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a b s t r a c t

Power laws and distributions with heavy tails are common features of many complex
systems. Examples are the distribution of earthquake magnitudes, solar flare intensities
and the sizes of neuronal avalanches. Previously, researchers surmised that a single general
concept may act as an underlying generative mechanism, with the theory of self organized
criticality being a weighty contender.

The power-law scaling observed in the primary statistical analysis is an important,
but by far not the only feature characterizing experimental data. The scaling function, the
distribution of energy fluctuations, the distribution of inter-event waiting times, and other
higher order spatial and temporal correlations, have seen increased consideration over the
last years. Leading to realization that basic models, like the original sandpile model, are
often insufficient to adequately describe the complexity of real-world systemswith power-
law distribution.

Consequently, a substantial amount of effort has gone into developing new and
extended models and, hitherto, three classes of models have emerged. The first line of
models is based on a separation between the time scales of an external drive and an internal
dissipation, and includes the original sandpilemodel and its extensions, like the dissipative
earthquake model. Within this approach the steady state is close to criticality in terms
of an absorbing phase transition. The second line of models is based on external drives
and internal dynamics competing on similar time scales and includes the coherent noise
model, which has a non-critical steady state characterized by heavy-tailed distributions.
The third line of models proposes a non-critical self-organizing state, being guided by an
optimization principle, such as the concept of highly optimized tolerance.

We present a comparative overview regarding distinct modeling approaches together
with a discussion of their potential relevance as underlying generative models for real-
world phenomena. The complexity of physical and biological scaling phenomena has
been found to transcend the explanatory power of individual paradigmal concepts. The
interaction between theoretical development and experimental observations has been very
fruitful, leading to a series of novel concepts and insights.
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1. Introduction

Experimental and technological advancements, like the steady increase in computing power, makes the study of natural
andman-made complex systems progressively popular and conceptually rewarding. Typically, a complex system contains a
large number of various, potentially non-identical components, which often have an internal complex structure of their own.
Complex systemsmay exhibit novel and emergent dynamics arising from local and nonlinear interactions of the constituting
elements. A prominent example for an emergent property, and possibly the phenomenon observed most frequently in real-
world complex systems, is the heavy-tailed scaling behavior of variables describing a structural feature or a dynamical
characteristic of the system. An observable is considered to be heavy-tailed if the probability of observing extremely large
values is more likely than it would be for an exponentially distributed variable (Feldman and Taqqu, 1998).

Heavy-tailed scaling has been observed in a large variety of real-world phenomena, such as the distribution of earthquake
magnitudes (Pisarenko and Sornette, 2003), solar flare intensities (Dennis, 1985), the sizes of wildfires (Newman, 2005),
the sizes of neuronal avalanches (Klaus et al., 2011), wealth distribution (Levy and Solomon, 1997), city population
distribution (Newman, 2005), the distribution of computer file sizes (Douceur and Bolosky, 1999; Gros et al., 2012), and
various other examples (Bak, 1997; Jensen, 1998; Newman, 2005, 1996; Clauset et al., 2009; Broder et al., 2000; Adamic and
Huberman, 2000).

Notably there are many types of distributions considered to be heavy-tailed, such as the Lévy distribution, the Cauchy
distribution, and the Weibull distribution. Still, investigations often focus on heavy-tailed scaling in its simplest form, the
form of a pure power law (viz the Pareto distribution). In fact, it is difficult to differentiate between various functional types
of heavy tails on a finite interval, especially if the data have a large variance and if the sample size is relatively small. In
Fig. 1 we illustrate the behavior of three distribution functions characterized by heavy tails, the Pareto, the log-normal and
the log-Cauchy probability distributions p(x) (left panel), and their corresponding complementary cumulative probability
distributions (CCDF) C(x) =


∞

x p(x′)dx′ (right panel). The respective functional forms are given in Table 1. In spite of having
more complex scaling properties, log-normal and log-Cauchy distributions can be approximated on a finite interval by a
power law, that is by a straight line on a log–log plot. Note that the difference between log-Cauchy and Pareto distribution
is more evident when C(x) is compared.

Clauset et al. (2009) have argued, that statistical methods traditionally used for data analysis (e.g. least-square fits) often
misestimate the parameters describing heavy-tailed data sets, and consequently the actual scaling behavior. For a more
reliable investigation of the scaling behavior one should employmethods going beyond visually fitting data sets with power
laws, such as maximum likelihood estimates and cross-model validation techniques. Additionally, one should take into
account the fact thatmost empirical data need to be binned (Virkar and Clauset, 2012), a procedure that reduces the available
data resolution.

Large data sets, spanning several orders of magnitudes, are needed to single out the model which best fits the data and
reproduces the heavy tail; even when advanced statistical techniques are applied. The collection of significantly larger data
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Fig. 1. Comparison of different types of heavy-tailed distributions. Log-Cauchy distribution (σ = 3, µ = 0), log-normal distribution (σ = 10, µ = −100)
and Pareto distribution (a = 1.75, see Table 1). Left: the probability distribution function p(x). Right: the corresponding complementary cumulative
probability distribution C(x) =


∞

x p(x′)dx′ . The distributions p(x) were normalized on the range x ∈ [1, ∞).

Table 1
Functional form of the Pareto, log-normal and log-Cauchy distributions p(x)
and the corresponding complementary cumulative distribution, C(x) =

∞

x p(x′)dx′ .

Name p(x) C(x)

Pareto x−α x−α+1

Log-normal 1
x e

−
(ln(x)−µ)2

2σ2 1
2 erfc


ln(x)−µ

2σ 2


Log-Cauchy 1

x

1+


ln x−µ
σ

2 1
π
arccot


ln(x)−µ

σ



sets is however often difficult to achieve through experimental studies of large-scale complex systems,which often dealwith
slowly changingphenomena in noisy environments. Using rigorous statisticalmethods, Clauset et al. (2009) re-analyzeddata
sets for which a least-square fit did indicate power-law scaling. They found that in some cases the empirical data actually
exhibit exponential or log-normal scaling, whereas in other cases a power law, or a power law with an exponential cutoff,
remains a viable description—as none of the alternative distributions could be singled out with statistical significance. Thus,
in the absence of additional evidence, it is best to assume the simplest scaling of the observed phenomena, adequately
described with the Pareto distribution.

Over the past decades various models have been developed in order to explain the abundance of power-law scaling
found in complex systems. Some of these power-law generating models were developed for describing specific systems,
and have hence only a restricted applicability. Other models, however, aim to explain universal properties of a range of
complex systems. They have enjoyed significant success and contributed to the development of the paradigm that power
laws emerge naturally in real-world and man-made complex systems.

The seminal work of Bak et al. (1987) developed into an influential theory which unifies the origins of the power-law
behavior observed in different complex systems—the so called theory of self-organized criticality (SOC). An important role
for the success of SOC is the connection to the well-established theory of second order phase transitions in equilibrium
statistical mechanics, for which the origin of scale-free behavior is well understood. The basic idea of SOC is that a complex
system will spontaneously organize, under quite general conditions, into a state which is at the transition between two
different regimes, that is at a critical point, without the need for external intervention or tuning. At such spontaneously
maintained phase transition a model SOC system exhibits power-law scaling of event sizes, event durations and, in some
cases, the 1/f scaling of the power spectra. These properties were also observed, to a certain extent, in natural phenomena
such as earthquakes, solar flares, forest fires, and, more recently, neuronal avalanches.

In the following chapters we will discuss in more detail the pros and cons of the SOC theory and its application to real-
world phenomena. In Fig. 2 we show the CCDF of some of the empirical data sets analyzed in Clauset et al. (2009). Note, that
none of the shown quantities exhibit power-law-like scaling across the entire range of observations.

SOC is observed in a range of theoretical models. However, several additional features characterize real-world
complex systems and these features are mostly not captured by the standard modeling approach within the SOC
framework. For example, power-law scaling in heterogeneous or noisy environments, or complex dynamicswith dissipative
components (Janosi and Kertesz, 1993), are common features of real-world systems. As an alternative to SOC, Carlson and
Doyle (1999) proposed a mechanism called highly optimized tolerance (HOT ) and argued that power-law distributions can
manifest themselves in systems with heterogeneous structures, as a consequence of being designed to operate optimally in
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Fig. 2. Log–log plots of the CCDF C(s)—a probability of observing an event equal to or larger than s—from the following empirical data sets: (A) the
intensities of earthquakes occurring in California between 1910 and 1992, (B) peak gamma-ray intensity of solar flares between 1980 and 1989, (C) the
sizes in acres of wildfires occurring on US federal land between 1986 and 1996 (data provided on-line by Clauset et al. (2009)), (D) the sizes in Kbytes of
publicly available files on the Internet (Gros et al., 2012).

uncertain environments; either by human design in the case of man-made systems, or by natural selection in the case of
living organisms. The HOT mechanism does not require critical dynamics for the emergence of heavy-tailed scaling.

In the following chapters we will describe in more details the main concepts of SOC and HOT, together with several
other proposals for power-law generating mechanisms, and we will discuss their successes and limitations in predicting
and explaining the dynamical behavior and the structure of real-world complex systems. In this context we will provide
an assessment, in comparison with theory predictions, of reported statistical properties of the empirical time series of
earthquake magnitudes, solar flares intensities and sizes of neuronal avalanches. In addition we will discuss the theory
of branching processes and the application of critical branching to the characterization of the dynamical regime of physical
systems. Another important question—thatwewill address anddiscusswithin the framework of vertex routingmodels—is to
which extent critical dynamical systems actually show power-law scaling and how the process of experimentally observing
a critical system influences the scaling of the collected data.

2. Theory of self-organized criticality

In their seminal work Bak et al. (1987) provided one of the first principles unifying the origins of the power law behavior
observed in many natural systems. The core hypotheses was that systems consisting of many interacting components will,
under certain conditions, spontaneously organize into a state with properties akin to the ones observed in a equilibrium
thermodynamic system near a second-order phase transition. As this complex behavior arises spontaneously without the
need for external tuning this phenomena was named Self-organized Criticality (SOC).

The highly appealing feature of the SOC theory is its relation to the well established field of the phase transitions and
the notion of universality. The universality hypothesis (Kadanoff, 1990) groups critical phenomena, as observed for many
different physical phase transitions, into a small number of universality classes. Systems belonging to the same universality
class share the values of critical exponents and follow equivalent scaling functions (Stanley, 1999). This universal behavior
near a critical point is caused by a diverging correlation length. The correlation length becomes much larger than the range
of the microscopic interactions, thus the collective behavior of the system and its components becomes independent of
its microscopic details. This also implies that even the simplest model captures all the aspects of critical behavior of the
corresponding universality class.

Physical systems which are believed to exhibit SOC behavior are also characterized by a constant flux of matter and
energy from and to the environment. Thus, they are intrinsically non-equilibrium systems. The concept of universality
is still applicable to non-equilibrium phase transitions. However, an universal classification scheme is still missing for
non-equilibrium phase transitions and the full spectrum of universality classes is unknown; it may be large or even
infinite (Lübeck, 2004; Hinrichsen, 2000). The properties of non-equilibrium transitions depend not only on the interactions
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Fig. 3. An illustration of particle redistribution during an avalanche for a sandpile model with three sites. Once the local height h reaches the activation
threshold hT = 4 the two neighboring nodes receive two particles each. Note that particles dissipate (disappear) only at the edge of the system.

but also on the dynamics. In contrast, detailed balance – a necessary precondition for a steady state (Rácz, 2002) – constrains
the dynamics in equilibrium phase transitions.

Classificationmethods of non-equilibrium phase transition are diverse and phenomenologically motivated. They have to
be checked for eachmodel separately and, as analytic solutions are inmost casesmissing, one uses numerical simulations or
renormalization group approaches to describe the behavior at the critical point. Still, as Lübeck (2004) pointed out, a common
mistake is the focus on critical exponents and the neglect of scaling functions, which are more informative. Determining the
functional behavior of scaling functions is a precisemethod for the classification of a given systems into a certain universality
class. The reason for this is that the variations of scaling exponents between different universality classes are often small,
whereas the respective scaling functions may show significant differences. Thus, to properly determine the corresponding
universality class, one should extract both scaling functions and scaling exponents.

2.1. Sandpile models

The archetypical model of a SOC system is the sandpile model (Bak et al., 1987). We will start with a general description.
Sandpile models are often defined on a d dimensional grid of a linear size L, containing N = Ld intersecting points. A point
of a grid or a lattice is called a node and to each node one relates a real or integer positive variable h. This variable can be
seen as the local energy level, the local stress or the local height level of the sandpile (the number of grains of sand or some
other particles at that location on the lattice). To mimic an external drive, that is the interaction of the system with the
environment, a single node is randomly selected at each time step t and some small amount of energy δh is added to its
local energy level,

hr⃗(t + 1) = hr⃗(t) + δh, (1)

where the index r⃗ = (r1, . . . , rd), ri ∈ 1, . . . , L represents the location of a node on a d-dimensional lattice. If h is a positive
integer variable, then the increase of the local height proceeds in discrete steps, usually setting δh = 1. Once the energy at
some node reaches a predefined threshold value hT , the energy configuration of the system becomes unstable, the external
drive is stopped, and the local energy is redistributed in the following way:

• First, the energy level of the active node, for which hr⃗ ≥ hT , is reduced by an amount ∆h, viz.

hr⃗ → hr⃗ − ∆h. (2)

• Second, the nearest neighbors of the active node, receive a fraction α of the lost energy ∆h. Denoting with e⃗n the relative
location of nearest neighbors with respect to location of active node r⃗ , we can write

hr⃗+e⃗n → hr⃗+e⃗n + β∆h. (3)

For example, in the case of two dimensional (d = 2) lattice we have e⃗n = (±1, 0), (0, ±1).
• The update is repeated as long as at least one active node remains, that is, until the energy configuration becomes stable.

In Fig. 3 we illustrated the process of particle transport among nearest neighbors, also called an avalanche. Setting

β =
1
2d

assures local conservation of energy during an avalanche; a necessary condition for a true SOC behavior of the sandpile
models, as we will discuss later. However, the energy is conserved only locally; it is important to allow the energy to
dissipate at the lattice boundaries (grains falling off the table), which is achieved by keeping the boundary nodes empty.
If the amount of transferred energy ∆h – which is transferred upon site activation – equals the threshold value hT , one calls
the model an Abelian SOC model, because in this case the order of the energy redistribution does not influence the stable
state configuration reached in the end of the toppling process. The Abelian realization of the discrete height SOC model
is better known as Bak–Tang–Wiesenfeld (BTW ) sandpile model (Bak et al., 1987). In addition, setting ∆h = ϵh, where
ϵ ∈ (0, 1] leads to a non-Abelian SOC model which was – in its continuous energy form – first analyzed by Zhang (1989),
thus named Zhang sandpile model (see Table 2).

Beside the BTW and the Zhang sandpile models, other variations of toppling rules exist. One possibility is a stochastic
sandpile model proposed by Manna (1991b), which was intensively studied as it is solvable analytically. Toppling rules can
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Fig. 4. Left: the complementary cumulative distribution C(s|L) =
smax

k=s P(k|L) of avalanche sizes s for the BTW sandpile model on a regular lattice of
linear size L. Right: average size ⟨s⟩ of avalanches, as a function of duration t , compared with the power-law dependence expected from the finite size
scaling Ansatz s ∼ tγST (see Eq. (6)) with γST = 1.46.

Table 2
A list of widely used acronyms and popular models for self organized criticality (SOC).

AST Absorbing state transition
SOqC Self organized quasi criticality
BTW sandpile model The original sandpile model proposed by Bak et al. (1987)
Manna sandpile model A variation of the BTW model with a stochastic distribution of grains, proposed by Manna (1991b)
OFC earthquake model A dissipative sandpile model, proposed by Olami et al. (1992)
Zhang sandpile model A non-abelian variation of the BTW model with continuous energy, proposed by Zhang (1989)

be divided into Abelian vs. non-Abelian, deterministic vs. stochastic and directed vs. undirected (Milshtein et al., 1998).
Modifications of the toppling rules employed often results in a change of the universality class to which the model belongs
(Ben-Hur and Biham, 1996; Giacometti and Díaz-Guilera, 1998).

Hitherto we described the critical height model, where the start of a toppling process solely depends on the height hr⃗ .
Alternatively, in the critical slope model the avalanche initiation depends on the first derivative of the height function hr⃗ , or
in the critical Laplacian model on the second derivative of the height function. These alternative stability criteria lead either
to a different universality class, or to a complete absence of SOC behavior (Manna, 1991a).

2.2. Finite size scaling

The scaling behavior of avalanches can be extracted from the statistical properties of several quantities: e.g. the size s
of the avalanche (the total number of activations during an avalanche), the area a of an avalanche (the number of distinct
activated nodes), the avalanche duration t (the number of parallel updates until a stable configuration is reached) and the
linear size of the avalanche r (usually estimated as the radius of gyration). In Fig. 4 we show distribution of avalanche
sizes obtained from the simulation of the BTW sandpile on a regular two dimensional lattice. In this review we discuss the
scaling of observables – like the results for the sandpile model shown in Fig. 4 – which result from uniform dynamics devoid
of a hierarchical organization. Scaling exponents may become complex in the presence of underlying hierarchies (Sornette,
1998) or specific interplay of dissipative and driving forces (Lee and Sornette, 2000). Hence, in such cases one needs to adopt
the analysis of the scaling behavior corresponding to the discrete scale invariance (Huang et al., 2000; Zhou and Sornette,
2009), characterized by complex scaling exponents.

The theory of equilibrium critical phenomena implies that the scaling behavior of this quantities – whenever the system
is near a second-order phase transition – follows the finite-size scaling (FSS) Ansatz. In other words, one expects to find a
scaling function for each observable uniquely defining their respective scaling behavior, independently of the system size.
Under FSS assumption probability distributions should have the following functional form (Cardy, 1996)

PX (x|L) = x−τX FX (x/xc), xc = LDX . (4)
Here τX and DX are the critical exponents for x ∈ {s, a, t, r} and L the linear system size. The scaling function FX describes
the finite size correction to the power law. Event sizes x substantially smaller than the system size follow a power law,
FX → const . for x ≪ LD, with the fractional dimension DX cutting off large fluctuations, F → 0 for x → xc = LDX .

When the quantities (the size, the area, etc.) all follow FSS, then they will also scale as a power of each other in the limit
L → ∞, that is the conditional probability PX ′X (x′

|x) of measuring x′ given x is diagonal,

PX ′X (x′
|x) ∝ δ(x′

− xγX ′X ), (5)
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Fig. 5. Finite size scaling for the two dimensional BTW sandpile model, for the data shown in Fig. 4. Shown is the rescaled complementary cumulative
avalanche sized distribution CCDF, using the finite-size scaling Ansatz (4), appropriately integrated. The scaling parameters are τS = 1.31 and DS = 2.8
(left) and τS = 1.15 and DS = 2 (right). Note that the first set of scaling exponents describes large avalanches well, with the second set of exponents being
appropriate for small avalanches.

which arises from the requirement that PX ′(x′) =

PX ′X (x′, x)dx is satisfied for any x, x′

∈ {s, a, t, r}. From the same
condition one obtains the scaling laws

γX ′X =
τX − 1
τX ′ − 1

. (6)

Early studies of SOC behavior have demonstrated that certain models deviate from the expected FSS Ansatz. Reason for
this deviation can be found in several premises behind the FSS Ansatz: (1) boundaries should not have a special role in the
behavior of the system; (2) a small finite system should behave the same as a small part of a large system. However, these
conditions do not hold for most sandpile models. First, energy is dissipated at the boundaries, and their shape influences
the scaling behavior. Second, the average number of activations per site increases, during large avalanches, with the size of
the system (Drossel, 2000), since energy dissipation is a boundary effect.

As an illustrative examplewe present in Fig. 5 the rescaled CCDF of the avalanche size s for the BTW sandpilemodel under
the FSS assumption, that is rescaling s → s/LDS and CS(s) → CS(s)LDS (τS−1), with linear dimensions L. Depending on the value
selected for the critical exponents, τS and DS , one finds nice collapse of the data for either large or small avalanches, though
not for the entire range of avalanche sizes. This behavior is consistent with the deviation from a pure power-law scaling
for the time-dependent average avalanche size, as shown in Fig. 4, which may be approximated asymptotically by a power
law for either short or long avalanche durations, but not for the entire range. Still, one can argue that scaling, as described
by Eq. (4), is expected to hold anyhow only asymptotically in the thermodynamic limit, that is, for large avalanche sizes
or durations. Hence, it is of interest to examine whether these results indicate to the presence of several distinct scaling
regimes.

2.2.1. Multiscaling Ansatz
It is well known, for a thermodynamic phase transition, that distinct scaling regime may exists. Somewhat further

away from the critical point one normally observes scaling with mean field exponents, and close to the transition (where
the degree of closeness is given by the Ginzburg criterion) the scaling exponents are determined by the underlying
universality class. A possible approach in discriminating distinct scaling regimes is to perform a rescaling transformation of
the observable of interest, an venue taken by the multifractal scaling Ansatz (Kadanoff et al., 1989; De Menech et al., 1998;
Tebaldi et al., 1999). Rescaling the CCFF

fX (α) =
log (CX (α|L))

log(L)
, CX (α|L) =


∞

Lα
PX (x|L)dx, (7)

one obtains with fX (α) the so-called multifractal spectrum (Peitgen et al., 2004). One can furthermore define via

⟨xq⟩L =


PX (x|L)xqdx ∼ LσX (q), (8)

the scaling exponents σX (q) to the qth moment of the distribution PX (x|L), which are related to the multifractal spectrum
fX (α) through a Legendre transform,

σX (q) = supα


fX (α) + qα


. (9)
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Fig. 6. Avalanche scaling properties of the two dimensional BTW sandpile model. (Left) Multifractal spectrum fs(α) of the avalanche size distribution Ps
for varying linear sizes L; (right) scaling function σs(q) of the qth moment of Ps , ⟨sq⟩ ∼ Lσ(q) obtained as linear fit of ln⟨sq⟩(L). The dashed line represents
the fit of the region where σS has linear dependence. The slope of the linear fit is then used to estimate DS = 2.8 and τS = 1.31.

If FSS is a valid assumption, viz when PX (x|L) follows a simple power lawwith a sharp cutoff given by LDX , then the following
form for fX (α) is expected:

fX (α) =


α(1 − τX ) for 0 < α ≤ Dx
−∞ for αx > Dx.

(10)

The jump to −∞ is replaced by a continuous downturn whenever the upper cutoff is not sharp, viz if events of arbitrary
large size x are allowed but exponentially unlikely. The Legendre transform σX (q) is given, for FSS, by

σX (q) =


DX (q − τX + 1) for q > τX − 1
σX (q) = 0 for q < τX − 1. (11)

The fractal spectrum fX (α) will be piecewise linear for distributions having well defined and well separated scale regimes.
On says that a fractal spectrum shows ‘‘multifractal scaling’’ when linear regimes are not discernible.

In Fig. 6 we show the multifractal spectrum fS(α) for different system sizes L, and the corresponding moment scaling
function σs(q), which was obtained as the slope of the linear fit of ln⟨sq⟩(L) for a fixed moment q. The continuous downturn
for large α seen for fS(α) results from the absence of a hard cutoff, the number of activated sites during an avalanche may
be arbitrary large (in contrast to the area, which is bounded by Ld). One notes that data collapse is achieved and that fs(α)
and σs(q) are not piece-wise linear, implying multiscaling behavior of the BTW sandpile model.

So far we have discussedmethods typically used to characterize a scaling behavior of various SOC models, which provide
a way to estimate both scaling exponents and scaling functions. In the next subsection we will discuss the underlying
mechanism leading to the emergence of the critical behavior observed in various sandpile models. For this purpose we
introduce a general concept well known in the theory of non-equilibrium phase transitions, the so called ‘‘absorbing phase
transitions’’.

2.3. Absorbing phase transitions and separation of time scales

Absorbing phase transitions exist in various forms in physical, chemical and biological systems that are operating far
from equilibrium. They are considered without a counterpart in equilibrium systems and are studied intensively. For an
absorbing phase transition to occur it is necessary that a dynamical system has at least one configuration in which the
system is trapped forever, the so-called absorbing state. The opposite state is the active phase in which the time evolution
of the configuration would never come to a stop, that is, the consecutive changes are autonomously ongoing.

A possiblemodeling venue for a dynamical systemwith an absorbing phase transition is given by the proliferation and the
annihilation of particles, where particles are seen as abstract representation of some quantity of interest. A simple example
for this picture would be a contact process on a d-dimensional lattice (Marro and Dickman, 2005), which is defined in the
following way: A lattice node can be either empty or occupied by a single particle; a particle may disappear with probability
1−p or create an offspringwith probability p, at a randomly chosen nearest neighbor node. This contact process has a single
absorbing state (with zero particles present) and one can show, in the mean field approximation, that this absorbing state
becomes unstable for p > pc = 1/2. For a broader discussion and a general overview of absorbing phase transitions we
refer the reader to the recent review articles (Hinrichsen, 2000; Lübeck, 2004; Marro and Dickman, 2005; Rácz, 2002) and
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Fig. 7. Random configurations of particles on a 3 × 3 periodic lattice for a fixed energy sandpile model, where the activation threshold hT = 4. Left: an
active state with a large number of particles per site, ρ > ρc . Right: an absorbing state with a low number of particles per site, ρ < ρc , which is inactive.

Fig. 8. The average density of active particles ρa , the order parameter for an absorbing phase transition, as a function of particle density ρ. The balance
between the (very slow) addition of particles and the (relatively fast) dissipation during the active phase can maintain ρ at the critical value ρc . This
separation of time scales is a defining property of processes self-organizing toward criticality.

books (Henkel et al., 2009; Henkel and Pleimling, 2010). Here we will focus on the connection between the absorbing phase
transitions and SOC.

To understand the nature of SOC behavior arising in sandpile models we consider a fixed energy sandpile model. This
model is obtained from the standard sandpile model by removing the external drive (the random addition of particles)
and the dissipation (the removal of the particles at the boundary). Still, if the number of particles on a single lattice node
exceeds some threshold value hT the particles at that node are redistributed to neighboring nodes as given by Eq. (3). This
redistribution process continues as long as there are active nodes, at some position r⃗ , with hr⃗ ≥ hT . If the initial particle
density ρ is smaller than some critical value ρc any initial configuration of particles will, in long-time limit, relax into a
stable configuration, corresponding to an absorbing state. In a stable configuration there are no active nodes and each node
can be in hT possible state (from 0 to hT − 1). Hence, in the thermodynamic limit exist infinitely many absorbing states. For
ρ > ρc there is always at least one active site and the redistribution process continues forever. An illustration of absorbing
and active states is shown in Fig. 7.

Using the average density of active states ρa as an order parameter, one usually finds that the absorbing to active phase
transition is of second order, with ρa changing continuously as ρ goes through the ρc , as illustrated in Fig. 8. Thus, having
a mechanism which slowly increases the amount of particles when ρ < ρc (external drive) and which is stopped once the
active state is reached, where fast dissipative effects take over (dissipation at the boundaries), will lead to the kind of self-
organized critical phenomena as they are observed in sandpile models (Fig. 8). Hence, we can relate criticality in sandpile
models to the separation of timescales between external driving process and intrinsic dissipation process in systems with
absorbing phase transitions. Thus, any non-equilibrium system, exhibiting an transition from an absorbing to an active
phase, can be driven to a critical point by including a driving and a dissipating mechanisms with infinite separation of time
scales (Dickman et al., 2000). The separated time scales ensure the balancing of the system at the point of transition.

2.4. SOC models on different network topologies

Unlike regular structures or lattices, typically used in sandpile models, real-world complex systems mostly have non-
regular structures, characterized often by a small world topology and scale-free connectivity. Thus, it is important to
understand the influence of different network topologies on the scaling behavior of sandpile and other SOC models.
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The studies of the sandpile dynamics on Erdős–Rényi random graphs (Erdős and Rényi, 1959), have shown that the
scaling exponents correspond to the ones obtained for high-dimensional lattices (Christensen and Olami, 1993; Bonabeau,
1995), thus belonging to the same universality class in the thermodynamic limit. Similar conclusions have been reached for
the BTW sandpile on the Watts–Strogatz type small-world networks (Watts and Strogatz, 1998). This kind of networks are
constructed from an usual d-dimensional lattice by randomly rewiring a certain fraction of links p. Importantly, the rewiring
is performed in a way such that the number of nearest neighbors is unchanged. This introduces long range interaction
for p > 0, yielding small-world structures for small p and random structures for large p. On these networks it is simple
to implement the classical BTW model without any modification for the toppling dynamics. De Arcangelis and Herrmann
(2002) and Pan et al. (2007) concluded that the avalanche behavior, in the thermodynamic limit L → ∞, corresponds to the
mean field behavior for any p > 0. Thus, the introduction of shortcuts to regular lattice structures is effectively increasing
the dimensionality of the lattice, with the scaling behavior corresponding to the one observed for high dimensional lattices
(Lahtinen et al., 2005).

2.4.1. Scale-free networks
Investigations of the BTW sandpile model on uncorrelated scale-free networks (Barabási and Albert, 1999) have shown

an interesting scaling behavior dependent on the network parameters (Goh et al., 2001, 2003; Lee et al., 2004b; Goh et al.,
2005). Scale-free graphs are graphs with a power-law distributed degree, that is pd(k) ∼ k−γ , where the degree k of a node
is the number of its nearest neighbors. As each node has a variable number of neighbors, the activation threshold of each
node is set proportional to the local vertex degree and defined as h(i)

T = k1−η

i , where ki is the out-degree of the ith node, and
0 ≤ η ≤ 1 such that h(i)

T ≤ ki. Grains of sand are again added to randomly chosen nodes, until the activation threshold h(i)
T of

the selected node is surpassed. Once a node gets activated the external drive is stopped, and the toppling of grains proceeds
until a stable state is reached. Dissipation is introduced either by removing small fraction f of grains during the avalanche,
or by mapping the network to a lattice and removing some small amount of grains at the boundary, which sets the maximal
size of the avalanche. Active sites transfer a single grain to each of the n = ⌈h(i)

T ⌉ randomly chosen nearest neighbors, where
⌈h(i)

T ⌉ denotes the smallest integer greater or equal to h(i)
T . The height of the ith active node hi is then decreased by ⌈h(i)

T ⌉.
Note that for η > 0 the grains are stochastically redistributed to nearest neighbors as the number of available grains n is
smaller than the out-degree ki.

In addition to numerical simulation, the scaling exponents for the avalanche size τs and the avalanche duration τt have
been obtained analytically by taking into account the tree like structure of the uncorrelated network and by mapping an
avalanche to a branching processes (Lee et al., 2004a), a procedure we will discuss in Section 4. Using the formalism of
branching processes one finds that the scaling exponents of the avalanche distributions depend on the network scaling
exponent γ and threshold proportionality exponent η in the following manner:

τs = 3/2, τt = 2 when γ > 3 − η

τs =
γ − 2η

γ − 1 − η
, τt =

γ − 1 − η

γ − 2
when 2 < γ < 3 − η.

(12)

Hence, there are two separate scaling regimes dependent on the value of the parameter γ , which defines the network
connectivity. At the transition of this two regimes—that is, for γ = 3−η—the avalanche scaling has a logarithmic correction

ps(s) ∼ s−3/2(ln s)−1/2, pt(t) ∼ t−2(ln t)−1. (13)

These logarithmic corrections correspond to the scaling properties of critical systems at the upper critical dimension, above
which the mean-field approximation yields the correct scaling exponents.

The analytic result (12) for uncorrelated graphs arewell reproducedbynumerical simulations (Goh et al., 2005). However,
real-world networks having scale-free degree distributions, contain additional topological structures, such as degree–degree
correlations. Simulating the sandpile dynamics at the autonomous system level for the Internet, and for the co-authorship
network in the neurosciences, one observes deviations to the random branching predictions (Goh et al., 2005). The higher
order structures of scale-free networks do therefore influence the values of the scaling exponents. In addition, separate
studies of BTW sandpilemodels on Barabási–Albert scale-free networks have demonstrated that scaling also depends on the
average ratio of the incoming and the outgoing links (Karmakar and Manna, 2005), further demonstrating the dependence
of scaling behavior on the details of the topological structure of the underlying complex network.

Topological changes in the structure of the network generally do not disrupt the power-law scaling of the BTW model, it
is however still worrisome that the scaling exponents generically depend on the network fine structure. Such dependences
suggests that the number of the universality classes is at least very large, and may possibly even be infinite. With so many
close-by universality classes, a large database and very good statistics is hence necessary, for a reliable classification of
real-world complex system through experimental observation.

In the following subsection we will consider SOC models supplemented by dissipative terms—which are essential for
many real-world applications—thus contrasting the SOC models with conserved toppling dynamics which we did discuss
hitherto.
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Fig. 9. An illustration of local dissipation during an avalanche, introduced in theOFCmodel. Besides the dissipation at the boundary, some fraction of energy
(denoted by blue rectangles) is lost locally at each active site. The remaining energy is distributed equally between the neighboring nodes or dissipated at
the open boundary. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.5. SOC models with dissipation

Conventional SOC models such as BTW, Zhang or Manna sandpile models (see Table 2), require—to show critical scaling
behavior—that the energy (the number of sand grains) is locally conserved. The introduction of local dissipation during an
avalanche (e.g. by randomly removing one or more grains during the toppling) leads to a subcritical avalanche behavior and
to a characteristic event size which is independent of the system size. To recover self-organized critical behavior—or at least
quasi-critical behavior, as we will discuss later—a modification is required for the external driving. Besides the stochastic
addition of particles or energy, a loadingmechanism has to be introduced. Thismechanism increases the total energywithin
the system, bringing it closer to the critical point, but without starting an avalanche (Bonachela and Muñoz, 2009). From
now on we will only consider models where the lattice nodes are represented by a continuous variable representing local
energy levels, as defining dissipation under such setup is quite straightforward.

In recent years, SOC models without energy conservation have raised some controversy regarding the statistical
properties of the generated avalanche dynamics, and with regard to their relation to the critical behavior observed in
conserved SOC models, such as the BTW model. A solvable version of a non-conserving model of SOC was introduced by
Pruessner and Jensen (2002). The dissipation is controlled by a parameter β (compare Eq. (3)) which determines the fraction
of energy transmitted, by an activated node, to each neighbor. The toppling dynamics is conserving for β = 1/k, where k
denotes the number of nearest neighbors, and dissipative for 0 < β < 1/k. For the external driving one classifies the sites
into three categories. A site with energy zi is said to be stable for zi < hT (1 − β), susceptible for hT (1 − β) ≤ zi < hT and
active for and 1 ≤ zi. The actual external driving is then divided into a loading and a triggering part.

• The loading part of the external drive consists of randomly selecting n nodes. If the selected sites are stable, having an
energy level below hT (1 − β), their respective energies are set to hT (1 − β), they become susceptible.

• For the triggering part of the external driving a single node is selected randomly. Nothing happens if the site is stable. If
the site is susceptible, its energy level is set to hT and the toppling dynamics starts.

Interestingly, depending on the loading intensity, that is on the value of the loading parameter n, the avalanche dynamics
will be in a subcritical, critical or supercritical regime, for a given system sizeN = Ld. The critical loading parameter nc scales
as a power of the system size N and diverges in the thermodynamic limit. This need for fine tuning of the load, which can be
generalized to other non-conservative SOC models, implies that dissipative systems exhibit just apparent self-organization.
Furthermore even with tuned loading parameter n = nc , the dynamics will only hover close to the critical state, without
ever reaching it exactly. This behavior was denoted self-organized quasi-criticality (SOqC) by Bonachela and Muñoz (2009).

2.5.1. The OFC earthquake model
Perhaps one of the most studied dissipative SOC models is the Olami–Feder–Christensen (OFC) model (Olami et al.,

1992). The OFC model is an earthquake model, as it was originally derived as a simplified version of the Burridge–Knopoff
model (Burridge and Knopoff, 1967), which was designed to mirror essential features of earthquakes and tectonic plates
dynamics. In this model the local height parameter hr⃗ is continuous and corresponds to local forces. The external driving,
thought to be induced by slipping rigid tectonic plates, is global in the OFC model, whereas it would be local in most other
sandpile models. The global driving force is infinitesimally slow and acts at the same time on all sites. Thus, the driving
process can be simplified as following:

• One determines the location r⃗∗ with the largest stress, with hr⃗∗ > hr⃗ , for every position r ≠ r⃗∗.
• All forces are then increased by hr⃗(t + 1) = hr⃗(t) + δh, where δh = hT − hr⃗∗ .
• The toppling dynamics then starts at r⃗∗, following Eq. (3), with a dissipation parameter β and ∆h = hr⃗ , that is after

activation hr⃗(t + 1) → 0.

The model becomes, as usual, conservative for β = 1/2d. In addition to the local dissipation there is still dissipation at the
boundaries (see Fig. 9), when assuming fixed zero boundary forces hr⃗ . In fact dissipative boundaries are essential for SOqC
behavior to emerge.



52 D. Marković, C. Gros / Physics Reports 536 (2014) 41–74

Fig. 10. Complementary cumulative avalanche size distribution for the dissipative OFC model on different network topologies, all having N = L2 nodes.
(A) Regular lattice with open boundaries, (B) regular lattice with periodic boundary conditions, (C) small-world network, (D) scale-free network.

Although initial studies of OFC models showed indications of critical behavior (Olami et al., 1992; Janosi and Kertesz,
1993; Jensen, 1998; Lise and Paczuski, 2001), later numerical studies on much larger system sizes found little evidence
for the critical scaling of avalanche sizes. For dissipation rates β > 0.18 the scaling is very close to a power law and the
behavior may be considered as almost critical that is quasi-critical (Miller and Boulter, 2002; Boulter and Miller, 2003;
Miller and Boulter, 2003). The difficulty with simulating the OFC model is that system goes through a transient period,
which grows rapidly with system size, before it reaches the self-organized stationary state, thus increasing significantly
the computational power and time needed to simulate large lattices (Wissel and Drossel, 2006). Furthermore, in the same
work, Wissel and Drossel (2006) showed that the size distribution of the avalanche is not of a power law form but rather
of a log-Poisson distribution. Nevertheless, it is still considered that dissipative systems with loading mechanism are much
closer to criticality than it would be the case in the absence of suchmechanism (Bonachela andMuñoz, 2009). Still, although
the OFC model is not strictly critical, it is somewhat more successful then other similar models in fitting the Omori scaling
of aftershocks (Hergarten and Neugebauer, 2002; Wissel and Drossel, 2006).

The OFC model, which has seen several successful applications (Helmstetter et al., 2004; Hergarten and Neugebauer,
2002; Caruso et al., 2007), does neglect heterogeneities as they occur in the structure of the real-world complex systems.
Within the OFC model one assumes that the site activation threshold is uniform across all nodes, that the avalanches
are undirected, that the elements have symmetric interactions and that the network has a regular structure and regular
dissipative boundaries. Adding local variations, expected to exist in natural systems, in any of the mentioned properties of
the model, leads to the disappearance of any similarity to critical scaling behavior. For example, introducing local variations
in the threshold values (Janosi and Kertesz, 1993), or in the local degree of dissipation (Mousseau, 1996), results in subcritical
scaling behavior, although SOqC is preserved for very small variations. The change in the network structure tomore irregular
topology has a similar effect, although exceptions exist. For the case of quenched random networks, only finite avalanches
are observed for any non-zero dissipation level, while power-law scaling is retained for annealed networks (Chabanol and
Hakim, 1997; Lise and Paczuski, 2002). The disappearance of power-law scaling has also been observed for the OFC model
on scale-free networks (Caruso et al., 2006) and regular lattice with periodic boundary conditions (Grassberger, 1994) (see
Fig. 10). Interestingly, OFC model on small-world topology, with a small rewiring probability and undirected connections,
shows properties similar to the ones obtained on regular lattices (Caruso et al., 2006). Examples for the scaling of avalanche
sizes in the presence of various site dependent irregularities for the OFC model are shown in Fig. 11.

Non-conserving SOC models are able to reproduce certain aspects of scaling exhibited by real-world phenomena. The
incorporation of structural variations, which are common features of natural and man made systems, results however in
qualitative changes for the observed scaling. This circumstance is quite worrying, as pointed by Jensen (1998). If a model
is applicable to real physical systems, it should also exhibit some robustness to disorder. In Section 5 we will discuss in
more details empirically observed properties of earthquakes and solar flares, which will also reveal additional differences
between real-world phenomena and both conserved and non-conserved SOC models. The implications of SOC theory on the
observed power-law behavior of neuronal avalanches, and possible extensions of SOC theory or alternative explanation of
their origin, will be also discussed.
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Fig. 11. Cumulative avalanche size distribution for the dissipative OFC model on a regular lattice in the case of (A) non-uniform threshold, (B) asymmetric
and random interactions.

3. Alternative models for generating heavy-tailed distributions

The quest for explaining and understanding the abundance of power-law scaling in complex systems has produced, in
the past several decades, a range of models and mechanisms for the generation of power laws and related heavy-tailed
distributions.

Some among these models provide relatively simple generating mechanisms (Newman, 2005), e.g. many properties of
random walks are characterized by power laws, while others are based on more intricate principles, such as the previously
described SOC mechanism. We will now shortly describe three classes of basic generating mechanism, and then discuss
in more detail a recently proposed heavy-tail generating mechanism, the so called principle of highly optimized tolerance.
The emphasis of our discussion will be on general underlying generating principles, and not on the details of the various
models. For additional informationwith respect to several alternativemechanisms, not mentioned here, we refer the reader
to several sources (Mitzenmacher, 2004; Newman, 2005; Sornette, 2004; Schwab et al., 2013).

3.1. Variable selection and power laws

One can generate power laws when selecting the quantity of interest appropriately (Sornette, 2002; Newman, 2005).
This procedure is, however, in many cases not an artifact but the most natural choice. Consider an exponentially distributed
variable y, being logarithmically dependent on a quantity of interest x,

p(y) ∼ eay, y = b log(x),
dy
dx

=
b
x
. (14)

The distribution p(x)

p(x) = p(y)
dy
dx

∼
b
x
eab log(x) ∼ xab−1 (15)

then has a power-law tail. Exponential distributions are ubiquitous, any quantity having a characteristic length scale, a
characteristic time scale, etc. is exponentially distributed. A logarithmic dependence y ∼ log(x) does also appear frequently;
e.g. the information content, the Shannon information, has this functional form (Gros, 2010). Power laws may hence quite
naturally arise in systems, like the human language, governed by information theoretical principles (Newman, 2005).

For another example consider two variables being the inverse of each other,

x ∼
1
y
, p(x) ∼

p(y)
x2

. (16)

The distribution p(x) has hence a power-law tail for large x, whenever the limit limy→0 p(y) is well behaved. E.g. for finite
p(y = 0) the tail is p(x) ∼ 1/x2. Whether or not a relation akin to (16) is physically or biologically correct depends on the
problem at hand. It is important, when examining real-world data, to keep in mind that straightforward explanations for
power-law dependences—like the ones discussed above—may be viable, before jumping to elaborated schemes and fancy
explanations.
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Fig. 12. An illustration of the Yule process. A probability that a newly created unit (top node) joins one of the existing communities (lower nodes) is
proportional to the size of that community, indicated by the respective sizes of the nodes.

3.2. Growth processes directed by importance measures

One of the most applied principle, comparable to the success of SOC theory, is the Yule Process (Yule, 1925) or the
‘‘rich-gets-richer’’ mechanism, which was originally introduced to explain the power-law distribution of sizes of biological
taxa. Afterward, other researchers adapted and generalized the Yule process for the power-law scaling observed in various
other systems. Today the Yule process goes by different names, for example it is known as Gibrat’s law when applied to
the distribution of city sizes (Eeckhout, 2004), the cumulative advantage for the distribution of paper citations (Price, 1976;
Redner, 1998), the preferential attachment when modeling the scale-free structure of real-world networks (Newman, 2001;
Dorogovtsev et al., 2000), such as number of links to pages on the world wide web (Barabási and Albert, 1999; Gros et al.,
2012).

These models describe the dynamic growth of a system which is biased by the size of existing units, as illustrated in
Fig. 12. The system being a collection of interacting objects (e.g. cities, articles, web pages, people, etc.), where new objects
are created from time to time, the number of objects thus increasing continuously. To each object one relates a quantity
representing its importance, for example city sizes, the number of citations (for scientific articles), the number of links
(for webpages), etc. It can be shown that the tail of this quantity follows a power-law distribution if the growth rate of
this importance measure is assumed to be proportional to its current value (Newman, 2005; Gros, 2010). For example, the
probability that a paper gets cited is higher if that paper has already many citations, the probability of adding a link to a
webpage is high if the webpage is well known, i.e. if it has already many incoming links. Thus, this principle can be used
to explain the scaling behavior of any system which seems to incorporate such a growth process, where the growth rate is
biased locally by the importance of the respective node.

3.3. Balancing competing driving forces, the coherent noise model

Adynamical systemmay organize itself toward criticality as the result of balancing competing driving forces, as discussed
in the context of absorbing state transitions in Section 2.3. Generalizing this concept one can consider the effect of competing
driving forces on the dynamics of the resulting state.

An interesting class of models with competing drives are random barrier models. An example is the Bak and Sneppen
model (Bak and Sneppen, 1993), which is a model for co-evolutionary avalanches. In this model one has barriers xi ∈ [0, 1]
which represent obstacles to evolutionary changes. At every time step the lowest barrier is removed, corresponding to
an evolutionary process of species i and reset to a random value. The barriers xj of certain number of other species will
also change and their barrier values will be reset randomly. The resulting state is critical and it can be related to a critical
branching process (Gros, 2010) (see 4).

In the Bak and Sneppenmodel there are two competing driving forces, the removal of low barriers and the homogeneous
redistribution of barrier levels. Another model with an equivalent set of driving forces, which we will now discuss briefly,
has been termed ‘‘coherent noise model’’ (Newman and Sneppen, 1996). The two steps of the time evolution, illustrated in
Fig. 13, correspond to an external driving and an internal dissipative process respectively.

• All barriers below a randomly drawn stress level η are removed and uniformly re-assigned (external forcing).
• A certain fraction f ∈ [0, 1] of barriers is removed anyhow and uniformly re-assigned (internal dissipation).

The coherent noise model has a functional degree of freedom, the distribution ρs(η) for the stress levels, which is generally
assumed to be monotonically decreasing, with low stress levels being more likely than larger ones. The distribution p(x, t)
of barrier levels x ∈ [0, 1] will reach a steady state, resulting from the competition of above two driving forces. The time
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Fig. 13. An illustration of the coherent noisemechanism. An external stress η affects the nodes whose thresholds are smaller than η (red, top diagram). The
thresholds of the affected nodes are uniformly re-assigned (stroked red, bottom diagram). A small fraction of randomly drawn nodes (blue, top diagram)
receives in addition a new, randomly selected, threshold (stroked blue, bottomdiagram). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

evolution is given by

p(x, t + 1) =

 1

0
ρs(η)p(x, t)Θ(x − η)dη − fp(x, t) +

 1

0
dx
 1

0
ρs(η)p(x, t)


1 − Θ(x − η)


dη + f

where the terms in the second line enforce the conservation of the number of barriers,

p(x, t + 1)dx =


p(x, t)dx, and

where Θ is the Heaviside step function. The equilibrium barrier distribution p(x) ≡ p(x, t) = p(x, t + 1) is then given by

p(x) =
c

1 + f − Ps(x)
, Ps(x) =

 x

0
ρs(η) dη, (17)

where c is an appropriate normalization constant. All barriers would pile up at the maximal barrier level in the absence of
dissipation f → 0. A non-trivial distribution results only when both external forcing and internal dissipation are active,
the steady-state solution is structureless if only the internal redistribution of barriers ∝ f would be active, the reason
why one can consider this process to be analogous to friction in physics. The steady-state barrier distribution (17) looks
otherwise unsuspicious, not showing any obvious signs of criticality. A phase transition, and an eventual self-organization
toward criticality, is in any case not expected for the coherent noise model due to the absence of agent–agent interactions.
However, the resulting distribution of event sizes s =

 η

0 p(x)dx shows an intermediate region of power-law scaling, and a
large event is followed by a series of smaller aftershocks with power-law scaling (Sneppen and Newman, 1997).

The coherent noise model was used initially to describe the properties of mass extinctions observed in fossil records
(Newman, 1997). It was also considered as a model of earthquakes, describing the properties of aftershocks (Wilke et al.,
1998; Celikoglu and Tirnakli, 2012), and used for the prediction of aftershocks (Sarlis and Christopoulos, 2012). Recently,
Melatos and Warszawski (2009) applied the coherent noise model in a study of pulsar glitches. Interestingly, the model is
quite sensitive to initial conditions (Ergun and Tirnakli, 2005); a property in common with the Bak–Sneppen model.

3.4. Highly optimized tolerance

The mechanism of highly optimized tolerance (HOT ) is motivated by the fact that most complex systems, either biological
or man-made, consist of many heterogeneous components, which often have a complex structure and behavior of their
own (Carlson and Doyle, 1999). Thus, real complex systems often exhibit self-dissimilarity of the internal structure rather
then self-similarity, whichwould be expected if the self-organization toward a critical statewould be the sole organizational
principle (Carlson and Doyle, 2000, 2002).

Self-similarity is a property of systems which have similar structures at different scales, a defining property of fractals.
It is not uncommon to find fractal features in living organisms, in specific cells or tissue structures (Weibel, 1991). Self-
similarity does however exist, for real-world systems, only within a finite range of scales. Cell shapes and functions differ
substantially from one organ to another and there are highly specialized non-similar units within individual cells. Analogous
statements can be made for the case of artificial systems, such as the Internet or computers. Actually, the diversity in the
components of complex systems is needed to provide a robust performance in the presence of uncertainties, either arising
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Fig. 14. Illustration of a site percolation process on a 10 × 10 regular lattice for p = 1/2; occupied nodes are colored white. Before the perturbation
targeting the largest cluster, which is shaded in red (left) and after the perturbation leading to the removal of all occupied nodes within the perturbed
cluster (right).

from changes in the behavior of the system components or from changes in the environment. The balance between self-
similarity and diversity hence comes not from a generic generating principle, but from the driving design process. Optimal
design is achieved, for the case of living organisms, through natural selection and for the man-made complex systems,
through human intervention.

Both man-made and biological complex systems can show a surprising sensitivity to unexpected small perturbations,
if they had not been designed or evolved to deal with them. To give an example, the network of Internet servers is very
robust against the variations in Internet traffic volume, nevertheless highly sensitive to bugs in the network software.
Likewise, complex organisms may be highly robust with respect to environmental variations and yet may easily die if
the regulatory mechanism, which maintains this robustness, is attacked and damaged by microscopic pathogens, toxins
or injury. A substantial variety of complex systems is hence characterized by a property one may denote as ‘‘robust-yet-
fragile’’ (Carlson and Doyle, 1999, 2000, 2002).

Carlson and Doyle (1999) have argued, using simple models, that optimization of a design objective, in the presence
of uncertainty and specified constrains, might lead to features such as high robustness and resilience to ‘‘known’’ system
failures, high sensitivity to design flaws and unanticipated perturbations, structured and self-dissimilar configurations, and
heavy-tail distributions (Doyle and Carlson, 2000). Depending on the specific objectives which are optimized, and their
relation to the system constrains, the exact scaling can follow a power law or some other heavy-tailed distribution (Carlson
and Doyle, 2002). The main difference between the SOC and the HOT mechanism is their explanation of large, possibly
catastrophic events. Large events arise, within SOC, as a consequence of random fluctuations which get amplified by chance.
As for HOT, large events are caused by a design which favors small, frequent losses, having rather predictable statistics, over
large losses resulting from rare perturbations.

3.4.1. HOT site percolation
TheHOT mechanism can be illustratedwith amodel based on twodimensional site percolation (Carlson andDoyle, 2000).

This type of model is often taken as a starting point for describing the spreading of fire in forest patches or the spreading of
epidemics through social cliques. It also serves,more generally, as amodel for energy dissipation. Considering the reaction of
the systemunder a disruption, one is interested in these cases in the number of trees surviving a fire outbreak, in the number
of individuals unaffected by an epidemic, and in the amount of energy preserved within the system. For HOT one considers
optimized percolation processes reducing to the classical Bernoulli percolation when no optimization is performed.

For the classical percolation problem, in the absence of any optimization procedure, lattice sites are occupied (with a
particle, a tree, etc.) with probability ρ and empty with probability 1 − ρ. Two sites are connected, on a square lattice with
linear dimensions L (Carlson and Doyle, 2000), if they are nearest neighbors of each others and a group of sites is connected
whenever there is a path of nearest neighbors between all sites of the cluster (see Fig. 14). The cluster sizes are exponentially
distributed if the average density ρ of occupied nodes is below the critical density ρc . At criticality the characteristic cluster
size diverges and the cluster size distribution follows a power law. For densities above criticality there is a finite probability
of forming an infinite cluster covering a finite fraction of the system, even in the thermodynamic limit. The probability that
a given occupied site is connected to an infinite cluster is the percolation order parameter P∞(ρ), which is zero for ρ ≤ ρc ,
and monotonically increasing from zero to one for ρ > ρc .

One now considers clusters of occupied sites to be subject to perturbations (e.g. a spark when considering forest fires)
that are spatially distributed with probability f (r⃗). When a perturbation is initiated at the location r⃗ of the lattice, the
perturbation spreads over the entire cluster containing the site originally targeted by the attack, changing the status of
all sites of the cluster from occupied to unoccupied (the trees burn down), as illustrated in Fig. 14. On the other hand, if the
perturbed site is empty, nothing happens. The system is most robust if, on average, as few sites as possible are affected by
the perturbation. The aim of the optimization process is then to optimally distribute particles onto the lattice, for a given
average density of occupied sites. One hence defines the yield Y of the optimization process as the average fraction of sites
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Fig. 15. Comparison between evolved HOT states and random percolation. (a) Yield vs. density in the case of random percolation and evolved lattice
configuration. (b) Cumulative distribution of event sizes C(s) at the point of maximum yield of the evolved lattice configuration (log–log plot), for the case
of random percolation and for two evolved configurations.
Source: Courtesy of J. Doyle (Carlson and Doyle, 1999).

surviving an attack. Optimization of the yield can be achieved, through an evolutionary process, by increasing continuously
the density of particles.

• Starting with a configuration of Np particles one considers a number D of possible states of Np + 1 particles generated by
adding a single particle to the present state.

• One evaluates the yield Y for all D prospective new states by simulating disruptions, distributed by f (r⃗). The state with
the highest yield is then selected.

The optimization parameter, for this algorithm, is in the range 0 ≤ D ≤ (N − Np), where D = 0 corresponds to no
optimization, i.e. to classical percolation. Increasing the number D of trial states will, in general, lead to an increase in
performance.

In Fig. 15 the yield Y is shown as a function of the mean density ρ, both for the case of random percolation and for the
state evolved through the HOT process. The yield peaks near the percolation threshold ρc = 1/2, for random percolation,
decreasing monotonically to zero for ρ > ρc , a behavior easily understood when considering the thermodynamic limit
L → ∞. In the thermodynamic limit there are two possible outcome for an perturbation. Either the perturbation hits, with
probability P∞(ρ), the infinite clusters, or, with probability 1−P∞(ρ), some other finite cluster or an empty site. In the first
case a finite fraction P∞(ρ) of occupied sites are removed, in the second case only an intensive number of sites:

Y (ρ) = P∞(ρ)(ρ − P∞(ρ)) + (1 − P∞(ρ))ρ = ρ − P2
∞

(ρ), (18)

the yield is directly related to the order parameter when no optimization is performed. A yield close to the maximally
achievable value ρ can, on the other side, be achieved when performing optimization with an optimization parameter D
close to its maximal value. The resulting distribution of occupied sites is highly inhomogeneous, many small clusters arise
in regions of high attack rates f (r⃗), regions with low disruption rates are, on the other side, characterized by a smaller
number of large clusters (Fig. 16). The HOT state reflects the properties of the distribution f (r⃗) and is hence highly sensitive
to changes of f (r⃗). The distribution of clusters is, in contrast, translationally invariant in critical state ρ = ρc when no
optimization is performed, and independent from f (r⃗). This model of optimized percolation hence illustrates the ‘‘robust-
yet-fragile’’ principle.

3.4.2. Fat tails and the generic HOT process
It is not evident, at first sight, why the procedure of highly optimized tolerance should lead to power-law scaling, or to fat

tails in general. The emergence of power-law scaling from the HOT mechanism can however be understood by considering
an abstract optimization setup as described by Carlson and Doyle (1999). The yield is defined as

Y (ρ) = ρ −
1
L2

E[s], (19)

where E[s] denotes the expectation value of event sizes for a fixed distribution of perturbations f (r⃗). The yield Y is maximal
when a disruption triggers events of minimal sizes.

For the case of optimized percolation, discussed in the previous section, the event size s was assumed to be identical to
the area A(r⃗) affected by a disruption happening at r⃗ . In a larger context one may be interested not to minimize directly the
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(a) ρ = 0.55, Y = 0.49. (b) ρ = 0.93, Y = 0.93.

Fig. 16. Sample of percolation configuration on a 32×32 lattice for (a) randompercolationnearρc and (b) aHOT state atmaximal yield obtained by evolving
lattice configurations. Unoccupied sites are black and clusters are gray, with darker shades indicating larger clusters. The designed lattice percolation was

generated for the perturbation probability f (r⃗) = f (r1)f (r2), where f (x) = exp(−


mx+(x/N)

σx

2
), which were peaked at the upper left corner of the lattice.

Source: Courtesy of J. Doyle (Carlson and Doyle, 1999).

affected area A, but some importancemeasure s of the event, with the relevance s of a given event being a nonlinear function
of the primary effect,

E[s] =


f (r⃗)s(r⃗)dr⃗, s =


A(r⃗)

γ
, (20)

where a polynomial dependence s = Aγ has been assumed, with γ > 0. For the case of optimized percolation the yield Y [ρ]

is evaluated for fixed particle density ρ. More generally, one can consider a constraint function R(r⃗) such that
R(r⃗)dr⃗ = κ (21)

needs to be kept constant. Available resources are finite, κ < ∞, and need to be utilized optimally. Real-world examples
for resources are fire breaks preventing wildfires, routers and DNS servers preventing large failures of the Internet traffic
and regulatory mechanisms preventing failure amplification in organisms. Allocating more resources to some location, to
limit the size of events, will generically lead to a reduction in the size of the area affected by a disruption. One may thus
assume that the area locally affected by an event is inversely related to the local density of resource allocation, that is,
A(r⃗) = (R(r⃗))−β , with β being a positive constant related to the dimensionality of the system.

The HOT state in this abstract system is obtained by minimizing the expected cost (Eq. (20)) subject to the constraint on
available resources (Eq. (21)), together with A = R−β . The optimal state is found by applying the variational principle and
solving

δ

 
f (r⃗)


R(r⃗)

−γ β
− λR(r⃗)


dr⃗ ≡ 0, (22)

where λ is a Lagrange parameter. The variation, relative to all possible resource distributions R(r⃗), yields

f (x⃗) ∼

R(x⃗)

γ β+1
∼

A(x⃗)

−(γ+1/β)
∼

A(x⃗)

−θ
, θ = γ + 1/β. (23)

This relation lead to A ∼ f −1/θ , the larger the event probability f , the smaller the affected area A. The cumulative probability
distribution C(A) of observing an event which spreads over an area larger or equal than A, in the case of an optimal HOT
state, becomes

C(A) =


A(r⃗)>A

f (r⃗)dr⃗ =


f (r⃗)<A−γ

f (r⃗)dr⃗. (24)

Although not all f (r⃗) will result in a scale-free scaling of event sizes, there is however a broad class of distributions leading
to heavy tails in C(A) and consequently in the distribution P(A) of event areas. For example, in the one dimensional case
an exponential, a Gaussian and a power-law distributed f (r) result in a heavy-tailed distribution of events. One can show,
in addition, that similar relations also hold for higher dimensional systems (Carlson and Doyle, 1999). An example of a
perturbation probability f which does not result in heavy-tailed event sizeswould be a uniformdistribution or, alternatively,
perturbations localized within a small finite region of the system.

The above discussion of the HOT principle does not take into account the fact that real-world complex systems are, most
of the time, part of dynamical environments, and that perturbations acting on the system will therefore not be stationary,
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Fig. 17. Examples for branching processes (A, left) and routing processes (B, right), where n denotes a time step.

f = f (r⃗, t). TheHOT principle can be generalized to the case of a time dependent distribution of disruptions f (r⃗, t). A system
can still be close to an optimal state in a changing environment when constantly adapting to the changes and if the changes
are sufficiently slow, that is, if a separation of time scales exists (Zhou and Carlson, 2000). An adaptive HOT model was used
by Zhou et al. (2002) to explore different scenarios for evolution and extinction, such as the effects of different habitats on
the phenotype traits of organisms, the effects of variousmutation rates on adaptation, fitness and diversity, and competition
between generalist and specialist organism. In spite of using a very abstract and simple notion of organisms and populations,
these studies were successful in capturing many features observed in biological and ecological systems (Zhou et al., 2005).

4. Branching processes

One speaks of an avalanche when a single event causes multiple subsequent events. Similar to a snowball rolling down
a snowfield and creating other toppling snowballs. Avalanches will stop eventually, just as snowballs will not trundle down
the hill forever. At the level of the individual snowballs this corresponds to a branching process—a given snowball may
stop rolling or nudge one or more downhill snowballs to start rolling. The theory of random branching processes captures
such dynamics of cascading events. First, we will discuss the classical stochastic branching process and its relation to SOC,
branching models are critical when on the average the number of snowballs is conserved. Second, we will discuss vertex
routing models for which local conservation is deterministic.

4.1. Stochastic branching

A branching or multiplicative process is formally defined as a Markov chain of positive integer valued random variables
{Z0, Z1, . . .}. One of the earliest application of the branching processes concerned the modeling of the evolution of family
names, an approach known as the Galton–Watson process (Gros, 2010). In this context Zn corresponds to the number
of individuals in the nth generation with the same family name. More recently, the theory of branching processes was
applied in estimating the critical exponents of sandpile dynamics, both for regular lattices (Alstrøm, 1988) and for scale-free
networks (Goh et al., 2003). In a typical application branching processes are considered asmean-field approximations to the
sandpile dynamics, obtained by neglecting correlations in the avalanche behavior (Zapperi et al., 1995).

More abstractly, a random variable Zn represents the number of ‘‘particles’’ present at iteration step n generating a new
generation of Zn+1 descendants at step n + 1 (see Fig. 17). We denote with p(n)

k the probability that a single particle at time
step n generates k offsprings at time step n + 1 and with Pn(Zn) the probability of finding Zn particles after n iterations. One
defines with

fn(x) =


p(n)
k xk, Gn(x) =


Zn

Pn(Zn)xZn (25)

the corresponding generating functions fn(x) andGn(x) (Gros, 2010). A branching processmay, in general, be timedependent,
for a time-independent process p(n)

k ≡ pk and fn(x) ≡ f (x). The recursion relation

Gn(x) =


Zn

Pn(Zn)xZn =


Zn−1

Pn−1(Zn−1) (fn−1(x))Zn−1 = Gn−1(fn−1(x)) (26)

expresses the fact that branching processes are Markovian. When using branching processes to study properties of SOC
systems we are interested in the scaling of the cumulative number of offsprings s =


Zk, corresponding to the avalanche

size (defined as the number of overall active sites), and in the duration t of a branching process. An avalanche stops when
no offsprings are produced anymore, hence when Zt > 0 and Zt+1 = 0, which defines the duration t .

The probability of having no particles left after n iterations is qn ≡ Pn(0) = Gn(0). One defines with q = limn→∞ qn the
overall extinction probability; a finite probability exists, for q < 1, of observing infinitely long and infinitely large branching
events. The regime q < 1 is termed supercritical, while the critical and subcritical regimes are found when the process
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Fig. 18. Comparison of the complementary cumulative distributions of sizes s (C(s), left) and durations t (C(t), right) for branching processes in fixed and
random environments. The probability that a single particle generates k offspring was set to a Poisson distribution pk = µk

ne
−µn/k!. At each time step one

sets µn = eXn , where Xn was drawn from a normal distribution N (λ, σ 2), with λ = 0 for the critical process, λ = −0.01 for the subcritical process, σ = 0
for the fixed environment and σ = 0.1 for the random environment.

extinction is certain, that is, q = 1. The extinction probability is hence a convenient measure for characterizing the scaling
regimes of branching processes.

The branching regimes are determined by the long term behavior of the average number of particles,

E[Zn] =


Zn

Pn(Zn)Zn = G′

n(1).

Defining with µn =


kp(n)
k = f ′

n(1) the average number of offsprings generated by a single particle at time step n, one
obtains the recursion relation

E[Zn] = G′

n(n) = f ′

n−1(1)G
′

n−1(1) = µn−1E[Zn−1] = µn−1µn−2 · · · µ0, (27)

when starting with a single particle, E[Z0] = 1. Assuming that for large n the expected number of particles scales as
E[Zn] = enλ, then for negative Lyapunov exponents λ < 0 the expectation converges to zero, diverging on the other side
for positive λ > 0. Thus, λ < 0 is defined a subcritical branching process and λ > 0 the supercritical regime. The Lyapunov
exponent is given, through the recursion relation (27), as

λ = lim
n→∞


1
n
ln E[Zn]


= lim

n→∞


1
n

n−1
n=0

lnµn


. (28)

The branching process is critical for λ = 0. For a time-independent branching process one has fn(x) = f (x) and a fixed
average number of offsprings per particle, µn = µ = f ′(1) for every n. Therefore, having µ = 1 and lnµ = 0 at every
iteration step is then a necessary condition for the branching process to be critical.

Otter (1949) has demonstrated that in the case of fixed environments and a Poisson generating function f (x) the tails of
the distributions P(s) of avalanche sizes and durations P(t) have the following scaling form:

P(s) ∼ s−3/2µs−1es(1−µ), P(t) ∼ t−2µt−1et(1−µ). (29)

The branching is critical for µ = 1, with the well-known scaling exponents 3/2 and 2 for the avalanche size and duration
respectively.

The scaling behavior is more difficult to predict in the case of a changing or random environment. Consider an average
number of offspring generated by a single particle which is given by µn = eXn , where Xn is drawn, at each time step, from
some probability distribution ρ(x). Again, the branching process is critical if λ = 0, that is, if Eρ[x] = 0. Still, in contrast
to fixed environment, the average number of particles E[Zn] fluctuates between infinity, limn→∞ sup (ln E[Zn]) = ∞, and
zero, limn→∞ inf (ln E[Zn]) = −∞, where the supremumand infimumare taken over ensemble realizations (Vatutin, 2012).
Furthermore, critical branching in random environments is a complex process and does not necessarily follow power-law
scaling. Vatutin (2012) has recently shown that, given a specific family of offspring generating functions fn(x), the total
size of the branching process has logarithmic correction whereas the duration distribution still follows a typical power-law
scaling. In Fig. 18 we present a comparison of the scaling behavior of critical and subcritical branching processes in fixed
and random environments.

When mapping a real-world phenomenon to a branching process, it is assumed that the phenomenon investigated
propagates probabilistically. For example, when considering the propagation of activity on a finite network, each of the
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Fig. 19. The complementary cumulative distribution of sizes C(s), and durations C(t), of avalanches of a critical and a subcritical branching process on a
d = 5 dimensional lattice. The probability of activating a jth neighbor of the ith active node is given as pij = αr(1 − r)k−1 , where α = µ/

k=2d
k=1 pij . Thus,

each active node on average activates µ neighbors. For critical branching (top) µ = 1, for subcritical branching (bottom) µ = 0.9 . Increasing r leads to
an increase in the probability of activating only the first neighbor, hence in the limit r → 1 only one node is active in each time step, the process becomes
deterministic.

neighbors of an active node may be activated with some probability, say pij. Thus, the probability that the ith node will
activate a certain number of neighboring nodes is given by the following generating function:

f (i)(x) =

ki
j=1

(1 − pij + pijx), (30)

where the degree ki denotes the total number of neighbors of the ith node. On the average the ith node will activate
µ(i)

=


j pij neighbors. This branching dynamics leads to correlation effects due to loops in the network structure. In
the simplest approximation one neglects correlation effects and the avalanche propagation will be critical when every site
activates, on the average, onenode,µ(i)

= 1. In Fig. 19wepresent the critical scaling behavior of avalanche size anddurations
as we switch from the case when there is equal probability of activating any of the neighboring nodes (pij = pi = 1/k) to
the case where the activation one of the neighbors (pij → 1 when j = j∗ and pij → 0 when j ≠ j∗).

This probabilistic description of branching process on a network is useful for mapping the behavior of a real-world
phenomena, when the exact state of the whole physical system is unknown, that is when at anymoment only a small subset
of the complete system is studied. Even a deterministic process will appear stochastic if there are hidden, non-observable
variables and dependences of the current state on the exact history, viz if the process is non-Markovian. For example the
activation of a network node may lead to the activation of the same set of nodes whenever the same activation history is
repeated. Neglectingmemory effects can lead to the conclusion that neighboring nodes are activated in probabilisticmanner.
Using a random branching process for modeling is, in this case, equivalent to an average of the observed activations, over
sampled system states.

In the next section we will discuss the scaling behavior of a special case of branching processes, such that µ = 1 and
pij = 1 for some j = j∗. These conditions are satisfied when the activation of a single node leads with certainty to the
activation of exactly one of its neighbors. We call this limiting case of a branching process a routing process (Markovic and
Gros, 2009).

4.2. Vertex routing models

A routing process can be considered as a specialization of random branching, see Fig. 17. For random branching the
probability pij of activating the jth neighboring node is equal for all neighbors, that is pij = 1/ki for every j = 1, . . . , ki,
where the degree ki is the number of neighbors of the ith node. For a routing process, in contrast, only a single neighbor is
activated. An example of a system exhibiting routing-type behavior is a winner-take-all neural network (Gros, 2007, 2009),
where at any time only a single neuron may be active, or, alternatively, only a single clique of neurons becomes active
suppressing the activity of all other competing cliques (Gros, 2007). One may also view routing processes as the routing of
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Fig. 20. Examples of the routing process. Left: for the Markovian case, m = 0. An information package is always routed to vertex 5 independently of
where it came from. Right: for a one-step memory,m = 1. Information packages arriving at vertex 3 from the vertices 4 and 2 are routed to vertex 5, while
packages arriving from vertex 1 and vertex 5 are routed to vertex 4 and 2 respectively.

information packages and study in this context the notion of information centrality (Markovic and Gros, 2009), which is
defined as the number of information channels passing through a single node.

Here we discuss the relation of vertex routing to scaling in critical dynamical systems. Routing models are critical by
construction with the routing process being conserved. The type of vertex routing models considered here are exactly
solvable and allow to study an interesting question: Does the scaling of an intrinsic feature, e.g. of a certain property of the
attractors, coincide with what an external observer would find when probing the system? Vertex routing models allow for
a precise investigation of this issue and one finds that the process of observing a complex dynamical systemmay introduce
a systematic bias alternating the resulting scaling behavior. For vertex routing models one finds that the observed scaling
differs from the intrinsic scaling and that this disjunction has two roots. On one hand the observation is biased by the size of
the basins of attraction and, on the other hand, the intrinsic attractor statistics is highly non-trivial in the sense that a relative
small number of attractors dominates phase space, in spite of the existence of a very large number of small attractors.

4.2.1. Markovian and non-Markovian routing dynamics
Wediscuss here routing on complete networks, i.e. networks which are fully connected, and consider the routing process

as the transmission of an information package, which may represent any preserved physical quantity. In general, routing of
the information package to one of the neighboring nodes may depend on the routing history, that is, on the set of previously
visited (activated) nodes. We denote with m the depth of the routing memory retained. The routing is then Markovian if
m = 0 and non-Markovian otherwise. An illustration of a basic routing transition is presented in Fig. 20 for m = 0 and
m = 1.

Let us denote with vt a node active at time step t , where vt ∈ V = {1, . . . ,N} with N denoting the network size. Which
of the N − 1 neighbors of the node vt will become activated in the next time step t + 1 will depend, through the transition
probability P(vt+1 = j|vt , . . . , vt−m) = pj|vt ,...,vt−m ∈ {0, 1}, on the set of the m previously visited nodes. The routing
process is considered conserved whenever


j pj|vt ,...,vt−m = 1. For example, given some routing history in a network of

N = 20 nodes, say vt = 3, vt−1 = 4, . . . , vt−m = 15, there would be only one possible successor vertex, say vt+1 = 8, and
all other N − 1 nodes would be unreachable, given the specified routing history.

A sequence of m + 1 vertices can be seen as a point in the (enlarged) phase space of routing histories with pj|vt ,...,vt−m
defining the adjacency matrix on the directed graph of phase space elements. To give an example, a point [vm+1, . . . , v1] of
the enlarged phase space is connected to some other point [vm+2, . . . , v2] if Pvm+2|vm+1,...,v1 = 1, where vi ∈ V . The volume
of the enlarged phase space, given as the total number of containing elements, is Ω = NKm where K = N − 1, for the case
of a fully connected network.

4.2.2. Intrinsic properties vs. external observation
One usually considers as ‘‘intrinsic’’ a property of a model when evaluated with quenched statistics, hence when all

parameters, like connectivities, transition probabilities, etc., are selected initially and then kept constant (Gros, 2010). An
external observer has however no direct access to the internal properties of the system. An unbiased observer will try to
sample phase space homogeneously and then follow the flow of the dynamics, evaluating the properties of the attractors
discovered this way. Doing so, the likelihood to end up in a given attractor is proportional to the size of its basin of attraction.
The dynamics of the observational process is equivalent to generate the transition matrix ‘‘on-the-fly’’, viz to a random
sampling of the routing table pj|vt ,...,vt−m . Both types of dynamics can be evaluated exactly for vertex routing models.

Intrinsic attractor statistics. We first consider quenched dynamics, the transition probabilities pvt+1|vt ,...,vt−m are fixed at the
start and not selected during the simulation. A routing process initiated from a randomly selected point in phase space will
eventually settle into a cyclic attractor. The ensemble averaged distribution of cycle lengths is obtained when using the
set of all possible realizations of the routing tables, created by randomly selecting the values for the transition probability,
pvt+1|vt ,...,vt−m ∈ {0, 1}, while maintaining following conditions

vt+1

pvt+1|vt ,...,vt−m = 1,


vt+1,vk<t+1

pvt+1|vt ,...,vt−m = K ,
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Fig. 21. Left: the cycle length distributionsρm(L,N), rescaled by log(Ω), for the vertex routingmodel (N: network size, L cycle length). The dashed line, 2/L,
represents the large-N and small-L limiting behavior. Right: as a function of phase space volume Ω , the average total number of cycles ⟨n⟩ (circles, linear
scale—left axis) and the expected total cycle length ⟨T ⟩ (diamonds, logarithmic scale—right axis). The dashed line is fit using a + b lnΩ (a = −0.345(3),
b = 0.4988(2)), and the dotted line a fit using a′

+ b′
√

Ω (a′
= −0.3311(5), b′

= 1.25331± 2 · 10−7). The coefficient of determination is R2
= 1.0 in both

cases, within the numerical precision.

where K = N − 1 is the coordination number. The average number of cycles of length L, when the routing is dependent on
them previous time steps, and for a network with N nodes, is given by Kruskal (1954) and Marković et al. (2013)

⟨Cm⟩(L,N) =
N
LK

(Km+1)!

K (m+1)(L−1−m)(Km+1 + m + 1 − L)!
. (31)

The relation (31) is, for finite networks with N < ∞, an approximation for the non-Markovian case with m > 0, as it does
not take into account corrections from self intersecting cycles, i.e. cycles in which a given node of the network is visited
more then once. Beck (1989) studied this model for the Markovian case, in analogy to random maps, mainly in the context
of simulating chaotic systems on finite precision CPUs (central processing unit of computer hardware).

One can show that there is, in the limit of large networks, an equivalence between increasing the network size and
increasing the memory dependence. This relation can be seen from the following memory dependent scaling relation

⟨Cm+τ ⟩(L,N) ∝ ⟨Cm⟩(L,N ′), N ′
≈ 1 + (N − 1)1+

τ
m+1 , (32)

to leading order (for large N). Obviously, when m = 0 we get N ′
− 1 ≈ (N − 1)τ+1, thus each additional step of history

dependence effectively increases exponentially the phase space volume. On the other hand, in the limitm → ∞ we obtain
N ′

= N , any additional memory step in the system with already long history dependence will not drastically change the
total number of cycles.

The analytic expression (31) for the cycle-length distribution can be evaluated numerically for very large network sizes
N , or alternatively as a function of phase space volume Ω = NKm. The total number of cycles ⟨nm⟩(Ω) =


L⟨Cm⟩(L, Ω)

present in the system shows logarithmic scaling as a function of the phase space volume Ω , as shown in Fig. 21. The growth
is hence slower than any polynomial of the number of vertices N , which is in contrast to critical Kauffman models, where
it grows faster then any power of N (Drossel et al., 2005; Samuelsson and Troein, 2003). A numerical evaluation of the total
cycle length, defined as ⟨Tm⟩Ω =


L L⟨Cm⟩ω(L), shows power-law scalingwith phase space volume, namely as∼

√
Ω . Thus,

the mean cycle length scales as

⟨Lm⟩Ω =
⟨Tm⟩ω

⟨nm⟩Ω

=
a′

+ b′
√

Ω

a + b lnΩ
, (33)

as shown in Fig. 22. The probability ρm(L,N) of finding, for a network with N nodes, an attractor with cycle length L is
obtained by normalizing the expression (31). One can show that the rescaled distribution log(Ω)ρm(L,N) has the form
2e−L2/2Km+1

/L, for small cycle lengths L, falling off like

log(Ω)ρm(L,N) ∝
K (m+1)


M−

1
2


M!

, (34)

for large L → KΩ/N + 1, whereM = Km+1
+ 1 − L.
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Fig. 22. The mean cycle length ⟨L⟩ for the vertex routing with the quenched dynamics (blue circles) and the vertex routing with random sampling (green
diamonds), as a function of the phase space volume Ω; log–log plot. The dashed line is the fit of the form a′

+ b′
√

Ω/a + b lnΩ , for the parameters see
Fig. 21. The dotted line is a fit of the form a∗

+ b∗Ωc∗ , with a∗
= 1.3319(3), b∗

= 0.62666± 2 · 10−6 , c∗
= 0.5± 9 · 10−8 . The coefficient of determination

is R2
= 1.0 in both cases, within the numerical precision.

Observed attractor statistics. Instead of considering quenched routing dynamics, one can sample stochastically the space of
all possible realizations of routing dynamics (Gros and Markovic, 2013). In practice this means that at each time step one
randomly selects the next element in the sequence of routing transitions. Algorithmically this is equivalent of starting at a
random point in phase space and then following the flow. This is actually the very procedure carried out when probing a
dynamical system from the outside. A cycle is found when previously visited phase space elements is visited for a second
time.

Starting from a single element of phase space, the activation propagates until the trajectory reaches the same element
for the second time. The probability of such a trajectory having a path length s, is given by

ps =
(s − 1)(Km+1)!

K (m+1)s(Km+1 − s + 1)!
. (35)

In a path of length s, the observed cycle will have a length L ≤ s. Thus, the joint probability of observing a cycle of length L
within a path of length s is given by

p(L, s) =
Θ(s − L)Θ(L − 2)(Km+1)!

K (m+1)s(Km+1 − s + 1)!
, (36)

withΘ being the Heaviside step function. Finally, one obtains the probability ρ̃m(L,N) (with ρ̃m denoting random dynamics
and ρm quenched dynamics) of observing a cycle of length L as a sum over all possible path lengths, that is

ρ̃m(L,N) = Θ(L − 2)
Km+1

+1
s=L

(Km+1)!

K (m+1)s(Km+1 − s + 1)!
. (37)

Interestingly, the mean cycle length scales as
√

Ω when using random sampling as a method for probing the system of
routing transition elements. The comparison of the respective scaling behaviors, as a function of the network size and for
m = 0, 1, is given in Table 3. There are two implications (Gros and Markovic, 2013).

• The results for the vertex routing model indicate that one needs to account for the procedure used to probe the scaling
behavior of a complex system.

• Certain properties of critical dynamical systems, like the number of attractors, may not show power-law scaling, even at
criticality.

Vertex routing models and random Boolean networks are, furthermore, in different classes. The scaling relations shown
in Table 3 do not translate into the ones for the Kauffman net (Drossel et al., 2005; Samuelsson and Troein, 2003) when
rescaling the dependence of the phase space volume Ω from N(N − 1) (valid for the m = 1 routing model) to 2N , as valid
for the Kauffman net.

5. Modeling experimental data

A mathematical model of real-world phenomena should both replicate the phenomena and capture the structure and
the function of the described physical system. One may divide theory models as ‘‘descriptive’’ or ‘‘explanatory’’ (Willinger
et al., 2002). A descriptivemodel tries to reproduce the statistical properties of the phenomena in question, while containing



D. Marković, C. Gros / Physics Reports 536 (2014) 41–74 65

Table 3
Scaling with the number of vertices N , for the number of cycles ⟨n⟩ and for
the mean cycle length ⟨L⟩ for the history independent process (m = 0) and
the history dependent process (m = 1), and for the two probing methods,
quenched sampling and random sampling.

Quenched Random

m = 1 ⟨n⟩ log(N) –
⟨L⟩ N/ log(N) N

m = 0 ⟨n⟩ log(N) –
⟨L⟩

√
N/ log(N)

√
N

often unrealistic and simplistic assumptions about the structure of the modeled system. Thus, not attempting to explain the
underlying generativemechanismof the phenomenaof interest. In contrast, an explanatorymodelwould reproduce both the
phenomena while capturing the known structural and functional properties of the systemmodeled. It is, however, difficult
to actually prove that a given model is ‘‘correct’’. When modeling systems which are very complex, one has necessarily to
resort to some simplifying assumptions and to neglect certain experimental aspects seen as secondary; and to concentrate
on the primary aspect on interest, e.g. the power-law scaling of certain observables. Our discussion here will hence not
be able to give definite answers. Willinger et al. (2002) has pointed out in this context, that although descriptive models
may provide an initial description for the possible causes of the phenomenon studied, a correct prediction of the dynamical
behavior would require a consistent explanatory model for which the various assumptions incorporated into the model
have been verified. Thus, wewould like to understandwhether SOC models provide an adequate explanatory description for
various real-world phenomena and, if not, which extensions of current models are required or what would be an alternative
explanatory model.

In the following sections we will give a short review of the some of the known statistical properties of the empirical
time series of earthquake magnitudes, solar flares intensities and sizes of neuronal avalanches and compare experimental
avalanche statistics with theory predictions, mostly for dissipative SOC models. We will also point out plausible alternative
mechanisms leading to power-law scaling of event sizes without requiring a critical regime.

5.1. Earthquakes and solar flares

Solar flares are large energy releases on the surface of the Sun and they are observed as a sudden brightening of a region on
the Sun’s surface. As the distribution of peak intensities of solar flares follows a power-law scaling, Lu and Hamilton (1991)
proposed SOC for a generative mechanism of flares in the solar corona. Looking at the total flare energy, which represents
the size of an avalanche s, one finds that it follows a power-law scaling with an exponent τs ∈ [1.6, 1.75] (Crosby et al.,
1993; Clauset et al., 2009).

Similarly, Sornette and Sornette (1989) have initially suggested that the scaling behavior of earthquakes magnitudes
would correspond to that of the SOC systems, a proposition motivated by the well known Gutenberg–Richter and Omori
laws. The Omori law describes the empirical evidence that the frequency f (t) of earthquake aftershocks decays, as function
of time t passed since the earthquake, as 1/t , whereas the Gutenberg–Richter law states that the probability of observing an
earthquake ofmagnitude of at leastM scales as 10−bM , where b is a positive constant. The size of an avalanche s is taken to be
proportional to the scalar seismic moment, and its relation to the earthquake magnitude as M =

3
2 log10(s) (Kagan, 2002).

Hence, the probability P(s) of finding an event of size s follows a power-law scaling, that is P(s) ∼ s−τs . The scaling exponent
τs falls in the range [1.6, 1.7], independent of the region and of the depth of the earthquakes (Kagan, 2002; Clauset et al.,
2009), with values closer to the mean field prediction of τs = 3/2 also being discussed (Kagan, 2010). Note, that similar
scaling laws are also observed in the scaling properties of solar flares, suggesting a common interpretation of these two
phenomena (De Arcangelis et al., 2006).

The statistics of the released energy fluctuations, or the so called ‘‘returns’’, is an important quantity characterizing self-
similarity of a stochastic process, and a good yardstick for controlling the quality of modeling efforts. The quantity

δE =
s(t + τ) − s(t)

στ

, σ 2
τ =


(s(t + τ) − s(t))2


(38)

corresponds to the relative difference in the size of avalanches released at times t and t + τ respectively. One may evaluate,
for a fixed inter-avalanche time τ , the distribution Pτ (δE) measuring the probability of finding an fluctuation δE in the
released energy.

Real-world and SOC avalanchesmay differwith respect to the statistics of the returns. The distribution Pτ (δE) is invariant
with respect to a change of the time scale τ , for classical SOC systems, that is, Pτ (δE) = Pτ ′(δE) for any τ ′

≠ τ . Experimentally
observed energy fluctuations change—in the case of turbulent phenomena—with the inter-event time scale τ , exhibiting
multifractal scaling (Carbone et al., 2002). This observation led to the conclusion that classical SOC models cannot produce
the higher order statistics typical for turbulent flows, which are however captured properly by models describing the
energy cascades in turbulence (Boffetta et al., 1999; Freeman et al., 2000). For the case of earthquakes, interestingly though,
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Fig. 23. Probability distributions for released energy fluctuations Pτ (δE) (see Eq. (38)), obtained from (A) the avalanches generated by the BTW sandpile
model (see Section 2), (B) the data set of earthquakes in North California in a period 1968–2012 (earthquakes ofmagnitudeM ≥ 1 in the NCEDC Earthquake
Catalog). Overlapping data for various inter-event time scales τ indicate self-similarity. The respective CCDF (complementary cumulative probability
distributions) of waiting times estimated (C) from the time series generated by the BTW sandpile mode and (D) from the time series of earthquakes.

Caruso et al. (2007) pointed out that the distribution Pτ (δE) of energy fluctuations is independent on the scale τ , thus the
time series is self-similar, as shown in Fig. 23.

Another important quantity for characterizing a time series of experimentally observed events is the waiting time
distribution (WTD); the distribution of durations of quiet periods between events. The WTD observed for earthquakes and
solar flares differs markably from the one produced by classical SOC systems, with the empirical time series showing a
power-law distributed WTD and with the SOC waiting time distribution closely following an exponential distribution, as
typical for a Poisson process characterizing a memoryless time series (Boffetta et al., 1999; Freeman et al., 2000; Yang et al.,
2004; Davidsen and Goltz, 2004;Wheatland et al., 1998). Sánchez et al. (2002) demonstrated that amodified sandpilemodel
can produce a scale-invariant WTD, and multifractal scaling for the energy fluctuations. In addition, Paczuski et al. (2005)
showed, that theWTD follows a power-lawwhen one considers the time scale of avalanches instead of the time scale of the
external drive and putting a threshold to the minimal recorded intensity, at any point in time. Setting a signal threshold is
an usual experimental procedure to distinguish between small events and background noise. Furthermore, Sattin and Baiesi
(2006) demonstrated that one obtains, when the external drive is spatially correlated, both power-law scaling for the WTD
and multifractal scaling for the energy fluctuations (Sattin and Baiesi, 2006; Charbonneau and Morales, 2007). Thus, certain
constrains to the driving force in SOC theories can generate some of the behavior observed in the empirical data.

Nevertheless, some concerns remain. When predicting the occurrence of an event of a certain size the distribution of
waiting times is not as important as the correlations between waiting times. The predictability of a time series can be
quantified by estimating the index of long-range time dependence, also known as the Hurst exponent H (Samorodnitsky,
2007). ForH = 1/2 the time series is uncorrelated andunpredictable; this is exactly the value of theHurst exponent obtained
in different SOC models (Caruso et al., 2007)—even in the presence of spatial correlation in the external driving force. In
contrast, the estimates for the Hurst exponent for the time series of earthquakes and solar flares indicate the presence of
a long-term memory in the empirical data (Lennartz et al., 2008; Paczuski et al., 2005), that is, H ∈ (1/2, 1]. These long-
term correlations suggest that large events are more likely to be followed by events of similar or larger magnitude, possibly
allowing for the prediction of intense events. For example, specific patterns have been observed in the seismic activity
data preceding the main event, thus opening a venue for predicting large earthquakes (Evison, 1977; Johansen et al., 2000;
Manshour et al., 2009).

Jagla (2010) introduced amodified OFC earthquakemodel, see Section 2.5, and proposed a solution for this inconsistency
between theoretical and experimental results. The modifications to the original OFC model consist of implementing
structural relaxation and random threshold values for each node of the lattice—resembling the spatial inhomogeneity of real
earthquake faults (Kawamura et al., 2012). The relaxation mechanism equalizes the stress levels among neighboring nodes
and works on the time scales of the driving forces—essentially infinitely slower then the time scale of avalanche topplings.
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The avalanches generated by this model follow a power-law scaling, with exponents independent on the dissipation levels;
unlike the standard OFC model with inhomogeneities (see 2.5). Furthermore, the simulated time series is spatially and
temporally correlated and exhibits patterns of aftershocks like the one observed in earthquakes and solar flares. Aftershocks
are triggered by the relaxation mechanism after the main shocks—initiated by the external drive—due to the non-uniform
distribution of thresholds.

A few questions still remain. Is this modified OFC model robust in the presence of non-uniform interactions between
neighboring nodes (Zhang et al., 2009)? Is the modified OFC model robust in the presence of complex network structures?
An interesting issue since there are indications that the underlying network of earthquake epicenters has scale-free and
small world structure (Baiesi and Paczuski, 2004; Abe and Suzuki, 2004). Finally, is the mechanism of structural relaxations
universally applicable to other physical systems that show SOC dynamics or are system specific modifications required? If
the requiredmodifications to dissipative SOC models—in the presence of inhomogeneities—are system specific then the SOC
behavior would start to depend on the exact dynamical constrains and local interaction rules, thus the universal properties
of such regimes would be lost.

5.1.1. Tuned versus self-organized criticality
When studying naturally occurring phenomena, like solar flares and earthquakes, one cannot control experimental

conditions and their effect on the behavior of the system. Small-scale experimental studies of power-lawphenomena (Zaiser,
2006), in which the experimental conditions are carefully controlled, might provide important insights for our
understanding of the power-law behavior observed in their large-scale counterparts.

Friedman et al. (2012b) analyzed the scaling behavior of fractures in metallic nanocrystals induced by an externally
applied, slowly increasing, stress. A fracture or a slip occurs when the local stress level, within the crystal, exceeds the local
threshold stress, with the slips generated by the fast release of pinned deformations. The process stops when the loose
segments get repinned or annihilated, thus forming an avalanche. The avalanches are typically of length scales which are
large with respect to the microscopic length scales. The distributions of slip sizes s, measured in different materials, follow
a power-law, P(s) ∼ s−1.5, over several orders of magnitude and fall on a same scaling function. Interestingly, the size
of the largest expected event smax scales with the strength of the externally induced stress f , as smax(f ) = (fc − f )−2,
which diverges only for f = fc (Zaiser and Nikitas, 2007; Friedman et al., 2012b). The results for the statistics of slip-
avalanches in nanocrystals obtained by Friedman et al. (2012b) have been analyzed within a molecular-field approximation
for a micromechanical model for deformations in solids (Dahmen et al., 2009). Within this model there is a second-order
phase transition between brittle and hardening crystals (becoming respectively more/less susceptible to stress in the wake
of a slip), thus scale-free avalanche statistics is observed.

In contrast, within SOC framework, themaximal size of an avalanche smax depends only on the system size and diverges in
the thermodynamic limit independent on the other system parameters. Thus, to relate critical like behavior to a SOC or SOqC
mechanism, one should demonstrate that no other parameters except system size influence the scaling. In other words, one
should exclude tuned criticality as possible explanation. For example, the power-law scaling of earthquakesmight be caused
by near-critical stress levels in earth crust, which are just a transient state typical for the current geological era and not an
attracting state, as would be the case in self-organized critical process. Unfortunately, this kind of hypothesis is difficult to
test, as one cannot control the environmental parameters generating the earthquakes.

5.2. Neuronal avalanches

Neuronal avalanches are sequences of bursts of neural activity which, separated by quiet periods, spread across the
neural tissue. Since the introduction of SOC theory it has been hypothesized that the brain operates in the critical dynamical
regime, as many features of neural spiking activity resemble the properties of sandpile models, namely the sudden release
of energy (action potential) and the transmission of released energy to neighboring nodes (interaction of neurons mediated
by neurotransmitters or ion diffusion). One of the first experimental evidences supporting this hypothesis was given
by Beggs and Plenz (2003). They investigated the spontaneous neural activity measured in organotypic cultures (tissue
which, removed from an organ, continues to develop as it would have done in the body) and in acute slices of rat cortex,
observing power-law scaling of neuronal avalanches as extracted from the recordings of local field potentials. Similar
evidenceswere later obtained from in vivo neural activity in humans (Ribeiro et al., 2010),monkeys (Petermann et al., 2009),
cats (Hahn et al., 2010) and also fromhigh-resolution datameasured in cultured slices of cortical tissue extracted from living
rats (Friedman et al., 2012a). In Fig. 24 we presented the distribution of sizes of neuronal avalanches adapted from various
studies.

A local field potential (LFP) represents the recorded voltage generated by the sum of all currents on the surface of the
small electrode embedded within the neuronal tissue. These currents reflect the dendritic activity within a small volume
surrounding the electrode. The neuronal avalanches are constructed from the sequence of negative peaks of the LFPs
propagating across multiple electrodes, because negative voltage peaks are correlated to synchronized spiking activity of
nearby neurons (Beggs and Plenz, 2003; Kelly et al., 2010). To distinguish between the troughs of LFPs from the troughs
generated by the background noise, one has to define a threshold value for the recorded voltage. Only signals dropping
below the threshold are considered in the definition of an avalanche. One calls an electrode active if the value of LFP on
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Fig. 24. Distribution of sizes of neuronal avalanches estimated from the LFPs (left column) and from neural spike recordings (right column). Examples of
data obtained from in vivo neural activity in humans.
Source: (A) (adapted from Beggs and Plenz (2003)). (D) (adapted from Friedman et al. (2012a)) show the data obtained from in vitro recordings in acute
slices and organotypic cultures. (B, E) (adapted from Dehghani et al. (2012)) and cats. (C, F) (adapted from Hahn et al. (2010)).

that electrode is below the threshold value. After identifying the relevant signals, the data is divided into time bins and the
neuronal avalanche is defined as the sequence of recorded activity. An avalanche starts when at least a single electrode is
active and ends when the signal is below threshold on all electrodes for at least one time bin. The avalanche duration is
determined as the elapsed time between the first and the last bin; the size of the avalanche can be chosen either as the
total number of active electrodes or as the absolute sum of LFP amplitudes over all active electrodes during the avalanche
duration.

Beggs and Plenz (2003) found that the avalanche size follows a power law with exponent close to −3/2 (see Fig. 24 A),
with the avalanche duration following a power law with an exponent close to −2. These values for the critical exponents
are, interestingly, identical with themean-field results for critical branching processes in fixed environments (see Section 4).
Note that the experimentally observed scaling behavior, thus the values of the exponents, of the neuronal avalanches will
depend on the choice of the threshold value and on the selected width of the time bins (Priesemann et al., 2013). Still, these
values can be fixed if one takes into account certain properties of white noise signals and the propagation speed of action
potentials along the neural cell membrane (Beggs and Plenz, 2003).

The initial work of Beggs and Plenz (2003) lacked rigorous statistical estimates of the scaling laws, the confirmation of
similar scaling behavior for in vivo recording, and evidence for a critical state going beyond the distribution of avalanche sizes
and the 1/f scaling of the power spectrum (both necessary signatures for a critical state). A consensus on the dynamical state
of neural activity is stillmissing evenwith experiments repeated and a refined data analysis including the previouslymissing
factors. A central problem is the recording of neural activity in vivo with sufficiently high resolution, and the variations of
the statistical properties of recorded activity between subjects and species (Petermann et al., 2009; Priesemann et al., 2009).
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Touboul and Destexhe (2010) showed, in a study performed on awake cats, for which the LFPs were measured with
8 channel multi-electrode arrays, that an exponential distribution is a better fit to the avalanche size distribution then a
power-law distribution. Dehghani et al. (2012) reached a similar conclusion by analyzing avalanches from recordings from
the cerebral cortex of cat, monkey and human, both made during wakefulness and during sleep (See Fig. 24 B and E). He
concluded that the optimal fit of the avalanche distributions is actually a double-exponential distribution.1 In contrast to
the studies of Touboul and Destexhe (2010) and Dehghani et al. (2012), several investigations found evidence for power-
law distributed neuronal avalanches. Petermann et al. (2009) argued for scale invariant features of the cortical activity
recorded from awakemonkeys. Similarly, Klaus et al. (2011) recently showed that a power law is the best fit for the neuronal
avalanches recorded both in vivo and in vitro.

One of the possible explanation, for these opposing experimental results, may be traced back to the small number of
recording electrodes used in some experiments, which may lead to a sub-sampling of the local neural activity. Priesemann
et al. (2009) argued that critical processes can appear subcritical in the scaling behavior if the activity is averaged over a
small number of recording elements, relatively to the total number of elements which are actually generating the critical
phenomena. Still, one should note that the analysis of peaks in LFP signals is an rather indirect measure of the neural activity
patterns. Touboul and Destexhe (2010) argued that simple thresholding of a stochastic process can generate an apparent
power-law behavior, and that the use of LFP recordings for identifying the scaling properties of neuronal avalanches may
hence be problematic. Furthermore, if one takes the positive peaks of the LFP signal, which are not related to spiking activity,
instead of the negative peaks, applying the same procedure to estimate neural avalanches, one finds similar scaling behavior
as for the negative peaks. Thus, Touboul and Destexhe (2010) and Dehghani et al. (2012) proposed that the observed scaling
behavior may be a consequence of a thresholding procedure, and not a reflection of an underlying critical or near critical
state. They stressed the point that one should investigate the scaling behavior of the avalanches estimated both from the
negative and from the positive LFP peaks, with criticality being of possible relevance only if the respective scaling behaviors
would differ qualitatively.

Beside estimating neuronal avalanches indirectly from the propagation of LFPs, one can also directly record neural spikes.
For example, Hahn et al. (2010) recorded spontaneous neural activity of adult cats under anesthesia and beside LFPs they
also measured neural spikes. For both cases, they have found evidence of power-law distributed neuronal avalanches (see
C and F subplots of Fig. 24). Also, Ribeiro et al. (2010), observed power-law distributed neuronal avalanches recorded from
the cerebral cortex and from the hippocampus of rats; in awake, asleep and anesthetized animals. These results are puzzling
as one would expect sleep and awake states to be characterized by distinct dynamical regimes and by different responses
to external stimuli (Landsness et al., 2011). Nevertheless, controversy persist even regarding the direct measurements of
spiking activity, as Dehghani et al. (2012) reported absence of power-law distributed avalanches.

In a recent study, where they recorded neural spikes in cultured cortical slices with high density multi-electrode
arrays, Friedman et al. (2012a) showed that the average shapes of neuronal avalanches of different durations collapse
to a single curve under an appropriate scaling transform, a strong evidence for a critical regime which even allows
for the determination and the comparison of the dynamical universality class (Kuntz and Sethna, 2000). Interestingly
though, out of ten samples of organotypic cultures used in this study, only two of them showed clear evidence for critical
neuronal avalanches (see Fig. 24 D). The other samples showed subcritical or supercritical behavior. This suggest, that self-
organization of cortical networks to a critical statemay not be a generic property, but that itmight depend on environmental
conditions, on the interaction between different mechanisms of neural plasticity or on the current functional properties of
global brain networks (Priesemann et al., 2013).

5.2.1. The origins of neuronal power laws
The underlying causes for the observed neural power laws are still under debate. On the experimental side, to give an

example, the 1/f scaling of the power spectrum of the recorded LFPs could be ascribed to biophysical filtering effects of the
extracellularmedia on the recorded signal (Bedard et al., 2006; Bédard and Destexhe, 2009; El Boustani et al., 2009). Touboul
and Destexhe (2010) noted, in addition, that power-law scaling of peak events may arise from a thresholded stochastic
process, a plausible model for the generic neural dynamics, which is however devoid of any connection to criticality or
self-organization.

A basic precondition for the brain to retain functionality is, in agreement with experimental results, that the level of
the average cortical activity remains within a certain range, neither exploding over time nor dying out. Mapping bounded
neural dynamics to a branching process hence cannot result in neither a subcritical (with the neural activity becoming
eventually extinct) nor in a supercritical (with an exploding neural activity) regime. This line of argument is valid if the
majority of neural activity studied is stimulated internally and not induced by external sensory inputs. This is the case for the
upper cortical layers, which are responsible for the intra-cortical communication. Interestingly, these upper cortical layers
are also mostly the ones for which evidence for neuronal avalanches has been reported, together with a critical branching
ratio (Plenz, 2012).

1 This results have been questioned, possibly being affected by the existence of a cutoff for large avalanches (Piesemann, 2012), with the number of
recording electrodes limiting the maximal observable size of neuronal avalanches.
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A support for the SOC causes of neuronal avalanches comes from several theoretical studies using networks of spiking
neurons. These artificial neural networks are related to dissipative SOC models and as such require a fine tuning of the
external drive, which initiates the neuronal spikes, relative to the number of neurons in the network (Bonachela et al.,
2010). Nevertheless, one can still consider dissipativemodels as very close approximations to true SOC behavior observed in
conserved sandpile models, as discussed in Section 2. More importantly, these neural network models, although replicating
very closely the experimentally observed statistical properties of neuronal avalanches, achieve critical behavior only for
networks consisting of purely excitatory neurons (Levina et al., 2007) and the introduction of biologically realistic levels of
inhibition breaks the power-law scaling of neuronal avalanches (Millman et al., 2010; deArcangelis, 2012). The experimental
observations (Beggs and Plenz, 2003) indicates that a network of excitatory neurons operates in a supercritical regime,which
allows for a fast transfer of information, whereas inhibition has the role of stopping large neuronal avalanches and to localize
information processing. Rather then spontaneously emerging from separation of time scales between external driving and
internal dissipative mechanisms, the critical behavior in cortical networks seems to be reached through various plasticity
mechanisms, whenever such a dynamical regime is optimal for given environmental conditions. This kind of reasoning is
closer to the HOT theory (see Section 3.4), which states that power-law scaling emerges through design aimed at optimal
functioning in uncertain environments. For the case of the brain, and in general for entire organisms, this design is thought
to emerge through natural selection.

Finally, in order to understand why a critical behavior of neuronal avalanches may be computationally favorable, and
hence be selected through Darwinian evolution, one should look for the conditions under which the critical state may
constitute an optimal working regime. An analysis of information retention and information transmission in simple models
of branching processes on complex networks has shown that critical regimes offer certain advantages, when considering the
computational performance of the network (Plenz, 2012). Beggs and Plenz (2003) showed that the information transmission
between input and output layers of a network is maximal in the critical branching regime, whereas Haldeman and Beggs
(2005) found that the critical state is optimal for information retention. Also, Kinouchi and Copelli (2006) demonstrated
that the critical regime is related to a maximal sensitivity of a neural network to the variations in the input activity. This
interesting characteristic of the critical regimemay be explained by fact that the dynamical regime at the border of a second-
order phase transition shares in part the properties of the two phases. The activity in the frozen state would be, in this
view, related to nonlinear computations with the activity in the chaotic state favorable for fast information transmission
and parallelization of computational processes (Rossello et al., 2012). Thus, it is plausible that cortical areas organize into
distinct dynamical states, depending on the required functionality; the critical regime might be an attracting dynamical
state for computations needing the features of both states, that is, a large flexibility in information processing. Still, it is
important to extend this simple models in a way which captures neural variability, adaptability and evolutionary design in
order to reevaluate the hypothesis discussed above in biologically realistic setups.

5.3. Beyond power laws—dragon kings

We will conclude this section with a short discussion of the emerging topic of ‘‘life beyond power laws’’, which deals
with an intriguing perspective regarding the possible origins of large catastrophic events. Sornette (2009) and Sornette and
Ouillon (2012) pointed out that there is growing evidence indicating that extremely large events often transcend the heavy-
tailed scaling regularly observed by the bulk of the data sets. These outliers were named ‘‘dragon kings’’, in order to stress
their unique and diverse generating mechanisms, and their extreme size, which is typically off the charts.

The generatingmechanisms of dragon kings are believed to differ from the ones generating the smaller events, such as the
variousmechanisms discussed in this review. Furthermore, they are diverse and system dependent, having however several
common properties. For a dragon king to emerge an additional amplification mechanism is required, a mechanism which
may not be present at all times in the system. The system then undergoes a temporary phase transition, or bifurcation,
leading to a qualitative new state and possibly to large-scale events. These kinds of transitions may be caused by a
sudden increase in coupling strength of interacting components, leading to increased positive feedback, and possibly to
a synchronized regime, spanning across a large part of the system (Sornette and Ouillon, 2012). Interestingly, certain
precursors typically precede a dragon king event, thus predicting an incoming catastrophe may be possible in certain cases.
Johansen and Sornette (2000) used the existence of a log-periodic precursors as an indicator for an impending material
failure, and Sornette and Johansen (2001) applied similar methods for the prediction of bursts of financial bubbles, that is,
market crashes.

Dragon kings are rare events, although more frequent then what would be expected when using only the distribution
of smaller events as a reference. Unfortunately, these features make them difficult to identify and to differentiate between
dragon kings and a regular large-scale events. Tools and methods used for the identification of dragon kings often depend
on the particularities of the system in question (Sornette, 2009; Sornette and Ouillon, 2012). Only recently had Pisarenko
and Sornette (2012) proposed a robust statistical test able to identify anomalies in the tails of power-law or exponential
distributions, even when only a few dozens of observations are available.

Evidences for the existence of dragon kings have been found in numerous phenomena, such as various extreme weather
phenomena, material rupture events, the distributions of financial runs of losses, in the statistics of epileptic seizures in
humans and animalmodels, andmany others (Sornette, 2009; Sornette andOuillon, 2012). Still, in several cases the evidence
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of the dragon kings existence is inconclusive (Sornette and Ouillon, 2012). For example, it is still debated whether genuine
dragon kings exist in the distribution of earthquake magnitudes.

6. Conclusions

The concept of self-organized criticality (SOC) is an intensely studied and discussed mechanism for generating power-
law distributed quantities. This theory has been proposed as an explanation for power-law scaling observed in various
real-world phenomena. We have focused here on several well-studied phenomena, notably earthquakes, solar flares, and
neuronal avalanches; just a three out of a plethora of phenomena exhibiting fat tails. Given the amount of existing empirical
data, it is important to understand to which extent the theory of SOC contributes to an understanding of the underlying
causes of the observed power-law behavior in real-world complex dynamical systems.

The current experimental evidence is still inconclusive with respect to a possible causal relation of the emergent power
laws to an underlying self-organized critical state. In any case, extensions of the original sandpile model, such as dissipative
models like the OFC earthquake model, are essential for replicating the fat-tailed avalanche statistics which are temporally
and spatially correlated, a key property of many real-world data sets. Furthermore, a satisfactory description for real-world
systems would also need to account for the observed inter-event correlations, which by themselves are key to improved
predictions of catastrophic events.

An alternative for an underlying self-organized critical state is the concept of highly organized tolerance (HOT ), which
does not require a critical dynamical state for generating distributions with heavy tails. The theory of HOT proposes an
explanation for the emergence of scale invariance in artificial and natural systems as a consequence of system design, where
the design aims to achieve an optimized and robust performance in uncertain environments. For the case of living organisms
this robust design may plausibly emerge through natural selection, and also result as such from a self-organizing process,
albeit on longer time scales.

In this context, an interesting and hitherto open research question regards the relation between self-organization and
criticality in general. Essentially all proposedmodels for generating scale-invariant observables are based on self-organizing
processes, some of which lead to critical states, while others do not. For example, any dynamical system, which retains its
average activity homeostatically within certain bounds, as it is done in various cortical areas, is statistically equivalent to
a self-organized critical branching process, and hence scale invariant. Balancing different types of drives, such as external
driving and internal dissipation, may lead, on the other hand, to a self-organized, non-critical and heavy-tailed state, a route
proposed by the coherent noise model.

A further complication concerning this discussion is added by the circumstance that critical dynamical systems may not
actually be intrinsically scale invariant, which is in contrast to thermodynamic critical systems. We discussed property in
the context of vertex routingmodels. Another important aspect regards the process of probing a complex dynamical system,
which is normally done by a stochastic sampling of phase space and then following the dynamical flow. The measurement
process may actually have a qualitative effect on the resulting scaling properties of observables, an effect which has been
worked out in detail for the case of vertex routing models. Both effects can be traced back to a highly non-trivial statistics
of the attractors which might emerge in a critical dynamical system.

On the experimental side, power-law regimes are routinely observed in both physical and biological systems. Considering
the functional aspect, critical dynamical states have been argued to be advantageous for non-linear sensory processing
and self-sustained neural computation (Moretti and Muñoz, 2013), which are crucial characteristic biological neural
networks. Living organisms are the product of self-organizing processes and it is therefore likely – considering the functional
advantages of critical regimes – that the observed heavy-tailed distributions will result from self-organizing principles. The
SOC mechanism would imply that an underlying critical state, if realized, would be based on a very specific generating
mechanism namely the separation of time scales between a fast internal dissipation (which may occur either at the
boundary, for conserved sandpile models, or locally, for dissipative SOC models) and a slow external driving, as exemplified
by absorbing state transitions. It may, however, also be the case that the underlying state is non-critical and is either the
product of various regulatory mechanisms (like homeostatic plasticity), as proposed within the HOT theory, or the result of
balancing external driving and internal dissipation occurring on similar time scales, as within the coherent noise model.

An important aspect regards the modeling of experimental data. Estimating the dynamical state of an avalanche-like
phenomenon, such as neuronal avalanches, by mapping it to a branching process, to obtain an estimate of the respective
branching parameter, comes with several difficulties. The value of the estimated branching parameter will depend on
the assumed characteristics of the environment, e.g. is the environment fixed or changing over time. Thus, the modeling
assumptions will influence the conclusion regarding the character of the avalanche dynamics (Taylor et al., 2013; Hartley
et al., 2013). In addition, it is still unknown to which extent history dependent branching, that is, the memory of the system,
influences the scaling behavior of avalanche sizes and durations. These difficulties may lead to wrongly identifying critical
systems as non-critical, and vice versa.

Finally, in spite of the evidence that quite different physical systems exhibit dynamical properties akin to the one
observed in various sandpile models, there is no convincing proof that the generative mechanism for power-law scaling, as
proposed by SOC, constitutes the true causal explanation. A substantial controversy regarding the interpretation of empirical
data still persists, and the resolve of this controversy will, together with novel approaches for experimental setups and data
analysis, require measurements with higher resolution.
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On a final note, what one actually considers a self-organized process is to a certain extent a question of semantics. It is
possible, in many circumstances, to tune a system toward a critical point. There is general agreement that the underlying
process can be considered self-organizedwhenever this tuning process occurs through internal drives on time scales shorter
than (or comparable to) the experimental time scale. The tuning of internal parameters may however also result from
processes acting on much longer time scales, like, for example, Kauffman’s notion of ‘‘life at the edge of criticality’’, as a
consequence of Darwinian selection. In both cases the dynamical state will never be, for real-world systems, exactly at the
critical point, but fluctuating around it, albeit on very long time scales.
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