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Abstract. This paper suggests a direct approach to define the Laplacian, the spectral 
dimension of nested fractals and the pre-Sierpinski carpet conductivity. We find a 
geometric construction of the harmonic functions on the gasket and therefore can 
describe effectively the dense set of functions having finite energy. The paper is 
mostly aimed at the homogenization on the pre-Sierpinski gasket, whose horizontal 
and nonhorizontal bonds have different conductivities: a and b respectively. We prove 
the F-convergence of the rescaled energies on the pre-Sierpinski gasket to or(a, b)~, 
where c is the standard energy on the gasket with uniform conductivities. We also 
find an explicit expression for the effective conductivity o-(a, b) and deduce that its 
set of singularities turns out to be the Julia set of a certain rational function. A 
special section is devoted to the problem of the pre-Sierpinski carpet conductivity 
asymptotic behavior; for this problem a new proof of Barlow-Bass inequalities with 
sharper constants is given. 

1. Introduction 

The fractals, the first example of which was given by Sierpinski [1] at the beginning 
of the century as an example of the set with the bizzare geometrical properties, were 
proposed more recently as models for different physical phenomena by Mandelbrot 
[2]. Then the Laplacian on the fractals and their spectral dimension which first 
appeared in the physical literature [2,3], see review [4]) as the tools of the 
investigation of the percolation effects and various transport processes, in classical 
as well as in quantum mechanics became the subject of intensive mathematical 
research [5-9]. Even in the case of fractals with uniform properties, and all the 
quoted papers devoted to that case, this subject is related to the theory of certain 
inhomogeneous media and has something in common with homogenization theory. 
At the same time the main assumption of that theory (which is in the most general 
case statistical translation invariance) is violated in the fractal case. In this paper we 
go further and, probably, for the first time, at least in the mathematical literature, 
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discuss also the fractals with locally nonuniform properties. Fractal inhomogeneous 
geometry discussed here presents a new very interesting type of geometry where even 
the simplest disorder does not have the translation invariance property. However, this 
research was based on homogenization theory. Here we use such notions of this theory 
as F-convergence, harmonic coordinates and interchange duality [ 10-16]. Physically 
this approach means that we consider the pre-Sierpinski gasket as a resistor network 
of equal (Sect. 2) or two different types (Sect. 3) of resistors. 

The purpose of Sect. 2 is to present a new, direct construction of the Laplacian 
on the Sierpinski gasket and a simple definition of its spectral dimension. It is a 
difficult task to describe the harmonic functions on the gasket .  To that end in this 
section we also introduce a harmonic mapping of the Sierpinski gasket. This mapping 
allows us to give the geometric interpretation of the harmonic functions. The image 
of the Sierpinski gasket under this transformation is also a fractal; its geometrical 
construction is very simple, but involves two rescaling parameters. On that new 
fractal harmonic functions are simply linear functions, so we call the procedure 
harmonization of the fractal. After that the wellknown rescaling property of the 
energies on the pre-gaskets become a theorem from the elementary geometry. It 
should be pointed out that for the particular case of the Sierpinski gasket one can 
find the spectrum explicitly (see [3]) but in Sect. 2 an approach is presented which 
is applicable to all the objects of that nature. They are the so-called finitely ramified 
fractals. The difference is that instead of the natural resistor network and the explicit 
rescaling factor 5/3 for the Sierpinski gasket one should admit connections with some 
conductivities between all the vertices of the elementary cell of such a gasket, provided 
selfsimilarity for the energy with a certain rescaling parameter 0. Generically those 
conductivities cannot be found explicitly, but the existence of this distribution of 
conductivities of the elementary cell of such a type of gasket was proved in [8]. 
We remark that the uniqueness of such a distribution of the conductivities is not 
established but that the number O is obviously uniquely defined thanks to uniform 
ellipticity arguments (this assertion is missing in [8]). 

In Sect. 3 we consider the inhomogeneous pre-Sierpinski gasket. Now its bonds are 
equipped with two different conductivities: horizontal with a, others with b. In contrast 
with the previous case (a = b) there is no reasonable pointwise iwith respect to a set of 
admissible potentials) convergence of the pre-gasket energies. However, we relax the 
definition of the convergence and prove F-convergence of the energies, rescaled in the 
same manner as above. (See [11] for the general definition of F-convergence; in Sect. 
3 it is given in our particular case.) We show that the F-limit is equal to or(a, b)c, where 
e is the standard energy, as in Sect. 2, and a(a, b) is some number. We call or(a, b) 
the effective conductivity of the inhomogeneous gasket, according to its physical 
sense. The main theorem includes explicit representation of ~r(a, b) in terms of the 
successive iterations of a given rational function. This representation shows that or(a, b) 
is invariant under a certain algebraic transformation, and enables us to investigate the 
analytic properties of the effective conductivity, as well as its asymptotics. We remark, 
for instance, that the set of or(a, b) essential singular points coincides with the Julia 
set [17] of that rational function mentioned above. That set is known to be the set 
on the line of some fractional Haussdorff dimension. It is reasonable to compare the 
structure of the singularities of or(a, b) with the analytic properties of the effective 
conductivity of two phase composites typical for homogenization theory geometry. 
In standard homogenisation theory the poles of such effective conductivity c~(a, b), 
which are physically the electric resonances, are identical with the eigenvalues of the 
Bergman's spectral problem [14] (see [15] and also [16] for the explicit formulation 
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of that problem). So in the case of the inhomogeneous Sierpinski gasket Bergman's  
problem has Kantor spectra. In standard homogenisation theory only discrete (e.g. 
dispersive periodic inclusions) and absolutely continuous (e.g. checkerboard structure) 
types of  spectra were observed. 

Another consequence of this invariance discussed above of or(a, b) under rational 
transformation is the logarithmic asymptotics of  ~r(a, b) as b /a  --~ oc, and both the 
gasket dimensions appear in that limit. We find in that limit 

6 log 
c~(a, b) ~ aXb 1 x x - 

4 log 

(compare with x = 1/2 for the case of  statistically equivalent phases in the 
homogenization theory). 

We conclude the paper with a new proof of the Barlow-Bass [18] inequalities with 
the improved values of the constants concerning the limiting behavior of  the pre- 
Sierpinski carpet conductivity. This structure is obtained according to the following 
recurrent procedure: we take the unit square and paint it white, then we divide it into 
nine equal squares and paint the middle square black. We proceed making the same 
division and painting with all the rest eight white squares. Assume that the white 
set on the n th stage of this construction is filled with a conductor of  conductivity 
one and the black set is dielectric. Then for the effective conductivity C,~ of this 
inhomogeneous structure for any n the estimate holds true: 

c l ~ < C n < c ~  ~ 

for some fixed Q, 0 < ~ < 1 with c = 4 (see [18]). We remark that the explicit 
value of C 1 was found in [19]. Here it will be shown that those inequalities are true 
for c = 3/2. This improvement was mainly achieved thanks to the application of 
2D interchange duality, and to the introduction of the relevant auxiliary networks, 
which better take into account inhomogeneity of  this structure and in particular the 
singularities of  the solution at the corners of each black square. The proof cannot 
be immediately generalized to the 3D Sierpinski carpet and we do not know if the 
constant 3/2 is optimal or not. 

2. Laplacian and Spectral Dimension of Gaskets 

Here we explain how to construct the Laplacian and define the spectral dimension of 
the Sierpinski gasket. 

Let us first recall the definition of the Sierpinski gasket. Pose a I = (0,0), 

a 2 = (1,0), and a 3 = (1/2, X/3-/2), let V 0 = {a0, a l , a2}  be the vertices of an 
equilateral triangle of  side one. Define inductively 

Vn+ 1 = v n g ( 2 - ~ a 2  + V~)U(2-~a3 + V~). 

(Here, and throughout the paper we use the notation x + A = {x + y, y c A}). Now 
let 

v,=Uvn 
n=0 

and V = l),  (closure of V,) be the Sierpinski gasket. 
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Let #n denote the measure which assigns mass 3 - ~  to each point in V s. It is 
wellknown that {#~} converges in vague topology to the Hausdorff xas-measure # 
on V and dy = log 3 / l o g  2. Thus V has Hausdorff dimension df and #(Tn) = 3 - ~  
for any equilateral triangle T~ whose vertices are one of the possible translations of  
2-~V0 . 

Let 's  assign conductivity one to each nearest neighbor bond in V m, and consider 
pre-Sierpinski gasket as the resistor network. Then for the Joule heat we have the 
expression 

c ~  = Z ( f (x)  - f ( y ) ) 2  (2.1) 
x,yE Vm 

Ix-yf=2 - '~  

where f :  V, ---+ R is any function (given the potential of  the vertices V~). Suppose 
we fix potentials only on V 0, then the energy is 

g~ = in f {c~  ---+ R, flyo = ~} ,  ~ = (~a,~2,  ~3)" (2.2) 

Simple calculation based on the symmetries and the similarity shows that 

~-~ (~)m((~91 -- ~2) 2 -}- (~2 -- ~3) 2 -~- (~I ~93)2) " (2.3) 

Indeed, thanks to 120~ symmetry and obvious independence of the energy on 
the simultaneous shift of the potentials to the same constant, the energy is proportional 
to the energy of the initial triangle with unit conductivities, which is given by the 
expression (2.1) for m = 1. We call that factor of proportionality the effective 
conductivity of the standard pre-Sierpinski gasket. By induction it suffices to prove 
(2.3) for m = 1. In that case we consider antisymmetric distribution of the potential: 
(0, 1 , -  1), which leads to one equation for one unknown variable on V 1. Solving this 
equation and computing the energy of Vi, we get (2.3). So this means that effective 
conductivity of the V~-resistor network is equal to (3/5) "~, and we have to introduce 
the rescaled energy 

= (g) e ~ ( f )  (2.4) 

in order to have something finite in the limit. 

Proposi t ion 1. For any f : V, -+ R the energy e~(f)  is nondecreasing on n. 

Proof. Let 's  denote by f~ a harmonic continuation of f m =  flg,~ to Vm+ 1, which 
can be defined as a solution of the variational problem 

inf{e~+l(g):g:V~+ 1 --+ R, gIv,~ = f ,~} .  (2.5) 

Then by definition of f~ 1 and rescaling property we get 

e ,~+l( f  ) > c ~ + l ( f  ~  = e ,~(f)  

as required. 
We also need the following. 

Proposi t ion 2. For any f : V, ---+ R, 

I f (x)  - f(Y)] 6 / s u p  en( f )  , (2.6) sup _< 
W_>O 

where o~ = (log 5/3)  / log 4. 
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We skip the proof  which is a bit long but follows directly from the definition of 
the energy (compare with the much more delicate result from [6]). 

According to Proposition 1 we can introduce for given f : V ,  --* R the limiting 
energy as, probably infinite limit 

e( f )  = lim en( f ) .  (2.7) 
n----~ OO 

Pose now 
H 1 = { f : V .  ~ R : e ( f )  < oc} .  

Then thanks to Proposition 2 each f E H 1 has continuation to V, which belongs to 
a standard H61der space with the norm given by 1.h.s. of  (2.6) - Ca(V).  Let ' s  define 
Co(V) = { f  E C(V):  f i v  o = 0}, and introduce the norm 

Ilflll  = (e( f ) )  1/2. 

O 

The functional space Co(V) N H 1 is then a Hilbert  space, and we denote it H I. 
O 

Obviously the space L 2 - L2(V , d#) contains H l, which is dense in L 2 (see Lemma 
1 below). In that case for given v C L 2 we have the linear functional 

(v, u) = / vu d# 

V 

O 

which is continuous on H 1. Then the expression 

O 

II ll-i -- �9 t t  1, II lll = 1) 

defines the pre-norm on L 2, and we denote by H - 1  the closure of L 2 with respect to 
O 

this pre-norm. Now we have three Hilbert spaces H -1, L2, H 1 and the embeddings 

O 

H 1 C L 2 C H -1 . 

O 

Denote e(f,  g) the scalar product of  f ,  9 �9 H 1. 
Then relation 

(A f ,  g) = e( f  , g) 

defines uniquely the isomorphism 

o H -1 A : H  1 ~ 

and we call this operator the Laplacian. We also use the same name and notation for 
O 

the unbounded operator A : L 2 ---+ L2, which has the domain D ( A )  = { f  �9 H 1 : A f  �9 
L2).  

Remark that this way of introduction of the Laplacian permits us to prove in the 
usual manner, via the Hilbert  space formulation the existence and uniqueness of the 
solution to the problem A u  = 0, u = p on V 0. So here the role of the boundary 
is played by three points of  the initial triangle, consequently the dimension of  the 
space of  the harmonic functions is equal to three. Thanks to Proposition 1 harmonic 
functions are of  the class C a and take limiting values in the classical sense. Explicit  
expression for the Laplacian of an arbitrary function is not known, but for a function 
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9n which is harmonic inside each triangle T n the image of the Laplacian over 5 ~ is 
the function, which is identically zero on V \ V ~  and at the point x E V~ equals to the 
arithmetic mean of the nearest neighbors values minus g~(x). 

Proposition 3. The operator A : L 2 ---+ L 2 is selfadjoint and has discrete spectra {)~k} 
0 < A1 _~ A2 ~ . . .  ~ Ak _~ . . .  ---+ oo. 

Proof. A is selfadjoint in L 2 by definition and the rest of the required statement 
follows immediately from Proposition 2, as far as imbedding L 2 D C~ is compact 
for c~ _> 0. 

Now we are ready to define the spectral dimension of the Sierpinski gasket. Denote 

N(.~) = card{)~ k :)~ _< .~}, 

the Weyl distribution function of the Laplacian's spectrum. 

Lemma  1. There exist C1, C 2 > 0 such that 

Q ),~,/2 <_ N(),) <_ C2),~ ~/2 (2.8) 

for )~ > O. In (1.8) d~ = log 9 / log  5 and is called spectral dimension. 

Proof. In order to obtain estimate (2.8) below we get the upper bound of the pre- 
gasket energy. Let's denote by H~ the subspace of L 2 whose elements are harmonic 
inside each triangle T~ and equal to zero on V 0. Then by simple calculation of the 
number of the points in V~ dim H n -~ 3(3 ~ - 1)/2 and 

(0}  = H 0 C H 1 C . . .  C H n C . . . ; U H  n - -  L 2, 

By definition of L 2 the set of the continuous functions is dense in L 2 and according 
to Proposition 1 each continuous function can be approximated uniformly on V by 
the function from Hn for sufficiently large n. 

Now for any f E H,, we have 

e( f )  = en( f )  = (~)~ ~ ( f ( x )  - S(y)) 2 <_ 16. 5  llsllr  �9 
x,yE Vn 

]x-yl=2 -~ 

(2.9) 

Let us define the operator Z~ 1 in L 2 by its invariant subspaces {H~} and eigenvalues 
16 �9 5 '~. (Each such eigenvalue is taken with the multiplicity equal to the dimension 
of the orthogonal complement to H~ in Hn+ 1.) Estimate (2.9) now means A < A 1 
in the operator sense, hence N(A) _> NI(A), where N~()9 is a A 1 Weyl distribution 
function. Then (2.8) and the lower bound can be handled by explicit evaluation of 
the A 1 spectrum distribution. 

To get (2.8) upper bound, we consider the same sequence of spaces {H~} but in 
O O 

the Hilbert space H 1. Denote H ~  the orthogonal complement to H~ in H 1. Then for 
any f E H ~  MH,+ 1 we get by direct calculation f lv~ = 0 thanks to the orthogonality 
to H~ and 

n 2 
e,~+l(f) > 5 IlfllL2- 



Harmonization and Homogenization on Fractals 345 

Fig. 1 

Henceforth, posing f = A-1/29, from the last inequality we obtain 

--1 --n 2 (zx g,9)L2-<5 IlgllL2' 

Now we define operator A21 in L 2 by its eigenspaces {AU2(H~ • H~+1)}~=1 and 
eigenvalues 5 -~. The previous estimate yields the operator inequality A > A 2. The 
upper bound (2.8) follows as above. 

Now we are going to construct the harmonic functions on the Sierpinski gasket 
geometrically. There are three linearly independent harmonic functions on V and one 
of them is identically constant. That means we can choose three vectors Yl, Y2, Y3 E _R 2 
such that triangle G with vertices (Yl, Y2, Y3) is nontrivial, and pose vector boundary 
conditions for the harmonic vector function Z 

A Z = 0 ,  Z = ( Z I , Z 2 )  c R  2, 

Z]x=~i = Yi, 

where i = 1, 2, 3. Denote y = (Yl, Y2, Y3), and introduce the new triple of R2-vectors 
(gl(Y), 92(Y), g3(Y)) as follows 9(Y) = (gl(Y), g2(Y), 93(Y)): 

1 
9(Y) = g(2(Yl -+" Y2) + Y3,2(yl + Y3) + Y2, 2(y2 -[- Y3) + Yl)" (2.10) 

That new triple has the sense of the values of Z on VI\V o, and that is easy to check 
solving the equations for Z. Let us define three triangles Gi, i = 1,2, 3 with the 
vertices (Yl, gl (Y), 92(Y)), (Y2, g2(Y), 93(Y)), (Y3, g3(Y), 91 (Y)) respectively (see Fig. 1). 
Now we describe the map 9 geometrically. Starting from the triangle Ty(yl, Y2, Y3) 
triangle Tg(gl(y), g2(Y), g3(Y)) can be found via the following simple procedure. We 
divide each side of Tv onto five equal segments, then join the respective points of 
the adjacent sides and find T_ as the central of that triangulation (see Fig. 2). Energy 
of the potential distribution ~, which dissipates on the bond of the initial pre-gasket 
now is nothing else but the squared length of the bond of the new pre-gasket obtained 
via transformation 9. So the energy rescaling property now means the following. 

Theorem 1. Summing up squared sides of arbitrary triangle G we get five thirds times 
the sum of squared sides of all the triangles G1, G2, G 4. 

Geometrically map g is shown on Fig. 1. We can proceed in the same manner 
applying the map 9 to each of the triangles Gz,G2, G 3 and this is also shown on 
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7~ Fig. 2 

Fig. 1. That gives the values of Z on V2\V 1 and so on. Doing this way we obtain 
the map ~0 : V, ~ G. One can easily check that the continuation of 9 to all V gives a 
homeomorphism ~: V ~ GV,  where G V  is the closure of OV, in G. 

Remark 1. We can induce the energy, the Laplacian, and the Hausdorff measure from 
V. Then by definition linear functions will be harmonic and the spectral dimension 
is equal to d s. Unfortunately, we are not able to calculate the Hausdorff dimension 
of GV, but covering OV~ primitive triangles by 3 '~ balls of diameter 5 -~ we obtain 
the estimate dH(GV ) <_ d~. The natural hypothesis is: dH(GV) = d~. Geometric 
construction of G V  presented above involves obviously two rescaling parameters 
1/5, 3/5 and that yields to the difficulties in the G V  Hansdorff dimension evaluation. 

Remark 2. With the help of harmonic coordinates we can describe explicitly the dense 
set in H 1 that is: 

{ f (Z):  f E CI(G)}.  

Remark. The same results as here hold true for other nested fractals as far as 
the rescaling property of the energy is fulfilled. Existence of the unique rescaling 
parameter follows from [8] and standard ellipticity arguments, but one should consider 
a more general type of energy (not only nearest neighbors are connected). 

With respect to these observations it is natural to call any gasket on which linear 
functions are harmonic, harmonic gasket, and call G V  harmonization of the gasket 
V. The next hypothesis is that the Laplacian on the harmonic gaskets is a second 
order differential operator with the usual partial derivatives but with coefficients of 
very special and irregular type. 

3. Homogenization on the Sierpinski Gasket 

Here we consider inhomogeneous pre-gasket, which sides have two different con- 
ductivities. Let's denote by 11,/2, 13 the sides of the triangle To, joining the vertices 
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{al, a2} , {a2, a3} , {a3, al} respectively. For given a, b > 0 we introduce local con- 
ductivity 

a, eHl 1 ellZ2 
(r(e) = b, ell/3 (3.1) 

(here ]] means being parallel) and e is any side of any triangle T n. Let's define the 
energy as 

c n ( a ' b ; f ) = ( 5 )  n Z ~ r ( x - Y ) ( f ( x ) -  f(Y))2'  (3.2) 
x ,yC Vn 

]x--yl=2 - n  

where f E H 1. 
We need an important notion of F-convergence (or equivalent epi-convergence) 

from nonlinear analysis (see [11]). Let us recall it in the current situation. Sequence 
{ ~}~=l of the functionals on H 1 is said to be F-convergent on H 1 to a functional g 
(notion F-l im ~ = g) iff 
(i) for any weakly in H 1 convergent sequence f~ ~ f we have 

l iminfe~(f~)  > g(f), 
n----+ O 0  

(ii) there exists a sequence o c~ o H 1 o H 1 {fu}~=l ' fu E such that fun --~ f in weakly and 

lim e~(fo)  = g( f ) .  
n - - + o o  

We remark that the sequence of the energies {c~} from Sect. 2 F-converges to 
= II. 1112 which follows from the definition, but generically G-convergence is weaker 

than the pointwise convergence which we have in this example. 
Now let's discuss the inhomogeneous case. 

Theorem 2. For any a, b > 0 sequence {en(a, b;-)}n~=l defined in (3.1), (3.2) F-  
converges 

F-l i ra  e~(a, b; .) = 6(a, t)II" II~;t = ba 

and for the number 6(a, t) we have the representation 

oo 5 + 10R k(t) 

6 (a , t )  = a H  6 + 9R~(t) ' 
k = 0  

(3.3) 

where 

R0(t )  = t, R l ( t )  - 
3 t 2 + 6 t + 1  

4 t + 6  ' ' " ' R k = R l ( R k - l ( t ) ) ' " "  (3.4) 

and the product in (3.3) converges for any t > O. 
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We call &(a, t) the effective conductivity of the inhomogeneous Sierpinski gasket. 
It is interesting to remark that the obvious anisotropy of the inhomogeneous resistor 
network disappears in the limit, since all the process of conductivity could be 
characterized by one number-conductivity of the side of  one triangle. To explain this 
at-first-sight strange fact we can mention that nevertheless it is reasonable, because 
for any path going in some direction we can find a path going in another prescribed 
direction such that the density of a -s and b -s on those paths is asymptotically the 
same. Let us pose &(t) = &(1, t), R = R 1 for the sake of shortness and establish 
several properties of  ~(t). The first follows directly from (3.3). 

Coro l la ry  1. The function 6(t) has the extension which is analytic away from 
( [ - e c ,  - 3 / 2 ] )  and satisfies the relation 

6 + 9 t  
~ - ( R ( t ) ) -  - -  ~( t ) .  (3.5) 

5 + 10t 

Remark 4. From the representation (3.3) one can easily deduce also the structure 
of  singularities of &. In fact ~ has a countable set of poles which are the zeros 
of  denominators in the representation (3.3) and consequently is the set of  all R- 
predecessors of  - 2 / 3 .  All limiting points of  that set form the set of essential 
singularities of ~. The last is the Julia set of the rational function R (see [17]). In 
our case the Julia set coincides with the closure of all the predecessors of  -1 -un ique  
repulsive fixed point of  R. 

Corol la ry  2. For &(t) takes place the limiting relation 

lim log#( t )  _ log !~ (3.6) 
4 t--,~ log t log 5 

Later on we show that (3.6) is a consequence of the invariance property (3.5). 
Let us start now with the proof of Theorem 2. First we investigate transformation 

of conductivities: 

e~(a,  b) = inf{e~(a, b; f ) : f  c H 1, f fov  = ~} .  (3.7) 

Taking into account that the isosceles property is preserved thanks to the symmetry of 
the problem with respect to the median, and this means simply that we can consider 
e~(a,  b) as the energy e~(a~, b~) for some am, b~, by a long, but direct calculation, 
we get the following. 

Proposition 4. For any n > O, 

where 

e~+l(a , b) = ~n~(al, bl) , 

a + 2 b  
a 1 = a 2a + 3b ' 

(a + 2b) (a 2 + 3b 2 + 6ab) 
bl = 2(3a + 2b) (2a + 3b) 

In variables a, t = b/a transformations (3.9) mean 

l + 2 t  

al = a 2 + 3 t  

(3.8) 

(3.9) 

3 t 2 + 6 t + 1  
tl -- 4 t + 6  (3.10) 



Harmonization and Homogenization on Fractals 349 

Proposition 5. There exists the limit 

5 + 10Rk(t) 
lim e~(a, b) = a I I  n--+o~ 6 + 9Rk(~) e0(~) '  (3.11) 

k=l 

where R k is defined as in (3.4) and eo(~) in (1.1). The product in (3.11) converges for 
any t > O. 

Proof. Rational mapping t .4  R(t)  has only one attractive fixed point t = 1, hence 
analyzing the graph of R(t)  we see that for any t > 0IRK(t) -- II < Cte-mg with 
some C t > 0, /3 > 0 where C~ probably depends on t. Then for any fixed t > 0 
the infinite product in (3.11) converges, and it remains to remark that its nth partial 
product coincides with en~(a , b) according to (3.10). 

To prove the theorem, now, it suffices to establish F-convergence of e~(a, b; f )  
to ~(a, t )e(f) .  Let 's verify the first requirement of the definition. Assume we have a 
sequence {f~} and f~ ---+ f in H 1 weakly. We denote by f~ the function f~ :V2~ -+ R 
which minimizes the problem 

inf{e2n(a , b; 9):g - f~lv~ = 0}. (3.12) 

Then according to this definition we have 

e2n(a, b; f2~) -> r a, b; f~) = e~(a~, b~; f~) ,  (3.13) 

where an, b~ are the f~ th iterations of (3.9). Proposition 5 yields for jo  = f~lvn, 

r b~; fn) >- (#(a, t) - 6n)e(f~ (3.14) 

where ~ ---+ 0, n .4  c~. Let 's denote by fo  harmonic inside each T~-triangle 
continuation of f o onto V. Then we have R -4 f ,  in H 1 weakly since max If -fl 

v 

{fn u } is bounded in H 1. Hence, we get 0 as n -4 oc and the sequence ~'0 

lim r ~ lim e(]  ~  > r  
n----+ o o  Tb-----> O ~  

thanks to the nondecreasing of the norm of weakly convergent sequence. Finally we 
get the desired property 

l i m  infe r (a ,  b; f~) >_ ~(a, t )e( f )  (3.15) 

for an arbitrary weakly convergent sequence {f~}. 
Now to verify (ii) we construct the sequence {fo} in the following way. We assign 

f~ to be the minimizant of the variational problem 

inf{e2n(a , b; g):g - f[vn = 0} 

and continue it harmonically inside each Tn-triangle. Then, as above, fn -4 f in H 1 
when n -+ oc, and 

r b; fn)  = e~(a~, b~; f )  = 6-(a, t) (1 + ~,~)e~(f), 

where again ~ ---+ 0, n ---+ cx~. So in view of (1.7) we have 

F-  lim en(a , b; .) = Cr(a, t)e(.) 

as desired. The theorem is proved. 
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Let us prove Corollary 2. To that end, for any e > 0 we shall introduce two 
functions cr~: such that for sufficiently large t, 

< c~t ~+~ (3.16) c~t ~-~  < ~ < ~(t)  <_ ~+ _ 

where a = (log 10/9)/(log 4/3). In order to construct cr ~_ we'choose T~ so large that 

R(t) < (3 + c- ) t  for t > T e. Pose 

al_ = inf {~(t):T~ <_ t _< (43 + e)T~ } =  6-(Te) 

and define a~_ (t) as a stepwise function 

ae_(t)= crl_(!~) k for t:T~( 4 +e) k <_ t << (4 +e)k+lT~ ' 

k = 0, 1 , . . . .  Then the lower bound (3.16) follows from Corollary 1 and estimate 
(5 + 10t)/(6 + 9t) > 10/9. Similarly, setting 

0-+i = sup {~(t):% < t  < (4 - r = 6 - ( ( 4 3  ,5 - r ' 

where % is chosen such that 

5 + 10t 10 
6 + 9 t  < 9 - + ~  for t > % .  

We introduce 
(4)k+i%, 

cr~_(t)= ( ~ + e ) k  for t :%(4 )  k _ < t <  3 

3 and taking into account the obvious estimate R(t) > ~t we finish with the upper 
bound in (3.16). 

Effective Conductivity of the Sierpinski Carpet 

Let's recall the construction of the Sierpinski carpet. We denote by F 0 = [0, 1] 2 the 
unit square; divide it into nine equal squares, and paint the central black, others white. 
So F I = F0\(1/3 , 2/3) 2 is the white set. Then we repeat the same operation for each 
of remaining white squares, painting the central squares of each of them black and 
keeping the rest white. Proceeding this way we denote by F n the white set on the Tt th 

stage of this construction. The set F n consists then of 8 n white squares of side 3 -n.  
Now we introduce local conductivity 

1, xcF;~ 
% ( z ; 6 ) =  ,5, X E F o \ F n  ' 

where 0 < 5 < cx~. The effective conductivity of this structure can be defined as 
follows: 

Cn(5)=inf l fan(z;5) lVu[2dx:u(O,  x2 )=O,u (1 , x2 )=l ,uEHl (Fo)} ,  (4.1) 

where Hi(F0) is a Sobolev space of functions, having square integrable gradients. 
The well known interchange equality [10] (for general setup see [13]) says that 

Cn(6 ) = C~1(6-1). (4.2) 
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Fig. 3. ~ - L?;  - L (} 

We use 0 < 5 < oc in order to have the solution of (4.1) to be defined all over F 0' 
for such 5 the solution of  (4.1) is of  the class C~(Fo), where the H61der exponent/3 
is strictly positive. The effective conductivity is continuous function with respect to 
0 < 5 < ec (see for example [11]) and for the sake of  shortness we pose C n = Cn(0). 

Theorem 1. There exists ~ such that 

2/3~ n _< C~ _< 3/2~ n . (4.3) 

To prove this theorem it suffices to establish the inequalities 

2/3C,~C~ <_ C~+m <_ 3/2C~C~ (4.4) 

(see [20] problem 99). In order to do that we denote by Z~ the solution of (4.1) 
and by ~ = ~ assuming 0 _< 5 < ec. Pose Z ~ ~ Z2), Z 2 ( X l , X 2 )  71 ( x 2 , X l )  ~- ( Z l ,  then 
transformation Zn:Fo ~ F o has two basic properties: 
(i) Z preserves the sides and the diagonals of  the square F 0. 

(ii) f a~(x;5)VZ~VX~dx--4Ja~(x;5)VZ~VZ;dx=CnSij; 
Fo Tk 

i,j = 1,2; h = 1 , . . . , 4 ,  

where T k is one of  the four triangles bounded by the sides and the diagonals of the 
square F 0, and 5ij is Kroneckers delta. Now we make standard triangulation of  F 0 with 

the vertices at the lattice 3 - ' ~ Z  2 drawing the diagonals inside elementary square of  
side 3 - ~ .  Let 's  denote the vertices of this triangulation (i.e. F 0 N 3 ~ Z  2 and centers 
of  elementary squares) by L ~  (see Fig. 3). Then for any nesh function ~:  Lm --+ R 

1 * we can construct a piecewise linear continuous function f *  C H , f~ IL = g), which is 
inside each triangle a linear combination of three functions { 1, mr, x2}. But, as it was 
pointed out in [18] the remarkable property (i) enables us to do the same with three 
basis functions {1,Z1,Z~}.  Doing this way we get continuous function f~ C H 1 

such that f~lL = g). Let 's  pose 

r  5) = [ a,~ (x; 5)IV f* 12 dx (4.5) 

F0 
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and 
C*((5) = inf{e~(qo; (5): ~(0, X2) = 0: ~9(1: X2) = l } .  (4.6) 

This number has the sense of  an effective conductive of the respective inhomogeneous 
nesh with conductivities of white bonds equal to 1 and black to (5 (a bond has the 
same colour as the cell). Denote this network by l_*. With the help of  the solution 
r of  the problem (4.6) we construct the test function for the problem (4.1) of  the 
order n + m. Assume the structure F,~ tesselates Z2-periodicalty all the R 2, or in 
the other words the function an(X , (5) is continued to R 2 Z2-periodically. Then the 
vector-function Z'~(x) could be considered as the function on R 2 such that Zn(x) - x 
is Z2-periodic. Let us consider the rescaled function 

Z~,m(x) = 3 -mz '~ (3mx) .  

n m 2 _ +  2 " �9 * " �9 According to (i) the map Z ' : R  x R z preserves triangulation k m, i.e. the image 
of each triangle on the R~-plane lies in the same triangle of  the R~-plane and the 
image of its boundary is the boundary. That means we can substitute to the piecewise 
linear functions f~(x) the mapping zn'm(x) and introduce the test functions 

fc (x )  = f~(z~'m(x)) 

which inside each triangle of  k*~ is the linear combination of (1, m,~ Z 1 (x), 
with the same coefficients as f~(x) is a combination of (1, x l ,  x2). Then according 
to (ii) we have the relation 

/ an(3mx;(5) lVfr IVf:(x)12dx (4.7) 

rG 

for any triangle T~,p of our triangulation. Pose now F m = [,.J Fk, m, where k = (kl, k2) 
k 

is such that k -k 3-mz 2 E F 0, 0 < kl, k 2 < 1, and F<m = k + 3-mFo, 

am(k , (5)= 1 if Fk, m is white, 

am(k ,(5) = (5, if Fk, m is black.  

Then by definition 
an+m(X; 5 2) < % ( 3 m z ;  (5)am(X; (5) 

for 5 _< 1, hence assuming r to be the solution of (4.6) we get, thanks to (ii), (4.7) 
and the construction of the function gr 

<_ f an(3mx; (5) am(x; (5) IV fc(x)12dx G+m((5 2) 

F0 

= am(k, 6) f anOmx; (5) IV fr ledx 
k F k ,  TM4 

= / an(x; (5) IVf2(z)12dx = 
Fo 

(4.8) 

The same arguments and the relation 

%+.~(x;  5) <_ %(3reX; 5)a.~(x, 5) 
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for 6 _> 1 yields 

c~+~(6) <_ c~(6)c*m(6). (4.9) 

Let us now use duality arguments (see [10, 13]) in order to get from (4.9) the bound 

from below. To that end introduce the shifted network k ~ (see Fig. 3) which is 

obtained from L* as the union of all the perpendiculars to the centers to all the bonds 

of L*,  and lies inside F 0. Assign conductivity 6 to all the bonds of L ~ lying in the 
black set and one otherwise. Denote by C*~(6), C~ the effective conductivities of 

the networks L*,  L ~ respectively, omitting the argument if it is equal to zero. The 
claim is that 

C*(oc)  < 3 /2C~  (4.10) 

With (4.10) we can rewrite (4.9) as 

Cn+m(oo) <_ 3/2Cn(oc)C~ (ec) , 

and by duality together with (4.9) we have 

2/3C~C* <_ C~+,~ <_ CnC* , (4.11) 

since k ~ is dual to k* .  Then the conductivities are inverse: C~ = (C* ~-1 
Ck(eo) = (Ck) -1. As it was remarked above the Dirichlet and Neumann boundary 
conditions on the respective parts of the boundary are equivalent, thanks to the 
symmetry of the periodicity conditions of (U-Xl)  in (4.1). The effective conductivities 
are inverse (for the continuous problem see [10], and absolutely the same reasoning 
is applicable to the dual networks). In particular from (4.11) we have C*~ < 3/2C~ 
and (4.4) follows. 

Now let us prove (4.10). To that end introduce the third network 

I_ + = F  0 N 3  m { ( 1 / 2 , 1 / 2 ) + Z  2) 

with the standard bonds of Z2-connectedness and consider each such bond as two 
conductivities in the series divided by the center of the bond, which we call demi-site 
in order to distinguish those points from the original sites of the Lm-centers of the 
elementary - 3 - m F 0  squares. We assign conductivity two to each half bond if it lies 
in the white set and infinity if it is in the black set. Then we'll get an inequality 

C+(oc) < C ~  (4.12) 

where C+(oc) is the effective conductivity of k + which is understood in the same 
manner as the effective conductivity of L *  with the same boundary conditions at the 
left and the right side of the initial square F 0. By the definition of the network L + 
the energy is a quadratic form defined on the nesh-functions on the set of all sites 
and demisites. To prove the desired inequality (4.12) it suffices to prescribe the test 
potential for the variational problem for the effective conductivity of l + to be equal 
at the center of each bond, i.e. at all the demi-sites except the boundary to the solution 

:r 
of the onalogous variational problem for k m and define the test potential on the sites 
as the arithmetic mean of its values on the demi-sites - nearest neighbours 
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0 .  L,~, F i g .  4. - L ,~ ,  - -  - 

Type 2 

Type 

F i g .  5. - L . ~ ,  L+m 

(see Fig. 4). Now to get the inequality (4.12) explicitly, denote by E+( f )  the energy 
for the network L+~ of the arbitrary function f given oll the set of sites and demi-sites. 
Then we have because of the restriction 

C + = infE+ _< i n f { E + ( f ) : f  - such that its value at each site 

is equal to the arithmetic mean of values 

at the four neighboufing demi-sites}. 

Let us compute the value of E+ with the restriction above at the r.h.s, for the solution 
of the L~ problem, using for each cell of L ~ containing a vertex of L + 
inequality 

(ft  - f 2 )  2 -~- (f2 - f 3 )  2 -~- ( f 3  - f 4 )  2 2w ( f 4  - f l )  2 ~ f l  a § f~ -r f2 + f4 ,  

which is true for fl  + f2 + f3 + f4 = 0, where fi, i = 1 , . . . ,  4 denotes the values of 
the potential on the vertices of some cell of L ~ and the 1.h.s. exhibits the compound 
of the energy of L ~ while the r.h.s, is for L + energy item. From here we get (4.12). 

* + 
Now let us compare the energies of the resistor networks k,~, k,~ introduced above, 

which we will compute assuming the distribution of the potential to be equal to 
the solution of the [-+-effective conductivity problem, filling in the missing [_* values 
by arithmetic mean of four nearest neighbours. According to Fig. 5 we must 
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Fig.  6a,  b 

X b;< 
Fig. 7a,  b.  - conduct iv i ty  2; 
- -  - conduct ivi ty  1 

distinguish four types of the cells of k +.  Look for the equivalent images presented 

at the Figs. 6-9a), b) for k +,  L* respectively. In each of those cases we seek for the 
maximum A such that 

E+(f)  > AE*(f) ,  

where E +, E* are the energies of the considered parts of L~, [-~ respectively 
computed on the same potential function f .  In other words A is the minimum 
eigenvalue of E + when E* defines the scalar product. We remark also that due to 
5 = ec the potential is the same at the vertices connected with the black bond, so in 
the gometric representation we can reduce them to one point. 
1) White cells, that means cells of L + which are entirely in the white set (see 
Fig. 6). For the energies of such cells we have 

3 

E + , l ( f )  = Z ( f i + l  __ f i ) 2  

i= l  
4 

E * ' l ( f )  = E ( f /  - -  f 5 )  2 , 
i= l  

respectively. Then 

E+' l ( f )  _> 2E* ' l ( f ) .  

2) Ensembles of four cells around the black square of the side 3 - ' ~  (see Fig. 7). 
We consider those cells together, so we must compare two quadratic forms of nine 
variables. But we can restrict the value at the center to be equal to the mean of its 
nearest neighbours in / + ,  which is certainly true for the solution of the [_+-effective 
conductivity problem. To find the desired eigenvalue ), remark that the forms and 
the restriction for the ninth variable under consideration are invariant with respect 
to 90 ~ rotation. This means that the respective eigenfunction has the same type of 
symmetry, hence we can assume fzi = a, i = 1 , . . .  ,4; fU+l = b, i = 0 , . . . ,  3, and 
for the energies of the conglomerates of those cells which are 

7 4 

E + , 2 ( f )  Z ( f / + l  _ f { ) 2  4- 2 Z ( f 2  i - / 9  )2 , 

7=1 i=l  

3 4 

E*'2(f) = E ( f 2 i + I  - f 9 )  2 4- 2 Z( f2  i - -  f 9 )  2 , 
i--O i=1 
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F i g .  8 a ,  b .  - conductivity 2; Fig. 9a, b. - conductivity 2; 
- -  - conductivity 1 - -  - conductivity 1 

we have then the inequality: 

E+'2(f)  > 2E* '2(f ) .  

3) Cells which are half black (see Fig. 8). Here 

E + ' 3 ( f )  = ( f i  - f2)  2 + 2{( f2  - f3)  2 + ( s  - fl)2} , 

E*'3(f)  = (f2 - f3) 2 q- (fI - f3) 2 , 

and we have the same inequality as in case 2). 
4) Cells at the comers of  the black squares of  the side bigger than 3 - ' ~  (see Fig. 9). 
Here we have forms of three variables one of  which is standard, 

E+'Z(f) = (f2 - )el) 2 -t- (f3 - f l )  2 -I- 2(f22 + f22), 

E*,4(f) = f i  2 + fa 2 + f3 2 , 

and we get 
E+'4(f)  > E*'4(f) .  

Now to prove (4.10) we sum up the energies of  all of  those types, as far as each bond 
of  L + takes part in two types of cells and never participates in two cells of  the fourth 

type, we have computing the energy of the solution of the L+-effective conductivity 
problem: 

* c*~ ( ~ ) .  3/2C + = 3 / 2 E + ( f )  _> E,~(f) > 

The theorem is proved. 

Remark 5. Resume all the inequalities obtained above for 5 = 0: 

2/3C* <_ C ~ <_ C~ <_ C* <_ 3/2C ~  

Hence 
2/3t9 '~ _< C *  _< 9 /4#  ~ , 

(2/3C~ I/~ <_ ~ <_ (3/2C*) 1/~ . 

The last inequality can be usefull for numeric evaluation of & 
:r 

We point out also that the lack of  property (ii) for the network L.~ doesn't  permit 
us to get subadditivity of C *  the same way. From the proof we can see that the forms 
E +, E* differ mostly at the comer points of  type 4) and those points limit further 
progress in the evaluation of  C.~ by this method. This is also clear from the fact that 
piecewise linear test functions cannot take into account properly the singular behavior 
of the gradient of the solution to the continuous problem at the comer points. 
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