (y) = f(y) for y 2 (ymin; ymax);

where ymin = limm!qmax ym, ymax = limm!qmin ym, (qmin; qmax) = D(C0)
and ym = C 00(�m).

Proof. The result follows from Theorem 5.4.5 because ym = C 00(�m) is a con-
tinuous function of m taking values on (ymin; ymax).

5.5 Relationships Between Lattice and Point Centred Constructions

Using the family of sampling measures for both lattices and point centred con-
structions, identical relationships between entropy functions and rescaled gener-
ating functions have been derived. Results that ensure that � is a multifractal in a
weak sense (i.e., Legendre transform relationships hold) follow directly from the
large deviation results of Ellis (1984, 1985), and are analogous, in some sense,
to a weak law of large numbers. In both the lattice and point centred cases, the
functions ef(y) and f(y) can be interpreted as a type of dimension, in that it de-

scribes the powerlaw rate of convergence of the probability measures �(n)m and
�
(Æ)
m , respectively. However, the stronger results involving Hausdorff dimensions
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require almost sure convergence of Yn and YÆ and, therefore, are more analogous
to a strong law of large numbers.

In this section, there are four questions we want to address:
1. Under what conditions are the partitioning sets of local behaviour the same

under both constructions; i.e., when does F (y) = eF (y) where F (y) and eF (y)
are given by Equations 5.10 and 4.17, respectively?

2. Under what conditions are the Rényi dimensions the same under both con-
structions; i.e., when does Dq = eDq or �(q) = e�(q), where �(q) and e�(q) are
given by Equations 2.5 and 2.2, respectively?

3. The difference between the nature of the limits in Æ between the lattice and
point centred constructions, i.e., a sequence Æn ! 0 compared to Æ ! 0.

4. Under what conditions are the multifractal spectrums the same under both con-
structions; i.e., when does f(y) = ef(y), where f(y) and ef(y) are given by
Equations 2.9 and 2.7, respectively?

None of the questions are answered conclusively, though examples are given
where these relationships do hold. These may be suggestive of the required con-
ditions in more general situations.

When Does F (y) = eF (y)?
The following results are special cases of those in Cawley & Mauldin (1992)
applied to the multinomial measures of Example 4.5.11. They also hold in the
more general setting of Moran cascades to be discussed in Chapter 6. Notation
used below (i.e., 
, 
0, 
n, 
1, etc.) is the same as in Example 4.5.11. Further,
if ! = (!1; !2; � � � ) 2 
1, then ! jn is to be interpreted as (!1; !2; � � � ; !n);
and the symbol1 is to be interpreted as concatenate, for example (!1; � � � ; !n) 1
t = (!1; � � � ; !n; t).

5.5.1 Theorem (Cawley & Mauldin, 1992)

Let ! = (!1; !2; � � � ) 2 
1,

x =

1X
k=1

!k

bk
;

and SÆ(x) be a closed sphere of radius Æ about x. Further, let � be a multinomial
measure of base b (see Example 4.5.11). Then,

lim sup
Æ!0

log�[SÆ(x)]

log Æ
� lim sup

n!1

log�[Jn(!jn)]

log Æn
;

where Æn = b�n and

Jn(!jn) =

24 nX
j=1

!j

bj
;

1

bn
+

nX
j=1

!j

bj

35 :
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Proof. Temporarily fix Æ < 1=(2b). Now select n such that Jn(!jn) � SÆ(x) and
Jn�1(!j(n � 1)) 6� SÆ(x). Thus, jJn(!jn)j � 2Æ. The least optimal covering of
Jn�1(!j(n � 1)) by SÆ(x) will be when ! = (!1; !2; � � � ; !n�1; 0; 0; � � � ), i.e.,
the centre of the sphere, x, is on the lower bound of both Jn�1(!j(n � 1)) and
Jn(!jn). By construction, Jn�1(!j(n� 1)) 6� SÆ(x), hence jJn�1(!j(n� 1))j �
Æ. Hence

Æ � jJn�1(!j(n � 1))j = bjJn(!jn)j � 2bÆ < 1:

Therefore,

log�[SÆ(x)]

log Æ
�

log�[Jn(!jn)]

log Æ

�
log�[Jn(!jn)]

log jJn(!jn)j + log b

=
log�[Jn(!jn)]

log jJn(!jn)j

�
1 +

log b
log jJn(!jn)j

�
�

log�[Jn(!jn)]

log jJn(!jn)j

�
1�

log b

log jJn(!jn)j

�
�

log�[Jn(!jn)]

log jJn(!jn)j

�
1�

log b

log(2Æ)

�
:

Taking limits gives the result.

5.5.2 Theorem (Cawley & Mauldin, 1992)

Let ! = (!1; !2; � � � ) 2 
1,

x =

1X
k=1

!k

bk
;

and SÆ(x) be a closed sphere of radius Æ about x. Further, let � be a multinomial
measure of base b (see Example 4.5.11), constructed with the elementary weights
p0; � � � ; pb�1. Assume that for each pi > 0 and pj > 0 such that i < j, there
exists a k such that i < k < j and pk = 0. Then

lim inf
Æ!0

log�[SÆ(x)]

log Æ
� lim inf

n!1

log�[Jn(!jn)]

log Æn
;

where Æn = b�n.

Proof. LetK =
T
1

n=1

S
!02
n

0
Jn(!

0), where
S
!02
n

0
Jn(!

0) are those subinter-
vals at the nth level with positive � measure. Temporarily fix Æ < 1=(2b). Let

hÆ(x) = maxfn : SÆ(x) \ K � Jn(!jn)g;

where ! = (!1; !2; � � � ). Thus log�[SÆ(x)] � log�[JhÆ(x)(!jhÆ(x))]. One can
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select a t 2 
0 such that t 6= !hÆ(x)+1 (i.e., not equal to the (hÆ(x) + 1)st digit
in the sequence !) and a point y 2 JhÆ(x)+1((!jhÆ(x)) 1 t) \ K \ SÆ(x) such
that x 2 JhÆ(x)+1(!j(hÆ(x) + 1)) � JhÆ(x)(!jhÆ(x)) and

JhÆ(x)+1(!j(hÆ(x) + 1)) \ JhÆ(x)+1((!jhÆ(x)) 1 t) = ;:

Therefore,

1

b
> 2Æ > jx� yj:

However, there is a gap of width b�(hÆ(x)+1) between the b-adic interval contain-
ing x and that containing y. Thus, 2Æ > jx � yj > b�(hÆ(x)+1) = b�1jJhÆ(x)(!j
hÆ(x))j. Therefore, jJhÆ(x)(!jhÆ(x))j < 2Æb < 1, and so

log�[SÆ(x)]

log Æ
�

log�[JhÆ(x)(!jhÆ(x))]

log Æ

�
log�[JhÆ(x)(!jhÆ(x))]

log jJhÆ(x)(!jhÆ(x))j � log(2b)

=
log�[JhÆ(x)(!jhÆ(x))]

log jJhÆ(x)(!jhÆ(x))j

�
1�

log(2b)
log jJhÆ(x)(!jhÆ(x))j

�
�

log�[JhÆ(x)(!jhÆ(x))]

log jJhÆ(x)(!jhÆ(x))j

�
1 +

log(2b)

log jJhÆ(x)(!jhÆ(x))j

�
:

Taking limits gives the result.

5.5.3 Corollary

Let � be a multinomial measure (Example 4.5.11) satisfying the conditions of
Theorem 5.5.2, andBÆn(x) be the b-adic interval of length Æn = b�n that contains
the point x. Then x 2 F (y) iff x 2 eF (y) where F (y) and eF (y) are defined by
Equations 4.17 and 5.10, respectively. Therefore, dimH F (y) = dimH

eF (y) =ef(y).
Proof. F (y) = eF (y) follows from Theorems 5.5.1 and 5.5.2. dimH F (y) =

dimH
eF (y) = ef(y) follows from Example 4.5.11.

Note that the above example requires ‘gaps’ (see Theorem 5.5.2). Note also, in
the point centred case, that the limit holds for all sequences (Æ ! 0), whereas in
the lattice case, a particular sequence fÆng was required.

When Does Dq = eDq?

In Example 3.5.1 it was shown that D2 = eD2, or equivalently �(2) = e�(2),
for the Cantor measure. The argument implemented there can also be used for
q = 3; 4; � � � .
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5.5.4 Theorem

Let � be a multinomial measure with gaps as in Theorem 5.5.2. Then Dq = eDq

or equivalently �q = e�q for q = 2; 3; � � � . Further, the limit (Æ ! 0) in �(q) holds
for all sequences.

Proof. The argument follows as in Example 3.5.1. Let X1; X2; � � � ; Xq be inde-
pendent random variables drawn from the distribution (�n) onKn (see definitions
in Example 3.5.1). Define

Yn = max fjX1 �Xqj; jX2 �Xqj; � � � ; jXq�1 �Xqjg ;

then from x2.4.5, Z
Xn

�n[SÆ(x)]�n(dx) = PrfYn � Æg:

When n = 0, �0 is just the uniform density on the unit interval. As in Example
3.5.1, g0(y) is the density of Y0 when X1; � � � ; Xq are sampled from the uniform
distribution. The actual form of g0(y) is not required in the argument. The proba-
bility distribution after the first division is given by �1, that is, the first subinterval
has p0 of the probability, the second p1, etc. However, at least every alternate
subinterval has zero mass, i.e., we have gaps which are at least the width of the
subintervals. Thus, if Y1 < b�1, then all q points X1; � � � ; Xq must be sampled
from the same subinterval. Since each subinterval has a uniform density with total
mass equal to one of p0; � � � ; pb�1, then

g1(y) = b(pq0 + � � �+ pqb�1)g0(by);

where 0 � y � b�1. The same argument is repeated at each division and, in
general,

gn(y) = b(pq0 + � � �+ pqb�1)gn�1(by);

where 0 � y � b�n. Therefore, the probability distribution function satisfies the
recurrence relation

Gn(y) = (pq0 + � � �+ pqb�1)Gn�1(by) = (pq0 + � � �+ pqb�1)
nG0(b

ny);

when 0 � y � b�n. The argument then follows in exactly the same manner as in
Example 3.5.1.

It is interesting to note that both the proofs of Theorem 5.5.4 and Corollary
5.5.3 require the measure to be supported by a set with gaps. While this condition
is sufficient, it is not clear to us that it is absolutely necessary.

Mikosch & Wang (1993, Proposition 2.1) give conditions under which �(q) =e�(q) for q > 1 in a more general setting. They require the measure � to have a
compact concentration set and to be continuous on that set.
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Riedi (1995, Proposition 20) has shown that if � is an arbitrary Borel measure,
then for any q > 1, one has

Dq =
e�R(q)
q � 1

;

where e�R(q) is defined in x2.6.3. Recall that there are two differences betweene�R(q) and e�(q): e�R(q) is defined on a system of overlapping lattices (i.e., a mov-
ing 3 � 3 grid centred on the middle box), and the limit in Æn is replaced by
lim inf Æ ! 0. Moreover, Riedi (1995) shows that Dq exists iff e�R(q) is grid regu-
lar. e�R(q) is grid regular if it exists with lim inf Æ ! 0 replaced by lim Æ ! 0. This
does not seem unreasonable as both the point centred construction and Riedi’s
construction, based on overlapping boxes, have a built in smoothing operation.

Nature and Existence of Limits in Æ

In both the Rényi dimensions (global average) and the multifractal spectrum (local
behaviour), we considered constructions that used coverings by lattices or spheres,
each of a given width which tends to zero. In the point centred case, coverings by
spheres were used where the radii Æ tended to zero. The limit was assumed to exist
for all sequences. In the case of the lattices, such a general limiting behaviour does
not usually exist and a specific sequence fÆng is required.

Reidi (1995) showed (see Example 2.6.2) that in the case of the Cantor mea-
sures, e�(q) does not exist for q < 1 if the limit in the definition of e�(q) is changed
from having Æn ! 0 to Æ ! 0. However, it was shown in Theorem 5.5.4 that
�(q) does exist (i.e., with Æ ! 0) for the multinomial measures with gaps for
q = 2; 3; � � � . The proof is based on the qth interpoint difference (x2.4.5), and it
is not clear to us whether these ideas can be extended to negative values of q.

When Does f(y) = ef(y)?
In the situation where �(q) = e�(q), and the multifractal formalism holds in a
weak sense for both lattice and point centred constructions, then f(y) = ef(y).

Note that the critical conditions for a point centred construction to hold are
given by Equations 5.11 and 5.12. Equation 5.11 requires a degree of smoothness
or homogeneity while Equation 5.12 requires consistent powerlaw behaviour as
Æ ! 0. If these conditions hold for the special case of the multinomial measures
as in Theorem 5.5.2, and �(q) behaves as required, then f(y) = dimH F (y), and
hence f(y) = ef(y). Note that this is not unreasonable in this example, as these
measures have gaps between the different parts, hence the integral in the defini-
tion of f(y), Equation 2.9, will essentially be the number of required covering
spheres (see Note 2.5.3), analogous to the number of covering boxes required in
the definition of ef(y) given by Equation 2.7.
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CHAPTER 6

Multiplicative Cascade Processes

6.1 Introduction

In Chapters 4 and 5, a multifractal formalism was established to describe a prob-
ability measure � on (X ;B(X )), where X � R

d and B(X ) are the Borel sets
of X . Except for the multinomial measures, no further assumptions were made
about the generating mechanism of �. In this chapter, we will assume that � is
generated as the result of a cascade process.

The motivation for cascade processes comes from physics, particularly turbu-
lence. Here energy enters the system on a very large scale, both in terms of space
and the amount of energy. Then the energy is dissipated, but not in a uniform man-
ner. Parts of the space may have eddies and quite violent behaviour, while other
parts have relative calm. This space division and energy dissipation repeats down
to smaller and smaller scales, until eventually, the energy is dissipated as heat.
This general concept is very similar to the example of the multinomial measures
in Chapter 3. However, in this chapter, there are two further generalisations that
will be made. Firstly, the space may not necessarily be divided into sets of the
same size at each division, the set size may even be random. Secondly, the energy
dissipation or probability allocation may also be done in a random manner.

We could think of the measure space (X ;B(X ); �) as the observation space,
where X � R

d , and � is the so called multifractal measure. We have referred
to it as a measure space because when � is a random measure, it will not be a
probability measure, though we will require that its expected value is one. In other
situations, like the multinomial measures of Chapter 3, � will be a probability
measure. In this introduction, we setup a generic framework that can be used to
describe both situations. Cascade processes involve defining a measure �n at a
‘coarse’ level, and then � will be defined as the inductive limit on an infinitely
‘fine’ level.

The support of the measure � is constructed in an iterative manner. At the nth
stage of the process, we want a collection of non-overlapping sets, whose union
contains the support of �. At the (n+1)st stage, each of these sets are subdivided
and so on. For example, the support of the Cantor measure is contained in [0; 1],
say K0. The collection of sets at the first level is

K1 =
�
0; 1

3

�
[
�
2
3
; 1
�
;
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and the second level is

K2 =
�
0; 1

9

�
[
�
2
9
;
1
3

�
[
�
2
3
;
7
9

�
[
�
8
9
; 1
�
;

and so on. The Cantor set is K =
T1
n=0Kn and is the support of the Cantor

measure. We need notation to describe this process in a more general setting.
A similar framework can be used as that for the multinomial measures in Chap-

ter 3. Let 
 = f0; 1; � � � ; b� 1g, where b is a fixed integer� 2, and let 
n be the
set of all sequences of length n containing digits in 
. Then we define a one to one
relationship between elements of 
n and a collection of non-overlapping subsets
(see Definitions A.1.1) of X by a mapping Jn(!) such that Kn =

S
!2
n Jn(!);

i.e., if !; !0 2 
n and ! 6= !
0, then Jn(!) and Jn(!0) are non-overlapping. Thus

Kn consists of bn non-overlapping subsets that cover the support of �.
Let 
1 denote the set of all infinite sequences (one sided to the right) contain-

ing digits in 
. We impose further structure by defining a projection of 
1 onto

n that extracts the first n digits from ! 2 
1, denoted by ! jn. The subdivi-
sion is required to satisfy the further condition that, for all n and all ! 2 
1,
Jn+1(! j (n + 1)) � Jn(! jn). Our aim is to define a measure � with support
K =

T
1

n=0Kn. Kn will be a covering of the support of �, and Kn+1 will be a
refined covering.

Define the coding map X as

X : 
1 �! X ;

in particular

X(!) =

1\
n=1

Jn(!jn): (6.1)

So far we have simply used the space of infinite sequences 
1 like an index set
to describe a nested covering system closing down onto the support of �.

Now let Sn be the sub-�-field generated by all subsets Jn(!) ofKn. Assuming
that we have a method to define a measure �n for all A 2 Sn, then we have a
measure space (X ;Sn; �n). We will then define � to be the inductive limit of �n.

One must be careful if one is to also think of 
1 as part of a measure space.
Recall that there is a one to one relationship between elements of 
n and the sub-
sets of Kn, and hence the sub-�-field generated by all subsets of Kn, denoted by
Sn, has a one to one relationship with that generated by the elements in 
n, called
Fn say. Further, given that �n is defined, let �n(E) = �n(Jn(E)) whereE 2 Fn.
Hence the two measure spaces (
1;Fn; �n) and (X ;Sn; �n) are isomorphic, one
being based on sequences, and the other being based on d-dimensional Euclidean
space. Our following discussions use that one which is the most convenient in the
given situation.

Now we want to impose more explicit structure on the size of the subsets Jn(!)
and the manner in which weight (not necessarily probability) is allocated to such
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subsets. Consider the mappings

Wi : 

i �! (0;1) (6.2)

and

Ti : 

i �! (0; 1); (6.3)

where i = 1; � � � ; n. Wi describes the allocation of weight or mass to the subsets
Jn(!), and Ti determines their size. Let �n be the mass distribution at the nth
stage, and assume that the mass allocation and size of the sets can be described as

�n[Jn(!)] =
nY
i=1

Wi(!ji) and jJn(!)j =
nY
i=1

Ti(!ji); (6.4)

respectively. Then let � be the limiting mass allocation as n!1.
To describe the multifractal behaviour of the limit measure �, we observe the

local growth or behaviour. In Chapters 4 and 5, we considered a mapping of the
form Yn : 
1 ! R, where

Yn(!) =
log�[Jn(!jn)]

log jJn(!jn)j
; (6.5)

where jJn(!jn)j ! 0 as n!1. Note that Yn is different from that in Chapter 4,
because in this chapter, the denominator log jJn(!)j is not assumed to be constant
for all subsets of Kn.

In the cascade literature, a distinction is made between random cascades and
deterministic cascades. Deterministic is meant in the sense that the mappingsWi

and Ti are both explicitly defined, as was done with the multinomial measures in
Chapter 3. Random cascades occur when one or both of Wi and Ti are random
variables. One could have a 2 � 2 situation, where one can either subdivide ac-
cording to a deterministic or random process in the above sense, and one could
also allocate weight according to a random or deterministic process.

6.1.1 Definition

Assume that there are given mappings of the form in Equations 6.2 and 6.3, and
that the measure �n on the subsets Jn(!) and the size of the subsets Jn(!) are
given by Equation 6.4, for all ! 2 
n, and for n = 1; 2; � � � . Also assume that the
inductive limit of the measure �n exists, and is denoted by �. Then the measure
� will be said to represent a multiplicative cascade process.

The local behaviour of �n, denoted by Y zn (!), can be represented for all ! 2


1 as

Y
z

n (!) =
log�n[Jn(!jn)]

log jJn(!jn)j
=

Pn
i=1 logWi(!ji)Pn
i=1 log Ti(!ji)

: (6.6)

We will call it an elementary multiplicative cascade process if jJn(!)j = Æn,
where Æn is constant for a given n, and a decreasing sequence as n!1.
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Note the distinction between Y zn (!) and Yn(!), where Y zn (!) is the local be-
haviour of �n, and Yn(!) is the local behaviour of �. In the case where the map-
pings Wi and Ti are deterministic, as described above, then Y zn (!) = Yn(!). In
the case where the allocated weights (or subdividing) are random, as described
above, then �n[Jn(!)] 6= �[Jn(!)] and hence Y zn (!) 6= Yn(!). In the case of the
multinomial measures (Chapter 3), the mapping Ti was trivial, i.e., Ti(!) = b

�1

giving jJn(!)j = b
�n. Further, the form of the mapping Wi was also explicitly

defined, and hence Y zn (!) = Yn(!).
In Chapter 4, global averages, Rényi dimensions, the multifractal spectrum, and

the partition sets were denoted by e�(q), eDq, ef(y) and eF (y), respectively. Simi-
larly, in Chapter 5, they were denoted by �(q),Dq , f(y) and F (y), respectively. In
both Chapters 4 and 5 the width of all covers were the same. In this chapter, func-
tions describing similar concepts will be defined, but will be denoted by �?(q),
D

?
q , f?(y) and F ?(y), respectively. In this chapter, we also want to consider ran-

dom measures. This requires a more general definition for �?(q) than that of e�(q).
For example, if one constructs a random measure � on the b-adic intervals, thene�(q) is random in nature. We want �?(q) to be similar in nature to a cumulant
generating function.

6.1.2 Definition - Global Averaging

For given values of n and q, �?n(q) is defined to be the solution to the equation

E

"
�
q
n[Jn(!)]

jJn(!)j
�?
n
(q)

#
= b

�n
;

assuming that the expectation exists which is taken over all subsets of the nth level
with equal probability b�n. Equivalently, in a format like a cumulant generating
function,

E

"
exp

 
q

nX
i=1

logWi(!ji)� �
?
n(q)

nX
i=1

logTi(!ji)

!#
= b

�n
:

Then �?(q) = limn!1 �
?
n(q) assuming that this limit exists. The multiplicative

cascade Rényi dimensions are defined for q 6= 1 as

D
?
q =

�
?(q)

q � 1
:

Note the difference between e�(q) and �?(q), even when jJn(!)j = log Æn for
all !. When � is a random measure, then e�(q) is random in nature (sometimes
referred to as a sample average), whereas �?(q) is not (sometimes referred to
as an ensemble average). This will be discussed further in x6.3. However, the
interpretation of �?(q) is similar to both e�(q) and �(q), see Example 3.3.2.

When the partitioning at each step is regular as in Chapters 4 and 5, both �(q)
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and e�(q) have an important probabilistic interpretation. They were related to the
rescaled cumulant generating function, and as such one can appeal to the theory
of large deviations to describe the local behaviour, and justify Legendre trans-
form relationships between the global averaging and local behaviour. In Chapter
4, under satisfactory conditions, the local behaviour of � was described as

lim
n!1

logPrfYn 2 Ag

log Æn
= � inf

y2A
I(y);

where Æn was the size of the subsets at the nth stage and I(y) was related to e�(q)
via a Legendre transform. Further, the multifractal spectrum, ef(y), was defined
in such a way that it was explicitly related to I(y) (see Equation 4.7). However,
in the present context, the subset sizes at each step are not a constant Æn, and
hence the results are not applicable. In the cascade context, we require a different
definition of f?(y).

6.1.3 Definition - Multifractal Spectrum

The multifractal spectrum of a multiplicative cascade process, denoted by f?(y),
is defined for y 2 R as

f
?(y) = inf

q
fqy � �

?(q)g :

In a sense, f?(y) is the analogue of ef(y) given by Equation 2.7. This is not
strictly correct though. Recall that in Chapter 4, C0(q) was the rescaled cumulant
generating function with the uniform sampling measure. Apart from constants
and sign changes, it is related to e�(q) given by Equation 4.6. However, I0(y) was
defined as the Legendre transform ofC0(q), and hence I0(y) (apart from constants
and sign changes) is really the analogue of f?(y). Note that ef(y) in Chapter 4
was defined by Equation 2.7, and satisfied the Legendre transform relationships if
the conditions of Corollary 4.3.5 were satisfied. In the present formulations, the
definition of ef(y) given by Equation 2.7, is not relevant, as log Æn may be different
for different subsets of Kn.

The remainder of this chapter is mainly given to discussing Moran and random
cascade processes. Moran cascade processes are described in x6.2. In that case the
construction of the support and measure allocation is performed in a deterministic
manner as described above, though is more general than the multinomial measures
in Chapter 3. In x6.3 results relating to random cascades are reviewed. The partic-
ular case studied here is where the measure allocation is random, but the division
of subsets is the same as in Chapter 3. Consequently, the Gärtner-Ellis Theorem
is still applicable, though one has the complication that Y zn (!) 6= Yn(!). Other
cascade processes are briefly discussed in x6.4.

Much of the material in this chapter has been drawn from Cawley & Mauldin
(1992), Holley & Waymire (1992) and Gupta & Waymire (1990, 1993).
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6.2 Moran Cascade Processes

Many of the cascade processes in the literature stem from a result due to Moran
(1946). He showed that if a set was repeatedly subdivided in a certain way, the
Hausdorff dimension of the limiting set satisfied a particularly simple relation-
ship. Sets that conform to such behaviour are self-similar. These ideas were fur-
ther developed by Hutchinson (1981). Definitions of self-similar sets and their
Hausdorff dimension can be found in Appendix A, xA.1.

The construction of a Moran fractal set is very similar to that of the Cantor set,
in that scaled copies are made of the set at each division. The difference is that the
scaling ratios are not required to be constant, and the initial or seed set can take
a more general form than the unit interval. Moran cascade processes have been
discussed by Cawley & Mauldin (1992) and Edgar & Mauldin (1992).

6.2.1 Definition - Moran Fractal Set (Moran, 1946; Hutchinson, 1981)

The symbol 1 is to be interpreted as concatenation, i.e., if ! = (!1; � � � ; !n) 2

n, then ! 1 k is to be interpreted as (!1; � � � ; !n; k) 2 
n+1. Associated
with each element ! 2 
 = f0; 1; � � � ; b � 1g is a similarity ratio, t!, where
0 < t! < 1. Let K0 � R

d be a seed set. It is assumed to be regular, i.e., K0 =
closure(intK0). The set Jn(!), ! 2 
n, is determined recursively, as follows.
Without loss of generality, let jK0j = 1.

1. J1(0); � � � ; J1(b � 1) are each non-overlapping similarities of K0, with sim-
ilarity ratios t0; � � � ; tb�1, respectively. (Non-overlapping is to be interpreted
as satisfying the open set condition, Edgar & Mauldin, 1992, page 606; see
Definition A.1.1.)

2. If Jn(!) has been determined for ! 2 
n, then Jn+1(! 1 0); Jn+1(! 1

1); � � � ; Jn+1(! 1 (b�1)) are non-overlapping subsets of Jn(!) such that for
each k 2 
, Jn+1(! 1 k) is geometrically similar to Jn(!) via a similarity
map with reduction ratio tk.

For n � 1, Kn =
S
!2
n Jn(!): The Moran Fractal Set is then defined as

K =

1\
n=0

Kn:

6.2.2 Theorem

The Hausdorff and box dimensions of the Moran fractal set are equal, moreover,

dimH K = dimB K = s;

where s is the solution to
P

!2
 t
s
! = 1.

Proof. Follows from Theorem A.1.5.
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n = 1

n = 2 n = 3

A Moran Fractal Set

Figure 6.1 An example of a Moran fractal set, with the seed set K0 in the top left. Also
shown are K1, K2 and K3. The similarity ratios are t0 = 1

3
; t1 =

1

2
; t2 =

1

3
and t3 = 1

2
.

The Hausdorff dimension of K is 1:605525 � � � .

6.2.3 Example

Let the circle in the upper left of Figure 6.1 represent a seed setK0. Let b = 4, with
the four similarities J1(0); � � � ; J1(3) of K1 be the circles in the top right (n = 1)
of Figure 6.1, in the order top, right, bottom and left. These have similarities
t0 = 1

3
; t1 = 1

2
; t2 = 1

3
and t3 = 1

2
. K2 and K3 are represented in Figure 6.1 at

the bottom left and bottom right respectively. From Theorem 6.2.2 the resulting
Moran fractal set K =

T1
n=0Kn has Hausdorff dimension 1:605525 � � � .

6.2.4 Moran Cascade Measure

Associated with each ! 2 
 is a non-zero probability p! such that
P

!2
 p! = 1,
and a similarity ratio 0 < t! < 1. Then the mappings Wi and Ti, given by
Equations 6.2 and 6.3 respectively, are defined explicitly as

Wi(!) = p!i and Ti(!) = t!i :

Thus

�n[Jn(!)] =

nY
i=1

Wi(!ji) = p!1p!2 � � � p!n ;
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and

jJn(!)j =

nY
i=1

Ti(!ji) = t!1 t!2 � � � t!n :

The measure � is the inductive limit of �n and is supported by the Moran fractal
set K.

Note the difference with Chapter 3, where here all p!’s are non-zero. It could
be made completely compatible by simply attaching a subscripted zero to the 
’s
in this chapter, since in Chapter 3, 
0 = f! : p! > 0g. For simplicity of notation,
we have not done this. Further, in the construction used in Chapter 3, zero values
of p! were necessary to create gaps in the support of �. This is not necessary
here, as gaps can be created by having different similarity ratios, which need not
necessarily sum to one.

It follows from Equation 6.6 that

Y
z

n (!) =
log�n[Jn(!jn)]

log jJn(!jn)j
=

Pn
i=1 log p!iPn
i=1 log t!i

:

In the case of the Moran cascades �[Jn(!)] = �n[Jn(!)] and so Yn(!) = Y
z
n (!).

In Chapters 4 and 5, the space X was partitioned according to the local powerlaw
behaviour of the measure �, that is, F (y) � X and eF (y) � X . Here we also want
to define F ?(y) in such a way that F ?(y) � X .

6.2.5 Definition - Partition Set

The partition set F ?(y), for y > 0, is defined as F ?(y) = X(G(y)), where

G(y) =
n
! 2 
1 : lim

n!1
Yn(!) = y

o
;

and X is the coding map in Equation 6.1.

6.2.6 Note

Recall that in Chapter 4, BÆn(x) was defined to be half open. Thus for each x 2
X , BÆn(x) is unique, hence the set

eF (y) = �x 2 X : lim
n!1

log�[BÆn(x)]

log Æn
= y

�
is properly defined, and the local behaviour can be determined.

The Moran fractal set K is constructed as the intersection of nested closed sets
with positive �-measure as n!1. HenceK is the support of � andK � X . Fur-
ther note that Jn(!) is closed becauseK0 is closed. However, the definition using
the coding map (Equation 6.1) ensures that F ?(y) is unambiguously defined.

The function �?(q) for the Moran cascade process satisfies a particularly simple
relationship. Cawley & Mauldin (1992) refer to �?(q) as an ‘auxiliary’ function.
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However, as already shown, it has a similar interpretation to the functions e�(q)
and �(q) in Equations 2.2 and 2.5, respectively.

6.2.7 Theorem

In the case of the Moran cascade processes, �?(q), where q 2 R, is the unique
solution to

b�1X
k=0

p
q
kt
��?(q)
k = 1:

Proof. From Definition 6.1.2,X
!2
n

�
q
n[Jn(!)] jJn(!)j

��?
n
(q)

=
X
!2
n

p
q
!1
� � � pq!nt

��?
n
(q)

!1 � � � t
��?

n
(q)

!n

=

 X
!2


p
q
!t
��?

n
(q)

!

!n

:

This is the sum over all bn subsets ofKn, hence should be equal to one. The result
then follows.

When q = 0, it follows from Theorem 6.2.2 that D?
0 = ��?(0) = dimH K =

dimH supp(�). In the case of multinomial measures, ti = b
�1 and hence �?(q) =e�(q).

6.2.8 Theorem - Multifractal Spectrum

The multifractal spectrum, f?(y) for y 2 R, of a Moran cascade process can be
calculated as

f
?(y?q ) = qy

?
q � �

?(q);

where y?q is the derivative of �?(q), i.e.,

y
?
q =

d

dq
�
?(q) =

b�1X
k=0

p
q
kt
��?(q)
k log pk

b�1X
k=0

p
q
kt
��?(q)
k log tk

:

Proof. From Definition 6.1.3, f?(y) = infq fqy � �
?(q)g. We have two functions

of q, one linear with slope y, the other being �?(q), see Figure 3.4. For a given
value of q, the infimum occurs when both have the same slope, i.e., when y = y

?
q .

The function y?q is the analogue of ym in Chapters 4 and 5, with m = q.
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6.2.9 Theorem - Hausdorff Dimensions (Cawley & Mauldin, 1992, Theorem 2.1)

Let y > 0, then dimH F
?(y) = f

?(y), where F ?(y) is the partition set as in
Definition 6.2.5 and f?(y) is the multifractal spectrum as in Theorem 6.2.8.

Proof. An outline of the proof follows. The proof is in two parts: dimH F
?(y) �

f
?(y) is shown by using a Vitali covering argument. Then dimH F

?(y) � f
?(y)

is shown by a geometric argument that is intrinsic to this particular setup. In
the course of the proof, Cawley & Mauldin (1992) introduce auxiliary measures,
denoted by �

(1)
m on the space (
1;Fn) defined by associating the probabilities

(p0t
��?(m)
1 ; � � � ; pb�1t

��?(m)

b�1 ) with each ! 2 
. By the definition of �?(m),
these probabilities sum to one. Associated probabilities with each ! 2 
n are
calculated as the relevant products.

In Chapters 4 and 5 we required that Yn ! ym �
(1)
m -a.s. where �(1)

m was the
analogue of �(1)

m . Cawley & Mauldin (1992) also rely on a strong law of large
numbers, achieved by appealling to Birkhoff’s ergodic theorem (Walters, 1982,
page 35) as follows. For �(1)

m almost all ! 2 
1,

lim
n!1

1

n

nX
i=1

logWi(!ji) = �

b�1X
k=0

p
m
k t

��?(m)

k log pk:

Similarly, for �(1)
m almost all ! 2 
1,

lim
n!1

1

n

nX
i=1

logTi(!ji) = �

b�1X
k=0

p
m
k t

��?(m)

k log tk:

Taking ratios, it then follows that limn!1 Yn(!) = y
?
m �

(1)
m -a.s., consistent

with Chapter 4. Therefore 
1 can be partitioned as �
(1)
m [G(ym)] = 1. Hence

the choice of auxiliary probabilities
�
p0t

��?(m)
1 ; � � � ; pb�1t

��?(m)

b�1

�
produces an

analogous argument to that of Chapters 4 and 5 where the sampling measure is
used.

A disadvantage of the definition of F ?(y) is that the determination of when
x 2 F

?(y) depends on knowing some sequence of sets Jn(!) of construction
closing down on x. For disjoint type Moran constructions, Cawley & Mauldin
(1992) showed that the local behaviour of the measure � can be expressed in
terms of a sphere centred at x.

6.2.10 Theorem (Cawley & Mauldin, 1992)

Consider a Moran cascade process generated by pairwise disjoint mappings (i.e.,
Jn(!) \ Jn(!

0) = ; for all ! 6= !
0 2 
n, and for all n). Then F ?(y) = F (y).

This is a general version of Theorems 5.5.1 and 5.5.2. Note also that the subsets
of Kn must have gaps between them. This is because each Jn(!) is a closed
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interval, and if the subsets are disjoint, then there must be a non-zero distance
between any pair.

In a series of papers, Mandelbrot and co-authors discuss multiplicative cascade
processes with anomalous behaviour. They refer to them as ‘exactly self-similar
left-sided’ processes, where the multifractal spectrum is increasing over its entire
range (see Mandelbrot, 1990b; Mandelbrot et al., 1990 and Riedi & Mandelbrot,
1995).

6.3 Random Cascades

This case has been discussed by Holley & Waymire (1992) and Gupta & Waymire
(1990, 1993). In this section, the process starts with K0 = [0; 1], which is then
divided into b � 2 intervals of equal length. Each of these subintervals are further
divided ad infinitum. The interval Jn(!) is defined as

Jn(!) =

24 nX
j=1

!j

bj
;

1

bn
+

nX
j=1

!j

bj

35 :
In this case, the mapping Ti in Equation 6.3, is fixed and constant; i.e., for all i
and ! 2 
i, Ti(!) = b

�1, and thus Jn(!) represents a specific subinterval of
length b�n.

As in Chapter 4, it will sometimes be more convenient to use an arbitrary enu-
meration of the intervals, rather that Jn(!). In this case, we will refer to them as
BÆn(k) where k = 1; � � � ; bn and Æn = b

�n. The box to which a point x 2 [0; 1]
belongs should logically be denoted as BÆn(k(x)), but to avoid notation becom-
ing too clumsy, it will be written as BÆn(x), when in the given context, it cannot
be confused with BÆn(k). As in Chapter 4, BÆn(k), k = 1; � � � ; bn, are half open
to the right, whereas Jn(!) are closed intervals. However, as with the multinomial
measures, the resultant measure on the boundaries of the intervals will be zero,
and hence this does not have an effect.

Weight is to be allocated to the subintervals randomly, and hence the resul-
tant measure is not a probability measure. That is, the mapping Wi(!) given by
Equation 6.2 is a random variable.

6.3.1 Construction of Random Measures

A measure is constructed on the interval [0; 1] as follows. Let

Wi(!) �W (!1; � � � ; !i);

where Wi(!), i = 1; 2; � � � , are i.i.d. non-negative random variables with mean
b
�1. Define the random measure �n with density (Radon-Nikodym derivative) as

�n(dx) = b
n
W1(!)W2(!) � � �Wn(!)dx
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where n � 1 and x 2 Jn(!). Thus

�n[Jn(!)] =

Z
Jn(!)

b
n
W1(!)W2(!) � � �Wn(!)dx

= W1(!)W2(!) � � �Wn(!):

The inductive limit measure will be denoted by �.
In what follows, the variable W is assumed to have the same distribution as

Wi(!). Note that Gupta & Waymire (1993) stipulate that E[W ] = 1. We require
that E[W ] = b

�1, ensuring that these processes can be described as in Equa-
tion 6.6. Below we quote some results, mainly from Holley & Waymire (1992),
changing where necessary for the effect of scaling W by b�1.

6.3.2 Definition (Holley & Waymire, 1992, Definition 2.1)

The random variableW is said to be strongly bounded below if there is a positive
number a such that PrfW > ag = 1. Similarly,W is said to be strongly bounded
above if PrfW < 1g = 1.

6.3.3 Theorem (Kahane & Peyrière, 1976; Holley & Waymire, 1992)

Let W denote a random variable with the same distribution as the Wi(!)’s, and
let Z1 = �([0; 1]).

1. If E[W logbW ] < 0, then E[Z1] > 0, and conversely. The condition that
E[Z1] > 0 is equivalent to E[Z1] = 1.

2. Let q > 1. Then Z1 has a finite moment of order q iff q < qcrit = supfq � 1 :
� logb E[W q ] > 1g. Moreover, E[Zq

1] < 1 for all q > 0 iff W is essentially
bounded by 1 (i.e., kWk1 < 1) and PrfW = 1g < 1=b.

3. Assume that E[Z1 logb Z1] <1. Then � is a.s. supported by the random set

supp(�) =

�
x 2 [0; 1] : lim

n!1

log�[BÆn(x)]

log Æn
= �bE[W logbW ]

�
with Hausdorff dimension �bE[W logbW ].

6.3.4 Corollary (Holley & Waymire, 1992, Corollary 2.5)

If the cascaded variable W is strongly bounded above, then Z1 has all moments
of positive order. If the cascaded variableW is strongly bounded below, then Z1
has negative moments of all orders.

Since the allocation of mass is random, then the mass at the nth generation
in a particular interval, �n[Jn(!)], will not be the same as the limiting mass al-
location �[Jn(!)]. In the random cascade literature, �n is often referred to as a
bare cascade measure, while � is referred to as a dressed cascade measure. The
distribution of the two measures are related as stated in the following proposition.
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6.3.5 Proposition (Holley & Waymire, 1992, Proposition 2.3)

Let BÆn(k), k = 1; � � � ; bn, be an arbitrary enumeration of the nth generation

b-adic intervals Jn(!) of [0; 1], and
d
= denote equality of probability distributions.

Then the following hold.

1.
�m[BÆn(k)]

d
= Z

(n)
m�n(k)�n[BÆn(k)];

where m � n, k = 1; � � � ; bn; and Z(n)
m�n(k) has the same distribution as the

total mass �m�n([0; 1]) and is independent of �n[BÆn(k)].

2.
�[BÆn(k)]

d
= Z

(n)
1 (k)�n[BÆn(k)];

where m � n, k = 1; � � � ; bn; and Z(n)
1 (k) has the same distribution as the

total mass �([0; 1]) and is independent of �n[BÆn(k)].

Holley & Waymire (1992) characterise the process by the function �b(q) =
logb E[W q ] + 1. In the literature �b(q) is referred to as the MKP (Mandelbrot-
Kahane-Peyrière) function. It turns out that �b(q) is just the appropriate form of
��?(q), as in Definition 6.1.2, for a random cascade process.

6.3.6 Theorem

If � is the inductive limit of a random cascade process, then �?(q) as in Definition
6.1.2 is

�
?(q) = � logb E[W q ]� 1:

Proof. In the present situation �n[Jn(!)] = W1(!) � � �Wn(!), where the Wi’s
are i.i.d. random variables and jJn(!)j = b

�n. Hence

b
�n = E

h
�
q
n[Jn(!)] jJn(!)j

��?
n
(q)
i

=
�
b
�n
���?

n
(q)

E[W q
1 (!) � � �W

q
n(!)]

=
�
b
�n
���?

n
(q)

E[W q]
n

where W has the same distribution as the Wi’s. Rearranging, the result follows.

6.3.7 Example - Log-Lévy Generators

A class of cascade generators is given by W = exp(�Z) where Z is a Lévy
stable random variable. Lovejoy & Schertzer have co-authored number of pa-
pers (e.g., see Schertzer & Lovejoy, 1987, 1989; and Lovejoy & Schertzer, 1985,
1990) where they advocate processes of this form to describe rain fields. Gupta &
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Waymire (1993, Equation 3.15) give E[W q] for these processes, as

logE[W q ] =

8<:
�c��q� + �q if 0 < � < 1
cq log q � �q if � = 1
c�

�
q
� � �q if 1 < � � 2;

where � is the characteristic exponent, q > 0 when 0 < � < 2, � 2 R is a
location parameter, � > 0 is a scale parameter, and c is a positive constant.

The case where 0 < � < 1 follows from Feller (1971, xXIII.6, Theorem 1), be-
cause E[W q] is the Laplace transform of the probability density of Z. The exten-
sion to other cases was done by Schertzer & Lovejoy (1987, Appendix C). These
generators are often described as being ‘universal’ (e.g., Lovejoy & Schertzer,
1990), though as pointed out by Gupta & Waymire (1990, page 259), all multi-
plicative generators do not lie in the domain of attraction of a stable law. Also note
that this class of generators does not satisfy the strong boundedness conditions of
Definition 6.3.2.

Random Cascades: Large Deviation Formalism

We have already noted the difference between the bare and dressed (limiting)
measures, and that �n[Jn(!)] 6= �[Jn(!)]. Thus there is a choice as to whether
the large deviation theorems are applied to �n or �. The process we have used in
Chapters 4 and 5 starts by evaluating the rescaled cumulant generating function
C(q), and deducing from that the entropy function I(y) via a Legendre transform.
Given that �n is explicitly defined in terms of sums of random variables logWi,
it is easiest to evaluate the global and local behaviour of �n, then subsequently
relate its local behaviour to that of �.

Appealing to the notation of Appendix B, let Æn = b
�n and an = � log Æn =

n log b, where n = 1; 2; � � � . Also define the mapping

Un : 
1 �! R;

where

Un(!) = � log�n[Jn(!jn)] = �

nX
i=1

logWi(!ji):

The measure �n is random, and constructed in the manner described in x6.3.1.
Further, define Y zn (!) as

Y
z

n (!) =
Un(!)

an
=

log�n[Jn(!jn)]

log Æn
=
�1

n

nX
i=1

logbWi(!ji) :

6.3.8 Rescaled Cumulant Generating Function

As in Chapter 4, consider the case where each b-adic interval is sampled with
equal weight. We denote the corresponding expectation by E0. The unsubscripted
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expectation below is taken with respect to the probability distribution ofW . From
Equation B.5,

C0(q) = lim
n!1

1

an
logE0

h
e
qUn(!)

i
= lim

n!1

1

n
logb E0

�
�
�q
n [Jn(!)]

�
= lim

n!1

1

n
logb E

�
W

�q
1 � � �W�q

n

�
= logb E

�
W

�q
�
:

Note that C0(q) = ��?(�q)� 1. The derivative of �?(q), denoted by y?q , is given
by

y
?
q =

d

dq
�
?(q) =

�E[W q logbW ]

E[W q]
: (6.7)

Using Equation B.6, the entropy function is defined as

I0(y) = sup
q
fqy � C0(q)g = 1� f

?(y):

6.3.9 Theorem - Large Deviation Bounds

If C0(q) satisfies the Extended Hypotheses 4.2.2, then

lim
�!0

lim
n!1

1

n
logb Pr

�
�� < Y

z

n � y � �
	
= �I0(y) for y 2 intD(I):

Further, C0(q) = supyfqy � I0(y)g.

Proof. The powerlaw decay follows in the same manner as in Theorem 4.2.4. The
Legendre transform follows from Theorem B.3.17.

The above theorem describes the local behaviour of the bare random measure.
We also require the local behaviour of the dressed random measure �.

6.3.10 Corollary

If C0(q) satisfies the Extended Hypotheses 4.2.2 and E[W logbW ] < 0, then

lim
�!0

lim
n!1

1

n
logb Pr f�� < Yn � y � �g = �I0(y) for y 2 intD(I):

Proof. It follows from Proposition 6.3.5 that

Prf�� < Yn � y � �g = Pr

(
y � � <

logZ
(n)
1 (k)

log Æn
+ Y

z

n � y + �

)
:

Given E[W logbW ] < 0, it follows from Theorem 6.3.3 that the measure � is
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non-degenerate and E[Z1] = 1. The result then follows from Theorem 6.3.9.

Note that Gupta & Waymire (1993, x3b) derive the same result directly using
Chernoff’s theorem of large deviations.

Random Cascades: Ensemble and Sample Averages

The function e�(q), defined by Equation 2.2, describes the powerlaw behaviour of
averages of the form

P
0

k �
q [BÆn(k)] as n ! 1 . Since � is a random measure,

then e�(q) is also random in nature and will not be functionally related to �?(q) in
a non-stochastic manner. We consider the limiting behaviour of e�(q) below. In the
literature on random cascades, e�(q) is referred to as a spatial or sample average,
while C0(q) and �?(q) are referred to as ensemble averages.

Note that we have used + log Æn in the denominator of the definition of e�(q). In
the literature on random cascades it tends to be � log Æn, whereas in non-random
cascades + log Æn. We have required our definition to be consistent throughout
the book.

6.3.11 Theorem (Holley & Waymire, 1992, Theorem 2.7)

Assume that W is strongly bounded above and below and E
�
W

2q
�
=E[W q ]2 < b

for a given q. Then e�(q) = �
?(q) with probability 1.

6.3.12 Theorem (Holley & Waymire, 1992, Theorem 2.8)

Assume that W is strongly bounded above and below and E
�
W

2q
�
=E[W q ]

2
< b

for all q. If the multifractal spectrum ef(y) exists, then f?(y) is the closed convex
hull of ef(y). Further,

�
?(q) = inf

y

n
qy � ef(y)o :

Recall that the Legendre transform relationships betweenC0(q) and I0(y) work
in both directions. Note also that the log-Lévy generators of x6.3.7 do not satisfy
the strong boundedness conditions, and hence the above results may not necessar-
ily hold.

Random Cascades: Hausdorff and Box Dimensions

Here the method that Holley & Waymire (1992) used to determine the Hausdorff
dimensions is outlined. The method of Chapter 4 is quite similar, though uses a
family of sampling measures. In the random cascade context, the measure � will
not be a probability measure, and hence Holley & Waymire (1992) construct a
family of dual cascade processes.
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6.3.13 Lemma (Holley & Waymire, 1992)

Assume that the cascaded random variable W is strongly bounded above and be-
low and has mean b�1. Consider those values of y such that infq fqy � �

?(q)g =
f
?(y) > 0. For each y, y?q = y (Equation 6.7) has a unique solution at q = �(y)

where �(y) is a function of y. Moreover,

f
?(y) = inf

q
fqy � �

?(q)g = �(y)y � �
?(�(y)): (6.8)

Proof. Follows a similar argument as in Theorem 6.2.8.

6.3.14 Theorem (Holley & Waymire, 1992, Theorem 2.6)

Assume that the cascaded random variable W is strongly bounded above and
below and has mean b�1. Also assume that

E

"�
W

kWk1

��(y)
#
>

1

b
;

where kWk1 denotes the essential supremum of W and �(y) is determined by
Equation 6.8 (hence, each y satisfies f?(y) > 0). Then dimH

eF (y) = inffqy �
�
?(q)g = f

?(y), where

eF (y) = �x 2 [0; 1] : lim
n!1

log�[BÆn(x)]

log Æn
= y

�
:

Proof. An outline of the proof is as follows. W is a strongly bounded cascade
variable with mean one. For each y such that infq fqy � �

?(q)g = f
?(y) > 0,

construct a dual cascaded variable W� , distributed as

W�
d
=

W
�

b�+1E[W �]
;

where y?� = y (Equation 6.7). That is, we replace values of W (!1; � � � ; !n) sam-
ple point by sample point with W�(!1; � � � ; !n) for all (!1; � � � ; !n) 2 
n. Let
�1;� be the resultant cascade and let Z1;� denote the total mass. The proof can
then be divided into three parts.

1. Existence and non-triviality of the cascaded measure �1;�:
E
�
Z
q
1;�

�
< 1 for all q > 1, �1;� is non-trivial and �1;�([0; 1]) is positive

with probability 1.

2. Partitioning of the space.

(a) It can be shown that, with probability 1

sup
1�i�bn

logZ
(n)
1 (i)

n
! 0 as n!1;
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where Z(n)
1 (i), for 1 � i � b

n, are i.i.d. distributed as Z1; and

sup
1�i�bn

logZ
(n)
1;�(i)

n
! 0 as n!1;

where Z(n)
1;�(i), for 1 � i � b

n, are i.i.d. distributed as Z1;� .

(b) Let D1 and D� be the sets containing events where the above limits fail
respectively. Since D1 [ D� has probability zero, one simply considers
[0; 1] n (D1 [D�).

(c) By definition, x 2 eF (y) iff

lim
n!1

log�[BÆn(x)]

log Æn
= y: (6.9)

From Proposition 6.3.5, �[BÆn(x)]
d
= Z1�n[BÆn(x)]. Therefore, for x 2eF (y) \Dc

1 \D
c
� , where Dc

1 is the complement of D1,

lim
n!1

log�[BÆn(x)]

log(b�n)

d
= lim

n!1

logZ1 + log�n[BÆn(x)]

log(b�n)

d
= lim

n!1

�1

n

 
logb Z1 � n+

nX
i=1

logbWi

!
d
= 1� lim

n!1

1

n

nX
i=1

logbWi: (6.10)

(d) For those x 2 eF (y), we also evaluate the local behaviour of the mea-

sure �1;� . From Proposition 6.3.5, �1;� [BÆn(x)]
d
= Z1;��n;�[BÆn(x)].

Therefore, for x 2 eF (y) \Dc
1 \D

c
� ,

lim
n!1

log�1;�[BÆn(x)]

log(b�n)

d
= lim

n!1

logZ1;� + log�n;�[BÆn(x)]

log(b�n)

d
= lim

n!1

 
� + 1�

logb Z1;�

n
+ logb E

�
W

�
�
�

1

n

nX
i=1

logbW
�
i

!
d
= �

 
1� lim

n!1

1

n

nX
i=1

logbWi

!
+ logb E

�
W

�
�
+ 1:

It then follows from Equations 6.9 and 6.10, Lemma 6.3.13 and Theorem
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6.3.6 that

lim
n!1

log�1;� [BÆn(x)]

log(b�n)

d
= �(y)y � �

?(�(y))

= inf
q
fqy � �

?(q)g

= f
?(y):

3. Then appeal to Billingsley’s Theorem 4.5.6.

(a) Let

F�(y) =

�
x 2 [0; 1] : lim

n!1

log�1;� [BÆn(x)]

log(b�n)
= f

?(y)

�
:

Since �1;�F�(y) = �1;�([0; 1]) with probability 1, then

dim�
1;�

F�(y) = 1:

(b) By construction, it then follows that

dimH

eF (y) = dimH F�(y)

= f
?(y) dim�

1;�
F�(y)

= f
?(y):

6.3.15 Proposition (Holley & Waymire, 1992)

If eF (y) 6= ;, then dimB

eF (y) = 1.
The multifractal spectrum, f?(y), does not necessarily represent a geometri-

cal dimension over any, let alone its entire range. If the conditions of Theorem
6.3.14 are satisfied, then f?(y) can be interpreted as a Hausdorff dimension when
f
?(y) > 0. However, there is often a considerable part of the range of f?(y)

where it is negative (see Example 6.3.16 below). These values have sometimes
been referred to in the literature as ‘negative dimensions’. There have been a num-
ber of papers by Mandelbrot (1989, 1990a, 1991) describing such a phenomenon.
Mandelbrot refers to those values of y such that f?(y) > 0 as manifest, and those
values of y such that f?(y) < 0 as latent. Further, those values of y where y < 0
and f?(y) > �1 are referred to as virtual. These cases are most easily seen in
the following example.

6.3.16 Example - Log-Normal Distribution

Let the random weight be defined asW = exp(�Z), whereZ is a normal random
variable with variance �2 and mean 1

2
�
2 + log b (see x1.5.2; Kolmogorov, 1962;

Oboukhov, 1962; Mandelbrot, 1989 and Meneveau & Sreenivasan, 1991). Then
W is a positive random variable with a log-normal distribution, and mean b�1.
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Multifractal Spectrum for Log−Normal Cascade

Figure 6.2 Multifractal spectrum for the log-normal random cascade process. f?(y) is
positive for y1 < y < y2, where y1 =  + 1 � 2

p
 and y2 =  + 1 + 2

p
 . Compare

with that of the multinomial measure, Figure 3.2, where ef(y) = �1 for all y < y1 and
y > y2.

This is a special case of the log-Lévy generators of Example 6.3.7, where � =
1
2
�
2 + log b, � = 2, and c = 1

2
. It follows from Example 6.3.7 that

logE[W q] =
�
2
q
2

2
�
�
2
q

2
� q log b:

Therefore,

�
?(q) = � q2 + ( + 1)q � 1;

where  = �
2
=(2 log b) > 0. Since E[W logbW ] = ( � 1)=b, it follows from

Theorem 6.3.3 that E[Z1] = 1 iff  < 1; i.e., �([0; 1]) has an expected value of
one iff  < 1.

The multifractal spectrum, f?(y), is calculated as infq fqy � �
?(q)g. The func-

tion �?(q) is quadratic, hence given y, we minimise qy � �
?(q), and solve for q,

say qcrit. Taking the derivative, and setting equal to zero gives

y = �2 qcrit +  + 1;

and rearranging gives

qcrit = �(y) =
1 +  � y

2 
:

Inserting back into f?(y) = �(y)y � �
?(�(y)) and simplifying, one gets

f
?(y) = 1�

(y �  � 1)2

4 
:
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The multifractal spectrum, f?(y), is plotted in Figure 6.2. Note that  > 0,
hence f?(y) ! �1 as y ! �1 . Further, note that �?(q) is finite for all q 2 R

and �1 < f
?(y) � 1 for all y 2 R. The is an important difference between

the multifractal spectrum plotted here in Figure 6.2 and that in Figure 3.2 for the
multinomial measure. In that case both the domain and range of the function ef(y)
were positive. Here both can also be negative.

The reason for the difference between the multifractal spectrum of the multi-
nomial measure (or more generally the deterministic cascade processes) and the
random cascade process is due to the difference in the way that mass is allocated
to each subset at the nth stage by the mapping Wi in Equation 6.2. In the case of
the deterministic cascade processes, the range of this mapping was in fact (0; 1),
and hence was a probability. Further, at each stage, the multiplier Wi had a fixed
possible maximum and minimum. These values effectively determine the bound-
aries of the domain of permissible values of f?(y) (see Equations 3.15 and 3.16).
By construction, the probability was conserved at each step, and was only rear-
ranged within each subset of Kn.

In the case of the random cascades, the permissible range of Wi was (0;1),
though with E[W ] = b

�1. Hence an ‘average’ random measure will have total
mass of one. IfW is drawn from a long tailed distribution, then every so often one
would sample an extremely large value, possibly even to that extent that the mass
in a given subset Jn(!) is greater than one, hence Y zn < 0. This explains why the
domain of f?(y) can include negative values. The explanation why f?(y) < 0 is
given by Theorem 6.3.9. It is easiest to interpret the function I0(y) = 1� f

?(y),
which is a non-negative quadratic with a minimum of zero, from a probabilis-
tic perspective. For small values of y, I0(y) describes the likelihood of Y zn having
such small values, or equivalently, a subinterval being allocated an extremely large
weight. Similarly, for large values of y, I0(y) describes the likelihood of subin-
tervals being allocated very small weights. Corollary 6.3.10 describes the same
characteristics of Yn, i.e., the local behaviour of the limiting measure �.

6.4 Other Cascade Processes

Both cascade constructions considered in x6.2 and x6.3 were based on determin-
istic subdivisions. Falconer (1986), Graf (1987) and Mauldin & Williams (1988)
have shown that similar results also hold in the compact case if the similarity
ratios at each step are random. Arbeiter (1991) has considered the non-compact
case.

More recently, Falconer (1994) considered the case of statistically self-similar
measures, where the subdivisions were not only random as in Falconer (1986),
but the allocation of weight was also random as in x6.3. This is also discussed
extensively in a monograph by Olsen (1994).

Molchan (1995) analyses zeros of Brownian motion. He does this by using
two measures. The local time measure is constructed by eliminating all points on
the time axis that are further than Æ from a zero. Then define a Lebesgue mea-

© 2001 by Chapman & Hall/CRC Press, LLC



sure �Æ(dt) on the remaining intervals. The local time measure is the limit of
the normalised measure cÆ�1=2�Æ(dt) as Æ ! 0. In the second case he consid-
ers the growth of the number of Æ-clusters as Æ ! 0. In this example there are
elements of both random measure allocation and subdivision. He establishes the
functions �?(q) and f?(y) and shows that they are related by the Legendre trans-
form �

?(q) = infy fqy � f
?(y)g.

6.4.1 Other Definitions of �?(q)

There are a number of other definitions of �?(q) that are similar in nature to that
in Definition 6.1.2. Halsey et al. (1986) proposed a definition of �?(q) as follows.
Let

Gq;�(F ) = lim
Æ!0

inf
fUig

(
1X
i=1

�(Ui)
q jUij

�� : jUij � Æ and F �

1[
i=1

Ui

)
;

where the infimum is taken over all coverings of F . Then for each value of q,
define �?(q) as

�
?(q) = inff� : Gq;�(F ) = 0g = supf� : Gq;�(F ) =1g:

This case is also discussed by Pesin (1993, page 542) who relates it to various
other definitions of generalised dimensions. Note that dimH(F ) = ��?(0). This
definition accounts for irregular size of covers but not for random measure allo-
cation.

A number of authors have proposed various other definitions for �?(q) that
are variations of the above. Olsen (1994, Chapter 2) gives a definition based on
point centred spherical covers, where the centre point is contained in the set F .
Olsen (1994) also gives a similar definition based on the packing dimension (see
Tricot, 1982 and Falconer, 1990), where F is covered by a packing of spheres
with centres in F .

© 2001 by Chapman & Hall/CRC Press, LLC



PART III

ESTIMATION OF THE RÉNYI
DIMENSIONS
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CHAPTER 7

Interpoint Distances of Order q and
Intrinsic Bias

7.1 Introduction to Part III

There are a number of reasons why one may want to estimate multifractal charac-
teristics of a probability measure �. Many of the measures of location, spread and
so on that are used to characterise classical probability distributions are not useful
when the probability measure contains singularities of possibly many different
orders. If a probability measure has singularities, possibly of many different or-
ders, then one possibility is to characterise it on the basis of its singularities. The
multifractal spectrum is one way to describe the sizes of subsets of X contain-
ing singularities of a given order. However, the multifractal spectrum is difficult
to deal with numerically, and hence one usually estimates the Rényi dimensions,
and then calculates the Legendre transform to produce the multifractal spectrum
(Chapter 2).

The dimension estimates also describe the degree of non-uniformity of the mea-
sure � on the attracting set of a dynamical system. Often quite simple sets of
non-linear equations (non-stochastic) can generate extremely complex behaviour
that appears to be stochastic. Dimension estimation has been used to determine
whether a time series has been generated by a deterministic process of typically
low dimensionality or a stochastic system. It should be noted though, that many
stochastic processes also have properties that scale in a powerlaw manner, and
some of the concepts and estimation techniques discussed are transferable to these
situations too.

The problem with many physical processes, in particular, is that the whole
process is not observable. For example, with earthquakes, one may only record
characteristics of the seismic waves generated by the event. From this informa-
tion, some other characteristics of the event are determined. In weather systems
measurements like rainfall, wind velocity and cloud cover can be recorded at cer-
tain locations. Together with satellite images, it is attempted to put together an
overall picture, possibly of regional or even global climate. In some situations,
only a scalar time series is recorded. In order to calculate the dimensions of the
underlying equations driving the process, a higher dimensional space is recon-
structed which can generally be shown to have the same fractal properties as the
unobserved system. For much of our discussions in Part III, we will assume that
X � R

d is directly observable, and that � is concentrated on a subset of X .
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AND INTRINSIC BIAS

This is because the notion of embedding and reconstruction adds another level of
complication to the discussion which is generally not necessary. Embedding and
reconstruction will be discussed in x10.4.4.

In early studies involving fractal dimensions of dynamical systems, dimensions
were estimated by covering the d-dimensional space X with d-dimensional boxes
of width Æ. The number of visited boxes would then be counted. This would be
repeated for a sequence of smaller and smaller values of Æ. The slope of the plot of
the logarithm of the count by log Æ would be calculated in a region where the line
was straight. This methodology relates to the lattice based multifractals discussed
in Chapter 4, in particular eD0.

The number of calculations required to estimate eD0 was large because as Æ be-
came sufficiently small, most of the boxes were not even visited. Grassberger &
Procaccia (1983a, b, c) suggested an alternative method that eliminated the need
to count the visits to boxes, most of which would be zero. They argued that one
would get a sufficiently good idea of the dimension by estimating the powerlaw
exponent of the probability distribution of pairs of interpoint distances. However,
this dimension is D2 and is part of the family discussed in Chapter 5. Our discus-
sions in Part III are also based on interpoint distances and are therefore related to
the multifractal formalism described in Chapter 5.

7.1.1 Overview of Chapters in Part III

It will be shown that the method of Grassberger & Procaccia (1983a, b, c) based on
pairs of interpoint distances can be extended to qth order interpoint distances (as in
Theorem 2.4.5), which can be used to calculate higher order point centred Rényi
dimensions, Dq, for q = 2; 3; � � � . We denote this qth order interpoint distance
as Y . Estimating the Rényi dimensions for q = 2; 3; � � � , essentially involves
estimating the powerlaw exponent of the probability distribution function,FY (y),
of Y .

The probability distribution, FY (y), of interpoint distances is often not strictly
powerlaw in nature. This can occur when the probability measure is supported on
a fractal set. However, there is an ‘average’ powerlaw if the tangent on a log log
plot is drawn over a sufficiently long interval. This can be thought of as a form
of bias, though it is not caused by sampling or other methodological deficiencies.
It is actually an intrinsic part of the process. This form of bias is discussed in
Chapter 7.

In Chapter 8 a generalisation of the Grassberger-Procaccia method is given for
Dq where q = 2; 3; � � � . However, the main emphasis is on a modified version
of the Hill estimator and its statistical properties. This estimator follows more
naturally from the perspective of maximum likelihood estimation, which may be
the first line of attack for a statistician. However, it does have a particular problem
with bias that is not so evident when using the Grassberger-Procaccia method.
This bias appears to be largely driven by the intrinsic bias discussed in Chapter 7.
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Most real data only partially describe what is of real interest to the researcher.
For example, data are often contaminated with noise. Further, this noise may not
be uniform in either time or space. For example, catalogues of earthquake loca-
tions will be more accurate in regions with a higher density of seismic stations.
Accuracy will also vary over time depending on when stations are actually active.
All data are rounded which effectively creates discrete random variables from
some underlying continuum. Another form of bias is caused by not observing the
entire process, by placing arbitrary boundaries in both time and space. This cre-
ates a boundary effect. We refer to these as extrinsic forms of bias and discuss
their effects in Chapter 9.

Chapter 10 describes some uses of dimension estimation, though applying the
techniques to data simulated from mathematical and statistical models rather than
real data. Using data with at least partially understood properties enables us to
more easily evaluate the methods and interpret the results.

Chapter 11 consists of some case studies using real data. We attempt to disen-
tangle those aspects of the dimension plots that are attributable to various forms
of bias and data deficiencies, and those that may have a genuine fractal interpre-
tation.

7.1.2 Review of Notation

In x2.4.1, �(q) was defined as

�(q) = lim
Æ!0

log
hR
XÆ

�
q�1[SÆ(x)]�(dx)

i
log Æ

�1 < q <1;

where XÆ = fx 2 X : �[SÆ(x) > 0g. We will refer to �(q) as the qth order cor-
relation exponent, and

R
�
q�1[SÆ(x)]�(dx) as the qth order correlation integral.

The point centred Rényi dimensions were then defined as

Dq =
�(q)

q � 1
(7.1)

for q 6= 1. D2 = �(2) is often referred to as the correlation dimension.
Let X1; X2; � � � ; Xq be a sample of independent random variables drawn from

the probability distribution �, and define Y (as in Theorem 2.4.5) as

Y = max
�kX1 �Xqk; kX2 �Xqk; � � � ; kXq�1 �Xqk

	
:

We will refer to Y as the interpoint distance of order q. Note that Y is always de-
termined by q, though to avoid notation being clumsy, we have not indicated this
explicitly in the form of a subscript. In our calculations, unless otherwise stated,
k k always refers to the L1 or max norm. From Theorem 2.4.5, the probability
distribution of Y , for q = 2; 3; 4; � � � , is

FY (y) = PrfY � yg =
Z

�[Sy(x)]
q�1

�(dx): (7.2)
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A corollary to Theorem 2.4.5 is that, for q = 2; 3; 4; � � � , the correlation expo-
nents are

�(q) = lim
y!0

logFY (y)

log y
; (7.3)

if the limit exists.
In this chapter, we investigate the behaviour of the qth order correlation in-

tegral, particularly for probability measures that are supported on a self-similar
set. The Rényi dimensions are a limiting concept, where interpoint distances be-
come small. Here we look at those intrinsic properties of the qth order correlation
integral that may affect the properties of estimators of the Rényi dimensions.

7.2 Boundary Effect

Consider the situation where one randomly samples interpoint distances Y . We
know from x2.4.3 that if the probability measure � can be represented by a prob-
ability density function, then Dq will be constant for all q > 0. Further, the value
of Dq will be d, the dimension of the range of the probability density function.
From Equations 7.1 and 7.3 it follows, for q = 2; 3; � � � , that

Dq =
1

q � 1
lim
y!0

logFY (y)

log y
:

Note that the Rényi dimensions describe the powerlaw exponent of FY (y) for
infinitely small values of y, and this powerlaw behaviour may not necessarily
extend to larger values of y. The boundary effect refers to an apparent deficit
of larger interpoint distances relative to that predicted by a strict powerlaw be-
haviour. As the size of the interpoint distance becomes comparable to that of the
width of the region, the chance of sampling such a value of Y decreases.

In this section, we analyse the boundary effect for a few simple situations. In
x7.3 it will be shown that fractal like behaviour is related to a multiplicity of these
boundary effects.

7.2.1 Distribution of L1 Norm

Let q � 1 and Xi (i = 1; 2; � � � ; q) be independent random vectors in Rd , i.e.,

Xi = (Xi1; Xi2; � � � ; Xid)
0
:

Further, assume that Xi1; Xi2; � � � ; Xid are independent. Using the L1 norm, Y
can be expressed as

Y = max
1�j�q�1

kXj �Xqk1
= max

1�j�q�1
max
1�k�d

jXjk �Xqkj:
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Assume that jXjk � Xqkj, 8j and k, has the same distribution as the random
variable U . Then

FY (y) = PrfY � yg = [FU (y)]
d(q�1)

; (7.4)

and the qth order correlation exponent is

�(q) = d(q � 1) lim
y!0

logFU (y)

log y
:

If the density of U exists, then �(q) = d(q � 1) and Dq = d for q � 2.

7.2.2 Example - Gaussian Distribution

Consider the case where q = 2 and X1 and X2 are multivariate normal random
vectors in Rd . Using the L2 norm, the difference is also normally distributed with
twice the variance. Thus

FY (y) =

Z
1(kxk2 � y)

1p
2
fX

�
x=

p
2
�
dx

=

Z
1
�
k
p
2xk2 � y

�
fX(x)dx

=
j��1j1=2
(2�)d=2

Z
1
�
k
p
2xk2 � y

�
exp

�
�1

2
x
0��1x

�
dx

=
jD�1j1=2
(2�)d=2

Z
1
�
k
p
2zk2 � y

�
exp

�
�1

2
z
0
D
�1
z

�
dz

where D = P
0�P = diag(�1; � � � ; �d)

=
1

(2�)d=2

Z
1
�
2w0Dw � y

2
�
exp

�
�1

2
w
0
w

�
dw

where wi = zi�
�1=2
i i = 1; � � � ; d

= Pr

(
2

dX
i=1

�iWi � y
2

�����Wi are i.i.d. �21

)
:

The program by Davies (1980) can be used to calculate quadratic form probabil-
ities.

When � = I, then FY (y) can be expressed in terms of the chi-squared distri-
bution with d degrees of freedom, as

FY (y) =
2�d=2

�(d=2)

Z y2=2

0

w
d=2�1 exp(�w=2)dw:

Using integration by parts, one gets

FY (y) = y
d exp(�y2=4)

2d

1X
k=0

1

�(d=2 + k + 1)

�
y
2

4

�k
: (7.5)
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Correlation Integral when q = 2 for Normal Distribution

Figure 7.1 Correlation integrals when q = 2 for the normal distribution in d = 1 (top
line); 2; 3; 5; 7 and 9 (bottom line) dimensions. Using the L2 norm produces the solid lines,
and the L1 norm produces the dashed lines. Note that in the case of d = 1, they are the
same. As y ! 0 the slope in the log y vs. log FY (y) plot tends to d.

It can be seen that FY (y) consists of two parts, a powerlaw part with exponent
d, and a non-powerlaw part. The non-powerlaw part is monotonically decreasing
with limit [2d�(d=2+1)]�1 as y ! 0. It effectively describes the boundary effect
which causes a deficit of larger interpoint distances relative to a pure powerlaw
occurrence.

Note that by inserting d = 1 into Equation 7.5 and using Equation 7.4, an
expression for the correlation integral using the L1 norm can also be calculated.
A comparison between the L1 and L2 norms is plotted in Figure 7.1.

Takens (1993, page 245) shows that, if different norms only differ by a factor
that is bounded, and are bounded away from zero, then the correlation dimension
will be the same.

7.2.3 Example - Uniform Distribution

Let X1; � � � ; Xq be independent continuous uniform random vectors in [0; 1]d

with independent components. Then the qth order interpoint distance has proba-
bility distribution FY (y) = y

d(q�1)(2 � y)d(q�1) and the correlation exponents
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Correlation Integral when q = 2 for Uniform Distribution

Figure 7.2 The correlation integral when q = 2 for the uniform distribution when d = 1.
As y ! 0, the slope of the line tends to one. The curve in the line as y ! 1 is caused by
the boundary effect.

for q = 2; 3; � � � are

�(q) = lim
y!0

log
�
y
d(q�1)(2� y)d(q�1)

�
log y

= d(q � 1):

Again, as in Example 7.2.2, the probability function of Y has a powerlaw and
non-powerlaw part, with the non-powerlaw part describing the boundary effect.

7.2.4 Example - ‘Wrap-Around’ Metric

Theiler (1990) showed that by using a ‘wrap-around’ metric for differences of
uniform random variables, the boundary effect is eliminated. That is, let X1 and
X2 be i.i.d. uniform on [0; 1] (i.e., d = 1). Then for q = 2,

Y = kX1 �X2k =
( jX1 �X2j if jX1 �X2j � 1

2

1� jX1 �X2j if jX1 �X2j > 1
2
:

In this case, FY (y) = 2y for 0 < y <
1
2

, and thus the ‘non-powerlaw part’ is
constant for all y <

1
2

. This is the same idea as uniformly distributed points on
the circumference of a circle (d = 1), or on the surface of a sphere (d = 2) where
the distance is taken as the shortest arc length between two points.
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7.3 Multiplicity of Boundaries

In the previous section, the boundary effect was portrayed as a bias, and con-
sequently a nuisance from an estimation perspective. This is not completely the
case. In fact, fractal dimensions usually occur because of a multiplicity of bound-
aries that occur in a powerlaw manner.

In Example 7.2.3, we considered the uniform distribution on the unit interval.
The boundary effect was displayed in Figure 7.2. Consider again the uniform
distribution, but not necessarily on the unit interval. Let K0 be the unit interval,
K1 be the unit interval with the middle third cut out, etc., as for the construction of
the Cantor set. This situation is the same as was described in Example 1.2.1. Using
a value of p0 = 1

2
ensures that the allocation of probability to each subinterval is

the same, and hence uniform. Further note that Gn(y), given by Equation 3.18, is
the probability distribution of the interpoint distances when q = 2 on Kn.

The correlation integrals (q = 2) for the uniform distribution on Kn, for n =

0; � � � ; 7, are plotted in Figure 7.3. The lower solid line is when the uniform dis-
tribution is supported on K0, and hence is the same as that in Figure 7.2. The
second solid line from the bottom is when the measure is supported on K1, etc.
The two dotted lines are only reference lines, the upper one having slope log3 2

and the lower one with slope 1. Note that the correlation dimension, D2, of the
Cantor measure with p0 = 1

2
is log3 2.
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g 3

 G
n(
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log3 y

Correlation Integral for Pre−Cantor Measure

Figure 7.3 The correlation integral (q = 2) for the pre-Cantor measure (p0 = 0:5) for
k = 0; � � � ; 7. The slope of the lower dotted line is one, and is the asymptote of the slope
when the interpoint distances are small. The slope of the upper dotted line is equal to D2.
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Consider the case for K1. When interpoint distances are less than 1
3

, we essen-
tially have two separate uniform distributions, both identical, where each pair of
points originate from the same subinterval. Hence for small values of y, the cor-
relation integral behaves in the same way as for the uniform distribution with the
line having an asymptotic slope of one as y ! 0.

However, it is not possible to have interpoint distances y such that 1
3
< y <

2
3

.
Consequently, the probability function G1(y) will be flat in this region. Once
y � 2

3
, interpoint distances are again possible, however, each point must come

from each different subinterval. When n = 2, we add another ‘hole’ to the support
of the measure. This adds another kink to the plot of the correlation integral. Each
time a middle third is cut, another kink is added. When the interpoint distances
are greater than the smallest ‘hole’, the slope of the line is roughlyD2. When they
are smaller than the smallest ‘hole’, it behaves like the uniform distribution with
slope tending to one.

As n increases, Gn(y) will converge to the distribution function of the Cantor
measure. The correlation integral, FY (y), will be well approximated by G11(y)

for the ranges plotted in Figure 7.4.

We have referred to the cut subintervals as ‘holes’ in the support of the measure.
The oscillatory behaviour on the logarithmic scale shown in Figure 7.4 is often
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Correlation Integrals for Cantor Measures

Figure 7.4 Correlation integrals (q = 2) for various cases of the Cantor measure where
p0 = 1 � p2 and p1 = 0. The top line is when p0 = 0:1, middle when p0 = 0:2, and
bottom when p0 = 0:5. The dotted lines have slope D2 = � log

3
(p

2

0 + p
2

2).
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described as lacunary in the literature, the word being derived from the Latin word
lacuna, meaning hole.

7.4 Decomposition of FY (y)

In this section we investigate the decomposition of FY (y) into powerlaw and
non-powerlaw components. We use the notation of Theiler (1988), denoting the
non-powerlaw component by �(y).

7.4.1 Proposition

The correlation dimension exists iff the correlation integral can be decomposed
into the form

FY (y) = �(y)y�q ; (7.6)

where �q is a positive constant and �(y) is a positive function such that

lim
y!0

log�(y)

log y
= 0; (7.7)

i.e., j log�(y)j = o(j log yj) as y ! 0. Further, given this decomposition, �(q) =
�q .

Proof. Equations 7.6 and 7.7 imply that �(q) = �q . Conversely, if �(q) exists,
then

lim
y!0

logFY (y)

log y
= �(q):

Since

FY (y) = y
�(q)FY (y)

y�(q)
;

then

lim
y!0

log(FY (y)=y
�(q))

log y
= 0;

and therefore �(y) = y
��(q)

FY (y).

7.4.2 Definitions - Self-Similar Type Behaviour

1. FY (y) will be said to be self-similar with scale parameter �q if for all s 2 [0; 1],
it satisfies the scaling relation

FY (sy) = s
�qFY (y);

for all y such that y < ymax = inffy : FY (y) = 1g.
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2. FY (y) will be said to have strictly powerlaw behaviour with scale parameter
�q if

FY (y) = ay
�q ;

for all y such that y < ymax = inffy : FY (y) = 1g and a = y
��q
max.

3. The distribution FY (y) will be said to have a regularly varying lower tail with
exponent �q if for all s > 0

lim
y!0

FY (sy)

FY (y)
= s

�q :

If FY (y) has a regularly varying lower tail with exponent �q , then

FY (sy) = s
�qFY (y) + o(FY (y))

where o(FY (y))=FY (y)! 0 as y ! 0. As such, regular variation is weaker form
of self-similarity.

7.4.3 Proposition

If FY (y) is self-similar with parameter �q , then �(q) exists, and further, �(q) = �q .

Proof. By assumption FY (y) = s
��qFY (sy), thus by definition

�(q) = lim
y!0

logFY (y)

log y
= lim

y!0

logFY (sy)

log y
:

When y is sufficiently small, FY (sy) = y
�qFY (s). Hence, together with the

above equation,

�(q) = lim
y!0

log[y�qFY (s)]

log y
= �q :

7.4.4 Proposition

FY (y) is self-similar with scale parameter �q iff it has strictly powerlaw behaviour
with parameter �q .

Proof. Strictly powerlaw implying self-similarity follows directly from the defi-
nitions. Conversely, if FY (y) is self-similar, then �(q) exists and �(q) = �q . The
existence of �(q) implies that there exists a decomposition of the form FY (y) =

�(y)y�q . Given self-similarity, �(sy)(sy)�q = s
�q�(y)y�q , i.e., �(sy) = �(y)

for all s between zero and one, and any y. Thus �(y) = constant.

Feller (1971, page 276) uses a notion of a function being slowly varying at
infinity. In the present context, we will say that the function�(y) is slowly varying
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at zero if, for all s > 0,

lim
y!0

�(sy)

�(y)
= 1:

7.4.5 Proposition

Given that �(q) exists, FY (y) has a regularly varying lower tail iff�(y) is a slowly
varying function at zero.

Proof. Since �(q) exists, then there is a decomposition of FY (y) into powerlaw
and non-powerlaw parts. Also, given that �(y) is a regularly varying function at
zero

lim
y!0

�(sy)(sy)�q

�(y)y�q
= s

�q ;

i.e., limy!0�(sy)=�(y) = 1. The converse is obvious.

In the preceding discussion, we have shown that a function FY (y) being self-
similar is equivalent to it being strictly powerlaw. Such behaviour is too restric-
tive. We then considered the case where it had self-similar like behaviour for
sufficiently small y. Again, this imposes restrictions on the �(y) function that do
not hold when the interpoint distances are sampled from a probability distribution
whose measure is supported on a fractal set. We require a concept weaker than
strict powerlaw behaviour, but where �(q) still exists.

7.4.6 Definitions - Lacunary Type Behaviour

1. FY (y) will be said to be lacunary with scale parameter �q if there exists a
constant c between zero and one such that FY (cy) = c

�qFY (y) for all y such
that y < ymax = inffy : FY (y) = 1g.

2. The distributionFY (y) will be said be lacunary in the lower tail with exponent
�q if there exists a constant c between zero and one such that

lim
y!0

FY (cy)

FY (y)
= c

�q :

Note that lacunarity is a weaker form of self-similarity.

7.4.7 Proposition

If FY (y) is lacunary with scale parameter �q , then �(q) exists and �(q) = �q .
Further, �(y) is a bounded periodic function with period one on a logarithmic
scale with base c�1.
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Proof. �(q) = �q follows in the same manner as for self-similarity. Given lacu-
narity, there exists a constant c between zero and one, such that

�(cy)(cy)�q = c
�qy

�q�(y);

i.e., �(cy) = �(y), so �(y) is periodic with period one on a logarithmic scale
with base c�1. Given Equation 7.7, an interval can be selected, say

I = (logc�1 y0; 1 + logc�1 y0);

where y0 is sufficiently small such that for all y 2 I , j log�(y)j < j log yj; i.e.,
log�(y) is bounded in I . Since �(y) is periodic, then it must be a bounded func-
tion.

7.4.8 Example

Figure 7.5 shows the non-powerlaw component, �(y), of the probability function
FY (y), q = 2, for the Cantor measure with p0 = 0:5. In fact, the plot is an ap-
proximation of �(y) derived after 11 iterations of the recurrence relation given by
Equation 3.18. Note that the oscillatory behaviour of �(y) has a constant period
on a logarithmic scale, and a constant amplitude. It is this part of the correla-
tion integral that describes clustering properties and is lacunary in the sense of
Definition 7.4.6.
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Φ(y) for Cantor Measure with p0 = 0.5

Figure 7.5 The function �(y) when q = 2 for the Cantor measure with p0 = 1�p2 = 0:5

and p1 = 0. This is the non-powerlaw component of FY (y) when q = 2.
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In the Cantor measure examples discussed in this chapter, the function �(y) is
periodic on a logarithmic scale of base 3 over its entire range, and hence FY (y) is
lacunary as in Definition 7.4.6. This appears to hold for all q = 2; 3; � � � . Unfortu-
nately, this lacunarity does not automatically hold for all measures supported on
self-similar sets. On the basis of our simulations, it appears to be dependent on the
placement of ‘gaps’. In x10.2, examples will be given of particular cases of the
multinomial measure where the function �(y) not only contains a lacunary like
component, but also a boundary effect component. Hence FY (y) in these cases is
only lacunary in the lower tail (see Definition 7.4.6).

7.5 Differentiable Distributions

The Grassberger-Procaccia method of estimating the correlation dimension, to be
discussed in the next chapter, involves plotting an estimate of logb FY (y) against
logb y for some number b, and estimating the slope. Let w = logb y. Then this plot
is similar to taking the derivative of logb FY (b

w) with respect to w, i.e., assuming
FY (y) is differentiable,

d

dw
logb FY (b

w) = �(q) + b
w�0(bw)

�(bw)
:

If �(y) is monotonically decreasing, the above derivative will be less than �(q).
This occurs in both Examples 7.2.2 and 7.2.3 and is indicative of a deficit of
larger interpoint distances with respect to a powerlaw behaviour. Smith (1992a, b)
contains further analysis of the case where FY (y), for q = 2, is differentiable.
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CHAPTER 8

Estimation of Point Centred Rényi
Dimensions with q � 2

8.1 Introduction

In this chapter, we investigate methods of estimating the point centred Rényi di-
mensions, Dq, for q = 2; 3; � � � , and some of their statistical properties. The meth-
ods are based on the qth order interpoint difference, which has been discussed in
Chapter 7.

In many time series and dynamical systems contexts, only a scalar process is
observed. From this sequence of scalar observations a reconstructed phase space
is usually formed. This will not be discussed until x10.4.4. In this chapter we
always assume that the series fXig is observed in Rd , and that the measure � is
supported on a set of dimension less than or equal to d.

8.1.1 Review of Notation

Let X1; X2; � � � ; Xq be a sample of independent random variables drawn from
the probability distribution �, and define Y as

Y = max

�
kX1 �Xqk; kX2 �Xqk; � � � ; kXq�1 �Xqk

	
:

In our calculations, unless otherwise stated, k k always refers to the L1 or max

norm. As in Chapter 7 reference to q will not be explicitly stated. The probability
distribution function of Y , FY (y), is given by Equation 7.2. For q = 2; 3; 4; � � �

the correlation exponents, �(q), are given by Equation 7.3 and the Rényi dimen-
sions, Dq = �(q)=(q � 1), by Equation 7.1.

As for the random variable Y , �(q) will generally be written simply as � to
avoid notation becoming clumsy. An estimator of � will be denoted by �, and a
specific estimate as b�. The estimator � will be said to be unbiased if E[�] = �,
and weakly consistent if for any � > 0, limN!1 Prfj� � �j > �g = 0, where
N is the sample size. Sufficient conditions for weak consistency are that � is
unbiased and E

�
(�� �)2

�
! 0 as N !1.

8.1.2 Methods of Estimation

The most commonly used method of estimating D2 is one devised by Grassberger
& Procaccia (1983a, b, c). It is based on the empirical probability distribution of
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pairs of interpoint differences. The method appeals to the property that the plot
of log y by logFY (y) should roughly be a straight line in some region where
the function FY (y) exhibits powerlaw behaviour. A suitable region needs to be
determined, and then the slope of the line is used as an estimate of the correlation
dimension. This method will be reviewed in x8.2.

The second class of estimators is based on the theory of maximum likelihood
assuming that FY (y) is powerlaw in some sense. In the present context, we are
interested in powerlaw behaviour for small values of y. Briefly consider the trivial
case where FY (y) = y�, for 0 < y < 1; i.e., for all values of y. Given a sample
of n independent interpoint distances, the log-likelihood equation is given by

L(�; y1; � � � ; yn) = n log � + (� � 1)

nX
i=1

log yi;

yielding a maximum likelihood estimate for � ofb� = n

�

P
n

i=1 log yi
:

Note the relationship with the exponential distribution. The random variableW =

� logY has density � exp(��w).
More generally, assume that FY (y) = ay� for sufficiently small values of y,

say y � �, and a is some positive constant. That is, we are assuming that the distri-
bution is powerlaw in the lower tail without assuming any further global paramet-
ric form for the distribution function. Thus this method of estimating the Rényi
dimensions is similar to the methodology used in extreme value theory; see for
example, Embrechts et al. (1997). A sample of interpoint distances, y1; � � � ; yn,
are collected. We consider two different conditioning regimes.

1. From the sample y1; � � � ; yn, we condition on those N(�) values that are less
than �. Here N(�) is a binomial random variable with parameters n and a��.
Using this strategy, one gets the estimator proposed by Takens (1985), and will
be referred to as the Takens estimator. This is discussed further in x8.3.

2. The sample is sorted to form order statistics y(1) � y(2) � � � � � y(m) � � � � �

y(n). We then condition on y(m) � �. This follows the method of Hill (1975),
who wanted to estimate the powerlaw exponent in heavy tailed distributions
for extreme tail events, and will be referred to as the Hill estimator. This is
discussed further in x8.4.

Many observed processes are correlated in time and hence the assumption of
sampling independent interpoint differences can be a problem, particularly in the
Grassberger-Procaccia algorithm where all possible differences are often included
in the calculations. Physicists often thin the time series, taking every mth obser-
vation, where m is sufficiently large. Alternatively, one could randomly sample
interpoint distances, but take many bootstrap samples. This method will be dis-
cussed in x8.5. In the last section we discuss the relative advantages and disad-
vantages of the different methods.
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8.2 Generalised Grassberger-Procaccia Algorithm

8.2.1 The Case When q = 2

Grassberger & Procaccia (1983a) considered the case where q = 2. Given a fi-
nite sequence of vector random variables X1; X2; � � � ; XN in Rd , their method
involves calculating all possible interpoint distances, and using these to form an
empirical distribution function as an estimate of FY (y). That is, for q = 2,

bFGP
Y

(y;N) =
2

N(N � 1)

N�1X
i=1

NX
j=i+1

1(kXi �Xjk � y) ; (8.1)

where 1(A) is one if A is true and zero otherwise. The procedure then involves
plotting log y by sample values of log bFGP

Y
(y;N), and using the slope of the line

in some suitable region as an estimate of the correlation dimension D2 = �(2).

8.2.2 The Case When q = 2; 3; � � �

Given a finite sequence of vector random variablesX1; X2; � � � ; XN in Rd , define
the random function bFGP

Y
(y;N) as

bFGP
Y

(y;N) =
1

m

mX
k=1

1(Yk � y) ; (8.2)

where Y1; � � � ; Ym are all possible permutations of the qth order difference given
a sample of N points, the kth being

Yk = max

�Xk1
�Xkq

 ; Xk2
�Xkq

 ; � � � ; Xkq�1
�Xkq

	 :
In the situation where q > 2, one samples Xkq

from X1; X2; � � � ; XN without
replacement. Then one samples Xki

; i = 1; � � � ; q � 1 with replacement. In this
second phase, there are Nq�1 possibilities, and in the first phase there are N

possibilities. Therefore m = N(N � 1)
q�1.

The function bFGP
Y

(y;N) is an estimator of FY (y) in Equation 7.2.

8.2.3 The Exponent �

The correlation dimension (q = 2) is often defined differently (Theiler, 1986,
Equation 4) as �, where

� = lim
y!0

lim
N!1

log bFGP
Y

(y;N)

log y
:

When q = 2, the correlation exponent, �(2), is the same as the corresponding
Rényi dimensionD2. We refer to D2 as the correlation dimension. The limit � has
a form more similar to an estimator, and will only be equal to D2 as in Definition
7.3 if a suitable law of large numbers exists. The interpretation of � when such a
law of large numbers does not exist is somewhat questionable.
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8.2.4 Determination of the Slope

The determination of the interval where the slope of the line should be estimated
is non-trivial. Ideally, one wants to select an interval (y1; y2), where ymin � y1 <

y2 � ymax, and where a chord on the curve has the same long range slope as
logFY (y), then

b�(q) = estimated slope =
log bFGP

Y
(y2; N)� log bFGP

Y
(y1; N)

log(y2)� log(y1)
:

The strategy that one uses is quite dependent on the behaviour of �(y). The char-
acteristics of �(y) may not be initially known.

In the case where �(y) is monotonically decreasing, there is a deficit of larger
interpoint distances, which can be caused by a boundary effect. Nerenberg &
Essex (1990), Essex & Nerenberg (1991) and others have pointed out that bound-
ary effects and the finite nature of the datasets affect values of bFGP

Y
(y;N). By

targeting smaller values of y, the boundary has little effect, though the smaller
bin counts cause greater stochastic error. Noise in the data also causes problems
for smaller values of y. Both biases caused by boundaries and noise in data are
discussed further in Chapter 9.

In the case of lacunarity with no overall boundary effect, there is not the ne-
cessity to sample small y, but a need to draw a chord through a sufficient length
of the curve so as not to be misled by periodicity. Further discussion is given by
Eckmann & Ruelle (1992) and Ruelle (1990).

8.2.5 Consistency for Ergodic Processes

Dynamical systems were initially mentioned in x1.3. Consistency is discussed,
amongst others, by Cutler (1991), Denker & Keller (1986), and Pesin (1993).
Generally one can represent a process (X ; T� ; �) by a mapping T� : X ! X ,
where � is a probability measure on B(X ), and the mapping preserves �, i.e.,
� = T�1

�
�; equivalently � is invariant to T�. Such systems are assumed to be

ergodic, so that time averages converge �-almost all x(t0) 2 X , where x(t0) is
the initial value in the sequence. The process is often required to be mixing, i.e.,
for all Borel sets A;B � X ,

lim
n!1

�[A \ S�n(B)] = �(A)�(B):

Pesin (1993) showed that if the sequence is generated as x(tn) = Tn

�
(x(t0)),

n = 1; 2; � � � , and the measure � is ergodic, then for �-almost every x(t0) 2 X ,

lim
N!1

bFGP
Y

(y;N) = FY (y):

Denker & Keller (1986) showed that if (X ; T�; �) is a smooth ergodic dynam-
ical system that satisfies certain mixing conditions, then for y > 0, bFGP

Y
(y;N)

and log bFGP
Y

(y;N) converge in probability to FY (y) and logFY (y), respectively.
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They also showed that bFGP
Y

(y;N) has an asymptotic normal distribution as N !

1. Cutler (1991) discusses problems and properties of least squares estimators
formed by regressing log bFGP

Y
(y;N) on log y.

Mikosch & Wang (1993) showed that if fXig is a stationary ergodic sequence
of d-dimensional random vectors with continuous distribution �, coinciding with
the invariant probability measure of the sequence, then bFGP

Y
(y;N)

a:s:
�! FY (y)

as N !1.

8.3 Takens Estimator

Initially assume that the yi’s are independent and FY (y) = ay�, a > 0. From the
sample y1; � � � ; yn, we condition on those N(�) values that are less than �. Thus
the conditional distribution function is given by

FY jY <�(y) =
FY (y)

FY (�)
=

�y
�

��
:

The log-likelihood equation is given by

L(�; y1; � � � ; yN(�)) = N(�) log � �N(�) log �+ (� � 1)

N(�)X
i=1

log

�yi
�

�
:

The corresponding maximum likelihood estimator of � is

�� =
N(�)

�

P
N(�)

i=1 log

�
Yi

�

� :
This estimator was suggested by Takens (1985). Note that it is conditional on
Yi < �.

We are interested in determining the behaviour of the estimator�� when FY (y)
takes on the general form FY (y) = �(y)y�.

8.3.1 Proposition (Theiler, 1988)

The estimator 1=�� is asymptotically unbiased for 1=� if lim�!0 (�) = 0, where

(�) =

Z
1

0

�
�(�e�w)

�(�)
� 1

�
�e��w dw:

This will occur if �(y)! const as y ! 0. Explicitly,

E

�
1

��

����Y � �

�
=

1

�
(1 + (�)): (8.3)

Proof. Let

Wi = � log

�
Yi

�

�
;
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then Wi > 0 if and only if Yi < �. It follows that

PrfWi > wjWi > 0g =
PrfWi > wg

PrfWi > 0g

=
FY (�e

�w
)

FY (�)

=
�(�e�w)

�(�)
e��w:

Using integration by parts, E[W ] =

R
wfW (w) dw =

R
[1 � FW (w)] dw if

FW (0) = 0. Thus, by direct integration

E

�
1

��

����Y � �

�
= E[WijWi > 0]

=
1

�(�)

Z
1

0

�(�e�w)e��w dw

=
1

�

�
1 +

Z
1

0

�
�(�e�w)

�(�)
� 1

�
�e��w dw

�
:

Theiler (1988, 1990) uses a more explicit relationship with the correlation in-
tegral. By substituting y = �e�w into the above,

E

�
1

��

����Y � �

�
=

1

FY (�)

Z
�

0

FY (y)

y
dy:

Using integration by parts gives a series expansion for (�) as

(�) =
1

�(�)

X
k=1

(��)k
�(� + 1)

�(� + k + 1)

h
�
(k)

(�)� lim
w!1

�
(k)

(�e�w)e�(�+k)w
i
:

If the kth derivative of �(y), denoted by �
(k)

(y), is bounded for small y in such
a way that limy!0�

(k)
(�y)y�+k ! 0, then

(�) =
1

�(�)

X
k=1

(�1)
k�k

�(� + 1)

�(� + k + 1)
�
(k)

(�):

If the derivatives vanish, the summation will be finite.
Interest should really focus on E[��jY � �] not E[ 1=��jY � �]. The differ-

ence can be seen in the following example.

8.3.2 Example

Consider a sequence of independent identically distributed exponential random
variables W1; � � � ;Wm such that E[W1] = 1=�. The maximum likelihood esti-
mator of � is

� =
mP
m

i=1Wi

:
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It is obvious that E[1=�] = 1=�, however,

E[�] =
m

m� 1
�:

8.3.3 Proposition

Given that FY (y) = �(y)y�, and E
�
(�� � �)kjY < �

�
<1 for all k > 1, then

E[��jY < �] = �(1� (�)) +
E
�
(�� � �)2jY < �

�
�

� � � � :

Proof. Consider a Taylor series expansion of 1=�� about 1=�, then take expecta-
tions to give

E

�
1

��

����Y < �

�
=

1

�
�

E[(�� � �)jY < �]

�2
+

E
�
(�� � �)2jY < �

�
�3

� � � � :

Rearranging, the result follows.

8.3.4 Example - Uniform Random Variables

In Example 7.2.3, it was shown that the correlation integral for points with a
uniform distribution in a d-dimensional unit cube is

FY (y) = yd(2� y)d;

therefore, for k = 1; � � � ; d,

�
(k)

(y) = (�1)
k

�(d+ 1)

�(d� k + 1)
(2� y)d�k:

It then follows from above that

(�) =

dX
k=1

�(d+ 1)

�(d+ k + 1)

�(d+ 1)

�(d� k + 1)

�
�

2� �

�k
:

Pisarenko & Pisarenko (1995) derive an expression for the variance of the
Takens estimator when q = 2, and describe its properties.

8.4 Hill Estimator

This estimator is based on the work by Hill (1975). Let Y denote the interpoint
distance of order q. Consider a sample of n independent interpoint distances, and
let Y(m) be the mth order statistic, 1 � m � n; i.e.,

Y(1) � Y(2) � � � � � Y(m) � � � � � Y(n):

Here we condition on Y(m) < �.
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8.4.1 Distribution of Order Statistics

The distribution function of the mth order statistic is

FY(m)
(y) = PrfY(m) � yg

= Prfat least m of the Y ’s are � yg

=

nX
r=m

�
n

r

�
F r

Y
(y)[1� FY (y)]

n�r

=
�(n+ 1)

�(m)�(n�m+ 1)

Z
FY (y)

0

tm�1
(1� t)n�m dt

= n

�
n� 1

m� 1

�Z
y

0

Fm�1
Y

(r)[1� FY (r)]
n�mfY (r) dr:

It follows that the density function of Y(m) is

fY(m)
(y) = n

�
n� 1

m� 1

�
Fm�1
Y

(y)[1� FY (y)]
n�mfY (y):

From David (1970, Equation 2.2.2), the joint density of the first m order statistics
is

fY(1)Y(2)���Y(m)
(y1; � � � ; ym) =

n!

(n�m)!
fY (y1) � � � fY (ym)[1� FY (ym)]

n�m;

and thus the conditional density is

fY(1)���Y(m�1)jY(m)
(y1; � � � ; ym�1jym) =

fY(1)Y(2)���Y(m)
(y1; � � � ; ym)

fY(m)
(ym)

=
(m� 1)!

Fm�1
Y

(ym)
fY (y1) � � � fY (ym�1):

8.4.2 Maximum Likelihood Estimator

Assume that the correlation function has the form FY (y) = ay� for y � �. Con-
sider a sample of n ordered random variables Y(1) � Y(2) � � � � � Y(m) � � � � �

Y(n). Then an estimator for �, denoted by �m, is

�m =
m� 1

�

m�1X
i=1

log

�
Y(i)

Y(m)

� : (8.4)

Proof. Consider a sample of n order statistics

y(1) � y(2) � � � � � y(m) � � � � � y(n):
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Since fY (y) = a�y��1, the conditional log-likelihood equation is given by

L(�; y(1); � � � ; y(m))

= log(m� 1)!� (m� 1) log

�
ay�(m)

�
+

m�1X
i=1

log

�
a�y��1

(i)

�
= log(m� 1)!� �(m� 1) log y(m) + (m� 1) log � + (� � 1)

m�1X
i=1

log y(i):

The derivative is given by

dL(�; y(1); � � � ; y(m))

d�
=

m� 1

�
+

m�1X
i=1

log

�
y(i)

y(m)

�
:

The estimator follows by setting the derivative equal to zero and solving in the
usual way.

8.4.3 Proposition

Given that FY (y) = ay�, where a is a positive constant, then

E

�
1

�m

����Y(m)

�
=

1

�
;

E
�
�mjY(m)

�
=

(m� 1)�

m� 2

and

Var
�
�mjY(m)

�
=

�
m� 1

m� 2

�2
�2

m� 3
:

Proof.

E

�
1

�m

����Y(m) = ym

�
=

Z
ym

0

� � �

Z
y2

0

�1

m� 1

m�1X
i=1

log

�
yi

ym

�
�fY(1)���Y(m�1)jY(m)

(y1; � � � ; ym�1jym)dy1 � � � dym�1

= �

Z
ym

0

� � �

Z
y2

0

(m� 1)!

m� 1

m�1X
i=1

log

�
yi

ym

��
�

ym

�m�1

�

�
y1

ym

���1
� � �

�
ym�1

ym

���1
dy1 � � � dym�1 :
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By substituting wi = � log(yi=ym), we get

E

�
1

�m

����Y(m) = ym

�
=

(m� 1)!

m� 1

Z
1

0

� � �

Z
1

w2

 
m�1X
i=1

wi

!
�m�1

� exp

 
��

m�1X
i=1

wi

!
dw1 � � � dwm�1

=
(m� 1)!

m� 1

Z
1

0

� � �

Z
1

w2

 
m�1X
i=1

i(wi � wi+1)

!
�m�1

� exp

 
��

m�1X
i=1

i(wi � wi+1)

!
dw1 � � � dwm�1

=
1

m� 1

Z
1

0

� � �

Z
1

0

 
m�1X
i=1

zi

!
�m�1

exp

 
��

m�1X
i=1

zi

!
dz1 � � � dzm�1

=
1

�
:

In the second to last step,

zi = i(wi � wi+1);

for i = 1; � � � ;m� 1, was substituted. Note that

m�1X
i=1

zi =

m�1X
i=1

wi;

because, by definition, wm = 0. Therefore,

wm�1 =
zm�1

m� 1

wm�2 =
zm�2

m� 2
+

zm�1

m� 1

...

w1 =
z1

1
+
z2

2
+ � � �+

zm�1

m� 1
;

and thus the Jacobian is given by

J =

�����
�
@wi

@zj

�
ij

����� = 1

(m� 1)!
:

© 2001 by Chapman & Hall/CRC Press, LLC



Using the same substitutions as above, one gets

E
�
�mjY(m)

�
= E

24 m� 1

�

P
m�1
i=1 log

�
Y(i)

Y(m)

�
������Y(m)

35
=

Z
1

0

� � �

Z
1

0

m� 1

z1 + � � �+ zm�1

�m�1
exp

 
��

m�1X
i=1

zi

!
dz1 � � � dzm�1

= E

�
m� 1

Z1 + � � �+ Zm�1

����Zi are i.i.d. exponential with parameter �

�
= (m� 1)

Z
1

0

1

w

�(�w)m�2

�(m� 1)
exp(��w) dw

=
(m� 1)�

m� 2
:

Appealing to the gamma distribution in a similar manner, one also gets

Var
�
�mjY(m)

�
=

�
m� 1

m� 2

�2
�2

m� 3
:

We now apply similar transformations to deduce the bias for the more general
case where FY (y) = �(y)y�.

8.4.4 Proposition

Given that FY (y) = �(y)y�, then

E

�
1

�m

����Y(m) = y

�
=

1

�
(1 + m(y)); (8.5)

where

m(y) = E

"
1

m� 1

m�1X
i=1

log

�
�(Y(i))

�(Y(m))

������Y(m) = y

#
:

Further, given that E
�
(�m � �)kjY(m)

�
<1 for all k � 1, then

E
�
�mjY(m) = y

�
= �(1� m(y)) +

E
�
(�m � �)2jY(m) = y

�
�

� � � � : (8.6)

Proof. Let Y(i) denote the ith order statistic of differences, where

Y(1) � Y(2) � � � � � Y(m):

Then
FY (Y(1))

FY (Y(m))
�

FY (Y(2))

FY (Y(m))
� � � � �

FY (Y(m�1))

FY (Y(m))
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are a set of order statistics drawn from a uniform distribution on [0; 1]. By taking
a log transformation as

W(i) = � log

�
FY (Y(i))

FY (Y(m))

�
for i = 1; � � � ;m, the order statistics

W(1) �W(2) � � � � �W(m) = 0

are drawn from an exponential distribution with mean one. Now consider a further
transformation

Zi = i
�
W(i) �W(i+1)

�
:

The Zi’s are a set of independent and identically distributed exponential variables
with mean one. Further, it can be seen that

m�1X
i=1

Zi =

m�1X
i=1

W(i) = �

m�1X
i=1

log

�
FY (Y(i))

FY (Y(m))

�
:

Therefore

E

"
�1

m� 1

m�1X
i=1

log

�
FY (Y(i))

FY (Y(m))

������Y(m)

#
= 1:

Given that FY (y) = �(y)y�, then

E

"
��

m� 1

m�1X
i=1

log

�
Y(i)

Y(m)

������Y(m)

#
+ E

"
�1

m� 1

m�1X
i=1

log

�
�(Y(i))

�(Y(m))

������Y(m)

#
is equal to one. Rearranging, Equation 8.5 follows.

Now consider a Taylor series expansion of 1=�m about 1=�, then take expec-
tations to give

E

�
1

�m

����Y(m)

�
=

1

�
�

E
�
(�m � �)jY(m)

�
�2

+
E
�
(�m � �)2jY(m)

�
�3

� � � � :

Rearranging, and inserting Equation 8.5 gives Equation 8.6. Note also the rela-
tionship between the bias and the variance.

8.4.5 Lemma

Given that all moments of the form E
�
(�m � �)kjY(m)

�
exist for all k > 1, then

E
�
(�m � �)2jY(m)

�
= �4E

" 
1

�m

�
1

�

�2�����Y(m)

#
+

1

�
E
�
(�m � �)3jY(m)

�
� � � � :
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Proof. Form a Taylor series expansion of 1=�m about 1=�, rearranging, and
squaring both sides gives�

1

�m

�
1

�

�2
=

�
�m � �

�2

�2
�

(�m � �)3

�5
+ � � � :

The result follows after rearranging and taking expectations.

8.4.6 Monotonicity of �(y)

If �(y) is a monotonically decreasing function, then �(Y(i)) � �(Y(m)) since
Y(i) � Y(m). Therefore m > 0. Assuming that the higher order terms in Equa-
tion 8.6 are sufficiently small, then �m underestimates �. This is consistent with
Examples 7.2.2 and 7.2.3 where �(y) was monotonically decreasing, caused by
the boundary effect.

8.4.7 Theorem (Mason, 1982)

Let Y1; Y2; � � � be i.i.d. random variables with common distribution FY (y). As-
sume that m = m(n) ! 1 and m = o(n). Then �m is a weakly consistent
estimator of � iff FY (y) has a regularly varying lower tail with exponent � (as in
Definition 7.4.2).

Mikosch & Wang (1995) have further shown that if m = n� for some � 2

(0; 1), then �m is strongly consistent with an asymptotic normal distribution.

8.4.8 Corollary

Given the conditions of Theorem 8.4.7, �m is a weakly consistent estimator of �
iff �(y) is slowly varying at zero.

Proof. Follows from Theorem 8.4.7 and Proposition 7.4.5.

It follows from Corollary 8.4.8 that if FY (y) is lacunary (Definition 7.4.6), then
�m cannot be a consistent estimator for �. This gives �m a serious deficiency
when compared to the Grassberger-Procaccia method. The Takens estimator also
suffers from the same deficiency. Smith (1992a) proposes a modification to the
Takens estimator based on the beta-binomial distribution where the bias in the
lacunar case appears to be reduced.

Results in this and the previous section have required the assumption that a
sample of interpoint distances are independent. The justification for using such
methods in general systems remains largely empirical. Some authors have sug-
gested using a bootstrap procedure, where relatively few of the observed inter-
point distances are randomly selected, as a means of enhancing the independence
of selected pairs.
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8.5 Bootstrap Estimation Procedure

The method of estimating of D2 proposed by Grassberger & Procaccia (1983a)
involved determining the powerlaw exponent of the empirical probability distri-
bution of all interpoint distances. The Takens and Hill estimators are based on
a random sample of independent interpoint distances, and both involve sums of
the logarithms of distances that are sufficiently small. With fewer small interpoint
distances than would be achieved with the Grassberger-Procaccia method, the Hill
estimator �m (or the Takens estimator ��) is quite variable for small m (or �).

Mikosch & Wang (1995) advocated using a bootstrap sampling procedure to
reduce the sample variance for small m (or �). Such a bootstrap procedure also
provides rough estimates of standard errors of the dimension estimates. Monte
Carlo procedures were also advocated by Takens (1993). The bootstrap technique
is discussed extensively by Efron & Tibshirani (1986, 1993).

8.5.1 Example - Cantor Measure

Consider the Cantor measure discussed in Example 7.3, in particular, where p0 =
0:5. A random sample of N = 100;000, with probability distribution given by
the Cantor measure, has been simulated by generating dyadic sequences of zeros
and twos (of length 45 with the probability p0 that a simulated digit is zero), and
converting to a decimal number between zero and one.

Five sets of Hill estimates of D2 have been calculated using the estimator given
by Equation 8.4. Each set of estimations was based on random samples of n =

100;000 interpoint distances, and the Hill estimate has been calculated for various
values of m . The value of  m determines the largest order statistic of interpoint
distances, y(m), to be used in the value of b�m. The value of m is a surrogate for

the interpoint distance, and so a plot of m by b�m would be quite similar to one
of the interpoint distance by b�m. Usually one would select the range of m values
so that y(m) spanned the interpoint distances where powerlaw behaviour was to
be investigated. Evaluating more intermediate values of m would give greater
resolution to the curve. One may alternatively plot y(m) by b�m or log y(m) by b�m.
The latter is more appropriate if FY (y) is lacunary, as in the current example,
where the cyclical behaviour is periodic on a logarithmic scale.

Results are plotted in Figure 8.1. Note that there is considerable variability for
small values of y(m). Also note that, because of the nature of the estimator, there
is considerable autocorrelation in individual runs as m increases. It appears to be
the case that individual runs often start too high or low, but after a number of
cycles, converge closer to the expected value of �m. One method to improve the
estimates for smaller values of m would be to increase the number of sampled
pairs n. The value of n would be determined so that values of y(m) � 3

�11 are
selected, and hence once y(m) > 3

�11 the estimates may be more stable. This
line of attack is difficult for computational reasons. In order to sample a few more
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Figure 8.1 Estimates of D2 for the Cantor measure with p0 = 0:5 for five separate se-
quences (n = 100;000; N = 100;000). The dotted line represents D2.

lacunary cycles, the number of pairs n needs to be at least doubled. One quickly
starts to reach the limit of what is possible on many computers.

Another method is to repeat the estimation procedure many times, as in Figure
8.1, and calculate the average of the dimension estimate for each value of m . This
is just the bootstrap method which has the added advantage that rough standard
errors can be calculated for the dimension estimates for each value of m .

Our bootstrap procedure for estimating Dq (q = 2; 3; � � � ) differs from that
described by Mikosch & Wang (1995). The reasons for this difference are high-
lighted in the following example.

8.5.2 Example - Exponential Distribution

The derivation of both the Takens and Hill estimators are based on an assumption
that the interpoint distances have a powerlaw distribution. This assumption is not
completely correct, particularly when there is lacunary like behaviour. However,
even in this particular situation, a powerlaw distribution is an extremely good first
order approximation; see for example, Figure 7.4. If the distribution was exactly
powerlaw, then the line would be straight with slope given by the powerlaw expo-
nent. The oscillatory behaviour is a manifestation of lacunarity. The logarithm of
a random variable with a powerlaw distribution has an exponential distribution.
In this example, we briefly consider this particular case.
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Assume that Z is an exponential random variable with parameter �. Then
E [Z] = ��1 and Var(Z) = ��2. Consider k bootstrap sample estimates of the
mean, each of sample size m . We are particularly interested in the case where m
is quite small (sometimes < 10) but k � 100. Denote the i.i.d. estimators of the
mean as Z1; � � � ; Zk. Now consider two estimators of �,

�1 =
1

k

�
1

Z1

+ � � �+
1

Zk

�
and

�2 =
k

Z1 + � � �+ Zk

=
1

Z
�
;

where Z
�

is the mean of all m � k sampled i.i.d. random variables. This would
be the maximum likelihood estimator if all samples were collectively considered
as one.

Since

E

�
1

Z1

�
=

m

m� 1
� and Var

�
1

Z1

�
=

�
m

m� 1

�2
�2

m� 2
;

then

E[�1] =
m

m� 1
� and E[�2] =

mk

mk � 1
� :

Similarly

Var (�1) =
1

k

�
m

m� 1

�2
�2

m� 2
and Var(�2) =

�
mk

mk � 1

�2
�2

mk � 2
:

Hence it can be seen that �2 not only has smaller bias, but also smaller variance.
Typically, k = 100 and m could be as small as 5. In this case E [�1] = 5�=4,
E [�2] = 500�=499, and Var(�1) � 2:5� Var (�2).

8.5.3 Bootstrapped Hill Estimate

We initially set up a sampling framework that will be exploited more fully in
Chapter 9. Let x1; � � � ; xN denote the observed sequence of N d-dimensional
vector observations. Also let A0 = fx1; � � � ; xNg and A� be a set that excludes
some observations close to the boundaries, hence A� � A0. The number of ob-
servations excluded is determined by the value of �, where 0 � � < 1

2
.

Each bootstrap sample uses the following procedure. Let the index i represent
the current bootstrap number. There are n sampled interpoint distances within
each bootstrap sample; i.e., ys where s = 1; � � � ; n.

1. For each s, sample xsq fromA� and xs1 ; xs2 ; � � � ; xsq�1
fromA0. Then let

ys = max

�xs1 � xsq
 ; xs2 � xsq

 ; � � � ; xsq�1
� xsq

	 :
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2. Sort the differences to form the order statistics, where

y(1) < y(2) < � � � < y(m) < � � � < y(n):

3. For various values of m, calculate

zi;m =
�1

m� 1

m�1X
j=1

log

�
y(j)

y(m)

�
: (8.7)

The above steps are repeated k times, where k is the number of bootstrap samples
taken. Then the bootstrapped Hill estimate is calculated as

b�m =
kP

k

i=1 zi;m
: (8.8)

Let y(m) denote the average of the mth order statistic over all k bootstrap sam-
ples. Values of m are selected so that the interpoint distances y(m) span the range
where powerlaw behaviour of FY (y) is to be analysed. Greater numbers of inter-
mediate points are calculated to give the curve greater resolution. Possible plots
are m by b�m, y(m) by b�m, and log

b
y(m) by b�m where b is an appropriate base.

In the Grassberger-Procaccia method (x8.2) one plots log y by sample values
of log bFGP

Y
(y;N) and calculates the slope of the line to give b�. In the above Hill

method, b� is read directly off the vertical axis. In the lacunary case, determining
where one ‘draws the line’ is not easy. The plot of the Hill estimates is essen-
tially a scaled version of log�(y), roughly centred (but not quite!) about �. These
difficulties will be discussed further in x8.6.

8.5.4 Standard Errors

The bootstrap procedure involves two levels of sampling. The initial sample is
taken from X , say x1; � � � ; xN . Then an empirical distribution is used, consisting
of the points xi 2 X , for i = 1; � � � ; N , each with probability 1=N . The second
level involves the bootstrap procedure, which involves repeated samplings from
the empirical distribution. Standard errors calculated below are therefore condi-
tional on the given empirical distribution.

Let zi;m be an observed value of the random variable Zi;m, i = 1; � � � ; k,
where k is the number of bootstraps. The random variables Z1;m; � � � ; Zk;m are
assumed to be i.i.d. with the same distribution as 1=�m. Denote the bootstrap
estimator (after k iterations) of � as �(k)

m , where

�
(k)
m

=
kP

k

i=1 Zi;m
;

and let �m = E
�
�
(k)
m

�
. Given an estimate of Var(Z1;m), which is an output of the

bootstrap method, we want to derive an estimate of Var
�
�
(k)
�
.
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Lemma 8.4.5 also holds by substituting �
(k)
m and �m in place of �m and �

respectively to give

E

��
�
(k)
m
� �m

�2����Y(m)

�
= �4

m
E

" 
1

�
(k)
m

�
1

�m

�2�����Y(m)

#
+

1

�m
E

��
�
(k)
m
� �
�3����Y(m)

�
� � � � :

The second term on the right-hand side can also be expanded with a Taylor se-
ries expansion, with a leading term involving E

��
1=�

(k)
m � 1=�m

�3�
. Therefore,

assuming independence of the bootstrap samples,

E

��
�
(k)
m
� �m

�2����Y(m)

�
= �4

m
Var

�
Z1;m + � � �+ Zk;m

k

�
+ o(k�2)

=
�4
m

k
Var (Z1;m) + o(k�2):

An estimate of Var(Z1;m) is

S2
Z1;m

=
1

k � 1

kX
i=1

z2
i;m

�
k

k � 1

"
1

k

kX
i=1

zi;m

#2
; (8.9)

hence

S2
�

(k)
m

=

b� 4
m

k
S2
Z1;m

(8.10)

provides an estimate of Var
�
�
(k)
m

�
, where b�m and SZ1;m

are given by Equations
8.8 and 8.9 respectively.

8.6 Discussion and Examples

As already stated in Corollary 8.4.8, the Hill estimator will not be consistent when
FY (y) is lacunary. In this section, we initially consider two examples: the uniform
distribution, where the conditions of Corollary 8.4.8 are satisfied; and the Cantor
measure where they are not. We will attempt to identify the source of the bias
in the Hill estimator. We will also contrast the lack of consistency of the Hill
estimator with the Grassberger-Procaccia method.

8.6.1 Example - Uniform Distribution

A sample from the uniform distribution on [0; 1] has been simulated (N = 10;000)
and Hill estimates of D2, using Equation 8.8, for various values of m have been
plotted in Figure 8.2. Each of the k = 100 bootstrap samples consisted of n =

10;000 interpoint distances. The horizontal axis, log10 y(m), is the average over all
k = 100 bootstraps of the mth order statistic y(m). Dimension estimates are often

© 2001 by Chapman & Hall/CRC Press, LLC



−4 −3 −2 −1 0

0.
94

 
0.

96
 

0.
98

 
1.

00
 

1.
02

 
1.

04
 

1.
06

H
ill

 E
st

im
at

e 
of

 D
2

log10 y(m)

Estimate of D2 for Uniform Distribution

Figure 8.2 Estimate of D2 for the uniform distribution (k = 100, n = 100;000, N =

100;000). The upper and lower dashed lines mark the interval width given by two standard
errors.

plotted against the logarithm of the interpoint distance, particularly when there
is lacunary behaviour. Intervals of twice the standard error have been calculated
using Equation 8.10 and overlaid.

From x7.2.3, FY (y) = yd(2 � y)d, and hence �(y) = (2 � y)d is slowly
varying at zero, here d = 1 . As implied by Corollary 8.4.8, the estimates are con-
sistent, and are asymptotically unbiased. However, these estimates suffer from the
boundary effect discussed in x7.2 and to be discussed further in x9.2. In order to
get a reasonably accurate dimension estimate, one must sample sufficiently small
interpoint distances so that the function FY (y) is dominated by the powerlaw
component, with the �(y) component having little effect.

In higher dimensions, the likelihood of sampling small interpoint distances de-
creases. See for example the dimension estimates of D2 in Figure 10.13 of what is
essentially white noise in Rd for d = 1; � � � ; 5. Powerlaw behaviour is evident for
d = 1, but as d increases, the boundary effect becomes more of a problem with
�(y) becoming more dominant. This will be discussed in x9.2 and is not peculiar
to the Hill method of estimation.

Now consider an example whose characteristics are opposite in respect of what
was discussed in the preceding example. The probability distribution, FY (y), de-
rived from the Cantor measure is lacunary and therefore, according to Corollary
8.4.8, the Hill estimator is not consistent. However, in this example, a form of
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powerlaw behaviour extends over the entire unit interval (see Definition 7.4.6),
and it is not affected by the boundary effect in the same manner as in the previous
example.

8.6.2 Example - Cantor Measure

A random sample of N = 100;000, with probability distribution given by the
Cantor measure, has been simulated as in Example 8.5.1. Estimates of b�m (Equa-
tion 8.8), are plotted in Figures 8.3 and 8.4 for p0 = 0:5 and 0.2 respectively.
Estimates are plotted by both m and log3 y(m), where y(m) is the average over all
k = 100 bootstraps of the mth order statistic y(m), and n = 100;000 interpoint
distances were sampled. The dotted line in Figures 8.3 and 8.4 represents the true
value of D2, which can be calculated by appealing to Theorem 5.5.4, then using
Equations 2.3 and 3.8. It follows from Corollary 8.4.8 that the Hill estimator is
not consistent in this example, clearly seen in both Figures 8.3 and 8.4.

Note that the standard error, given by Equation 8.10, increases as y(m) ! 0

(bottom graph). The plot of the standard errors is roughly linear (on the log-log
plot), hence a powerlaw increase as y(m) ! 0. It also contains lacunary like
behaviour, which is more evident in Figure 8.4. When one samples a fixed number
of interpoint distances, one selects smaller values when p0 = 0:2, i.e., when
the measure is not distributed uniformly on the support. Consequently, one can
observe more lacunary cycles in this situation.

One question that arises from these plots is where one draws the line represent-
ing the estimate ofDq. A first approximation may be to place the line representing
Dq in the ‘middle’, midway between the peaks and troughs of the lacunary cycles.
However, it will be seen later that in the case of D5 in particular, this is obviously
not in the ‘middle’ of the lacunary cycles. In fact, in all of these plots, using the
‘middle’ as the estimate of Dq would tend to induce a positive bias.

8.6.3 Where to ‘Draw’ the Line

In order to decide on where one draws the line, particularly when there is lacunary
behaviour, we return to Equation 8.6, which gave the expected value of the Hill
estimator as

E
�
�mjY(m) = y

�
= �[1� m(y)] +

E
�
(�m � �)2jY(m) = y

�
�

� � � � ; (8.11)

where

m(y) = E

"
1

m� 1

m�1X
i=1

log

�
�(Y(i))

�(Y(m))

������Y(m) = y

#
:

Now assume that as m becomes sufficiently large

m(y) � E[log�(Y )jY < y]� log�(y);
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Figure 8.3 Estimate of D2 for the Cantor measure with p0 = 0:5 (k = 100; n =

100;000; N = 100;000). The dotted line represents D2.
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Figure 8.4 Estimate of D2 for the Cantor measure with p0 = 0:2 (k = 100; n =

100;000; N = 100;000). The dotted line represents D2.
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and that higher order terms in Equation 8.11 are negligible; then

E
�
�mjY(m) = y

�
� �[1� m(y)]

� � + � log�(y)� � E[log�(Y )jY < y] : (8.12)

It may be tempting to argue that if FY (y) is lacunary, then E[log�(Y )jY < y]

will contain an infinite number of cycles as y ! 0 for any value of y, and hence
should have reached a limiting constant. Unfortunately, this is not the case. The
expectation is being taken with respect to the probability distribution of Y , which
by assumption is powerlaw. The increasing likelihood of larger interpoint dis-
tances causes this expectation to also have similar periodic behaviour as log�(y),
though with a much smaller amplitude. Therefore, we would expect the dimen-
sion estimates to be essentially an estimate of the log �(y) function, ‘centred’ at
�, but where the centering moves slightly in a periodic fashion. This can be seen
from Figure 8.3 which, at least visually, appears to be a scaled and shifted version
of log�(y) as plotted in Figure 7.5.

An indication of where one draws the line is given by considering conditional
expectations of Equation 8.12, in particular

E
�

E
�
�mjY(m) = Y

���Y < y
�

� � + � E[log�(Y )jY < y]� � E[E[log�(Y )jY < Y 0
] jY 0 < y] : (8.13)

This is equivalent in the sample context, of Figures 8.3 and 8.4, to taking running
partial means over the dimension estimates; effectively smoothing the lacunary
cycles. It will be seen in the following example that the difference between the
two terms inducing the bias in Equation 8.12 is greatly reduced in Equation 8.13.
Repeated conditional expectations (i.e., smoothing), assuming that the dimension
estimates are sufficiently stable, further reduces the effect of the bias terms.

8.6.4 Cantor Example Continued

Further estimates of D2; � � � ; D5 for the Cantor measure can be found in Figures
8.5 and 8.6. In both situations sample sequences of length N = 100;000 have
been generated as in Figures 8.3 and 8.4. The k = 100 bootstrap samples each
consisted of n = 100;000 interpoint distances of order q.

The lines with the greatest amplitudes are the unsmoothed bootstrap estimates
given by Equation 8.8. The line with the amplitudes of intermediate size repre-
sents the partial means (i.e., one level of smoothing) suggested by Equation 8.13.
The line with the smallest amplitudes represents the Hill estimates after two lev-
els of smoothing. Further smoothing reduces further the oscillatory behaviour. It
should be noted that the smoothed estimates do not become stable until y(m) be-
comes reasonably large. This instability is caused by the instability of the raw
Hill estimates. In each level of smoothing, this instability seems to extend further
to the right into higher values of y(m). Thus there is a practical limitation on the
number of smoothings that can be performed.
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Figure 8.5 Estimates of D2; � � � ; D5 for the Cantor measure with p0 = 0:5 (k =

100; n = 100;000; N = 100;000). Lines with the greatest amplitudes are the un-
smoothed estimates given by Equation 8.8. Lines with the amplitudes of intermediate size
represent one level of smoothing, and lines with the smallest amplitudes represent two
levels of smoothing. The horizontal dotted line represents the known Rényi dimension Dq .
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Figure 8.6 Estimates of D2; � � � ; D5 for the Cantor measure with p0 = 0:2 (k =

100; n = 100;000; N = 100;000). Lines with the greatest amplitudes are the un-
smoothed estimates given by Equation 8.8. Lines with the amplitudes of intermediate size
represent one level of smoothing, and lines with the smallest amplitudes represent two
levels of smoothing. The horizontal dotted line represents the known Rényi dimension Dq .
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In both figures, for larger interpoint distances, the smoothed lines oscillate quite
closely to the true value of the Rényi dimension. However, note that there is still
a positive bias in the smoothed estimates.

8.6.5 Bias Reduction

In the situation where there is a clearly defined lacunary cycle, an initial estimate
of the Rényi dimension can be calculated as the mean of the smoothed estimates
in the last lacunary cycle. As can be seen from Figures 8.5 and 8.6, this will
produce estimates with a positive bias. These values have been tabulated as the
‘uncorrected estimate’ in Table 8.1.

The first excluded term in Equation 8.11 involves E
�
(�m � �)2jY(m)

�
. Note

that

E
�
(�m � �)2

�
= E

�
(�m � E [�m])

2
�
+ ( E [�m]� �)

2
;

where each expectation is conditional on Y(m). An estimate of Var(�m) is S2�m
,

the bootstrap variance given by Equation 8.10. However, this term is relatively
small compared to that of (E [�m]� �)

2 and so we ignore it at this point. This
suggests that a better approximation than that in Equation 8.12 is

E
�
�mjY(m) = y

�
�

(E [�m]� �)
2

�

� � + � log�(y)� � E[log�(Y )jY < y] :

Hence a ‘corrected estimate’ of Dq can be calculated by subtracting the variance
term from the raw Hill estimates (given by Equation 8.8), as on the left-hand side
of the above equation, but using the ‘uncorrected estimate’ in place of �. Then

Cantor Measure with p0 = 0:5 Cantor Measure with p0 = 0:2

q Actual Uncorrected Corrected Actual Uncorrected Corrected
Value Estimate Estimate Value Estimate Estimate

2 0.6309 0.6320 0.6310 0.3510 0.3512 0.3503
3 0.6309 0.6330 0.6294 0.2976 0.2992 0.2969
4 0.6309 0.6365 0.6295 0.2696 0.2730 0.2689
5 0.6309 0.6406 0.6290 0.2537 0.2584 0.2527
6 0.6309 0.6515 0.6349 0.2437 0.2504 0.2428
7 0.6309 0.6670 0.6451 0.2370 0.2446 0.2353
8 0.6309 0.6886 0.6618 0.2321 0.2413 0.2301

Table 8.1 Estimates of the Rényi dimensions, Dq , for the Cantor measure. In both the
corrected and uncorrected estimates, two passes of smoothing were performed as shown
in Figures 8.5 and 8.6.
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one would smooth as in Equation 8.13. In Table 8.1, the ‘corrected estimate’ is
the average of the smoothed and corrected Hill estimates in the last lacunary cycle.

In situations where the non-powerlaw component �(y) not only contains a la-
cunary like component, but also a boundary effect, then the situation is more
complicated. Examples of this situation will be given in x10.2.

8.6.6 Discussion

We have discussed essentially two methods of estimating the Rényi dimensions,
one based on maximum likelihood (Takens and Hill) and one on the slope of a
log-log plot (Grassberger-Procaccia). Both methods have their problems but also
their relative advantages. We briefly summarise some of the respective advantages
and disadvantages.

Both methods suffer from a possible boundary effect which will be discussed
further in Chapter 9. The boundary effect does not always occur, though when it
does, it causes a deficit of larger interpoint distances whose size is roughly com-
parable to the region width. That is, the powerlaw relationship does not hold for
large interpoint distances that are comparable to the region width. Both meth-
ods also suffer from greater variability at smaller interpoint distances caused by
smaller sample sizes.

The Grassberger-Procaccia method of estimating the correlation exponents in-
volves plotting log y by log bFGP

Y
(y;N). An estimate of the correlation exponent is

given by the estimated slope of the line. Often some form of least squares regres-
sion is used to estimate the slope. Unfortunately, there are some arbitrary choices
that need to be made. An interval needs to be selected where the line is sufficiently
straight that is not affected by the boundary effect at the upper end, and possibly
extreme variability and lack of data at the lower end. Another problem is that one
is fitting a line to an effectively cumulative sum of counts. Thus points entering
into the regression are obviously not independent, and have different variances
caused by different sample sizes.

The Takens and Hill estimators are based on the theory of maximum likelihood
and therefore carry some of the nice properties associated with that theory. An-
other advantage is that these estimators are more explicitly defined and, therefore,
lend themselves more easily to having their properties analysed. However, while
one can derive estimates of the required Rényi dimensions over a range of inter-
point distances, and evaluate the bias and variance at each of these points, they
still suffer from the boundary effect and variability at the lower end as does the
Grassberger-Procaccia method. An advantage of both the Takens and Hill esti-
mation methods over the Grassberger-Procaccia method is that the resultant plot
is directly that of the dimension estimates. In the Grassberger-Procaccia method,
one needs to calculate the slope or local derivatives with the inherent difficulties
that this causes. The plots based on the Hill method also tend to accentuate any la-
cunary behaviour which, in some ways, is as interesting as the fractal dimension.
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It not only tells us that the measure is supported on a self-similar like set, but also
tells us the scaling factor.

An advantage of the Grassberger-Procaccia method is that it is consistent, while
the Takens and Hill methods are not. Assume that we had an extremely large sam-
ple size, and that a plot of log y by log bFGP

Y
(y;N) had been done as prescribed

by this method. In the case of the Cantor measure, the plot would look like that in
Figure 7.4. As we continue to increase the sample size, we would sample smaller
and smaller interpoint distances, and the plot, with further lacunary cycles would
be extended to the left. As the line is extended further to the left, with an increas-
ing number of lacunary cycles, it can be seen that the possible slope of the fitted
line gets sandwiched closer and closer to the true slope. Alternatively, it can be
seen from Figures 8.3 and 8.4, that as the sample size increases in the Hill method,
further lacunary cycles are added to the plots for smaller values of y(m), though
it is no clearer where one should ‘draw the line’.

This may not be such a problem though. It appears from our calculations in this
section, using the Cantor measure, that reasonably accurate dimension estimates
can be calculated using the Hill method. No ad hoc decisions were required to
determine the ‘straight’ part of the line. It appears from our numerical studies that
if the measure under analysis has ‘gaps’ like the Cantor measure, then conditional
expectations as in Equation 8.13 will reduce the amplitude of the Hill estimates
closer to the value of �, apart from the higher order bias terms as in Equation
8.11. The ‘gaps’ appear to ensure that �(y) does not contain an overall boundary
component (see Example 10.2.1).
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CHAPTER 9

Extrinsic Sources of Bias

9.1 Introduction

In Chapter 7, it was shown that if the correlation exponent �(q) exists, then the
probability function FY (y) could be decomposed as �(y)y�(q), where �(y) de-
notes the non-powerlaw part. The non-powerlaw behaviour induced by the func-
tion �(y) was referred to as an intrinsic form of bias. In Chapter 8, methods to
estimate

Dq =
�(q)

q � 1

for q = 2; 3; � � � , were investigated.
Because of experimental limitations or deficiencies, the empirical probability

distribution of sampled interpoint distances can have quite different characteris-
tics to that of FY (y) given by Equation 7.6. We are not referring to those sources
of bias that are related to the particular estimator used as in Chapter 8. The extrin-
sic sources of bias referred to here are analogous to non-sampling error in sample
survey methodology, are an inherent part of the data, but not characteristic of the
underlying process (i.e., not intrinsic bias).

In many ‘real’ situations, such data deficiencies can be minimised but proba-
bly not eliminated. Many datasets consist of observations that have been collected
for many years, long before analyses often performed on them today were ever
thought about. Take, for example, catalogues of earthquake locations. The earth-
quake process is part of a large system of events worldwide, but occurring mostly
on or near tectonic plate boundaries. Detection of all events above a given mag-
nitude requires the event to be sufficiently close to an active seismic network.
Effectively the ‘boundary’ is determined by the efficacy of the seismic network.
Within the region where events can be detected, the accuracy of the determined
event location may also vary considerably. However, seismic networks are being
continually upgraded, thus boundaries and location errors (noise) are continually
changing.

The effect of extrinsic sources of bias on dimension estimates are quite difficult
to quantify analytically. There are three cases of extrinsic bias we investigate in
this chapter: imposed boundary effect, rounding effect and the effect of noise in
the data. We use the Hill estimator with a bootstrap sampling procedure (x8.5)
to demonstrate the above effects on dimension estimates where data have been
simulated.
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9.2 Imposed Boundary Effect

The methods described in Chapter 8 for estimating the Rényi dimensions are
based on interpoint distances. When an artificial boundary is imposed, and only
data within the region defined by that boundary are collected, excluding data from
outside of the region, a boundary effect occurs.

Take, for example, the interpoint distance when q = 2 . In order to achieve an
interpoint distance that is comparable to the width of the region, both points must
be sampled from areas that are close to opposite boundaries. Conversely, there are
many more possibilities for sampling a smaller interpoint distance. Consequently,
there is a deficit of larger interpoint distances relative to the situation where there
are no imposed boundaries.

In this section, the effect of observing a smaller region than that in which the
process is operating is described; that is, the effect of imposing a boundary within
which data will be sampled. These imposed boundaries are conceptually different
to those boundaries that are intrinsic to the process, as described in Chapter 7,
but they have much the same effect. A partial correction to the boundary effect is
given.

9.2.1 Boundary Effect Correction

One method of adjusting for the boundary effect is to subsample from a subregion
of the observation region. Let A0 be a set containing all observations within the
observation region, i.e.,

A0 = fxj : j = 1; � � � ; Ng;

where xj 2 Rd . Let A� be a smaller set of points, where A� � A0. Observations
that are close to the boundaries of A0 are excluded from A�. A� is defined as
follows.

Let xj = (xj1; � � � ; xjd). Denote the range of points in the uth dimension as

ru = max
j

(xju)�min
j

(xju) u = 1; � � � ; d:

Then define the reduced set of points A�, for 0 � � < 1
2 , as

A� =

(
xj : xj 2

dY
u=1

�
min
j

(xju) + ru�;max
j

(xju)� ru�

�
; j = 1; � � � ; N

)
:

(9.1)

The sampling procedure then proceeds as in x8.5. Let the sth (s = 1; � � � ; n)
interpoint distance of order q be

ys = max
�xs1 � xsq

 ; xs2 � xsq
 ; � � � ; xsq�1

� xsq
	 :

By sampling xsq from A� and xs1 ; xs2 ; � � � ; xsq�1
from A0 the boundary effect

is not very noticeable for interpoint distances that are less than the width of the
inner region A�.
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9.2.2 Example - Uniform Distribution

Figure 9.1 shows dimension estimates of D2 and D4 for uniformly distributed
points on the unit interval [0; 1]; where N = 104 points were simulated, and
k = 100 bootstrap samples were selected each containing n = 104 interpoint
distances. Dimension estimates were calculated using Equation 8.8 for both � = 0
and � = 0:3. Results are plotted by y(m) on the horizontal scale. It is the average
over all k bootstraps of the mth order statistic y(m).

Using a value of � = 0:3 makes the width of the inner region 0.4. It can be seen
in Figure 9.1 that the dimension estimates are one until the interpoint distances
get close to the width of the inner region, then drop even more sharply than the
non-corrected lines.

Consider N uniformly distributed points in a d-dimensional unit cube. Then
the expected number of points in A�, given by Equation 9.1, is N(1� 2�)d. Con-
sequently, as d increases, the number of expected points in the restricted region
decreases at a powerlaw rate. Hence the method is somewhat wasteful of data.

Another problem with the above method is that sampling boundaries are often
not clearly defined and straightforward as in the above example. The boundary of
a seismic network within which earthquake events, greater than some prescribed
magnitude, will be detected with a high probability, is often extremely irregular. It
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Figure 9.1 Boundary effect correction by excluding a fraction of � = 0:3. The solid lines
are estimates of D2, the upper one having the boundary correction. Similarly, the dashed
lines are estimates of D4 (k = 100; n = 10;000; N = 10;000).
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will not only depend on the density of the network, but on the geological charac-
teristics of the area which will also affect whether certain events can be detected.

Another method that is less wasteful of data and applicable to the Grassberger-
Procaccia algorithm (x8.2) is given by Stoyan & Stoyan (1994, x5.5) for q = 2 .
In the Grassberger-Procaccia procedure, counts are made of the number of points
within a distance Æ of a given point. The number of points found will be too
small if the given point is close to an imposed boundary. Stoyan & Stoyan (1994)
suggest scaling the counts by the volume of the sphere about the given point
divided by the volume of that sphere that intersects with the region under analysis.

Dvor̆ák & Klaschka (1990) suggest another correction based on the uniform
distribution. The correlation integral for points in a d-dimensional unit cube is
FY (y) = yd(2 � y)d for q = 2. They suggest modifying the Grassberger-
Procaccia (1983a) algorithm by calculating the slope of logFY (y) vs log[y(2 �
y)], having already scaled the points into the unit cube.

9.2.3 Example - Bimodal Beta Distribution

The beta distribution provides an interesting counter example to the boundary
effect. When � = � = 1, the beta distribution coincides with the uniform dis-
tribution. But when � = � are less than one, the distribution is bimodal with
increasing concentration of mass at either end of the interval [0; 1] as � and �
decrease. Since the beta distribution has a continuous density, then Dq = 1 for
all values of q � 1; however if � = � is sufficiently small, FY (y) for q = 2 is
approximately powerlaw with exponent 2� over almost the entire range of y. This
example will be discussed further in x10.3.2.

9.3 Rounding Effect

Most data are rounded if only to the extent of the number of digits stored to rep-
resent such a number in a database. Often a level of rounding occurs that equates
in some way to the accuracy of the observations. If data rounding is sufficiently
severe, there is a noticeable effect on dimension estimates. Data rounding can
have two main effects. There occurs a number of zero distances between sampled
pairs of points. This causes a problem with all estimators where logarithms of in-
terpoint distances are required. Another behaviour is a modulating effect, which
should not be confused with the lacunary behaviour discussed in Chapter 7.

One possible method to handle the zero differences is to modify the Hill esti-
mator by appealing to the truncated exponential distribution.

9.3.1 Truncated Exponential Approximation

Consider a sample of n interpoint distances y1; � � � ; yn in [0; 1] with probabil-
ity distribution FY (y) = y�. Assume that these observations have been subse-
quently rounded to the values 0; s; 2s; 3s; � � � , where 0 < s < 1; and that h of the
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rounded values equal zero, and n � h are non-zero. Let Y 0
i be the rounded value

of the random variable Yi. Assuming that the rounding has not had a too adverse
effect on the distribution of the non-zero values, W 0

i = � logY 0
i will have an

approximate truncated exponential distribution. For notational convenience, let
y1; � � � ; yn�h denote the non-zero sample values and yn�h; � � � ; yn denote the
zero sample values.

Letting t=2 = � log(s=2), it follows that PrfY 0
i = 0g = PrfYi < s=2g =

PrfWi > t=2g = exp(��t=2), thus using the truncated exponential distribution,
the log-likelihood is

L(�;w1; � � � ; wn)

= log

"�
n
h

�
(e��t=2)h(1� e��t=2)n�h

n�hY
i=1

�e��wi

1� e��t=2

#

= log

"�
n
h

�
e��ht=2

n�hY
i=1

(�e��wi)

#
:

The maximum likelihood estimate of � is then given by

b� =
n� h

ht=2 +
Pn�h

i=1 wi

: (9.2)

9.3.2 Modified Hill Estimator

Using Equation 9.2, the bootstrapping procedure of x8.5 is modified as follows.
Equation 8.7 becomes

zi;m =
�1

m� h

2664h log� s

2y(m)

�
+

m�1X
j=1

y(j) 6=0

log

�
y(j)

y(m)

�3775 ;
and Equation 8.8 remains

b�m =
kPk

i=1 zi;m
;

where k is the number of bootstraps, and h is the number of sampled zero differ-
ences.

9.3.3 Further Problems

The previous scheme is not entirely correct, because in practice the rounding is
implemented at an earlier stage, i.e., on the individual point positions Xi, where
i = 1; � � � ; N . Let Xi be the original point position and X 0

i be the corresponding
rounded value. Assume that the random variable X 0

i has been rounded to take
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possible discrete values x0; x0 + s; x0 + 2s; � � � , where s > 0. Then let Y 0 =
jX 0

1 �X 0
2j and Y = jX1 �X2j. Note the following.

1. Y 0 = 0 iff both X 0
1 and X 0

2 originate from the same rounded state. Further,
Y 0 = 0) Y 2 (0; s), however Y 0 = 0 6( Y 2 (0; s).

2. Y 0 = s iff X 0
1 and X 0

2 originate from neighbouring states. Further, Y 0 = s )
Y 2 (0; 2s), however Y 0 = s 6( Y 2 (0; 2s).

3. Y 0 = 2s iff X 0
1 and X 0

2 originate from alternate states. Further, Y 0 = 2s )
Y 2 (s; 3s), however Y 0 = 2s 6( Y 2 (s; 3s).

4. Et cetera.

Hence the rounded differences represent overlapping intervals on the Y scale,
and the first two states of Y 0 could both represent very small interpoint distances.
Using Y 0 = 0 as the truncated tail in a truncated exponential distribution, with a
truncation point of s, will give a deficit of zeros, as many values less than s could
be contained in the state Y 0 = s. This would cause the estimate of � to be too
large.

By using the estimate given by Equation 9.2, one is using the smaller ‘trunca-
tion’ point of s=2 for Y 0 = 0. This partially compensates for those small differ-
ences included in Y 0 = s. By using such a truncation value, one can also treat
non-zero values of Y 0 as representing non-overlapping intervals of equal length.

9.3.4 Example

Let X1 and X2 be i.i.d. random variables sampled from a continuous uniform
distribution on [0; 1]. After rounding to p decimal places, X 0

1 can have 10p + 1
possible discrete states, with probability function

PrfX 0

1 = xg =

8>><>>:
1

2� 10p
x = 0; 1

1

10p
x 6= 0; 1:

Note that we do not require p to be an integer, only 10p + 1 must be a positive
integer. Now let Y 0 = jX 0

1 �X 0
2j. Then it can be shown that

PrfY 0 = yg =

8>>>>>>><>>>>>>>:

2� 10p � 1

2� 102p
y = 0

2� 2y

10p
y =

1

10p
;

2

10p
; � � � ;

10p � 1

10p

1

2� 102p
y = 1:

(9.3)

As such, the distribution of Y 0 closely follows the triangular distribution of the
continuous unrounded case when 1=10p � y � (10p � 1)=10p. At first there
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appears to be a considerable deficit of point differences for y = 0; 1. This is
not the case, as Y 0 = 0; 1 represent intervals that are half the width of those
represented by other states.

Therefore, if we think of Y 0 = 0 as representing those values of Y 2 (0; s=2),
Y 0 = s as representing those values of Y 2 (s=2; 3s=2), etc., then the probability
distribution of Y 0 gives a good approximation to Y . In a sense, the distribution of
Y 0 is not only a discretised version of Y , but also smoothed.

9.3.5 Example

Figure 9.2 shows the effect of rounding simulated uniform random variables.
N = 10;000 scalar uniform random variables were simulated on [0; 1]. Each
value was then rounded to p decimal places, where log10 p = 0:05, i.e., each el-
ement has been rounded to the states 0; 0:05; 0:10; � � � ; 1:00. The bootstrapped
Hill estimates of D2 are plotted (solid line) and the dashed line represents the
dimension estimates when no rounding is done.

The modulating effect is caused by the severe rounding. This should not be
confused with the lacunary effect discussed in x7.4. Note that the modulations in
the case of rounding have constant period on the y(m) scale, creating a saw tooth
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Figure 9.2 Hill estimates (q = 2) when sampled points are uniformly distributed on the
unit interval but have been rounded to 0; 0:05; 0:1; 0:15 � � � ; 1. The horizontal dotted line
is for reference only, and the dashed line is the Hill estimates where no rounding has been
done on the data (k = 100; n = 10;000; N = 10;000; � = 0).
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effect, with decreasing amplitude as y(m) increases. It is caused by the increment-
ing of y(m) in the denominator of Equation 8.4. When y(m) = 0:05, all values of
the order statistics are either 0 or 0.05. Therefore, when y(m) increases to 0:10,
there is a considerable effect because for nearly all values of k < m, y(k) will be
0 or 0.05, hence the vertical jump. As y(m) increases, more values of y(k) will be
0.1, hence the line decreases until y(m) = 0:15. The cycle then repeats itself.
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Figure 9.3 Estimates of D2 for the Cantor measure (p0 = 0:5) with added white noise.
The bottom line represents estimates for the pure Cantor measure. Lines above that repre-
sent estimates for the Cantor measure plus white noise with standard deviations of 3�10,
3
�8 and 3

�6, respectively. The horizontal dashed lines are at log
3
2 and 1, the values ofD2

for the given Cantor measure and white noise, respectively (k = 100; n = 100;000; N =

100;000).
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9.4 Effect of Noise

We initially want to distinguish between two types of noise: observational error
and system noise. Observational error occurs when a process xi is recorded as
xi+�i. System noise is more intrinsic to the process, and causes later observations
(in time) to be functionally dependent on the noise inserted into the process at
earlier steps, e.g., x(ti) = T�[x(ti�1)] + �i. In this section we are interested only
in observational noise.

The effect of adding observational error to data is one of the most serious forms
of bias. Let the observational region be X � R

d , and the measure � be concen-
trated on a subset of X of possibly lower dimension than d. Addition of error to
observations tends to blur out any fine structure or to fill up the space, causing the
dimension estimates to increase to d as the interpoint distances decrease to zero.

9.4.1 Cantor Measure

Consider the case where the Cantor measure was generated as in Example 8.6.2.
Subsequently, white noise has been added. Results are plotted in Figure 9.3. As
the standard deviation of the white noise increases, fine structure is progressively
lost, hence for smaller interpoint distances, the noise dominates, and the dimen-
sion estimates are characteristic of the noise rather than the Cantor measure. It
can also be seen that the effect of noise is much more serious than the rounding
effect, for example.

The problem of noise in data and its effect on dimension estimates has also
been discussed by Smith (1992b).
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CHAPTER 10

Applications of Dimension Estimation

10.1 Introduction

In this chapter we describe some uses of dimension estimation, though apply the
techniques to data simulated from mathematical and statistical models rather than
real data. Using data with at least partially understood properties enables us to
more easily evaluate the methods and interpret the results in real situations.

The next section contains two remaining estimation issues. The first is, given
point estimates of �(q), how does one estimate the multifractal spectrum f(y)?
The second issue relates to lacunarity. In the Cantor measure examples given in
Chapter 8, the lacunary cycle extended over the entire range of the interpoint
distance y, and there was no boundary effect. It is wrong to assume that this is
always the case for self-similar measures. An example will be given where there
is both lacunarity together with a boundary effect. In the given example, they are
both intrinsic forms of bias.

Examples of spatial point patterns that have features found in earthquake data
are discussed in x10.3. One example is given where there is powerlaw scaling
over much of the range of the interpoint distances, though the exponent is not the
Rényi dimension. The other presents some features of the Moran cascade process.

In x10.4, two examples of dynamical systems are given and Rényi dimensions
estimated. These are calculated under the assumption that the full phase space
is observable. Often it is the case that the full phase space is not observable. In
this situation, a reconstructed phase space is created that has the same fractal
properties as the underlying phase space. These methods are briefly discussed.

Given an observed time series, a question which is of interest is whether the
data were generated by a dynamical system of finite dimension or whether the
system is stochastic. This begs the question of what is the difference between a
deterministic and stochastic process, and is it possible to make this distinction
based on empirical observations. These questions are discussed in x10.5.

Self-similar stochastic processes also satisfy various powerlaw relationships, in
particular, the autocorrelation function, and the manner in which the distribution
of the increment size scales with time. These processes have been discussed exten-
sively in the literature since Lamperti’s (1962) paper. However, these processes as
originally defined were monofractal (one powerlaw index). More recently, these
processes have been extended to ‘multifractal’ stochastic processes that satisfy a
multiple scaling law as is the case for a multifractal measure. An introduction to
both self-similar and multifractal stochastic processes is given in x10.6.
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10.2 More on Estimation and Interpretation

In the first example of this section it is shown that dimension estimates calculated
from observations sampled from a distribution (multinomial measure) on a self-
similar set can in fact have both lacunary and boundary effects. In the previous
chapters we studied the Cantor measure which only gave rise to a lacunary effect.
Information about the way in which the measure was constructed can be deduced
from the form of the boundary effect.

In the second example, an estimate of the multifractal spectrum is calculated
using the Legendre transform based on estimates of the Rényi dimensions.

10.2.1 Example - Multinomial Measures

Measures that are supported on a self-similar set with all similarity ratios the
same, and constructed by allocating uniform weight to each subset at each division
(e.g., Moran cascade process where the similarity ratios are all equal) appear to
give rise to a probability distribution, FY (y), that is lacunary, where Y is the
qth order interpoint distance. In the case of the Cantor measure, this lacunary
behaviour is the only form of intrinsic bias (see Figure 7.4), and there is not an
overall boundary effect as for the uniform distribution as shown in Figure 7.2,
i.e., a gradual decrease in �(y) over the entire range of y. This lack of a boundary
effect is caused by the placement of ‘gaps’. Multinomial measures without such
‘gaps’, as defined in Theorem 5.5.2, not only have a lacunary effect but also an
overall boundary effect.

In Figure 10.1, dimension estimates of simulated samples (N = 100;000)
drawn from various multinomial measures are plotted. The measure parameters
are written at the top of each graph where p = (p0; p1; � � � ; pb�1). Each sampled
point is generated by simulating a b-adic sequence, each digit with probability of
p! of being !, where ! 2 f0; 1; � � � ; b � 1g. This is then converted to a deci-
mal number between zero and one. One hundred bootstrap samples (k = 100) of
n = 100;000 interpoint distances were simulated.

When the ‘gap’ occurs at the beginning or end, i.e., p0 = 0 or pb�1 = 0,
then it appears that the last lacunary cycle is incomplete, see the top left and
bottom left plots. When there are no ‘gaps’, FY (y) is lacunary but also has a
pronounced boundary effect, see the top right plot. When there are ‘gaps’, there
appears to be no boundary effect, see the bottom right plot. The boundary effect
appears in varying strengths if only some ‘gaps’ are present, for example, compare
the two plots in the middle row. Note that both of these cases have the same
Rényi dimension eD2, and probably the same D2, but the functions FY (y) for
each are clearly not the same. Theorem 5.5.4, which states that D2 = eD2, is only
applicable to a multinomial measure with gaps.

Note that the lacunary effect is manifested in FY (y) as a periodic component
with a period of one on a logarithmic scale of base b. In the construction of each of
these multinomial measures, the similarity ratio was 1=b. In general, self-similar
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Figure 10.1 Estimates of D2 for various cases of the multinomial measure with and
without ‘gaps’ where p = (p0; p1; � � � ; pb�1). The horizontal dashed line is eD2 =

� logb

Pb�1

!=0 p
2
!, (k = 100; n = 100;000; N = 100;000).
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sets can contain a number of different similarity ratios. When a multifractal mea-
sure is constructed on such a set, e.g., Moran cascade measure, there is a mixture
of lacunary cycles that are out of phase with each other. As such, the collection of
these lacunary cycles has the appearance of noise in dimension estimates of D2,
see Example 10.3.1.

10.2.2 Example - Cantor Measure

Consider again the case where p0 = 0:2 with dimension estimates plotted in
Figure 8.6 and corrected estimates of the Rényi dimensions given in Table 8.1. We
will denote these as bDq, for q = 2; � � � ; 8, and the corresponding point estimates
of �(q) will be denoted as b�(q) = (q � 1) bDq. Here we attempt to use these
point estimates to partially reconstruct the multifractal spectrum f(y) given by
Equation 2.9. We do this by fitting a function to the point estimates b�(q), for

q = 2; � � � ; 8. We will refer to this fitted function as d�(q) . We then attempt to take

the Legendre transform of d�(q) to give a functional estimate of f(y), denoted asdf(y).
The Legendre transform of �(q) is f(y) = infq fqy � �(q)g. The solution can

be shown to be f(y(q)) = qy(q)��(q), where y(q) is the derivative of �(q). Since

0 2 4 6 8

−
0.

5
0.

0
0.

5
1.

0
1.

5

Estimated θ(q) for Cantor Measure with p0 = 0.2

q

θ(
q)

Figure 10.2 The solid line is d�(q) for the Cantor measure with p0 = 0:2. The stars repre-
sent the point estimates b�(q), for q = 2; � � � ; 8, and the solid dot represents the fixed point
where �(1) = 0. The dotted line represents the function e�(q) given by Equation 3.8.
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�(q) is a rescaled cumulant generating function, its derivative will have the form
given by the graph in Figure 3.3. That is, the derivative of �(q) will decrease to a
horizontal asymptote for increasing q, and also increase to a horizontal asymptote
for decreasing q (see Figure 3.4). The form of the derivative function in Figure
3.3 is very similar to the logistic function. Assume that the lower asymptote is
given by �1 and the upper asymptote by �2. Modifying the logistic function gives
a possible parametric form for the functional estimate of y(q) as

dy(q) = �1e
�q

e�q + 1
+

�2e
q

eq + 1
:

We then integrate to find the functional form of d�(q). Constants are added so thatd�(1) = 0 to gived�(q) = �1 log(e
�1 + 1)� �2 log(e

1 + 1)� �1 log(e
�q + 1) + �2 log(e

q + 1):

If one had more point estimates of �(q), additional parameters could be added to
modify the rate at which the function approaches the two asymptotes. With the
data we currently have, a two parameter model appears to be sufficient.

Non-linear least squares was used to estimate �1 and �2 giving estimates ofb�1 = 0:964140 and b�2 = 0:195159. Using Equations 3.15 and 3.16, the true

0.2 0.4 0.6 0.8

−
0.

2
0.

0
0.

2
0.

4
0.

6

Estimated f(y) for Cantor Measure with p0 = 0.2
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f(y
)

Figure 10.3 The solid line is df(y) for Cantor measure with p0 = 0:2. The solid dot rep-

resents the fixed point at dy(1), and the stars occur at dy(2); � � � ;dy(8) (top to bottom). The
dotted line represents the true multifractal spectrum f(y) given by Equation 3.6. The upper
dashed line represents f(y(0)) = D0.
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values of �1 and �2 can be calculated giving 1.464974 and 0.203114 respectively.
The estimate of �1 is poor because there are no data for q � 0.

The function d�(q) is plotted in Figure 10.2 for 0 < q < 9, and is compared with
the known values of e�(q). The estimate of the multifractal spectrum is calculated
as

\
f(dy(q)) = qdy(q)� d�(q);

which is plotted in Figure 10.3 and is compared with the known values of ef(y).
Note, as in Figure 3.2, f(y) is positive. The negative values of df(y) are caused by
the point estimates b�(q) being too small for larger q, see Figure 10.2.

10.3 Spatial and Temporal Point Patterns

Methods involving the estimation of exponents, like the correlation dimension,
have often been used in point process analyses to describe the degree of clus-
tering in spatial point patterns. For example, Kagan & Knopoff (1980) calculated
what they called the two point correlation function to describe earthquake clusters.
This was essentially the same as the correlation dimension D2. Kagan (1981a, b)
extended this to the three and four point correlation functions. These were not
exactly the same as D3 and D4. The three point function was based on areas
of triangles defined by the three points, and the four point function on volumes.
The powerlaw number of these triangles or tetrahedrons was then determined as
a function of their size Æ. Kagan then normalised the estimates by the values of
these functions when applied to the simple Poisson distribution.

Powerlaw estimates may not necessarily have a ‘fractal’ interpretation. The
fractal dimension of a set describes the powerlaw increase in the required number
of covers for the set as the cover width becomes infinitely small. When a set is
self-similar, this powerlaw behaviour extends over all scales. In other situations,
the powerlaw behaviour may only extend over an intermediate range of scales, and
may breakdown on smaller and larger scales. This will be seen in Example 10.3.2,
where D2 is based on pairs of points sampled from the beta distribution, say X1

and X2. In this situation, D2 is one, though parameters of the beta distribution
can be selected so that FY (y), where Y = jX1 �X2j, is powerlaw over almost
the entire range of y with an exponent whose value is considerably smaller than
one.

The cause of a powerlaw relationship not extending to the infinitely small scale
may be due to data deficiencies, though powerlaw behaviour may be quite a sen-
sible model assumption down to infinitely small scales. Alternatively, powerlaw
behaviour down to a smaller and smaller scale may not be a plausible model as-
sumption. When one calculates ‘dimensions’ one needs to be clear whether the
interpretation of these numbers is in fact a dimension, implying a powerlaw ex-
ponent down to finer scales ad infinitum, or whether it is only powerlaw over
some finite interval. In the later case, the exponent really relates to the probability
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distribution of the interpoint distances. In this section we further discuss some of
these questions in relation to spatial point patterns and point processes.

10.3.1 Example - Moran Cascade Process

Spatial point patterns can be simulated with a probability distribution given by
that of the Moran cascade process as follows. Consider the case in Example
6.2.3. The seed circle had radius one and was centred at (0; 0). Within this circle
were placed four smaller circles with centres at (V0;W0) =

�
1
2
; 0
�
, (V1;W1) =�

0;� 2
3

�
, (V2;W2) =

�
� 1

2
; 0
�
, and (V3;W3) =

�
0; 2

3

�
, with similarity ratios

t0; � � � ; t3 respectively. Here b = 4 and 
 = f0; 1; 2; 3g. Given a random se-
quence (!1; !2; � � � ) 2 
1, where !i 2 
, and using the coding map in Equation
6.1, the coordinates of the simulated point can be determined. Digits j 2 
 are
simulated with probability pj such that

P
j2
 pj = 1. For our simulations, a se-

quence of length n = 40 is sufficient, and then coordinates of the simulated point
are given by

x = V!1 +

n�1X
k=1

 
V!k+1

kY
i=1

t!i

!
and

y = W!1 +

n�1X
k=1

 
W!k+1

kY
i=1

t!i

!
:
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Simulated Moran Cascade Processes

Figure 10.4 Simulated Moran cascade processes (N = 1000) with similarity ratios t0 =

1
2

(right), t1 =
1
3

(bottom), t2 =
1
2

(left), and t3 =
1
3

(top). The left-hand graph has all
pj = 0:25, whereas the right has p0 = p2 = 0:4 and p1 = p3 = 0:1.
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Estimates of D2 for Moran Cascade Processes

Figure 10.5 Estimates of D2 for a simulated Moran cascade processes of length N =

10;000. In both cases pj = 0:25, j = 0; � � � ; 3. The horizontal dotted lines are D?
2 . The

left-hand graph is the same process as in the left-hand graph of Figure 10.4 where the
similarity ratios are t0 =

1
2

(right), t1 =
1
3

(bottom), t2 =
1
2

(left), and t3 =
1
3

(top). The
right-hand process has all similarity ratios constant, i.e., tj = 1

3
for j = 0; � � � ; 3.

Figure 10.4 shows two simulations, each of 1000 points, with different values
of the pj’s. The first graph has all pj = 0:25 thus giving each ‘cluster’ the same
expected number of points. The higher density of the upper and lower clusters is
caused by the smaller similarity ratios. The second process gives greater proba-
bility to the left and right clusters, giving the appearance of many points aligned
in the middle with smaller parallel alignments. The points may represent initia-
tion points of micro stress fractures in a two-dimensional object. The alignment
of many such micro fractures has produced a main ‘fault’ with smaller parallel
‘faults’.

The graph on the left-hand side of Figure 10.5 shows the dimension estimates
ofD2 for the same process plotted on the left of Figure 10.4 but with a sample size
of N = 10;000. Note that this process has a mixture of similarity ratios and hence
there is not a clear lacunary cycle. The dimension estimates on the right-hand side
of Figure 10.5 represent the same process, except all similarity ratios are 1

3
. This

produces a clear cycle which is periodic on a logarithmic scale of base 3. Note
how the boundary effect occurs later in the case where the similarity ratios are the
same (lacunary cycles effectively in phase with each other).
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Dimension estimates of spatial patterns can sometimes be dominated by two
clusters of points that are much larger than other clusters. This is seen in the fol-
lowing example where apparent powerlaw behaviour is produced in the estimates
of D2, though one gets humps in the estimates of the higher order Rényi dimen-
sions.

10.3.2 Beta Distribution

The beta distribution can be used to provide an interesting antithesis to the bound-
ary effect discussed in x9.2. The boundary effect is caused by a relative paucity of
larger interpoint distances. If we sample pairs of points from a beta distribution
with � = � < 1, we will tend to sample more larger interpoint distances than
when � = � = 1 (i.e., uniform) because the mass is more concentrated towards
the edge of the unit interval as � and � decrease.

Further, the probability distribution of Y = jX1 � X2j becomes increasingly
powerlaw like with exponent 2� over much of the range of Y . This can be seen in
the plots of Figure 10.6. When � = � = 0:5, the boundary effect in the estimates
of D2 are much weaker than in the case where � = � = 1 (i.e., uniform). In
the cases for still smaller values of � = �, the line representing estimates of D2

indicates that FY (y), with q = 2, has powerlaw behaviour over almost its entire
range.

This powerlaw behaviour can be verified using a known result on the differ-
ence of two beta random variables. In our case � = � so the distribution of
the difference will be symmetrical about zero. It follows from Johnson, Kotz &
Balakrishnan (1994, Equation 25.103e) that the probability density function of Y ,
fY (y), has the form

fY (y) =
y2��1(1� y)2��1

B(�; �)

1X
i=0

1X
j=0

A�;i;j

(1� y)i(1� y2)j

i! j!
;

where B(�; �) is the beta function and A�;i;j are non-negative constants. The
infinite series is convergent for y > 0. By expressing (1 � y)2��1 as a Taylor’s
series (y < 1), the density function can be expressed as a polynomial with leading
term y2��1. Integrating shows that the probability distribution of Y is powerlaw
with exponent 2� for sufficiently small � = �. The smaller the value of � = �,
the more dominant this leading term becomes. When � and � are sufficiently
small, the beta distribution is essentially two powerlaw distributions at opposite
ends of the unit interval.

The fact that the beta density is not multifractal is indicated by the higher order
Rényi dimension estimates. None of these are powerlaw in the manner ofD2. Fur-
ther, as q increases there is an increasing single peak, indicating that the interplay
is essentially between two clusters.

The above example has been included because it is not completely dissimilar
to the behaviour that can occur with earthquake spatial point patterns, where two
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Dimension Estimates for Beta Distribution with α = β

Figure 10.6 Estimates of D2; D3; D5 and D7 when points are sampled from a beta distri-
bution with � = �. In the top two plots, lines represent D2; D3; D5 and D7 top to bottom.
In the bottom four plots, lines for small values of y represent D2; D3; D5 and D7 top to
bottom, though ultimately the most peaked is that of D7.
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very densely populated clusters can dominate the dimension estimates. This will
be discussed further in Chapter 11.

10.3.3 Consistency for Point Processes

When dimension estimates are calculated from an observed point pattern, there
is some ambiguity as to the interpretation of the estimates. A finite point pattern
itself has dimension zero. In the case of a point pattern simulated from the Moran
cascade process, for example, the Rényi dimension estimates relate to the proba-
bility distribution from which the data were sampled.

Vere-Jones (1999) shows that there are at least two different interpretations of
the Rényi dimension estimates in the case of an observed space-time point pro-
cess. In the first, the spatial region is fixed and estimates are taken over increasing
periods of time, and in the second, the time interval is fixed while the size of the
spatial region increases. These two situations are discussed further in x11.1.1.

10.4 Dynamical Systems

In this section we estimate the Rényi dimensions of the logistic map and the
Lorenz attractor. The Cantor like structure in the example of the logistic map
is clearly evidenced by the lacunary behaviour of the dimension estimates.

Generally only a projection of a dynamical system is observed, often only a
scalar time series. That is, the full process is not completely observable. Using the
observed time series, one attempts to determine the multifractal characteristics of
the full unobserved process. This is discussed and applied to the Lorenz attractor.

10.4.1 Logistic Map

We initially discussed the logistic map in x1.3.2. The behaviour of the logistic
map undergoes a sequence of bifurcations as � increases to �1 � 3:569945672,
see x1.3.2. When � = �1 (see Figure 1.4), the attracting set is similar in nature to
the Cantor set.

In this example, we estimate the Rényi dimensions (q = 2; � � � ; 5) for the
Cantor like case where � = �1. We use � = 3:569945672 as an approxima-
tion for �1 in our simulations. Using an approximation to �1 causes interesting
behaviour. If we simulate a sequence of sufficient length, it will start repeating
its orbit, even though the period is very large (see Grebogi et al., 1988). This will
cause the dimension estimates to tend to zero for small interpoint distances. When
the simulated series is sufficiently short that no periodic behaviour is detected, the
approximation to �1 is more similar to adding noise to the simulated series, and
the dimension estimates will tend to one for small interpoint distances.

If the simulated series starts repeating itself, there is a reasonable likelihood that
zero interpoint distances will be sampled. The Hill estimate given by Equation 8.8
cannot handle zero distances. In practice, we use the modified Hill estimate given
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in x9.3.2 and assume that the machine precision is approximately 10�16. This
value is then used for h in x9.3.2.

The above effects can be seen in Figure 10.7. Five values of �, close to �1, have
been used to simulate sequences of length N = 100;000. For each sequence, the
Hill estimates of D2 have been calculated using k = 100 bootstrap samples each
consisting of n = 100;000 sampled interpoint distances. The interpoint distances
on the horizontal axis have been plotted on a logarithmic scale of base 6, because
this is the approximate self-similar scaling factor determined from Figure 1.3. In
the cases where � = 3:568 and 3:569, zero interpoint distances were sampled, and
hence the dimension estimates for small values of the interpoint distance are zero.
For the other values of �, the process exhibits Cantor like behaviour for larger
interpoint distances. This is seen by the development of lacunary like behaviour
close to the Hausdorff dimension (dotted line) of the attractor (Falconer, 1990,
page 176). The dimension estimates tend to one for smaller interpoint distances,
i.e., the fine structure becomes blurred due to the approximation used for �1.

Dimension estimates of D2; � � � ; D5 for the case where � = 3:569945672 �
�1 are plotted in Figure 10.8. In the case of the logistic map, an extremely
long series needs to be simulated before lacunary like behaviour becomes ev-
ident over a few cycles. For the calculations in Figure 10.8, a series of length
N = 300;000 was simulated, and k = 100 bootstrap samples selected with each
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Figure 10.7 Estimates of D2 for the logistic map with � = 3:568 (bottom line), 3:569
(2nd to bottom), 3:570 (3rd down), 3:571 (2nd down), 3:572 (top) (k = 100; n =

100;000; N = 100;000).
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Figure 10.8 Estimates of D2; � � � ; D5 for the logistic map with � = 3:569945672. The
dotted line represents the Hausdorff dimension (0:538 � � � ) of the attractor (Falconer,
1990, page 176). The line with the smallest peak and most shallow trough represents the
estimate of D2, etc., to the line with the greatest peak and deepest trough represents D5

(k = 100; n = 300;000; N = 300;000).

sample consisting of n = 300;000 interpoint distances. Note that the lacunary
cycle appears to be approximately periodic on a logarithmic scale with a base of
six, consistent with Figure 1.3. The resolution is relatively poor compared to the
estimates of the Cantor measure in Figures 8.5 and 8.6, because the attracting
set is contained in a much smaller part of the unit interval (see Figure 1.4), and
an approximate value of �1 was used in the simulations. The line representing
the dimension estimate of D2 extends back almost horizontally at about 0.5 until
about �7:0, then it tends up to 1. This is again consistent with the error induced
by using an approximation for �1.

Using Figure 10.8, a rough estimate of D2 is 0.5. Estimates of D3; D4 and D5

only decrease small amounts compared to the Cantor Measure where p0 = 0:2
shown in Figure 8.6, with D5 for the logistic map being not much less than 0:48.
This would tend to indicate that the orbit of the logistic map visits various subsets
of the attracting set more evenly than in the case of the Cantor map with p0 = 0:2
(see Example 1.3.1).
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10.4.2 Generalised Bakers’ Map

The bakers’ map is so named because it consists of a stretching and then a folding
transformation, similar to the operations performed by a baker preparing dough.
This is discussed by Falconer (1990, page 177). Smith (1992a) gives a generalisa-
tion of this map called the generalised bakers’ map and calculates the correspond-
ing function �(y) when q = 2 . In this case, �(y) has very similar properties to
that for the Cantor measure in Figure 7.5.

10.4.3 Lorenz Attractor

The Lorenz equations are defined in R3 as in Example 1.3.3. This is referred to
as the phase space, within which the complete system of equations are defined.
When fractal dimensions are being estimated for an observed dynamical system,
it is often assumed that only part of the process is observable, that is, we observe
the process in an observation space. Hence there is an assumption of a projection
from the phase space to the observation space, where our observations may even
consist of only a scalar time series.

In this example we assume that the observation and phase spaces are the same,
and that our observed point locations of the orbit include all components of the
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Figure 10.9 Estimates of D2; � � � ; D5 (solid lines) for the Lorenz attractor. The line repre-
senting D2 extends furthest to the left, then followed by D3, D4 and D5. The dashed lines
represent an interval centred on the estimates of D2 with a half width of twice the standard
error (k = 100; n = 200;000; N = 200;000).
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three dimensions. We will consider in x10.4.4 what happens when the phase and
observation spaces are not the same.

In this example, we have used the approximation given by Equation 1.1 (Euler’s
method) to simulate a series using a step length of h = 0:001. The number of
simulated observations (in R3 ) was  N = 2 � 106. Dimension estimates were
calculated by samplingn = 2�105 interpoint distances and repeating for k = 100
bootstraps. Hill estimates are plotted in Figure 10.9.

Intervals representing twice the standard errors have also been plotted in Figure
10.9 about the Hill estimates of D2. It is clearly seen that the variability of the
estimates are greater for smaller interpoint distances but also the autocorrelation
as m increases is also evident; compare with Figure 8.1.

Also note that the estimates of D3 to D5 have not extended to sufficiently small
interpoint distances where powerlaw behaviour is evident. This is a problem that
occurs in estimating higher order Rényi dimensions. Long series of observations
are required before dimension estimates are not affected by the boundary and fall
within the range where powerlaw scaling is evident.

10.4.4 Embedding and Reconstruction

In our discussion up to this point on dynamical systems, we have assumed that the
process is directly observable on X � Rd , and can be represented as a discrete
time mapping

x(tn+1) = T�[x(tn)] = Tn+1
� [x(t0)]:

Physicists refer to X as the phase space. The purpose has been to describe the
probability measure �, which is the probability of finding the trajectory within the
set A at any given time point. Since the process is deterministic and the measure
� is assumed to be invariant under the mapping T�, �(A) is equivalent to the
probability that x(t0) 2 A. The condition that � is invariant is equivalent to the
time series fx(tn) : n = 0; 1; � � � g being strictly stationary.

Often the phase space,X , of a dynamical system is not directly observable, and
we only observe the process in another space, say Y � Rk where k < d, which
is a projection of X , i.e.,

� : X �! Y :

We will refer to Y as the observation space. Often k = 1, and then our obser-
vations consist of a univariate time series fy(tn) : n = 0; 1; � � � g. Given these
observations, can we still determine the multifractal characteristics of the proba-
bility measure �?

The multifractal characteristics can often be determined by embedding the time
series into a p-dimensional reconstructed phase space. This is usually done by
the method of time delays, where a new p-dimensional time series, denoted by
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y(p)(tn), is defined as

y(p)(tn) =
�
y(tn); y(tn+`); � � � ; y(tn+(p�1)`)

�
; (10.1)

where ` 2 Z+ is a lag parameter. The required value of p will be discussed below.
Now by re-expressing y(p)(tn) as

y(p)(tn) =
�
� Æ Tn

� [x(t0)];� Æ Tn+`
� [x(t0)]; � � � ;� Æ T

n+(p�1)`

� [x(t0)]
�
;

it is seen that we have a composite mapping, say 	p, as

	p : X �! Yp; (10.2)

where Yp is the product space of Y . We say that 	p is an embedding map if the
fractal properties ofX are preserved in the reconstructed phase space Yp. Usually
the notion of embedding includes the requirement that differential structure is also
preserved, though this is not necessary here.

The method of time delays, as in Equation 10.1, is based on a result by Takens
(1981), which is based on the Whitney (1936) embedding theorem. Such time
delay reconstructions were first advocated by Packard et al. (1980). Sauer et al.
(1991) showed that if p in Equation 10.1 is greater than twice the box counting
dimension of the attractor in X , then 	p will be an embedding map.

Further discussion on the notion of embedding can be found in Whitney (1936),
Sauer et al. (1991), Cutler (1997), Cheng & Tong (1994), and Isham (1993).
Casdagli et al. (1991) discuss state space reconstruction in the presence of noise,
and Fraser & Swinney (1986) discuss optimal time lag length for reconstruction.
Further discussion can also be found in Cutler & Kaplan (1997) which contains
a collection of review articles by both mathematicians and physicists. A review
article on the analysis of observed chaotic data by Abarbanel et al. (1993), and
the book by Abarbanel (1995), also contain excellent sections on reconstructing
the phase space.

10.4.5 Example - Lorenz Attractor Continued

In this example, we assume that only the x1(tn) component of the Lorenz attractor
is observable, that is y(tn) = x1(tn) where x1(tn) is defined in Equation 1.2.
Using this scalar time series, we will form an embedding using the method of
time delays, y(p)(tn), into a reconstructed phase space whose fractal properties
should be the same as those of X analysed in Example 10.4.3.

We know that p must be greater than twice the box counting dimension of the
attractor. However, we also need to determine the lag parameter `. The best value
to select is not easy to prescribe. We are observing a system whose autocorrela-
tions are of interest. However, if ` is too small, successive observations will add
little information to our knowledge. For example, a time series of air tempera-
ture measurements in Wellington at one second intervals probably contains much
redundant information. Alternatively, if ` is too large, we will loose the relation-
ship between successive values, and the readings will be essentially independent.
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Figure 10.10 Plots of the scalar time series y(tn) by y(tn+`) for various values of `.
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In Figure 10.10, the scalar time series y(tn) is plotted against y(tn+`) for vari-
ous values of `. It appears that the structure of the attractor ‘unfolds’ when ` is
somewhere between 10 and 20, compare with Figure 1.5. When ` is too large, the
characteristic structure appears to be lost.

Fraser & Swinney (1986) suggested that ` could be determined by calculating
the average mutual information as a function of `, defined as follows. Let U and
W be random variables taking values u1; u2; � � � and w1; w2; � � � respectively.
Then the average mutual information is defined as

H =
X
i

X
j

PrfU = ui;W = wjg log2
PrfU = ui;W = wjg

PrfU = uigPrfW = wjg
;

where PrfU = ui;W = wjg is the joint probability of U and W . In the case of a
continuous scalar time series Y (tn), we can divide the range of Y (tn) into inter-
vals, say I1; I2; � � � . We are interested in the average mutual information between
Y (tn) and Y (tn+`) for various values of `. Hence H(`) is defined as

H(`) =
X
i

X
j

PrfY (tn) 2 Ii; Y (tn+`) 2 Ijg

� log2
PrfY (tn) 2 Ii; Y (tn+`) 2 Ijg

PrfY (tn) 2 IigPrfY (tn+`) = wjg
:
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Figure 10.11 Average mutual information for the scalar series y(tn) = x1(tn) of the
Lorenz attractor. The first minimum occurs at ` = 16.
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Estimates of D2 for Embeddings of Lorenz Attractor

Figure 10.12 Estimates of D2 using the method of time delays for the Lorenz attractor,
assuming that only the x1(tn) component (as in Equation 1.2) is observed. The lines rep-
resent the dimension estimates using y(p)(tn) for p = 2; 3; � � � ; 10. The horizontal dotted
line is at 2:06.

In the case of an observed time series y(tn), we define intervals Ii and estimate
the probabilities as the proportion of times that the interval Ii is visited. Fraser &
Swinney (1986) suggested that H(`) be calculated for ` = 1; 2; 3; � � � , and that
value of ` where the first minimum is found is to be used as the time lag value in
the calculation of y(p)(tn), given in Equation 10.1. This has been done in Figure
10.11, where a series of 20,000 was simulated and the range of y(tn) was divided
into 200 subintervals. The first minimum occurs at ` = 16.

Using a value of ` = 16, y(p)(tn) as in Equation 10.1 was calculated. Estimates
of D2 for y(p)(tn) are plotted in Figure 10.12. The bottom line represents the
dimension estimates of y(2)(tn), the next of y(3)(tn), etc., and the top line of
y(10)(tn). As p increases, the dimension estimates appear to saturate at about the
same value of D2 in Figure 10.9. One needs to be careful in concluding that the
dimension estimates have saturated for a given value of p. As p increases, one
needs an increasingly large sample size to get dimension estimates within the
range where powerlaw behaviour is evident. See for example Figure 10.13 which
plots estimates of D2 for white noise in up to five dimensions. In the case of five
dimensions, the line representing the dimension estimates only just reaches five.
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10.5 Is a Process Stochastic or Deterministic?

Simple non-linear sets of equations can generate extremely complex behaviour,
and often the dynamics appear stochastic. In many observed time series, it is not
clear what the fundamental underlying process is that drives the system. For ex-
ample, the climate in Wellington could be partially described by a time series of
daily maximum temperatures, daily rainfall, or possibly even the velocity of the
maximum daily wind gust. Alternatively, the movement of the earth’s tectonic
plates is made evident by recorded seismic events and surface deformation. How-
ever, in both processes, we only observe certain aspects that are evidence of an
underlying more complex process, hence the notion of a projection as described
in x10.4.4. A question that is of interest is, given a time series that is related to
an underlying more fundamental process, is it possible to determine whether the
underlying process is governed by a deterministic set of equations or a stochastic
system.

Dimension estimation has been used as a method to determine whether a time
series is stochastic or deterministic. Given a time series, typically univariate, a
time delay embedding is calculated for p = 2; 3; � � � as in Equation 10.1. Usually
the correlation dimension, D2, is estimated for each value of p. If the time series
is deterministic, then the estimates of D2 should converge to a limit. If the time
series is stochastic, then D2 = p, and so the dimension estimates should increase
indefinitely as the dimension of the reconstructed phase space increases. This is
done under the assumption that a stochastic time series has an infinite number
of degrees of freedom whereas that generated by a dynamical system has a finite
number of degrees of freedom.

In an important paper by Osborne & Provenzale (1989), it was shown that a cer-
tain coloured noise process with powerlaw spectra saturated at a finite dimension,
contrary to what was expected (see also Theiler, 1991 and Kennel & Isabelle,
1992). It was later shown by Cutler (1994) that their example failed to have an
infinite dimension because the powerlaw spectrum was discrete. Subsequently,
Cutler (1997) defined more precisely what is meant by stochastic and determinis-
tic. We give a brief summary in this section.

10.5.1 Definitions (Cutler, 1997)

1. The time series fY (tn) : n = 0; 1; � � � g is said to be strictly stationary if for
any finite collection t1; � � � ; tn and for all � ,

PrfY (t1) < y1; � � � ; Y (tn) < yng

= PrfY (t1 + �) < y1; � � � ; Y (tn + �) < yng:

2. A mapping g : X ! Y , between the metric spaces X and Y with metrics �1
and �2 respectively, is said to satisfy a Lipschitz condition if, for all x1; x2 2 X ,

�2(g(x1); g(x2)) � k�1(x1; x2);
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where k is a constant. If in addition, g is one to one and g�1 also satisfies a
Lipschitz condition on its domain, then g is bi-Lipschitz.

3. Let fY (tn) : n = 0; 1; � � � g be a strictly stationary time series with values in
Y . The predictive dimension, denoted by �, is defined as the smallest n � 1
such that there exists a mapping � : Yn �! Y such that

Y (tn) = � [Y (t0); � � � ; Y (tn�1)]

with probability 1. If no function � exists for all n � 1, then � =1.

The following theorem tells us that a strictly stationary process with known
predictor function � and finite predictive dimension � can be predicted as a func-
tion of the previous � observations. This is then used to define what we mean by
a stochastic and deterministic time series.

10.5.2 Theorem (Cutler, 1997, Theorem 2.2)

Let fY (tn) : n = 0; 1; � � � g be a strictly stationary time series with finite predic-
tive dimension � and predictor function �. Then, for all integers m � 0,

Y (tm+1+�) = �
�
Y (tm+1); Y (tm+2); � � � ; Y (tm+�)

�
with probability 1.

10.5.3 Definition (Cutler, 1997)

A strictly stationary time series fY (tn) : n = 0; 1; � � � g is said to be deterministic
if � <1 and stochastic if � =1, where � is the predictive dimension.

The following theorem tells us that, under certain conditions, the Rényi dimen-
sions associated with a dynamical system with invariant measure � are the same
as those associated with the time lagged process Y (p)(tn) with distribution Pn for
suitable values of p.

10.5.4 Theorem (Cutler, 1997, Corollary 2.26)

Let T : X ! X be a dynamical system with invariant distribution �, i.e.,
X(tn) = Tn(X(t0)), for n = 1; 2; � � � , where X(t0) is a random initial con-
dition with distribution �. Suppose that the projection � : X ! Y is Borel mea-
surable and Y (tn) = �[Tn[X(t0)]] is the resulting functional time series with
joint distributions Pn, i.e.,

Pn(y0; � � � ; yn�1) = PrfY (t0) < y0; � � � ; Y (tn�1) < yn�1g:

Also assume that the delay coordinate mapping 	p, given by Equation 10.2, is
bi-Lipschitz for some p, and T satisfies a Lipschitz condition (Definition 10.5.1).
Then
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1. the functional time series Y (tn) is deterministic with predictive dimension
� � p;

2. for all n � p, Dq(�) = Dq(Pn), for q 2 R, where Dq(�) is defined as in
Equation 2.6, but with � replaced by the distribution �; and

3. for all n � p, dimH(supp �) = dimH(supp Pn).

10.5.5 Example - Gaussian Time Series

A scalar time Gaussian series fy(tn) : n = 0; � � � ; 100;000g was simulated, and
the p-dimensional time series y(p)(tn) was calculated using Equation 10.1 (note
that ` = 1 here). Figure 10.13 shows estimates of D2 using the series y(p)(tn)
for p = 1; � � � ; 5. Since the process is stochastic, D2 = p. However, note that
as p increases, the dimension estimates are increasingly affected by the boundary
effect, and for p = 5, there is no real powerlaw behaviour, with the estimates only
just reaching five.

Wolff (1990) derived an expression for the correlation integral (see x7.1.2) with
q = 2 for an autoregressive time series and a moving average time series. He
also simulated AR(1) and MA(1) processes with Gaussian white noise innova-
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Estimates of D2 for Embeddings of White Noise

Figure 10.13 Estimates of D2 for a scalar time series y(tn) of white noise, n =

0; � � � ; 100;000. The bottom line represents estimates using the series y(1)(tn), the sec-
ond of y(2)(tn), and so on, where y(p)(tn) is given by Equation 10.1. There were 100

bootstrap samples each consisting of 100;000 sampled interpoint distances.
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tions, and calculated the time delay embeddings y(p)(tn). Since the processes are
stochastic, D2 should be equal to p, the dimension of the reconstructed phase
space. In the simulations done by Wolff (1990), his estimates of D2 were � p,
with the difference becoming greater as p increased; i.e., as the boundary effect
becomes more of a problem. The estimates of D2 were also smaller when the
simulated series had greater autocorrelations between successive observations.

These examples show that, while a stochastic process may have infinite degrees
of freedom and hence is infinite dimensional, ones ability to detect this from an
observed time series is hindered by the boundary effect. As p increases, this effect
will become increasingly severe and can give the appearance that the dimension of
the process is converging to a finite value as would be expected for a deterministic
time series.

10.6 Stochastic Processes with Powerlaw Properties

10.6.1 Historical Sketch

There are three important papers that provide the seminal ideas of processes that
display powerlaw scaling and long range dependence (Hurst, 1951; Rosenblatt,
1961 and Lamperti, 1962). We briefly introduce the ideas contained in each.

Harold Edwin Hurst (1951) was a hydrologist studying discharge rates of the
River Nile at Aswan. Given the inflow and outflows of the reservoir, he derived an
expression for the storage range required by an ideal reservoir in the interval of
time (0; T ), say R(T ), to ensure that it could cope with times of high input (i.e.,
does not overflow) and times of high demand. Thus R(T ) is the required capac-
ity of the reservoir for it to function satisfactorily over an interval of length T . It
is dependent on the interval length because the storage required can be thought
of as being similar to the path of Brownian motion. The longer the period, the
more variable the process becomes, and hence the greater the possible extremes.
Hurst (1951) analysed the historical records and found that R(T )=S, where S is
the standard deviation of R(1), calculated from different parts of the historical
record, was approximately equal to (T=2)H . Hurst (1951) pointed out that if in-
flows and outflows were independent, similar to sums of mutually independent
and identically distributed random variables, then one would expect R=S to fol-
low a law of this type, but with H = 1

2
. He found that H was typically about

0.73. Hurst attributed this result to be a consequence of the flow rates having se-
rial correlation. The Hurst parameter H now often appears in the formulation of
stochastic processes that display long range dependence. Further information on
the stochastic modelling of river flows can be found in Lawrance & Kottegoda
(1977) and Lloyd (1981). So called R=S analyses have often been used to es-
timate the Hurst parameter, see for example Mandelbrot & Wallis (1969) for a
description of the method, and Mandelbrot (1975) for various limit distribution
results.

Rosenblatt (1961) was concerned with the distribution of sums of sequences of
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random variables that were strongly mixing. A sequence Yn is said to be strongly
mixing if��PrfYn 2 A; Yn+m 2 Bg � PrfYn 2 AgPrfYn+m 2 Bg

�� � d(m);

where d(m) decreases to 0 as m ! 1. He showed that if the sums of such
sequences satisfied certain moment conditions, then their limiting distribution,
when suitably normalised, should have a Gaussian distribution. He gave a counter
example where the sequence of observations Yn satisfied the moment conditions
but were serially correlated. The normalised sums converged to to a non-Gaussian
distribution. He concluded that the sequence Yn did not satisfy the strong mixing
condition. In fact it displayed a form of long range dependence.

The stationary sequence Yn, with zero mean, is said to be in the domain of
attraction of a process X(t) if the finite dimensional distribution of

XN(t) =
1

dN

bNtcX
j=1

Yj (10.3)

converges to those of X(t) as N ! 1, where dN is any positive normalising
factor which tends to infinity as N ! 1, and bNtc denotes the largest integer
not greater than Nt. Rosenblatt’s (1961) counter example converged to a process
that has become known as the Rosenblatt process.

The following discussion uses the notion of equality of finite dimensional dis-
tributions. We will say that two stochastic processes X1(t) and X2(t) have the
same finite dimensional distributions if, for any n � 1 and t1; t2; � � � ; tn,�

X1(t1); X1(t2); � � � ; X1(tn)
� d
=
�
X2(t1); X2(t2); � � � ; X2(tn)

�
;

where
d
= denotes equality of probability distributions. We will write this suc-

cinctly as fX1(t)g
d
= fX2(t)g.

Lamperti (1962) introduced the idea of scaling in a process X(t). He defined
a d-dimensional process X(t) as being semi-stable if it obeys a simple continuity
condition and, for s > 0, the relationship�

X(st)
	 d
=
�
b(s)X(t) + c(s)

	
holds, where b(s) is a positive function and c(s) 2 Rd . Lamperti (1962) then
showed that if X(t) is a proper semi-stable process and X(0) = 0, then c(s) = 0
and b(s) = sH where H is a positive constant. That is,�

X(st)
	 d
=
�
sHX(t)

	
; (10.4)

which is now generally regarded as the definition of a self-similar stochastic pro-
cess. Lamperti (1962) also showed that the normalising constant dN in Equation
10.3 must be of the form NHL(N), where L( ) is a positive function that is
slowly varying at infinity, and further, the limit process X(t) must be effectively
self-similar.
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Taqqu (1975, 1977, 1978, 1979) in a series of papers considered a family of
limiting self-similar stochastic processes originating from sums of the form given
by Equation 10.3. Let Yj = hm(Zj) where hm( ) is the Hermite polynomial
of rank m and Zj is a Gaussian sequence of random variables that have long
range dependence whose autocorrelations are parameterised as a powerlaw func-
tion of H . Then it turns out that the limiting stochastic processes, X(t), are self-
similar. Further, when m = 1 the limiting processes is fractional Brownian mo-
tion, and whenm = 2 it is the Rosenblatt process discussed above. Similar central
limit type theorems were also introduced by Rosenblatt (1979, 1981), Dobrushin
(1979), Dobrushin & Major (1979), and Major (1981). Taqqu & Wolpert (1983)
discuss similar processes that are subordinated to a Poisson measure. See the text
by Samorodnitsky & Taqqu (1994) for more details.

10.6.2 Self-Similar Stochastic Processes

The increments of a random function fX(t) : �1 < t < 1g are said to be
self-similar with parameter H if for any s > 0 and any ��

X(st+ �)�X(�)
	 d
=
�
sH(X(t+ �)�X(�))

	
:

If the increments of X(t) are self-similar and X(0) = 0, then X(t) is also self-
similar as in Equation 10.4. If X(t) has self-similar and stationary increments and
is mean square continuous, then it can be shown that 0 � H < 1.

The covariance structure can be derived directly from the above scaling law. Let
X(t) be a process with stationary self-similar increments. Then the covariance
function is

E[(X(t+ � + 1)�X(t+ �))(X(t + 1)�X(t))]

= 1
2
�2H
�
j� + 1j2H + j� � 1j2H � 2j� j2H

	
;

where �2H = E
�
(X(t+ 1)�X(t))2

�
for all t.

The process X(t) is said to be isotropic if�
X(t)�X(s)

	 d
=
�
X(jt� sj)

	
: (10.5)

In this case, E
�
X2(t)

�
= jtj2HE

�
X2(1)

�
, and

E[X(t)X(s)] = 1
2

�
jsj2H + jtj2H � jt� sj2H

	
E
�
X2(1)

�
:

10.6.3 Fractional Brownian Motion

A Gaussian process is uniquely determined by its autocovariance function. The
unique Gaussian self-similar process is called fractional Brownian motion, which
we will denote as BH(t). The increments of fractional Brownian motion are re-
ferred to as fractional Gaussian noise. If BH(0) = 0, then the process BH(t) is
isotropic (Equation 10.5).
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Figure 10.14 Graphs of fractional Brownian motion (right) with H = 0:2; 0:5; 0:8 (top to
bottom on right), with the increment processes on the left. The series have been simulated
using the method of Davies & Harte (1987).
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When H = 1
2

, BH(t) is simply Brownian motion. When  H > 1
2

the autocor-
relations are positive and have a powerlaw decay, hence long range dependence.
When H < 1

2
the correlations are negative and have a rapid decay. As � !1

E [(X(t+ � + 1)�X(t+ �))(X(t+ 1)�X(t))] � H(2H � 1)�2j� j2H�2;

(see Mandelbrot & Van Ness, 1968). These characteristics can be seen clearly in
Figure 10.14, where the positive autocorrelation in the increment process can be
seen for H = 0:8. Note also how the variance of BH(t) increases as H increases,
consistent with the above relationships.

There are a number of results known about the sample path properties of frac-
tional Brownian motion. It is a continuous process but non-differentiable. Orey
(1970) shows that the Hausdorff dimension of the graph, i.e., the set of points
(t; BH(t)) on an interval with positive inner measure, is 2�H . Hence, when H
is closer to zero, the graph (right-hand plots of Figure 10.14) will tend to be plane
filling. Processes with long range dependence (1

2
< H < 1) tend to be less space

filling.
Figure 10.15 is a two dimensional plot of a sample path of fractional Brownian

motion. The Hausdorff (and box) dimension of a path of Brownian motion in Rd

is min(d; 2). Thus for H = 1
2

, we would expect the graphs to be space filling in
localised regions. See Ciesielski & Taylor (1962) for d � 3 and Taylor (1964)
for d = 2. For H 6= 0:5, Mandelbrot (1977, page 284, x7) suggests that the
Hausdorff dimension of a path in Rd is min(d; 1=H). This is consistent with the
graph for H = 0:8 which is less space filling. Related results for other auxiliary
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Figure 10.15 Paths of two dimensional fractional Brownian motion with H = 0:5 and 0:8

for t = 0; : : : ; 1500. The series have been simulated using the method of Davies & Harte
(1987).
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processes have also been given by Berman (1970) and Marcus (1976). Also see
Adler (1981), Falconer (1990, Chapter 16) and Taylor (1986, page 390) for further
discussion.

Davies & Hall (1999), Chan & Wood (2000), Constantine & Hall (1994) and
Feuerverger et al. (1994) use the above ideas to characterise the roughness of a
polished surface. The surface heights are measured at regular intervals, and the
measurements are assumed to be sampled from a Gaussian like process with
an autocorrelation function that is powerlaw. Orey (1970) also determined the
Hausdorff dimension of the level crossings of a Gaussian process, and expressed
it as a function of the powerlaw exponent found in the autocovariance function.
Hence by estimating the powerlaw exponent in the autocovariance function, one
can also calculate an estimate of the Hausdorff dimension of the level crossings.
This can also be interpreted as a measure of surface roughness.

Davies & Harte (1987) describe test statistics for testing a hypothesis that
a sampled time series is white noise against the alternative that it is fractional
Gaussian noise.

10.6.4 Other ‘Powerlaw’ Processes

The fractionally differenced ARIMA process (see Hosking, 1981) also displays
long range dependence. The fractional differencing is achieved by expressing the
backward shift operator in the ARIMA model as an infinite binomial series ex-
pansion, that is

(1�B)d =
1X
k=0

�
d
k

�
(�B)k:

Part of the motivation for the introduction of such a model was to provide the
flexibility to model both the short term and long term correlation structure of
an observed time series. Aspects of model fitting and building are discussed by
Li & McLeod (1986). Geweke & Porter-Hudak (1983) compared the fraction-
ally differenced ARIMA model to fractional Brownian motion, Haslett & Raftery
(1989) used the process to model Ireland’s wind power resource, and Porter-
Hudak (1990) used it to model financial time series. Methods of estimation for
the Hurst parameter H and the fractional differencing value d are discussed by
Taqqu et al. (1995). The book by Beran (1994) provides a useful overview of long
memory processes.

A process with X(0) = 0 whose increments are independent and belong to a
stable law is also self-similar. Conversely, a process that is self-similar with inde-
pendent increments must have increments that belong to a stable law (Lamperti,
1962). These processes are represented by their infinitely divisible characteris-
tic function, see for example, Kolmogorov & Gnedenko (1954), Lukacs (1960),
Fristedt (1974) and Breiman (1968). Fristedt (1974) also contains results on sam-
ple path properties.
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10.6.5 ‘Multifractal’ Stochastic Processes

More recently, some powerlaw stochastic processes have been described as being
‘multifractal’. A multifractal stochastic process is defined by a moment function
similar to �(q), e�(q), and �?(q) in Definitions 2.4.1, 2.3.1, and 6.1.2 respectively.

Let T and Q be intervals on the real line with positive length, such that 0 2 T
and [0; 1] � Q. A stochastic processX(t) is called multifractal if it has stationary
increments and

E[jX(t)jq ] = c(q)t�
z(q)+1; (10.6)

for all t 2 T and all q 2 Q, where c(q) and �z(q) are both function of q 2 Q (see
Mandelbrot et al., 1997).

Now consider a self-similar stochastic process that satisfies the scaling relation
given by Equation 10.4. It follows that

fX(t)g
d
= ftHX(1)g

and hence

E[jX(t)jq ] = tqHE[jX(1)jq] :

This satisfies the relation given by Equation 10.6 with c(q) = E[jX(1)jq] and
�z(q) = Hq � 1. Note how �z(q) is a linear function of q. Recall that when
this occurred in the multifractal measure setting, all Rényi dimensions were the
same, and hence, while the measure may have been supported on a set with an
extremely irregular shape, the allocation of measure within that set was in a sense
uniform. These are sometimes referred to as monofractal measures. In this sense,
a self-similar stochastic process is a monofractal process.

A stochastic process that satisfies a multiplicity of scaling laws will have a
related �z(q) function that is non-linear. Assume that the process X(t) satisfies
the scaling relation

fX(ct)g
d
= fW (c)X(t)g (10.7)

for all t and 0 < c � 1, where W (c) is an independent stochastic process taking
positive values; then

E[jX(t)jq ] = E[W (t)q ]E[jX(1)jq] :

Further assume that W (c) satisfies the following multiplicative property:

fW (ab)g
d
= fW1(a)W2(b)g;

where W1 and W2 are two independent copies of W , and a and b take values in
the interval (0; 1]. It follows from the multiplicative property that for any t1 and
t2 such that t1t2 = t,

E[W (t)q ] = E[W (t1)
q ]E[W (t2)

q ] :
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Hence E[W (t)q ] must be of the form t�
z(q)+1, and so E[jX(t)jq ] = c(q)t�

z(q)+1,
where �z(q) is a non-trivial function of q.

How does one define a stochastic process with multifractal behaviour? The
method suggested by Mandelbrot et al. (1997) is to construct a compound process
X(t) = BH(T (t)), where BH(t) is fractional Brownian motion and T (t) is a
continuous non-decreasing random function of t that is independent of BH(t).
That is, we have fractional Brownian motion in random time. In particular, let �
be a multifractal measure defined on the interval [0; 1]. Then one way to define
T (t) is as the cumulative distribution function of �, i.e.,

T (t) =
�([0; t])

�([0; 1])
:

Mandelbrot (1999) outlines the sequence of historical models that have led to
the development of this stochastic process. This process is also briefly discussed
by Heyde (1999), who argues that some of its properties are unattractive for the
modelling of financial data.

Our discussions on multifractal measures emphasized the relationships between
a form of global averaging and local behaviour. In the above discussion, we have
defined the multifractal process in terms of its global average. Its local or sample
path behaviour is described by the scaling relation given by Equation 10.7. Riedi
(2001) discusses the so called multifractal spectrum and formalism, and relates it
to the moment functions discussed above.

Bouchaud et al. (2000) have analysed apparent multifractal behaviour in fi-
nancial time series, and Fisher et al. (1997b) use these models to describe the
Deutschemark–U.S. dollar exchange rates. Mandelbrot et al. (1997) and Fisher
et al. (1997a) proposed these processes as models for financial returns. Riedi &
Willinger (2000) suggest variations on these models to describe computer network
traffic.

© 2001 by Chapman & Hall/CRC Press, LLC



CHAPTER 11

Earthquake Analyses

11.1 Introduction

In this chapter, we estimate the Rényi dimensions using spatial point patterns pro-
duced by earthquakes and attempt to interpret these in an appropriate modelling
context. These analyses follow on from the discussion started in x1.6.

Earthquakes are fractures in the earth’s crust, however, they may not necessar-
ily break the surface of the crust. The fracture may occur at a considerable depth,
and there may be no obvious evidence on the surface of the earth. Earthquakes
often occur near tectonic plate boundaries where there is considerable movement.
In some situations, one boundary is undercutting its neighbour (plate subduction
as in New Zealand or Japan), or the motion may be a horizontal slip (strike-slip
as in much of California). There are also areas that have a considerable number
of within plate earthquakes, for example China. Here the Eurasian plate is be-
ing squeezed by the subduction of the Pacific plate in Japan, and pressure being
applied by the Indian plate in the area of the Himalayas (see Sphilhaus, 1991).

An earthquake is a fracture that starts at a point in time and space. However, the
size of the fracture may extend over a considerable distance. The magnitude of the
event is related to the size of the fracture. Wells & Coppersmith (1994) describe
various relationships between the size of the rupture and the magnitude of the
event. Earthquake catalogues contain the point in space (longitude, latitude and
depth) at which the fracture commenced, the time of initiation, and the magnitude.
The three-dimensional spatial location is referred to as the hypocentre and the
two-dimensional surface location as the epicentre.

The intuitive motivation for estimating the fractal dimension of spatial point
patterns generated by earthquakes is that the pattern may be self-similar in some
sense. That is, clusters may be repeated within clusters on a finer and finer level.
It is also thought that major fractures occur along major faults, the most dramatic
being the tectonic plate boundaries. Within major fault systems there are smaller
faults that branch off, and from these smaller fault networks; again with the pos-
sibility of generating some sort of self-similar hierarchy of networks. Seismicity
is also highly clustered in time. However, a finite set of point locations theoreti-
cally has dimension zero, hence, what characteristics are the dimension estimates
describing?

Dimension estimates are not a summary statistic of observed data in the same
way as, for example, the sample mean. The dimension estimates are in fact de-
scribing a characteristic of the underlying probability distribution from which
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the data have been sampled. For example, the dimension estimates of the Moran
cascade process of Example 10.3.1 described the Moran cascade probability mea-
sure, though the dimension estimates were based on a finite set of point observa-
tions. At this point one must ask: what is an appropriate modelling framework for
earthquake events, and what is the interpretation of dimension estimates within
such a framework? We use a point process framework which we briefly outline
below.

11.1.1 Point Process Perspective

The forecasting of earthquakes is an extremely complex problem which is very
much in its infancy. It is quite dissimilar to weather forecasting. Most earthquakes
are not ‘observable’, only the effects of such events are observed if they are suf-
ficiently large. Further, the estimated locations of events often contain consider-
able error, and the geophysical models describing the fracturing process are fairly
primitive.

Unfortunately in the geophysics literature, there appears to be a dichotomy
between ‘geophysical’ and ‘statistical’ models. The paradigm that we prefer is
that there should be one model that includes the known geophysical aspects of the
system, and describes the remaining stochastic aspects, that are not described by
the geophysical components, with a statistical component.

One framework that can be used to model earthquake sequences is the point
process model (Daley & Vere-Jones, 1988). A Poisson point process indexed by
time can be characterised by its conditional intensity function. Let N([t; t + �))
be the number of events in [t; t + �), and Ht be the history of the process up to
but not including t. The conditional intensity function is defined as

�(tjHt) = lim
�!0

1

�
PrfN([t; t+ �)) > 0jHtg: (11.1)

It then follows that the expected number of events in an intervalA, or the intensity
measure, is

E[N(A)] =

Z
A

�(tjHt) dt:

The process is naturally ordered by t. The above definition can be extended to
also take the spatial aspect into account. Typically �(tjHt) will have a functional
form that attempts to describe required geophysical characteristics of the process
and other stochastic properties. It will also contain parameters that need to be
estimated. This can be achieved by maximising the log-likelihood, which can be
shown to be

NX
i=1

log�(tijHt)�

Z
�(tijHt) dt;
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where N is the number of observed events with occurrence times denoted by ti,
where i = 1; � � � ; N .

Note that the above formulation of a point process assumes that the events occur
at a given point in time and space. If one wanted to include information describing
the size and direction of the rupture, these could be included as a marks. See Daley
& Vere-Jones (1988) for more information on marked point processes. As already
noted, the magnitude is related to the size of the rupture, though such a scalar
description may be too simple to describe both the size of the rupture and the
amount of energy released, and a more useful representation may be gained by
including tensor moments, etc.

Vere-Jones (1999) shows that there are at least two different interpretations of
the Rényi dimension (Dq) estimates in the case of a space-time point process,
where q is a positive integer � 2. In the first, the spatial region is fixed and es-
timates are taken over increasing periods of time, and in the second, the time
interval is fixed while the size of the spatial region increases. Vere-Jones (1999)
then considers consistency results for both the correlation integral and correlation
dimension estimates for both of the above scenarios.

In the first case where the spatial region is fixed: if the process is stationary and
ergodic in time, and the cumulants satisfy certain regularity conditions, then Vere-
Jones (1999) has shown that the Rényi dimension estimates are consistent for the
Rényi dimensions associated with the spatial intensity measure of the process.

In the second where the observed period of time is fixed: if the process is sta-
tionary and ergodic in space, then Vere-Jones (1999) has shown that the Rényi
dimension estimates are consistent for the initial powerlaw growth of the moment
measures of the Palm distributions.

In this chapter, the Rényi dimensions of earthquake spatial locations are esti-
mated and discussed from the perspective of a point process modelling frame-
work. The analyses in this chapter are based on earlier work by Harte (1998).

11.2 Sources of Data

11.2.1 Determination of Earthquake Locations

When an earthquake occurs, the sudden release of an enormous amount of en-
ergy creates a P (primary) and S (secondary) wave. The P wave is a longitudinal
wave, and the S wave is transverse. The P wave travels at a faster speed than the
S wave. These waves will be detected by seismic stations, and from the trace that
is plotted by the seismograph at each station, the arrival times, amplitudes, and
duration of the P and S waves can be determined. By using a ‘velocity model’
which describes the speeds that the P and S waves should travel in the type of
geological structures found in the vicinity of the earthquake, the earthquake lo-
cation (rupture initiation point) and time can be determined by using the seismic
trace from three or more seismic stations that recorded the event. The location al-
gorithm uses an iterative least squares reweighting type procedure, adjusting the
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origin to minimise the residuals. Some earthquake catalogues contain the standard
errors for each dimension from this location estimation procedure.

Geophysicists involved in earthquake research also use the travel times and
other characteristics of seismic waves to determine the geological structure of
the earth. It is this knowledge that can then be used to derive and modify ve-
locity models. Some of the earthquake determination information, particularly
the depth and magnitude are highly correlated. A velocity model that tends to
overestimate the depth tends to underestimate the magnitude and visa versa. Ef-
fectively, the residuals from the fitting procedure contain a systematic component
of error. These systematic errors can be substantial for events that occur some
distance from seismic stations, for example, out to sea (see Harte & Vere-Jones,
1999). Hence the standard error may not necessarily give an accurate measure of
the absolute error in the estimated earthquake location. Let x be the estimated
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Figure 11.1 Kanto earthquake epicentres between 1985 and 1994, with magnitude � 2

and depth � 80 km. The deepest events are in the lightest shade of gray and the most
shallow events are the darkest. The plot contains 7;570 events.
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hypocentre location of an event that occurs at x0. Then

x = x0 + S(x0) + �;

where S(x0) is a systematic component of error, and � is noise with zero mean.
The standard errors will not describe the size of the systematic component, but
simply Var(�).

In our analyses we will use two earthquake catalogues, the Kanto Catalogue,
and the Wellington Catalogue which was introduced in x1.6.1.

11.2.2 Kanto Earthquake Catalogue

The Kanto Earthquake Catalogue contains events from the Kanto region (Tokyo
and surrounding area) of Japan. The catalogue is maintained by the National
Research Institute for Earth Science and Disaster Prevention, Tsukuba-shi. For
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Figure 11.2 Kanto earthquake epicentres between 1985 and 1994, with magnitude � 2

and 40 km � depth < 80 km. The deepest events are in the lightest shade of gray and the
most shallow events are the darkest. The plot contains 12;486 events.
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this analysis, events have been selected with magnitude � 2 between 138:6ÆE
and 141:9ÆE, 34:6ÆN and 37:3ÆN, and occurring between 1 July 1979 and 30
June 1999.

The Kanto region is located on the junction of three tectonic plate bound-
aries, almost like a ‘T’ intersection (see Sphilhaus, 1991). To the west lies the
Eurasian plate. The boundary of this plate runs roughly the length of Japan down
toward Taiwan. In the Kanto region it is being subducted by the Pacific Plate to
the east. To the southwest is the Philippine Plate which is also being subducted
by the Pacific Plate. These boundaries are partially evident in Figures 11.1 and
11.2. In the lower left of both plots is a boundary of events running roughly from
north-northwest toward south-southeast. This is the boundary between the Pacific
and Philippines Plates. The other boundary in the top left of the picture, that
runs roughly from the west-southwest to the east-northeast, marks the boundary
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Figure 11.3 Kanto earthquake epicentres between 1985 and 1994, with magnitude � 2

and depth < 40 km. The deepest events are in the lightest shade of gray and the most
shallow events are the darkest. The plot contains 23;195 events.
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between the Pacific and Eurasian Plates. In the Kanto region, the situation is more
complicated than in the Wellington Region, and dense clusters of events tend to
occur down to greater depths. However, it can be seen that most of the events with
a depth � 80 km are associated with the subduction process, whereas those more
shallow events appear to have a more widespread distribution. We use 80 km as a
boundary between intermediate and deep events for the Kanto Catalogue.

Figures 11.1, 11.2 and 11.3 are epicentral plots of deep, intermediate depth
and shallow events respectively. Figure 11.4 shows the Pacific Plate subducting
the Philippines Plate. Note that events in this subduction region outline the two
friction boundaries of the subducting plate much more clearly than is the case in
the Wellington Region (see Figure 1.6). This probably indicates less location error
for events in the Kanto Catalogue. Also note, as in the Wellington Catalogue, that
the shallow events tend to be much more clustered. Unlike the Wellington region,
the Kanto region contains active volcanic zones, and a number of the events may
be volcanic related, particularly off the Izu Peninsula.
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Figure 11.4 Depth cross-section of Kanto earthquake locations between 1985 and 1994,
with magnitude � 2, depth < 150 km, and south of 36:1ÆN. The plot contains 23;273

events. The picture shows the Pacific Plate subducting the Philippines Plate. The angle of
view is (approximately) from the south-southeast to the north-northwest.
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11.3 Effects Causing Bias

11.3.1 Location Error

One of the most serious problems is event location error (i.e., noise in data). This
causes the dimension estimates to rise to two for the epicentres and three for the
hypocentres as the interpoint distance tends to zero, the same effect as depicted in
Figure 9.3. It is not clear how one can correct for this, as the effect of adding noise
effectively destroys any infinitesimal information contained in the data. An added
complication in the present analyses is that this error is not constant over any
analysed region. Tabulated standard errors in catalogues are a misleading measure
of the hypocentre accuracy, in that they really describe the goodness of fit of the
given earthquake velocity model and may not reflect systematic biases.

Papanastassiou & Matsumura (1987) studied errors of hypocentre locations in
the Kanto Catalogue. At that stage the seismic network consisted of 67 stations:
17 surface stations, 2 tunnel stations, 45 shallow borehole stations, and 3 deep
borehole stations. They were interested in determining the optimal location for
a fourth deep borehole station. An update by Morandi & Matsumura (1991) re-
viewed the detection capability as a function of magnitude. Location errors tend
to increase in the northeastern part of the analysed region. This is not only be-
cause of a lesser number of stations in this area (sea), but also due to the different
geological structure. The western stations are more sensitive than the eastern ones
because the western area is mountainous with low background noises due to the
presence of hard bedrocks.

Papanastassiou & Matsumura (1987) provide contour plots for standard devi-
ations of location errors for latitude, longitude, depth and the time of the event.
These suggest error standard deviations in latitude to be less than 1.5 km for most
of the region, increasing to 3 km in the east (off the coast) of the analysed region.
Standard deviations in longitude are greater, though less than 2 km for most of
the region, increasing to over 3 km in the east of the analysed region. Greatest
errors occur in the depth variable, tending to increase for greater depth and again
increasing to the east (� 2–7 km).

A similar variation in the accuracy of earthquake locations can be expected in
the Wellington Catalogue, with generally less accuracy in both offshore and deep
events.

11.3.2 Boundaries and Lacunarity

Our method involves calculating the qth order interpoint distances between ran-
domly selected events. Events within an � distance of the imposed boundary of
the region under study have a smaller chance of forming differences greater than
�, hence for larger values of m, b�m is too small (Equation 8.8). This is referred
to as the boundary effect. Bias is reduced by selecting one point in each pair
from a restricted region A� given by Equation 9.1. Further details are given in
x9.2. This correction has not been implemented in the present analyses. While the
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boundaries used for the analyses define rectangular like regions, the actual geo-
physical boundaries within these analysed regions are much more irregular, and
do not lend themselves to such a correction.

The Rényi dimensions are defined as a limiting operation, as the qth order in-
terpoint distance (y) tends to zero. In practice, they are estimated using a section
of the curve that is sufficiently flat. This is done under the assumption that if y is
sufficiently small and �(q) exists, the correlation integral FY (y) will have power-
law behaviour with exponent �(q); i.e., there exists an � such that for all y < � ,
FY (y) is approximately powerlaw with exponent �(q). However, if the bound-
ary and location error effects are sufficiently severe, then their effects will merge,
causing the line to be decreasing over all values of y and obscuring any underlying
powerlaw behaviour.

Another type of boundary effect is caused by clusters of events. When the value
of y is greater than the cluster diameter but smaller than the inter cluster distance,
a deficit of sampled point differences occur, causing b�m to decrease. It may be
the case that clusters repeat themselves within clusters as in Figure 6.1. If the
similarity ratios are the same, then such self-similar behaviour would exhibit itself
as a lacunary cycle in the dimension estimates. If the similarity ratios are different,
then the lacunary cycles will be out of phase with each other, and one will tend to
cancel the effect of another. This will cause the dimension estimates to be flatter
(see Figure 10.5).

11.3.3 Data Rounding and Transformation

An effect similar to lacunarity can also occur when data are rounded, restrict-
ing the interpoint distances to relatively few discrete points. We refer to this as
the rounding effect, which was discussed in x9.3. In this situation, b�m given by
Equation 8.8 will also have an oscillatory behaviour, but unlike lacunarity, the
period of the oscillation will be constant on the untransformed y scale. Another
problem created by rounding is that different earthquake events are represented
by the same spatial coordinates, causing problems with zero distances.

There are sometimes two levels of rounding. For example, in the case of the
two analysed catalogues, most event depths are rounded to the closest one-tenth
of a kilometre. However, in situations where shallow events occur at a consider-
able distance from any seismic recording station, the depth of the event will be
poorly determined. In this situation, event depths in the Wellington Catalogue are
restricted to 5, 12 or 33 km; and in the Kanto Catalogue, depths are restricted to
5, 15, 25 and 35 km.

Both catalogues had hypocentres tabulated in spherical coordinates, i.e., longi-
tude and latitude as degrees east of Greenwich and south (or north) of the equa-
tor respectively, and depth in kilometres below the surface. Both longitude and
latitude were transformed into a kilometre scale for these analyses. Hence all
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calculated interpoint distances always are in kilometre units. This may be at the
expense of slight distortion in the extremities of the analysed regions.

11.4 Results

Estimates of the Rényi dimensions, D2; � � � ; D5 were made for events in differ-
ent depth strata for both the Wellington and Kanto Catalogues. Wellington earth-
quakes were divided into two depth strata: shallow and deep, with events of depth
< 40 km and depth � 40 km respectively. Kanto earthquakes were divided into
three depth strata: shallow, intermediate and deep, with events of depth < 40 km,
40 km � depth < 80 km, and depth � 80 km respectively. Dimension estimates
for shallow and deep events from the Wellington Catalogue are plotted in Figures
11.5 and 11.6 respectively. Dimension estimates for shallow, intermediate and
deep events from the Kanto Catalogue are plotted in Figures 11.7, 11.8, and 11.9
respectively.

When estimating dimensions, one hopes to find a relatively ‘flat’ interval in
the plot over which the probability function of the interpoint distances scale in a
powerlaw manner. Unfortunately, the effect of noise causes the line to increase
to the dimension of the phase space for small decreasing interpoint distances,
while the boundary effect causes the line to rapidly decrease for larger interpoint
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Figure 11.5 Estimates of the Rényi dimensions D2 (black), D3 (dark gray), D4 (light
gray), and D5 (lightest gray) for shallow events (depth < 40 km). The solid lines represent
the estimates of the epicentres and the dashed lines of the hypocentres (k = 100; n =

20;000; N = 15;228).
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distances. When these two sources of bias are sufficiently severe, they merge and
no obvious flat interval exists. We have summarized our dimension estimates in
tables where the interval over which scaling has been estimated (or expected)
is tabulated, with the average estimate over that interval, and also the slope of
the line in that interval. A greater absolute value of the slope indicates that the
dimension estimate is more confounded with the noise and boundary sources of
bias, and hence is more uncertain. Thus, the slope gives a rough measure of the
extent to which the dimension estimate is affected by the noise and boundary
effects. While the line in some plots appears to be ‘flat’ or have a marked slope,
it is more a consequence of the scale of the graph, and hence the slope also gives
a slightly more objective measure with which to compare the different plots.

11.4.1 Wellington Catalogue

Estimates of Rényi dimensions for shallow events are plotted in Figure 11.5. The
dataset included those events with depth restricted to the values 0, 5, 12 and 33 km.
Note that out of the 15,228 shallow events, there were 942 events with depths
restricted to these values. Including or excluding these events did not make a no-
ticeable difference. Using interpoint distances between 5 and 50 km, an estimate
of D2 for epicentres is between 1.60 and 1.68, say 1.64. A flat region also appears
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Figure 11.6 Estimates of the Rényi dimensions D2 (black), D3 (dark gray), D4 (light
gray), and D5 (lightest gray) for deep events (depth � 40 km). The solid lines represent
the estimates of the epicentres and the dashed lines of the hypocentres (k = 100; n =

20;000; N = 6;746).
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between 15 and 45 km in the case of D3 and D4 giving estimates of approximately
1.57. Estimates of D5 are unstable, but appear to be similar to those of D3 and
D4. Estimates based on hypocentres are less stable. This is not surprising as the
depth of the region (40 km) is quite shallow relative to the width and breath, and
hence the boundary effect would be expected to pose a greater problem. Further,
the depth is probably the most poorly determined of the spatial coordinates, and
hence the effect of noise extends further into the plot, affecting larger interpoint
distances than is the case for the epicentres. As such we would expect to see a
much smaller interval displaying powerlaw behaviour. Estimates and the scaling
intervals have been summarized in Table 11.1.

Estimates of Rényi dimensions for deep events are plotted in Figure 11.6. A
flat region is much less obvious here than for the shallow events. The deep events
are mainly associated with the subducting slab which runs through the region
roughly from southwest to the northeast as shown in Figure 1.6. The epicentres
are the event locations when the hypocentre is projected onto the earth’s surface.
Consequently, the active epicentral area is relatively small, and hence the bound-

Scaling
Wellington Catalogue Range Estimate j Slope j

(km)

Shallow Epicentres D2 5–50 1.64 � 0
D3 15–45 1.57 � 0
D4 15–45 1.57 � 0
D5 35–45 1.57 unstable

Hypocentres D2 15–30 1.87 � 0
D3 20–30 1.75 � 0
D4 20–30 1.75 � 0
D5 1.70 unstable

Deep Epicentres D2 5–45 1.80 0.008
D3 5–45 1.70 0.008
D4 20–40 1.65 0.008
D5 20–40 1.65 0.008

Hypocentres D2 5–50 2.25 0.020
D3 10–50 2.00 0.020
D4 10–50 1.80 0.020
D5 35–45 1.80 0.020

Table 11.1 Summary of Rényi dimension estimates based on the Wellington Earthquake
Catalogue. The ‘slope’ is the gradient of the line over the scaling range. Greater slopes
indicate greater confounding with noise and boundary effects.
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ary effect will become a problem at relatively small interpoint distances. Even the
hypocentre locations are contained within a relatively small region, one dimen-
sion being essentially the width of the subducting slab. There is probably also
greater location error associated with deep events. With these two problems, it is
not surprising that they have the effect of merging, causing the line of dimension
estimates to decrease over the whole range of interpoint distances. We would ex-
pect powerlaw scaling to occur between about 5 and 35 km if the effects of these
two biases were not as severe. Within this interval, the estimates of D2 range
between 1.95 and 1.68, giving a mid-point of about 1.8. Lines representing esti-
mates of D3 to D5 are roughly parallel, with D3 approximately 0.1 less than D2

and both D4 and D5 0.15 less. Estimates are tabulated in Table 11.1.

Estimates representing the deep hypocentres decrease even more rapidly for
increasing interpoint distance. There is really no ‘flat’ region, though this is par-
tially due to the vertical scale of the plot. For each estimate of Dq , we have taken
the mid point of the estimates in the interval of interpoint distances between 10
and 30 km. These values are tabulated in Table 11.1.
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Kanto Dimension Estimates: Shallow Events

Figure 11.7 Estimates of the Rényi dimensions D2 (black), D3 (dark gray), D4 (light
gray), and D5 (lightest gray) for shallow events (depth < 40 km). The solid lines represent
the estimates of the epicentres and the dashed lines of the hypocentres (k = 100; n =

40;000; N = 38;566).
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11.4.2 Kanto Catalogue

Estimates of Rényi dimensions using shallow events (depth < 40km) are plotted
in Figure 11.7. Only estimates of D2 show powerlaw behaviour. All estimates
initially drop very rapidly then increase to a peak at approximately 200 km. For
this interpoint distance, there is essentially no difference between the estimates of
the epicentres and hypocentres. This is because 200 km is much greater than the
total width of the depth dimension. While the difference between the dimension
estimates of the epicentres and hypocentres appears to be very small, even for
quite small interpoint distances, this is mainly due to the scale of the graph, and
is roughly comparable to the Wellington shallow events in Figure 11.5. The peak
in the dimension estimates at about 200 km is probably caused by this being the
approximate distance between two or more very active clusters, which effectively
dominate the characteristics of the whole plot. The dimension estimates of D2 in
Figure 11.7 also bear some resemblance to those of the beta distribution in Figure
10.6, which again is consistent with relatively few dominating clusters.

Estimates of Rényi dimensions using events of intermediate depth (40 km �
depth < 80 km) are plotted in Figure 11.8. Note that the lines representing epi-
centres tend to have a local maximum at approximately 60 km, whereas lines rep-
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Kanto Dimension Estimates: Intermediate Depth Events

Figure 11.8 Estimates of the Rényi dimensions D2 (black), D3 (dark gray), D4 (light
gray), and D5 (lightest gray) for events of intermediate depth (40 km � depth < 80 km).
The solid lines represent the estimates of the epicentres and the dashed lines of the
hypocentres (k = 100; n = 25;000; N = 24;097).
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Figure 11.9 Estimates of the Rényi dimensions D2 (black), D3 (dark gray), D4 (light
gray), and D5 (lightest gray) for shallow events (depth � 80 km ). The solid lines represent
the estimates of the epicentres and the dashed lines of the hypocentres (k = 100; n =

15;000; N = 13;620).

resenting the hypocentres have two local maxima at approximately 25 and 60 km.
These are probably caused by large clusters of events.

Estimates of Rényi dimensions for deep events (depth � 80 km) are plotted
in Figure 11.9. As for the deep events in the Wellington region, there is no in-
terval where the lines are ‘flat’. The estimates for the hypocentres of D2 show a
local minimum at slightly less than 20 km and a local maximum at approximately
30 km. This probably represents the distance between the two friction boundaries
of the subducting slab, where the local maximum is caused by points in each pair
being selected from the opposite boundary. Dimension estimates have been sum-
marized in Table 11.2, giving the selected scaling interval, the average value of
the dimension estimates, and the slope as for the Wellington Catalogue.

11.5 Comparison of Results and Conclusions

Dimension estimates for deep events in both regions are quite similar. Estimates in
both regions are affect by the boundary and noise effects in a similar manner. This
is indicated by the ‘slope’ in Tables 11.1 and 11.2 being similar. While the Kanto
region contains active volcanic zones, the Wellington region does not. However,
the deep events are those with depth � 40 km and � 80 km in the Wellington
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and Kanto regions, respectively. Volcanic induced seismicity occurs at shallower
depths, and the analysed deep events will generally be associated with the plate
subduction process in both regions.

The dimension estimates for shallow events in both regions are quite differ-
ent. In the Wellington region, estimates display powerlaw scaling over a consid-
erable range of distances. In the Kanto region, such scaling is only evident for
D2 and this does not commence until the interpoint distances are greater than
25 km. Since the maximum depth of shallow events is 40 km, one would expect
this boundary effect to start to be noticeable at 25 km. This is why the dimension
estimates for the hypocentres and epicentres are almost the same for interpoint
distances greater than 25 km. Further, the estimates based on the Kanto Catalogue
are considerably less than those based on the Wellington Catalogue. This probably

Scaling
Kanto Catalogue Range Estimate j Slope j

(km)

Shallow Epicentres D2 25–150 0.80 0.001
D3–D5 uncertain

Hypocentres D2 25–150 0.90 � 0
D3–D5 uncertain

Intermediate Epicentres D2 15–80 1.40 dips
D3 15–80 1.35 dips
D4 15–90 1.15 dips
D5 20–90 1.15 dips

Hypocentres D2 15–45 1.60 uncertain
D3 15–45 1.55 uncertain
D4 15–45 1.35 uncertain
D5 20–45 1.35 uncertain

Deep Epicentres D2 5–55 1.80 0.002
D3 15–45 1.75 0.002
D4 30–55 1.75 0.008
D5 40–60 1.60 0.008

Hypocentres D2 15–35 2.15 dip
D3 15–40 2.00 unstable
D4 30–60 2.00 0.015
D5 40–60 1.80 0.015

Table 11.2 Summary of Rényi dimension estimates based on the Kanto Earthquake Cata-
logue. The ‘slope’ is the gradient of the line over the scaling range. Greater slopes indicate
greater confounding with noise and boundary effects.
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indicates that the spatial pattern of events in the Kanto region is characterised by
clusters of greater density than in the Wellington region. This may be accounted
for by the fact that the Wellington region is non-volcanic, while the Kanto region
contains active volcanic areas. Earthquake clusters generated by volcanic activity
tend to be both smaller and more dense. Clear estimates cannot be determined for
D3– D5 for shallow events in the Kanto region.

Dimension estimates based on the Kanto Catalogue for events of intermediate
depth are not monotonically decreasing (as interpoint distances increase) to the
same extent as shown in other plots. They contain two local maxima at approx-
imately 25 km and 60 km. Clear estimates cannot be determined for D3– D5 for
hypocentres of intermediate depth in the Kanto region.

As the hypocentre depth increases, the estimated dimensions increase in both
regions. This is consistent with the more uniform spatial patterns in Figures 1.8
and 11.1. This may partially be a consequence of location errors. These depend
strongly on the angle between the active stations of the seismographic network as
seen from a hypocentre; therefore we would expect that deep events would have
larger location errors than the shallow events. This hypothesis is also consistent
with the greater ‘slope’ in the plots of dimension estimates for the deep events
compared to shallow events.

11.5.1 Point Process Setting

Lacunarity is caused by the support of a measure being a self-similar set with
all similarity ratios being the same. This causes a periodic cycle in the dimen-
sion estimates when the interpoint distances are plotted on a logarithmic scale.
When the similarity ratios are different, then the different induced lacunary cy-
cles will be out of phase with each other and tend to cancel each other, producing
a flatter curve of dimension estimates. A spatial intensity measure supported on a
self-similar set with many different scaling ratios would produce similar dimen-
sion estimates to those of the shallow events in the Wellington region. Such an
assumption of self-similarity seems quite reasonable, as this would relate to the
self-similar nature of the stress distribution. Having different similarity ratios is
also consistent with having geological heterogeneity within the region.

However, if one had an earthquake catalogue that included all events for many
thousands of years, what values of dimension estimates would one expect? It ap-
pears from our analyses that given event clusters in space are also clustered in
time. Thus viewing an epicentral plot in a given time period will produce no-
ticeable clusters, and in another non-overlapping time interval will contain clus-
ters which are non-existent in the first interval, and visa versa. It appears that
‘hotspots’ with intense activity in a given interval of time eventually die out
and new ‘hotspots’ appear elsewhere. A related phenomenon occurs in volcanic
zones where certain volcanos are active, then become extinct, and new volcanos
emerge, though the time frame is much greater. It seems conceivable that if these
‘hotspots’ randomly appear, generating activity until stress is sufficiently relieved
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in that area, or possibly transferred to neighbouring areas (see Lu et al., 1999
and Bebbington & Harte, 2001), it could be argued that over a very long period
of time, the fracturing process would tend to become space filling, and hence
the Rényi dimensions of epicentres and hypocentres may tend to two and three
respectively. If this argument is correct, then what is the interpretation of the di-
mension estimates in the point process context?

This argument relates most closely to the second case discussed by Vere-Jones
(1999), where the spatial region is fixed, and as time increases indefinitely, the
Rényi dimension estimates are consistent for those associated with the spatial
intensity measure of the process. In the first case, the time period is held constant,
and the spatial region is allowed to increase. This seems less plausible as the size
of the region is essentially fixed and determined by the geophysical process.

The point process we propose is characterised by a conditional intensity func-
tion as in Equation 11.1, being conditional on the history of the process. Consider
a model with a conditional intensity that is most dependent on the immediate
past, and the current risk ultimately becomes independent of events in the distant
past. As such the current stress distribution, and hence the current spatial inten-
sity, could well be supported on a self-similar set, because it is not dependent on
the ‘complete’ history. The spatial intensity measure may randomly evolve over
time, though retain its self-similar character, as events in the distant past become
independent of the current activity and hence are not influential on the current
spatial stress distribution. One possibility when estimating Rényi dimensions is
to sample events for the interpoint distances by weighting them according to their
current influence which is specified by the given model.

If one had a catalogue containing data over many thousands of years, one could
estimate the Rényi dimensions for the spatial intensity measure at various points
in time, weighting the points according to their influence on the stress distribution
for the time point being analysed. It would then be of interest to see if changes in
multifractal characteristics of the spatial intensity measure over time is a precursor
or coincides with detectable changes in observed seismicity.

In each situation analysed, estimates of the Rényi dimensionsDq decrease as q
increases. If we were to accept that the spatial intensity measure of the process is
supported on a self-similar set, then this decrease in the Rényi dimensions would
further suggest that there is a greater likelihood of events occurring in certain
parts of the region. If the spatial intensity measure is uniform, we would expect
all Rényi dimensions to be the same.

11.5.2 Summary of Related Studies

There are a number of papers in the literature giving dimension estimates of earth-
quake locations. Hirata & Imoto (1991) estimate a range of Rényi dimensions of
hypocentres in the Kanto region, getting a correlation dimension of about 2.2.
Geilikman et al. (1990) also used a multifractal approach to investigate the spa-
tial distribution of earthquake epicentres in Pamir, Caucasus and California. They
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estimated the Rényi dimensions using a box counting method, producing a box
dimension, eD0, of about 2.0 for all regions.

Eneva (1996) estimated various Rényi dimensions for the spatial distribution
of mining induced seismic activity. Her method was based on counting numbers
of events within balls of certain radius, centred at points in the data set. She con-
cluded that the apparent multifractal behaviour was spurious, and due to the lim-
ited size of the data sets.

Kagan (1991) used a worldwide catalogue of earthquakes to estimate the frac-
tal dimension of epicentres and hypocentres. He found that as the time span of
the catalogue increases his estimated value of the dimension of the hypocentres
asymptotically reaches a value of 2.1–2.2 for shallow earthquakes. Further, his
estimates of the fractal dimension decreased to 1.8–1.9 for intermediate depths
(71–280 km) and to about 1.5–1.6 for deeper events. The decreasing dimension
estimates for deeper events is the reverse of our results in this chapter.

Kagan’s (1991) analyses considerably larger interpoint distances than we have
done. His analyses are consistent with inspecting a worldwide epicentral map,
where one would see that shallow earthquakes are concentrated in seismic belts,
which extend more or less continuously and smoothly along the circum Pacific,
and deep earthquakes are clustered in a few subduction zones. This suggests that
the dimension estimates for deep events should be smaller than that for shallow
events, at least for distances greater than about 50 km. We have analysed smaller
localised regions, both of which are within subduction zones. The dimension of
a set is defined as a limiting operation as distances tend to zero. However, if the
set under consideration is self-similar, there may be powerlaw scaling over a con-
siderable range of distances, with the powerlaw exponent being the same as the
dimension. In order to use larger interpoint distances, two assumptions must be
made: the legitimacy of the boundary adjustments, and that the powerlaw expo-
nent at larger distances will be the same as that for smaller distances. We have
analysed smaller interpoint distances, and as a result have had to contend with
location errors of the hypocentre locations. The scale used for our analyses is
roughly equivalent to the scales used in the modelling of regional seismicity.

Hypocentre location error may account for our dimension estimates being great-
er than Kagan’s (1991) in the case of deep events, though this is not consistent
with the estimates for epicentres. In the case of shallow events, we have achieved
smaller values than Kagan (1991). This is inconsistent with the effect of location
errors. This difference might be able to be explained by our analyses covering a
relatively short time period. Kagan (1991) noted that dimension estimates tend
to rise asymptotically to D2 as the time span of the catalogue increases. How-
ever, both the Kanto and Wellington Catalogues have been analysed over almost
the same length of time. Ogata & Abe (1991) suggest that seismic activity dis-
plays long term variation, therefore different spatial patterns may occur in times
of higher seismic activity compared to lower activity.
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APPENDIX A

Properties and Dimensions of Sets

In this appendix, definitions of the box, Hausdorff and packing dimensions are
given, with various relationships between them. Most of the results closely follow
the excellent book by Falconer (1990). We only provide a summary of some of
the main results here, and much more detail can be found in Falconer (1990).
Further mathematical detail can also be found in Falconer (1985). The book by
Tricot (1995) also discusses various notions of dimension, but is more specific to
curves.

A.1 Self-Similar Sets

A.1.1 Definitions (Falconer, 1990, Chapter 9)

1. Let E be a closed subset of Rd . A mapping S : E ! E is called a contraction
on E if 9t : 0 < t < 1 : jS(x)� S(y)j � t jx� yj, 8x; y 2 E.

2. Let E be a closed subset of Rd . A mapping S : E ! E is called a similarity
on E if 9t : 0 < t < 1 : jS(x)� S(y)j = t jx� yj, 8x; y 2 E. That is, S
transforms sets to geometrically similar ones.

3. Let S1; � � � ; Sm be contractions. A subset F of E is called invariant for the
transformations Si if

F =

m[
i=1

Si(F ): (A.1)

4. A set that is invariant under a collection of similarities is called a self-similar
set, that is, it is the union of a number of smaller copies of itself.

5. The contractions Si are said to satisfy the open set condition if there exists a
non-empty open bounded set V such that

V �
m[
i=1

Si(V ) (A.2)

with the union being disjoint.

Note the distinction between the open set condition and the disjoint set condi-
tion. In some papers, the open set condition may be described as non-overlapping;
i.e., they only meet on the boundary points.
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A.1.2 Theorem (Falconer, 1990, Page 114)

Let S1; � � � ; Sm be contractions on a subset E of Rd such that

jSi(x) � Si(y)j � tijx� yj x; y 2 E;

with ti < 1 for each i. Then there exists a unique non-empty compact set F that
is invariant for the Si s, i.e., that satisfies Equation A.1. Note that since F � R

d

and is compact, then it must be closed.

A.1.3 Example

Let F be the middle third Cantor set on [0; 1]. Let S1(x) = x=3 and S2(x) =

x=3 + 2=3. Then F = S1(F ) [ S2(F ), and so is self-similar. Further, let V =

(0; 1), then S1(V ) =
�
0; 1

3

�
and S2(V ) =

�
2
3
; 1
�
, and so S1 and S2 satisfy the

open set condition.

A.1.4 Definitions (Falconer, 1990, Chapter 9)

1. An affine transformationA : R
d ! R

d is of the form A(x) = T (x)+b, where
x 2 Rd and T is a non-singular linear transformation.

2. Let A1; � � � ; Am be affine contractions on Rd . The set F which satisfies

F =

m[
i=1

Si(F ):

is called self-affine.

A.1.5 Theorem (Falconer, 1990, Page 118)

Suppose that the open set condition (Equation A.2) holds for similarities Si on Rd

with ratios ti (i = 1; � � � ;m). If F is the invariant set satisfying Equation A.1,
then dimH F = dimB F = s, where s is given by

mX
i=1

tsi = 1:

Further, for this value of s, 0 < Hs
(F ) <1.

Falconer (1990, x9.3) gives further results for the case where the Si are con-
tractions but not similarities.

A.2 Hausdorff Dimension

For a more detailed mathematical treatment see Falconer (1985, x1.2), Falconer
(1990, x2.1) and Rogers (1970).

Let U be a non-empty subset of Rd . The diameter of U is defined as

jU j = supfjx� yj : x; y 2 Ug:
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If F �
S
1

i=1 Ui with 0 < jUij � Æ for each i, fUig is called a Æ-cover of F .

A.2.1 Hausdorff Measure Definition (Falconer, 1990, x2.1)

Suppose that F is a subset of Rd and s is a non-negative number. For any Æ > 0,
define Hs

Æ(F ) as

Hs
Æ(F ) = inf

(
1X
i=1

jUijs : fUig is a Æ-cover of F

)
;

where the infimum is over all countable Æ-covers fUig of F . The s-dimensional
Hausdorff measure of F is defined as

Hs
(F ) = lim

Æ!0
Hs
Æ(F ):

The limit, Hs
(F ), exists for any F � R

d , though the limiting value can often
be zero or infinity.

A.2.2 Hausdorff Measure Properties (Falconer, 1990, x2.1)

We list below various properties of the Hausdorff measure.

1.(a) Hs
(;) = 0:

(b) If E � F , then Hs
(E) � Hs

(F ):

(c) If fFig is any countable collection of disjoint Borel sets, then

Hs

 
1[
i=1

Fi

!
=

1X
i=1

Hs
(Fi):

2. If F is a Borel subset of Rd , then

Hd
(F ) = cdVold(F )

where cd = �d=22d(d=2)!. For example, if F is a smooth surface, then

H2
(F ) =

�

4
Area(F ):

3. Scaling Property. If F � R
d and � > 0, then Hs

(�F ) = �sHs
(F ) where

�F = f�x : x 2 Fg:
4. Let F � R

d and f : F ! R
d be a mapping such that

jf(x)� f(y)j � cjx� yj�;
for x; y 2 F , and for constants c > 0 and � > 0. Then for each s,

Hs=�
(f(F )) � cs=�Hs

(F ):
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If t > s and fUig is a Æ-cover of F , then
1X
i=1

jUijt � Æt�s
1X
i=1

jUijs;

so, taking the infimum over all possible coverings,

Ht
Æ(F ) � Æt�sHs

Æ(F ):

Letting Æ ! 0, it can be seen that if Hs
(F ) < 1, then Ht

(F ) = 0 for all t > s.
Thus there is a critical value in the graph of Hs

(F ) against s at which it jumps
from infinity to zero.

A.2.3 Hausdorff Dimension (Falconer, 1990, x2.2)

The Hausdorff dimension of a set F , denoted by dimH(F ), is

dimH(F ) = inf fs : Hs
(F ) = 0g = sup fs : Hs

(F ) =1g ;
or alternatively satisfies

Hs
(F ) =

�
1 if s < dimH(F )

0 if s > dimH(F ) :

If s = dimH(F ), then Hs
(F ) may be zero, infinite, or may satisfy 0 <

Hs
(F ) <1. A Borel set satisfying this last condition is called an s-set.

A.2.4 Properties of Hausdorff Dimension (Falconer, 1990, x2.2)

The Hausdorff dimension satisfies the following properties.

1. If F � R
d is open, then dimH(F ) = d.

2. If F is a continuously differentiable m-dimensional submanifold of Rd , then
dimH(F ) = m.

3. If E � F then dimH(E) � dimH(F ).

4. If F1; F2; � � � is a countable sequence of sets then

dimH

 
1[
i=1

Fi

!
= sup

1�i<1

dimH(Fi):

5. If F is countable then dimH(F ) = 0.

6. If F � R
d is isometric with E � R

m (m � d) then dimH(F ) = dimH(E). If
E is of positive m-dimensional Lebesgue measure then

dimH(F ) = dimH(E) = m:
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A.2.5 Finer Definition (Falconer, 1990, x2.5)

Let h : R
+ ! R

+ be a continuous increasing function. Let

Hh
Æ (F ) = inf

(
1X
i=1

h(jUij) : fUig is a Æ-cover of F

)
;

for F a subset of Rd . This leads to a measure by taking

Hh
(F ) = lim

Æ!0
Hh
Æ (F ):

The function h is called the dimension function.
The definition of the s-dimensional Hausdorff measure has dimension function

h(t) = ts. If h and g are dimension functions such that

h(t)

g(t)
�! 0

as t ! 0 then it can be shown that Hh
(F ) = 0 whenever Hg

(F ) < 1. For
example, a set with dimension function g(t) = tsj log tj would have Hausdorff
dimension s, though the set is slightly smaller than one with dimension function
h(t).

S.J. Taylor has co-authored many papers on the dimension functions of various
stochastic processes. A recent review is given by Taylor (1986).

A.3 Box Counting Dimension

Material in this section is covered in greater detail by Falconer (1990, x3.1).

A.3.1 Definition (Falconer, 1990, Page 38)

Let NÆ(F ) be the smallest number of sets of diameter at most Æ which cover the
nonempty bounded set F � R

d . The upper and lower box counting dimensions
of F are given by

dim
B
(F ) = lim inf

Æ!0

logNÆ(F )

� log Æ

and

dimB(F ) = lim sup
Æ!0

logNÆ(F )

� log Æ

respectively. If dim
B
(F ) = dimB(F ) then the box counting dimension of F is

defined to be

dimB(F ) = lim
Æ!0

logNÆ(F )

� log Æ
:
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A.3.2 Theorem (Falconer, 1990, Page 40)

NÆ(F ) can be any of the following. Each are equivalent.

1. The smallest number of closed balls of radius Æ that cover F .

2. The smallest number of cubes of side Æ that cover F .

3. The number of Æ-mesh cubes of side Æ that cover F .

4. The smallest number of sets of diameter at most Æ that cover F .

5. The largest number of disjoint balls of radius Æ with centers in F .

A.3.3 Note

dim
B
(F ) may be defined by using economical coverings by small balls of equal

radius (i.e., (1) above). dimB(F ) may be thought of as a dimension that depends
on coverings by disjoint balls of equal radius that are as dense as possible (i.e.,
(5) above). This concept forms the basis of the packing measure, defined later.

A.3.4 Proposition (Falconer, 1990, Page 44)

Let F denote the closure of F (i.e., the smallest closed subset of Rd containing
F ). Then

dim
B
(F ) = dim

B
(F )

and

dimB(F ) = dimB(F ):

A.3.5 Examples

The following examples demonstrate problems with the box counting dimension.

1. Let F be the (countable) set of rational numbers on (0; 1). Then F = [0; 1]

so that dim
B
(F ) = dimB(F ) = 1, and dimB(F ) = dimB(F ) = 1. Thus

countable sets can have a non-zero box counting dimension.

2. Let F =
�
0; 1; 1

2
; 1
3
; � � �

	
, then F is a compact set with dimB(F ) =

1
2

(see
Falconer, 1990, page 45).

A.3.6 Comparison with Hausdorff Dimension

Note that

NÆ(F )Æs �!
�
1 if s < dimB(F )

0 if s > dimB(F ):
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Now,

NÆ(F )Æs = inf

(X
i

Æs : fUig is a finite Æ-cover of F

)
;

and

Hs
Æ(F ) = inf

(
1X
i=1

jUijs : fUig is a Æ-cover of F

)
:

As with the Hausdorff dimension, there may be a temptation to consider

inf

�
s : lim inf

Æ!0
NÆ(F )Æs = 0

�

as the box dimension. However, lim infÆ!0NÆ(F )Æs does not give a measure on
subsets of Rd . Thus, unlike the Hausdorff dimension, the box-counting dimension
is not defined in terms of a measure. However, Pesin (1993, x2.2) defines upper
and lower s-box measures.

The box counting dimension may be thought of as indicating the efficiency with
which a set may be covered by small sets of equal size, whereas the Hausdorff
dimension involves coverings by sets of small but possibly widely varying size.

A.4 Packing Dimension

The packing dimension was introduced by Tricot (1982). It is defined in a similar
way to the Hausdorff dimension, being based on a measure, though related in
concept to dimB (see Note A.3.3). Let F � R

d and

Ps
Æ (F ) = sup

(
1X
i=1

jBijs :
fBigÆ is a collection of disjoint balls of

radii at most Æ with centres in F

)
:

Since Ps
Æ (F ) decreases with Æ, the limit

Ps
0 (F ) = lim

Æ!0
Ps
Æ (F )

exists. However, Ps
0 (F ) is not a measure if F is a countable dense set. We there-

fore need a further modification.

A.4.1 Packing Measure Definition (Falconer, 1990, Page 47)

The s-dimensional packing measure of F � R
d is defined as

Ps
(F ) = inf

(
1X
i=1

Ps
0(Fi) : F �

1[
i=1

Fi

)
:
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A.4.2 Packing Dimension Definition (Falconer, 1990, Page 47)

The packing dimension, dimP (F ), is defined as

dimP (F ) = sup fs : Ps
(F ) =1g = inf fs : Ps

(F ) = 0g :

A.4.3 Note (Falconer, 1990, Page 47)

If s > dimP (Fi) for all i, then

Ps

 
1[
i=1

Fi

!
�

1X
i=1

Ps
(Fi) = 0:

Thus dimP (
S
1

i=1 Fi) � s. Also note that

dimP

 
1[
i=1

Fi

!
= sup

i

dimP (Fi):

A.4.4 Lemma (Falconer, 1990, Pages 43 & 48)

The following relationships hold for F � R
d :

dimH(F ) � dimP (F ) � dimB(F );

and

dimH(F ) � dim
B
(F ) � dimB(F ):
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APPENDIX B

Large Deviations

B.1 Introduction

In this chapter we give a brief summary of results relating to large deviations that
are referred to in Chapters 4, 5 and 6; particularly the Gärtner-Ellis Theorem.
Most of the definitions and results have been taken from the book by Ellis (1985),
where a considerably greater level depth can be found. The book by Bucklew
(1990) provides a more accessible introduction to the subject.

Consider a sequence of random variables Y1; Y2; � � � converging in probability
to a real constant y0. That is,

PrfjYn � y0j > �g ! 0 as n!1:

It is often the case that PrfjYn � y0j > �g not only converges to zero, but does
so exponentially fast. We could describe this convergence more explicitly by con-
sidering an � interval about y, (y� �; y+ �), that does not necessarily contain the
limit point y0; and then investigate the probability PrfYn 2 (y � �; y + �)g as
n!1. It is often the case that

PrfYn 2 (y � �; y + �)g � L(�; y; n) exp[�nI0(y; �)];

where L(�; y; n) is non-negative, logL(�; y; n) = o(n) as n ! 1, and I0(y; �)
is a non-negative function that is zero when y = y0. For a fixed � > 0 and a large
index n, if jYn � y0j > �, then Yn can be thought of as a large deviation from the
nominal value y0, hence the terminology. Now consider re-expressing the above
as

logPrfYn 2 (y � �; y + �)g
n

� logL(�; y; n)

n
� I0(y; �):

Since logL(�; y; n) = o(n) as n!1, then for a fixed � and sufficiently large n

logPrfYn 2 (y � �; y + �)g
n

� �I0(y; �):

Under fairly general conditions, this can be expressed as

lim
n!1

1

an
logPrfYn 2 Ag = � inf

y2A
I(y); (B.1)

where fan;n = 1; 2; � � � g is a sequence of positive numbers tending to infinity,
A 2 B(R) and I(y) is a non-negative convex function such that I(y0) = 0. Much
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of the theory of large deviations is concerned with determining conditions under
which this or similar statements can be made, and the form of the function I(y).

Cramér’s theorem considers Yn to be a sequence of empirical means of inde-
pendent identically distributed random variables, and shows that in this case the
function I(y) is related to the cumulant generating function. Cramér’s theorem is
reviewed in the next section.

Ellis (1984, 1985) and Gärtner (1977) consider a more general situation where
the Yn’s take values in Rk , are not necessarily empirical means, and may be de-
fined on a sequence of probability spaces (
n;Fn; �n) that are not necessarily
the same. In the case where the Yn’s are defined on the same probability space
(
;F ; �) and the sequence an, as in Equation B.1, increases sufficiently rapidly,
then Yn ! y0 �-a.s. These results will be reviewed in the third section.

B.2 Cramér’s Theorem

One of the earliest results is due to Harald Cramér. His result relies on the cumu-
lant generating function being steep, which we now define.

B.2.1 Definition (Ellis, 1984)

Denote the domain of a function f as D(f) = fx : f(x) < 1g. A function
f : R

k ! R that is differentiable on the interior of D(f) is steep if, for all
sequences fxng � D(f) that tend to a boundary point of D(f),

krf(xn)k =


�
@f(xn)

@xn1
; � � � ; @f(xn)

@xnd

�!1:

B.2.2 Cramér’s Theorem (Bucklew, 1990, Page 7)

Let fXig, i = 1; 2; � � � be a sequence of independent and identically distributed
random variables and

Yn =
1

n

nX
i=1

Xi: (B.2)

Suppose that E[X1] exists and is finite. Further, define the function I(y) as

I(y) = sup
q
fqy � C(q)g y 2 R;

where C(q) is the cumulant generating function of X1, given by

C(q) = logE
�
eqX1

�
:

Assume that C(q) is steep. Then for every closed set K � R,

lim sup
n!1

1

n
logPrfYn 2 Kg � � inf

y2K
I(y);
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and for every open set G � R,

lim inf
n!1

1

n
logPrfYn 2 Gg � � inf

y2G
I(y):

B.2.3 Corollary

If, for a; b 2 R and a < b,

inf
y2[a;b]

I(y) = inf
y2(a;b)

I(y);

then

lim
n!1

1

n
logPrfYn 2 (a; b)g = � inf

y2(a;b)
I(y):

B.2.4 Example

Let fXig, i = 1; 2; � � � be a sequence of independent and identically distributed
Gaussian random variables with mean � and unit variance. Then the cumulant
generating function is

C(q) = logE
�
eqX1

�
=

q2

2
+ �q q 2 R;

and so

I(y) =
1

2
(y � �)2:

Since q 2 R then there are no boundary problems with the domain of C(q).
Letting Yn denote the empirical mean as in Equation B.2, then it follows from
Cramér’s theorem that

lim
n!1

logPrfYn 2 Ag
n

= � inf
z2A

I(z) A 2 B(R):

Consider various possibilities for the interval A.

1. Let A = (�� �; �+ �). Then infz2A I(z) = 0, thus

lim
n!1

logPrfjYn � �j < �g
n

= 0:

2. Let A = (�1; �� �) [ (�+ �;1). Then infz2A I(z) = �2=2, thus

lim
n!1

logPrfjYn � �j > �g
n

= ��2

2
:

Alternatively, Yn � N (�; 1=n), therefore PrfjYn � �j > �g = 2PrfZ >
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p
n�g where Z � N (0; 1). It then follows from Abramowitz & Stegun (1964,

Eq. 26.2.14) that, for � > 0

PrfjYn � �j > �g

=

�
1p
n�+

:
1p
n�+

:
2p
n�+

:
3p
n�+

:
4p
n�+

� � �
�

2p
2�

exp

��n�2
2

�
:

The terms in the curly brackets are continued fractions. Taking logarithms of
both sides, dividing by n and taking the limit in n gives the same result.

3. Now consider an � interval about a point y, where y 6= �, i.e.,A = (y��; y+�),
and such that � is sufficiently small so that � =2 A. Then

inf
z2A

I(z) =
1

2
(jy � �j � �)2;

thus

lim
n!1

logPrfjYn � yj < �g
n

= �1

2
(jy � �j � �)2:

Taking limits in � on both sides gives

lim
�!0

lim
n!1

logPrfjYn � yj < �g
n

= �I(y):

This describes the local rate of convergence of the probability function.

B.2.5 Example

Let fXig, i = 1; 2; � � � be a sequence of independent and identically distributed
exponential random variables with cumulant generating function

C(q) = logE
�
eqX1

�
= � log

�
1� q

�

�
� > 0 and �1 < q < �;

thus I(y) = �y � 1 � log(�y). Note that the domain of C(q) has a boundary at
q = �, however it can be seen that C(q) is steep as q % �. Letting Yn denote the
empirical mean as in Equation B.2, then it follows from Cramér’s theorem that
for y > 1=�,

lim
n!1

logPrfYn > yg
n

= � inf
z2(y;1)

I(z) = 1 + log(�y) � �y:

B.2.6 Example

Let fXig, i = 1; 2; � � � be a sequence of independent and identically distributed
standard Gaussian random variables, and consider the partial sums Yn, where

Yn =
1

n

nX
i=1

X2
i :
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X2
1 has a chi-squared distribution with cumulant generating function

C(q) = logE
h
eqX

2

1

i
=
� log[1� 2q]

2
�1 < q <

1

2
;

and thus I(y) = 1
2
(y� log y�1). It can be seen that C(q) is steep at the boundary

q =
1
2

, and so it follows from Cramér’s theorem that for y > 1,

lim
n!1

logPrfYn > yg
n

= � inf
z2(y;1)

I(z) =
�y + log y + 1

2
:

B.3 Gärtner-Ellis Theorem

In this section the results are generalised to multiple dimensions, non-i.i.d., more
general scaling constants, and situations that do not necessarily involve partial
sums. Results are taken from Ellis (1984, 1985), and are similar to those of
Gärtner (1977).

B.3.1 Definitions (Ellis, 1985, Chapter VI)

1. The set A � R
k is convex if �y1 + (1� �)y2 is in A for every y1 and y2 in A,

and every 0 < � < 1.

2. Let f be an extended real valued function defined on A � R
k . f is said to be

convex on A if

(a) A is convex,
(b) f(y) is finite for at least one y 2 A,
(c) f does not take the value�1, and
(d) f(�y1 + (1 � �)y2) � �f(y1) + (1 � �)f(y2) for every y1 and y2 in A,

and every 0 < � < 1.

3. Let f be a convex function on Rk . If y2 is a point in Rk , then a vector z 2 Rk
is called a subgradient of f at y2 (see xB.3.2 for an explanation) if

f(y1) � f(y2) + hz; y1 � y2i for all y1 2 Rk :

4. The subdifferential of f at y is defined to be the set

@f(y) =
�
z 2 Rk : z is a subgradient of f at y

	

B.3.2 Note

The notion of a subgradient extends the concept of a derivative to points at which
f is not differentiable. It follows from above that if f is convex

�(f(y1)� f(y2)) � f(y2 + �(y1 � y2))� f(y2):
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Then if f is differentiable at y2, then as �! 0
+

�(f(y1)� f(y2)) � �hrf(y2); y1 � y2i+ o(�ky1 � y2k):
Rearranging, and letting �! 0 gives

f(y1) � f(y2)) + hrf(y2); y1 � y2i:

B.3.3 Preliminaries

Let fUn; n = 1; 2; � � � g be a sequence of random vectors which are defined on
probability spaces f(
n;Fn; �n); n = 1; 2; � � � g, that is

Un : (
n;Fn)! (R
k ;B(Rk ));

where B(Rk ) are the Borel sets of Rk . We also consider the rescaled sequence of
random vectors fYn; n = 1; 2; � � � g, where

Yn =
Un

an
;

and fan; n = 1; 2; � � � g is a sequence of positive numbers that tends to 1. Let
fQn; n = 1; 2; � � � g be a sequence of probability measures on B(Rk ), such that

QnfBg = �nf! 2 
n : Yn(!) 2 Bg
where B 2 B(Rk ).

B.3.4 Definition (Ellis, 1985, Page 35)

Let fQn; n = 1; 2; � � � g be a sequence of probability measures on B(Rk ). fQng
is said to have a large deviation property if there exists a sequence of positive
numbers fan;n = 1; 2; � � � g which tend to 1 and a function I(y) which maps
R
k into [0;1] such that the following hypotheses hold.

1. I(y) is closed (lower semi-continuous, i.e., yn ! y ) lim infn!1 I(yn) �
I(y)) on Rk .

2. I(y) has compact level sets, i.e., fy 2 R
k

: I(y) � bg is compact for each
b 2 R.

3. For each closed set K in Rk ,

lim sup
n!1

1

an
logQnfKg � � inf

y2K
I(y): (B.3)

4. For each open set G in Rk ,

lim inf
n!1

1

an
logQnfGg � � inf

y2G
I(y): (B.4)

I(y) is called the entropy function of fQng.
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B.3.5 Theorem (Ellis, 1985, Page 36)

If for a fixed sequence fan; n = 1; 2; � � � g, fQng has a large deviation property
with entropy functions I and J , then I(y) = J(y) for all y 2 R

k (i.e., unique-
ness).

B.3.6 Theorem (Ellis, 1985, Page 37)

Let Qn be the distribution of Yn = Un=an on Rk . Suppose Qn has a large devi-
ation property with constants fan;n = 1; 2; � � � g and entropy function I(y). The
Borel set A will be called an I-continuity set if

inf
y2clA

I(y) = inf
y2intA

I(y):

If A is an I-continuity set, then

lim
n!1

1

an
logQnfAg = � inf

y2A
I(y):

B.3.7 Rescaled Cumulant Generating Function

Define the function Cn(q) as

Cn(q) =
1

an
logEn[exphq; Uni]

=
1

an
log

Z

n

exphq; Un(!)i�n(d!); (B.5)

where fan; n = 1; 2; � � � g is a sequence of positive real numbers tending to
infinity and q 2 R

k . If limn!1 Cn(q) exists, then C(q) = limn!1 Cn(q) is
called the Rescaled Cumulant Generating Function of fUng. Note that C(q) is
often also called the Free Energy Function.

B.3.8 Hypotheses (Ellis, 1984, Hypothesis II.1)

The following hypotheses are assumed to be true.

1. C(q) = limn!1 Cn(q) exists for all q 2 R
k , where we allow +1 both as a

limit value and as an element in the sequence Cn(q) (i.e., define C(q) =1 if
Cn(q) =1 for all n > n0, n0 depending on q).

2. D(C), where D(C) = fq 2 R
k

: C(q) < 1g, has a non-empty interior
containing the point q = 0.

3. C(q) is a closed convex function on Rk .
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B.3.9 Notes (Ellis, 1984)

The domain of C(q), D(C), is non-empty since C(0) = 0 <1. The hypotheses
require that the interior of D(C) is non-empty. Convexity of C(q) follows from
the convexity ofCn(q). The requirement of closure; i.e., for each real b, fq 2 Rk :

C(q) � bg is closed in Rk ; is equivalent to C(q) being lower semi-continuous. If
C(q) is closed and D(C) is an open set, then C(q) is steep (Definition B.2.1).

B.3.10 Gärtner-Ellis Theorem (Ellis, 1984, Theorem II.2)

Let Qn be the distribution of Yn = Un=an on Rk . Also define the function I(y)
as the Legendre-Fenchel Transform of C(q), i.e.,

I(y) = sup

q2Rk
fhq; yi � C(q)g y 2 Rk : (B.6)

Then, given Hypotheses B.3.8, the following hold.

1. I(y) is convex, closed (lower semi-continuous), and non-negative. I(y) has
compact level sets and infy2Rk I(y) = 0.

2. The upper deviation bound, Equation B.3, is valid.

3. Assume in addition that C(q) is differentiable on the interior of the domain
of C(q), and C(q) is steep (Definition B.2.1). Then the lower large deviation
bound, Equation B.4, is valid.

B.3.11 Corollary (Ellis, 1985, Theorem II.4.1)

Let X1; X2; � � � be a sequence of i.i.d. random vectors taking values in Rk . Let
Un =

Pn
i=1Xi, and C(q) be given by Equation B.5. Assume that C(q) is finite

for all q 2 Rk , and define I(y) by Equation B.6. Then the following hold.

1. The distributions of Yn = Un=n on Rk , denoted by fQng, have a large devia-
tion property with an = n and entropy function I(y).

2. I(y) is a convex function of y. It measures the discrepancy between y and
E[X1] in the sense that I(y) � 0 with equality if and only if y = E[X1].

3. If the domain of X1 is the finite set fx1; x2; � � � ; xrg � R with x1 < x2 <

� � � < xr , then I(y) is finite and continuous for y 2 [x1; xr] and I(y) =1 for
y =2 [x1; xr].

B.3.12 Lemma (Ellis, 1985, Page 214)

A convex function f on R (k = 1) is closed iff it is continuous onD(f) including

1. the end points if they are in D(f), i.e., D(f) is closed, or

2. f(x) ! 1 as x approaches any end point not in D(f), i.e., D(f) is open and
f is steep.
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B.3.13 Definition - Exponential Convergence (Ellis, 1985, Page 231)

Let y0 be a point in Rk . Yn = Un=an is said to converge exponentially to y0,
written

Yn
exp�! y0;

if for any � > 0, there exists a number N = N(�) > 0 such that

�n f! : kYn(!)� y0k � �g � exp(�anN)

for all sufficiently large n.

B.3.14 Theorem (Ellis, 1984, Theorem IV.1)

Given Hypotheses B.3.8 hold, then the following statements are equivalent.

1. Yn = Un=an
exp�! y0.

2. C(q) is differentiable at q = 0 and rC(0) = y0.

3. I(y) attains its minimum over Rk at the unique point y = y0.

B.3.15 Theorem (Ellis, 1985, Page 49)

Assume that the random vectors fUn; n = 1; 2; � � � g are all defined on the same
probability space (
;F ; �). If

P
1

n=1 exp(�anN) < 1 for all N > 0, then

Yn = Un=an
exp�! y0 implies that Yn = Un=an

a:s:�! y0.

B.3.16 Example

Let fXig; i = 1; 2; � � � be independent normal random variables with mean � and
unit variance. Define Un as the partial sum to n as

Un = X1 + � � �+Xn:

Let the rescaling constant be an = n and Yn = Un=an, then the rescaled cumu-
lant generating function of Un is

Cn(q) =
1

an
logEn

�
eqUn

�
=

1

n
logE

�
eqX1

�n
=

q2

2
+ �q q 2 R:

Therefore

C(q) = lim
n!1

Cn(q) =
q2

2
+ �q:
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The problem is now equivalent to Example B.2.4. From Theorem B.3.14 it follows
that

Yn =
X1 + � � �+Xn

n

exp�! C 0(0) = � as n!1:

Thus we have a weak law of large numbers, with the added strength that the
convergence is exponentially fast. Since

1X
n=1

e�nN =
e�N

1� e�N
<1 8N > 0;

then a strong law of large numbers follows from Theorem B.3.15, that is,

Yn =
X1 + � � �+Xn

n

a:s:�! � as n!1:

B.3.17 Theorem (Ellis, 1984, Theorem V.1)

Assume that Hypotheses B.3.8 hold. Then the following hold.

1. I(y) is a closed convex function on Rk .

2. hq; yi � C(q) + I(y) for all q 2 D(C), and for all y 2 D(I).

3. hq; yi = C(q) + I(y) if and only if y 2 @C(q).

4. y 2 @C(q) if and only if q 2 @I(y).

5. C(q) = supy2Rk fhq; yi � I(y)g for all q 2 Rk .

6. For each real b, fy : I(y) � bg is a closed, bounded, convex subset of Rk .

7. infy2Rk I(y) = 0, and I(y0) = 0 if and only if y0 2 @C(q), which is a
non-empty, closed, bounded, convex subset of Rk .
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sions. Institute of Statistics and Operations Research Report. Victoria University of
Wellington, Wellington.

Mikosch, T. and Wang, Q. (1995). A Monte-Carlo method for estimating the correlation
exponent. J. Statist. Physics 78(3/4), 799–813.

Molchan, G.M. (1995). Multifractal analysis of Brownian zero set. J. Statist. Physics
79(3/4), 701–730.

Monin, A.S. and Yaglom, A.M. (1971). Statistical Fluid Mechanics; Mechanics of
Turbulence. MIT, Cambridge, MA.

Moran, P.A.P (1946). Additive functions of intervals and Hausdorff measure. Proc. Camb.
Phil. Soc. 42, 15–23.

Moran, P.A.P. (1950). Some remarks on animal population dynamics. Biometrics 6(3),
250–258.

Morandi, M.T. and Matsumura, S. (1991). Update on the examination of the seismic ob-
servational network of the National Research Institute for Earth Science and Disaster
Prevention (NIED): detection capability and magnitude correction. No. 47, 1–18.
National Research Institute for Earth Science and Disaster Prevention, Tsukuba.

Nerenberg, M.A.H. and Essex, C. (1990). Correlation dimension and systematic geometric
effects. Physical Rev. A 42(12), 7065–7074.

Nicolis, C. and Nicolis, G. (1984). Is there a climate attractor? Nature 311, 529–532.
Oboukhov, A.M. (1962). Some specific features of atmospheric turbulence. J. Fluid

Mechanics 13(1), 77–81.
Ogata, Y. and Abe, K. (1991). Some statistical features of the long term variation of the

global and regional seismic activity. Int. Statist. Rev. 59(2), 139–161.
Olsen, L. (1994). Random Geometrically Graph Directed Self-Similar Multifractals.

Longman Scientific & Technical, Harlow, Essex.
Orey, S. (1970). Gaussian sample functions and the Hausdorff dimension of level crossings.

Z. Wahrscheinlichkeitstheorie verw. Gebiete 15, 249–256.
Osborne, A.R. and Provenzale, A. (1989). Finite correlation dimension for stochastic sys-

tems with power-law spectra. Physica D 35(3), 357–381.
Ott, E., Sauer, T. and Yorke, J.A. (1994). Coping with Chaos. Analysis of Chaotic Data

with the Exploitation of Chaotic Systems. John Wiley & Sons, New York.
Pachard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. (1980). Geometry from a time

series. Physical Rev. Letters 45(9), 712–716.
Paladin, G. and Vulpiani, A. (1987). Anomalous scaling laws in multifractal objects.

Physics Reports 156(4), 147–225.
Papanastassiou, D. and Matsumura, S. (1987). Examination of the NRCDP’s (The National

Research Center for Disaster Prevention) seismic observational network as regards:

© 2001 by Chapman & Hall/CRC Press, LLC



I. detectability-locatability, II. accuracy of the determination of the earthquake source
parameters. No. 39, 37-65. National Research Institute for Earth Science and Disaster
Prevention, Tsukuba.

Park, K. and Willinger, W. (Editors) (2000). Self-Similar Network Traffic and Performance
Evaluation. John Wiley & Sons, New York.

Pesin, Y.B. (1993). On rigorous mathematical definitions of correlation dimension and
generalized spectrum for dimensions. J. Statist. Physics 71(3/4), 529–547.

Pisarenko, D.V. and Pisarenko, V.F. (1995). Statistical estimation of the correlation dimen-
sion. Physics Letters A 197(1), 31–39.

Porter-Hudak, S. (1990). An application of the seasonal fractionally differenced model to
the monetary aggregates. J. Amer. Statist. Assoc. 85(410), 338–344.

Rasband, S.N. (1990). Chaotic Dynamics of Nonlinear Systems. John Wiley & Sons, New
York.
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Birkhäuser, Boston.

Riedi, R.H. and Mandelbrot, B.B. (1995). Multifractal formalism for infinite multinomial
measures. Adv. Appl. Math. 16(2), 132–150.

Riedi, R.H. and Mandelbrot, B.B. (1997). Inversion formula for continuous multifractals.
Adv. Appl. Math. 19(3), 332–354.

Riedi, R.H. and Mandelbrot, B.B. (1998). Exceptions to the multifractal formalism for
discontinuous measures. Math. Proc. Camb. Phil. Soc. 123(1), 133–157.

Riedi, R.H. and Willinger, W. (2000). Toward an improved understanding of network traffic
dynamics. In: Self-Similar Network Traffic and Performance Evaluation. (Edited by:
Kihong Park and Walter Willinger). John Wiley & Sons, New York.

Rogers, C.A. (1970). Hausdorff Measures. Cambridge University Press, Cambridge.
Rosenblatt, M. (1961). Independence and dependence. In: Proceedings of the 4th Berkeley

Symposium on Mathematical Statistics and Probability. Volume II. Probability Theory,
431–443. (Edited by J. Neyman). University of California Press, Berkley.

Rosenblatt, M. (1979). Some limit theorems for partial sums of quadratic forms in station-
ary Gaussian variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 125–132.

Rosenblatt, M. (1981). Limit theorems for Fourier transforms of functionals of Gaussian
sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete 55, 123–132.

Ruelle, D. (1989). Chaotic Evolution and Strange Attractors. Cambridge University Press,
Cambridge.

Ruelle, D. (1990). The Claude Bernard Lecture, 1989. Deterministic chaos: the science
and the fiction. Proc. R. Soc. Lond. A 427(1873), 241–248.

© 2001 by Chapman & Hall/CRC Press, LLC



Ruelle, D. (1995). Turbulence, Strange Attractors, and Chaos. World Scientific Publishing
Company, Singapore.

Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman & Hall, New York.

Sauer, T., Yorke, J.A. and Casdagli, M. (1991). Embedology. J. Statist. Physics 65(3/4),
579–616.

Schertzer, D. and Lovejoy, S. (1987). Physical modeling and analysis of rain and clouds by
anisotropic scaling multiplicative processes. J. Geophys. Res. 92(D8), 9693–9714.

Schertzer, D. and Lovejoy, S. (1989). Generalised scale invariance and multiplicative pro-
cesses in the atmosphere. PAGEOPH 130(1), 57–81.

Scholz, C.H. (1990). The Mechanics of Earthquakes and Faulting. Cambridge University
Press, Cambridge.

Scholz, C.H. and Mandelbrot, B.B. (1989). Fractals in Geophysics. Reprint from
PAGEOPH 131(1/2). Birkhäuser Verlag, Basel.
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