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(10 points) 1. (a) Find the equation of the line containing the two points P = (−1, 2)
and Q = (1, 1) in the form y = mx + b.

The slope of the line is given by:

rise

run
=

y2 − y1

x2 − x1

=
1− 2

1− (−1)
= −1

2
.

We know the line passes through the point Q = (1, 1), so when
x = 1 we have y = 1.
Using this fact to solve for b in the equation y = mx + b we get:

1 = −1
2
(1) + b

3
2

= b

Thus our final equation for the line is y = −1
2
x + 3

2
.

(b) Find the derivative
dy

dx
of the expression for y(x) you found in (a).

The derivative of a line is a constant equal to the line’s slope. In
this case, the derivative will be −1

2
.
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(15 points) 2. Find the following limits.

(a) lim
∆x→0

(2 + 5∆x)

lim
∆x→0

(2 + 5∆x) = 2 + 5 lim
∆x→0

∆x = 2 + 0 = 2.

(b) lim
h→0

4xh + 5h3

h

lim
h→0

4xh + 5h3

h
= lim

h→0
(4x + 5h2) = 4x + 5(0) = 4x.

(c) lim
h→0

√
x + h −

√
x

h

lim
h→0

√
x + h−

√
x

h

= lim
h→0

(√
x + h−

√
x

h

)(√
x + h +

√
x√

x + h +
√

x

)

= lim
h→0

x + h− x

h(
√

x + h +
√

x)

= lim
h→0

h

h(
√

x + h +
√

x)

= lim
h→0

1√
x + h +

√
x

=
1√

x +
√

x

=
1

2
√

x
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(20 points) 3. (a) Let f(x) = x2 + 5. Using the definition of the derivative, calculate
f ′(x). Be sure to show all of your work.

f ′(x) = lim
h→0

f(x + h)− f(x)

h

f ′(x) = lim
h→0

(x + h)2 + 5− x2 − 5

h

f ′(x) = lim
h→0

x2 + 2xh + h2 + 5− x2 − 5

h

f ′(x) = lim
h→0

2xh + h2

h

f ′(x) = lim
h→0

2x + h

f ′(x) = 2x

(b) Using your result from (a), find the equation of the line tangent to the
graph of f(x) = x2 + 5 at x = 2.

The slope of the tangent line is given by f ′(x) = 2x. So, at x = 2 we
have f ′(2) = 4. So, the slope of the tangent line is 4.

We also require that the tangent line pass through the point (2, f(2))
with f(2) = 22 + 5 = 9.

So, our line is given by y = 4x + b, where 9 = 4(2) + b and therefore
b = 1.

So, our line equation is y = 4x + 1.
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(30 points) 4. Find the following.

(a)
d

dx

(
3x5 + x4 − 2x2 + 6

)

d

dx

(
3x5 + x4 − 2x2 + 6

)
= 15x4 + 4x3 − 4x.

(b)
∫

(3x + 2)(x− 1) dx

∫
(3x + 2)(x− 1)dx =

∫
(3x2 − x− 2) dx

= x3 − x2

2
− 2x + C.

(c) v(t), where x(t) = −16t2 + 4t + 10 and v(t) =
dx

dt

v(t) = −32t + 4.

(d)
∫ 2

0
(x2 + 1) dx

∫ 2

0
(x2 + 1)dx =

x3

3
+ x|20 =

23

3
+ 2− 03

3
− 0 =

8

3
+ 2 =

14

3
.

(e) x(t), where
dx

dt
= −32t + 64 and x(0) = 50.

dx
dt

= −32t + 64→ x(t) = −16t2 + 64t + C

Given x(0) = 50 we get x(0) = −16(02) + 64(0) + C = 50
→ C = 50.

So, our final equation is x(t) = −16t2 + 64t + 50.
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(10 points) 5. A pebble is dropped from a height of 32 feet. Its height above the
ground at time t is given by x(t) = −16t2 + 32. Find t∗, the time when
the pebble hits the ground. Find the velocity of the pebble v(t∗) =
x′(t∗) when it strikes the ground.

When the pebble hits the ground x(t∗) = 0. Solving x(t) = −16t2 + 32
for this value we get:

0 = −16(t∗)2 + 32→ 16(t∗)2 = 32→ (t∗)2 = 2→ t∗ =
√

2.

To find the velocity we must calculate the derivative of position:

v(t) =
d

dt
(−16t2 + 32) = −32t. For t∗ =

√
2 we get v(t∗) = −32

√
2.

(15 points) 6. (a) Find the antiderivative of 3x2−2x+ 2 that has the value 10 when
x = 2.∫

(3x2 − 2x + 2) dx = x3 − x2 + 2x + C.

We know x3 − x2 + 2x + C = 10 when x = 2, so we can use this
to solve for C.

23 − 22 + 2 · 2 + C = 10→ C = 2.

So, the antiderivative is: x3 − x2 + 2x + 2.

(b) Find the position x(t) satisfying Newton’s law

d2x

dt2
= −32

such that x(0) = 0 and x′(0) = v(0) = 32. Be sure to show all of
your work.

d2x

dt2
= −32→ dx

dt
= −32t+C1 → x(t) = −16t2 +C1t+C2. We’re

given x(0) = 0, so x(0) = −16 · 0 + C1 · 0 + C2, and thus C2 = 0.

We’re given x′(0) = 32, so 32 = −32 · 0 + C1, and thus C1 = 32.

Therefore, x(t) = −16t2 + 32t.
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