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ABSTRACI 

A NEW METHOD for deriving rigorous bounds on the effective elastic constants of a composite material is 
presented and used to derive a number of known as well as some new bounds. The new approach is based on a 
presentation of those constants as a sum of simple poles. The locations and strengths of the poles are treated 
as variational parameters, while different kinds of available information are translated into constraints on 
these parameters. Our new results include an extension of the range of validity of the Hashin-Shtrikman 
bounds to the case of composites made of isotropic materials but with an arbitrary microgeometry. We also 
use information on the effective elastic constants of one composite in order to obtain improved bounds on the 
effective elastic constants of another composite with the same or a similar microgeometry. 

1. INTRODUCTION 

THEORIES of the effective elastic properties of composite materials (i.e. macroscopically 
inhomogeneous systems made of regions or grains of different homogeneous sub- 
stances) have many practical applications in technology and geophysics. Various 
approaches to the problem were reviewed by HASHIN (1970), WATT et al. (1976) (this 
review contains an exhaustive list of references), HALE (1976), and WILLIS (1982). 

In principle, exact values for the effective elastic constants can be obtained only when 
the microgeometry of the composite is known precisely. In many cases, however, the 
precise microgeometry is unknown, e.g. when the composite has a certain randomness 
in its microstructure. In that case, exact theories are limited to the derivation of 
rigorous bounds on the elastic constants. These range from the simplest bounds of 
Voigt and Reuss (HILL, 1952), for which only the volume fractions of the components 
need to be known, through the more complicated Hashin-Shtrikman bounds and their 
extensions (HASHIN and SHTRIKMAN, 1963 ; HILL, 1963 ; WALPOLE, 1966a,b) for 
isotropic mixtures, and up to some very complicated bounds which require knowledge 
of the two- and three-point correlation functions (see, e.g. BERAN and MOLYNEUX, 1966; 
MILLER, 1969; MCCOY, 1970). Recently some of these bounds (the Hashin-Shtrikman 
and some of the higher order bounds) were modified and improved by MILTON and 
PHAN-THIEN (1982). The derivation of bounds is usually based on variational principles 
(e.g. HILL, 1952; HASHIN and SHTRIKMAN, 1961, 1962; BERAN and MOLYNEUX, 1966). 
Sometimes these principles are used in the context of a scattering-theory-like approach 
(e.g. DEDERICHS and ZELLER, 1973 ; WILLIS, 1982). 
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Recently we introduced a new approach to the problem of evaluation of the effective 
elastic constants of composite materials (KANTOR and BERGMAN, (1982a)-this will be 
referred to as I). We showed that any effective elastic constant of a composite can be 
written as a sum of simple poles, and reduced the problem to that of a systematic 
evaluation of the locations and weights of these poles. The usefulness of this approach 
was demonstrated on several well defined microgeometries (see I, and also KANTOR and 
BERGMAN (1982b)). In this article we will apply this pole representation to the case when 
only partial information is available on the microgeometry of the system. We will treat 
the locations and the weights of the poles as unknown parameters, and we will derive 
rigorous upper and lower bounds on the effective elastic constants by varying them 
subject to certain constraints imposed by the known information. A similar method 
was developed and applied by BERGMAN (1978a, b, 1982), for the derivation of bounds 
on the effective dielectric constants of composites. 

In Section 2, we rederive the general theory of I for the elastic properties of 
composites in a simplified form, and thereby also introduce the main concepts to be 
used later. In Section 3 we use our formalism to obtain some of the simple known 
bounds, and we also extend the range of validity of the Hashin-Shtrikman bounds to 
include composites with an arbitrary (i.e. not necessarily isotropic or cubic) micro- 
geometry and without any information about the microgeometric correlation func- 
tions. A more general and also more flexible formalism is introduced in Section 4. This 
is applied in Section 5 to derive improved bounds that require information of a new 
type about the composite. This information is in the form of known values of the 
effective elastic constants for a composite with the same microgeometry but different 
constituents. Such information can be obtained either by measurement or by another 
calculation. It is clearly information of a “physical” nature about the composite, as 
opposed to the purely geometrical information that is contained in the correlation 
functions which are also sometimes used to obtain improved bounds. 

2. THE GENERAL THEORY 

The position dependent local elastic stiffness tensor C(r) of a two-component 
composite made of homogeneous materials with stiffness tensors C(” and C”’ can be 
written with the help of a step function 0, : 

C(r) = P’ + d,(r) (P- IF) 3 cC2) + 8,6C, (2.1) 

where 

O,(r) = 
i 

1, r inside C(i) material, 

0, r outside C(l) material. 
(2.2) 

In (2.1) and often also in subsequent discussions, we have suppressed the tensorial 
indices. 

The effective elastic stiffness tensor C@) is usually defined by means of the volume 
averages of the stress tensor g and the strain tensor E in the inhomogeneous sample, so 
that 

(0) a” = C’“‘(c) a”) (2.3) 
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where ( ),, denotes a volume average. Alternatively, C@) may be defined by requiring 
that the elastic energy density that would exist in a homogeneous material with stiffness 
tensor C@) be equal to the volume averaged energy density in the actual inhomo- 
geneous sample when it is subjected to the same boundary conditions on the 
displacement vector u. We will use the boundary conditions (see HASHIN, 1970, pp. 44 

47) 

ui = ,$xj, for r = (x1,x2,x& on the boundary, (2.4) 

where .st is some constant symmetric tensor (i.e. a0 has the same value over the entire 
boundary). Here and subsequently we use the Einstein summation convention on 
repeated tensorial indices. These boundary conditions would cause the strain E to be a 
uniform constant E = so in the entire volume of a homogeneous material, while in the 
case of an inhomogeneous material only the volume average of the position dependent 
z(r) would be equal to so. Thus the alternative definition of C”’ under the boundary 
conditions of (2.4) is 

&°C(e)ao = (&C(T)&),, (2.5) 

for any constant symmetric tensor E ‘. For these boundary conditions, it can be shown 
that the two definitions of C’“‘, namely, (2.3) and (2.5) coincide. 

We now introduce a somewhat generalized form of (2.1), allowing C to depend on a 
continuous parameter s : 

C(r;s) = Cc2’+ A131(r)X. 
s 

(2.6) 

By allowing s to take arbitrary values, we are actually replacing the C(i) material by a 
different material C(l)‘, where 

C”” = C(Z)+ 16C = I@‘+ S-l _CV) (2.7) 
S S s . 

This replacement also makes C@) a function of s. We note that when s lies in certain 
ranges, the tensor C (I)’ becomes unphysical, i.e. it ceases to be positive definite. From 
(2.5) and (2.6) we can obtain the expression for C(‘) as (cf. I) 

s°C%o -E~C’~‘E~ = -& 
s 

8,s”6Cs dV = F(s). (2.8) 

In order to simplify the notation, we now introduce two definitions : For any tensor E 
we define a complementary tensor E; 

E” = (&X)*, (2.9) 

where the asterisk denotes complex conjugation, and we also define a scalar product 
between two arbitrary tensors 

(E I E’) = 
s 

Ol(r)$@)&(r) dV. (2.10) 
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We can now rewrite (2.8) in the form 

F(s) = $ (a0 1 e). (2.11) 

The use of non-real (i.e. complex) tensors E, b is mandatory only ifs or C are complex. 
Otherwise we can always restrict ourselves to real F,E. However, even then it is 
sometimes convenient to allow complex 8, E: 

The strain tensor c(r) in a composite material, the boundaries of which undergo the 
displacement (2.4), is the solution of the linear integral equation (see, e.g. Wu and 
MCCULLOUGH (1977)) 

Eij(r) = C: + f 
s 

0 1 (r’)Gijk.(r, r’ ; C(2))‘6CklmnEmn(r’) d V’. 

Here G is the tensor Green’s function of the problem, which depends on C(” as well as 
on the shape of the sample, and has the symmetries 

Gijkl(r, r’) = Gijlk(r, r’) = Gjikl(r, r’) = Gklij(r’, r). (2.13) 

The integral equation (2.12) can be written in a more concise bra- and -ket notation 

Ic) = ,cO)+ fc,,:). (2.14) 

We can formally solve this equation, and substitute that solution in (2.11) to obtain 

(2.15) 

In order to make further progress, we introduce the eigenstates of the operator (? : 

Q&(Q)) = S,(&(“)). (2.16) 

Since G is a non-hermitian operator, its right eigenstates differ from its left eigenstates. 
However, from (2.13) and the definition of G we can easily see, that the complementary 
tensor E”@) of a right eigenstate E@) IS a left eigenstate of G with the same eigenvalue. In I 
we also proved that all the eigenvalues of G are real and lie in the interval (- GO, 1). 
Moreover we showed that 

s, < 0, for 6C > 0, (2.17a) 

0 d s, < 1, for 6C < 0, (2.17b) 

where SC > 0 (X < 0) means that 6C is a positive (negative) semi-definite tensor.? 
By comparing (2.16) with (2.14) we can identify the physical significance of these 

eigenstates. They are elastostatic resonances of the sample, i.e. states where the sample 

t The question of whether the eigenvalues s are a discrete set has been discussed extensively in the context 
of electrostatic properties of composites (see, e.g. BERGMAN, 1983 ; PAPANICOLAW, 1983a, b). A similarly 
general discussion of this question for elastic properties does not exist, as far as we know, though a particular 
case has been treated by KUPRADZE (1965) (see also I). In any case, this question is not of crucial importance 
for the practical derivation of bounds. 
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is internally deformed and strained although the boundaries are undeformed. 

Obviously, such resonances can occur only at values of s = s, such that Co” of (2.7) is 
unphysical. The right and left eigenstates of (? form a hopefully complete bi-orthogonal 
set of states (see, e.g. MORSE and FESHBACH, 1953) which can be used to expand the 
identity operator in the usual way 

I = c I&@)) (Pj. (2.18) 

Using this expansion, we can bring (2.15) to the form 

(2.19) 

where 

F, = ;<CO(&‘“‘) (P)1&0) = ;(<ro,&‘“‘>)2. (2.20) 

In I we showed that F, is real and satisfies 

F;s, < 0. (2.21) 

Some examples of explicit calculation of elastostatic resonances and their appli- 
cation to a systematic evaluation of F, and s, (and consequently C”‘) for some known 
microgeometries can be found in I and in KANTOR and BERGMAN (1982b). For an 
unknown microgeometry, we will treat the poles s, and their weights F, in (2.19) as free 
parameters subject to certain constraints, two examples of which are the inequalities of 
(2.17) and (2.21). 

3. SUM RULES AND SIMPLE BOUNDS 

Besides the inequalities mentioned in the previous section, the parameters F,, s, 
appearing in (2.19) must satisfy certain (moment) sum rules. Those may be obtained by 
expanding two different representations for F(s), namely (2.15) and (2.19) in powers of 
l/s. Equating the expansions order by order we thus obtain the following expression for 
the nth moment of the pole spectrum 

Q, = c F;s; = ;(E”,&n,~o). (3.1) 
a 

In general Q, is a scalar quantity whose value depends on the choice of so as well as on 
the detailed microgeometry. However, knowledge of the volume fraction p1 of the C(l) 
material suffices for the calculation of the zero moment sum rule 

Qo~~F,=~ -O o 
a 

I/ (E IE ) = $ 
s 

t3,e06C~o dV = ~,E~~CE~. (3.2) 

A knowledge of Q. is sufficient for the derivation of a simple bound on C@) as follows : 
From the inequality (2.21) and the fact that the poles s, satisfy s, < 1, 

F(l)=xF, l+ 
a ( (3.3) 
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In the usual notation we thus get 

&°C(e)&o < &“c’Z’&o + p,&06c&o = &O( C),“&O, (3.4) 

which is the well known Voigt bound (HILL, 1963). 

The Reuss bound (HILL, 1963), which is complementary to Voigt’s bound, can be 
derived from a similar formalism. The main difference in derivations is that instead of 
parametrising the local elastic stiffness tensor with the variable s (see (2.6)), we now 
parametrise the elastic compliance tensor of the material in a similar fashion. A detailed 
derivation of the Reuss bound along these lines will be given elsewhere. 

Knowledge of higher order moments Q, (n 3 1) would enable us to derive more 
restrictive bounds. From (2.9), (2.10), (3.1) and the definition of e we find that 

Q1 E 1 F;sa = ~(E”[61co) = i 8,(r)6’,(r’)&06CG(r,r’)6CEo dl/ dl/‘. (3.5) 
2 J 

In general, the evaluation of Qi requires knowledge of the volume average of the two- 
point correlation function of the microgeometry /3,(r) * O,(r’). However, in some cases, 
Q1 can be evaluated with less detailed information. 

Once Q1 is known, we can use it as an additional constraint on F, and s, and the 
bounds on F(1) can be found by varying the parameters in (2.19) subject to that 
constraint. However, these bounds can also be obtained more easily by examining the 
function 

(3.6) 

which has a structure similar to that of F(s) and can also be written as a sum of simple 
poles 

D(s) = ?A. 
a 

(3.7) 

The poles .?a are the zeroes of F(s), and there is also a pole at s = 0, unless F(s) has a pole 
at that point. The zero moment sum rule for F(s) has been incorporated in the definition 
of D(s) and is responsible for the fact that D -+ 0 as s -+ co. The first moment sum rule of 
F(s) now determines the zero moment of D(s), since by expanding (3.6) and (3.7) in 
powers of l/s we obtain 

(3.8) 

Similarly, higher order moments of D(s) can be related to the higher moments of F(s). It 
can easily be shown that all residues D, in (3.7) are negative : 

1 

o,= -ds 
d [sF(s)l,~,-, = F& -=c 0. 

a P 
(3.9) 

where we used the inequality (2.21). The poles s”, of D(s) are subject to the same 
restrictions as the poles of F(s) (see (2.17)). 
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The bounds on D(1) can now easily be found. For 6C > 0, we obtain 
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(3.10) 

or, returning to the function F, 

F(1) 2 Q;/(Qo-QI). (3.11) 

In order to translate these inequalities into an explicit lower bound for C”’ we must be 
able to evaluate Q1 explicitly. This can be done for any choice of so in the case of a 
composite with isotropic microgeometry (whose components must also be isotropic), 
leading to the well known Hashin-Shtrikman lower bound (HASHIN and SHTRIKMAN 
(1963), HILL (1963), WALPOLE (1966a, b)). The Hashin-Shtrikman upper bound can be 
obtained by a similar procedure, in which the roles of C(l) and Ct2) are interchanged. In 
that case one is lead to a different definition of F(s), and because now 6C < 0, the 
inequalities corresponding to (3.10) and (3.11) are reversed. 

Explicit bounds for composites with a microgeometry of lower symmetry (but still 
made of isotropic components) were occasionally also derived, e.g. by HILL (1963) for the 
bulk modulus in the case of cubic symmetry, and by WILLIS (1977) for all the elastic 
moduli in the case of ellipsodial symmetry. If the two-point correlation function is 
known then Qi can always be evaluated from (3.5) and explicit bounds can be found. 
For that case, a pair of bounds was derived by WILLIS (1982), which reduce to the 
Hashin-Shtrikman bounds in the case of an isotropic composite. We will show below 
that Q1 can in fact be evaluated explicitly in a whole new class of cases, without the need 

to know the two-point correlation function. This leads to new explicit bounds on elastic 
moduli for a variety of microgeometries with symmetries lower than isotropic. 

The Hashin-Shtrikman bounds are valid only in the case of (positive or negative) 
semi-definite X. When this is not the case, then the less stringent Walpole bounds 
(WALPOLE, 1966a, b) can be derived by a small modification of the above formalism. 
However, these bounds are more easily obtained from the more general formalism 
which will be presented in the next Section. 

The function F(s), as well as the moments Q,, depend on our choice of&O. Thus we can 
isolate different parts of C(@ by a proper choice of e” (see (2.8)). Thus, the choice 

(3.12) 

where d is the dimensionality of the system, selects the bulk modulus 

K(e) = EOKcwp - = $ c$!, . (3.13) 

In this context we should point out that d = 2 does not mean a really two-dimensional 
(2D) material but rather a composite in the form of parallel fibers. In such a material 
K@) is taken to denote the transverse bulk modulus while C@) is taken to denote 
the transverse stiffness tensor. For the choice (3.12) of co we find from (3.2) that 

Qg’ = p,&c, (3.14) 
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where the superscript K relates to the choice so = E”‘, and where obviously & = K(” 
--K(~‘. The evaluation of Qr for an arbitrary choice so would require, in general, a 
detailed knowledge of the two-point correlation function. However, if we restrict 
ourselves to mixtures of isotropic components, then Qp’ does not depend 011 the 
microgeometry of the composite. The stiffness tensor of the isotropic nth component of 
the composite can be written in the form 

c;$ = ?c%ij6kl + 2/_f @‘( Iijkl - ;aij&,) E 0°K’ + C@@‘, (3.15) 

(for the time being, n = 1,2) where K(“‘, p(“’ are the bulk and shear moduli (the transverse 
bulk and shear moduli in 2D) of that component, and 

Iijkl = +(b&Sj[ + djkdil) (3.16) 

is the symmetric unit tensor of rank four. 
In Appendix A we show that 

Qy’ = -pr(l -~,)~K~E’“‘(C’~‘), (3.17a) 

p’(p) - l/ 
d-l 

p’ + 2-y 

! 
(3.17b) 

for any mixture of isotropic components. When the sum rules of (3.14) and (3.17) are 
used in (3.11), and in the analogous inequality that arises when C(l) and Cc2’ are 
interchanged, the bounds that are obtained for rcte’ 

Pl 
/&e’_ #p’ 

1+(1 -pl)(?P-K(2)) 
d-l 

,(2’+2+2’ 
> 

d K(1’_ ti(2’ 

d 
PI 

I( d-l 
(3.18) 

1 -t(l -p1)(K(1’-K(2’) K(“+2+” 

have the form of the Hashin-Shtrikman bounds. However, by our method of 
derivation, it is clear that they really apply irrespective of the symmetry of the 
microgeometry. As far as we know, this fact has not been recognized before (see, e.g. 
HILL, 1963 ; WALPOLE, 1966a, b, 1969). 

A different choice of so, namely 

&‘. = so.@ s 1.. 
‘II IJ IJ12, (3.19) 

will lead us to the following expressions for the moment sum rules 

Q!?' = P~&A 

Q(/” = -pl(l -~,)~/J~E”‘(C’~‘) 

E’“‘(C’2’) = 2(zc2’ + Zp”‘)/[(d + 2)p”‘( K(” +&&b2’)]. 

(3.20) 

(3.21a) 

(3.21 b) 
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The expression (3.21) is valid only for an isotropic mixture of isotropic components (see 
Appendix A). Thus the bounds for pee) of such a composite are found to be 

1 +2(1 -P~)(c~‘~‘-c~“‘)(K-(~‘+~CL~~‘) 

d 

1+2(1 -PA(P 

which are the usual Hashin-Shtrikman bounds. However, by an appropriate 
redefinition of p(‘), the validity of these bounds can also be extended to arbitrary 
microgeometries. For example, if the microgeometry of the composite has cubic (square 
in 2D) symmetry, then its effective stiffness tensor has the form 

C$ = @)Sij& + 2p’“‘(i,, - Bijkl) + 2M “‘k”, - d ,,,,,) ZE C+) + C?‘) + C?‘), (3.23) 

where p@) and Mfe) are two (different) shear moduli, which coincide in the isotropic case, 
and 

sijkl = 

1, fori=j=k=& 

0, otherwise. 
(3.24) 

In this case two different first moments can be defined : Qp’ for a0 = E’~ (see (3.19)) and 
Qi”’ for the choice 

so =: eOM = 11 - 2( iI1 1 -1ij22)- (3.25) 

In Appendix A we show that for such a mixture of isotropic materials Qy’ in (3.21a) 
should be replaced by linear combinations of Qy) and Qr), i.e. 

(Qy’ + Qi”‘)/2 = - pl( 1 - P~)~~‘~(~)(C(~)), in 2D, (3.26) 

(3Q$@‘+2Q~“‘)/5 = -pi(l -p,)6p2E(PfC(2’), in 3D. (3.27) 

Thus, the bounds (3.22) remain valid if we replace p (e) by the linear combination (pL(e) 
+ M’“‘)/2 in 20, or by (3p”’ + 2M(“‘)/5 in 3D. 

In Appendix A we show that (3.26) remains valid even for 2D composites with an 
arbitrary (i.e. lower than square) symmetry. Consequently, the bounds obtained from 
(3.22) by the replacement p@) + (p(“‘+ M”‘)/2 in 2D remain valid irrespective of the 
symmetry. We also show there that in a 3D composite with arbitrary (i.e. lower than 
cubic) symmetry, a sum rule similar to (3.21a) holds for a certain weighted average of six 
different Qi’s. Consequently, in 3D composites of arbitrary symmetry a pair of bounds is 
shown to hold whose form is obtained from (3.22) by replacing pee) by the similarly 
weighted average of six different shear moduli. 

From all that we have said above, it is clear that while the forms of the bounds (3.18) 
and (3.22) are not new, we have succeeded in extending their ranges of validity 
considerably. These bounds were originally discovered and derived for an isotropic 
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mixture of isotropic materials, using different approaches, by HASHIN and SHTRIKMAN 
(1963) and by HILL (1963) for 3D, and by HASHIN (1965) for 2D. 

Finally we would like to mention that when higher order moments Q, (n 2 2) are 
known the entire procedure can be repeated. We can define a new function of s which is 
obtained from n(s) in the same way that D(s) was obtained from F(s) in (3.6), and which 
thus has the same pole structure. The bounds arising from that function, incorporating 
the additional information, will naturally be more stringent than the Hashin- 
Shtrikman bounds. 

4. EXTENSION OF THE THEORY 

In order to improve the Hashin-Shtrikman-type bounds it is usually necessary to 
have more detailed information on the microstructure of the composite. One way to 
obtain such information is through a knowledge of the corresponding effective elastic 
constant of ~~z~t~er composite, which is made of different components but has the same 
or a sufficiently similar microgeometry (e.g. both composites are produced by the same 
technological process). If an elastic constant of both composites is represented by the 
sarne,~~nc~i~n F(s), taken at different values of the arguments, says = 1 and s = s,, then 
knowledge of the effective elastic constant of the s+ material can be expressed in the 
form 

which becomes an additional constraint in the derivation of bounds on F(1). 
However, the form (2.6) is not flexible enough for such treatment. The argument s 

does not affect the C”’ tensor and restricts the values of the C”” tensor to lie on a 
straight line in the space of elastic constants (see (2.7)). We shall, therefore, replace (2.6) 
by a more general form. We will also extend the formalism to handle composites made 
of more than two components. 

We will represent the mi~rogeometry of a multi-component composite, by a set of 
step functions (O,), where 0, defines the microgeometry of the nth component as in (2.2). 
Sometimes we will find it convenient to split C ‘01) into a sum of several symmetric 
positive definite tensors 

CM) = c C(V), (4.2) 

as we did in the isotropic case in (3.15) and in the cubic case in (3.23) where y took the 
values ic, p, M. We again define a new stiffness tensor, that depends on the continuous 
parameter s 

C(r ; s) = C(O) + C u,+ln(r) (Ony’ - C(Oy)) = CcoJ + C u,y~,6C(ny', (4.3) 

where C(O) is an arbitrary (symmetric positive definite) tensor, and b,, are constants. For 
s = X, also v V’ = 1 and this expression reduces to the actual C(r). However, when s 
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varies the stiffness tensor in each component moves along a line in the space of elastic 
constants which, in general, will not be straight. The effective elastic constants now 
have an analytic structure as functions of s which is similar to (2.19), namely 

F(s) s &O(C(‘)- C’O’)&O = F A. 
a 

However, as things stand now, both s, and F, will, in general, be complex numbers. In 
order to facilitate their manipulation, we therefore restrict the choice of Cfot so that aff 
6C(“y’ > 0 (or all 6C (“y) d 0) and we restrict the constants b,, to be real numbers 
satisfying b,, 2 1 (0 < b,, d 1). In Appendix B we prove that, under these restrictions, 
all F, and s, are real numbers and that 

s, < 0, when all X’“y) 2 0, (4&a) 

0 d s, < 1, when at1 &Yy’ 6 0, (4.6b) 

F; s, < 0, in both cases. (4.6c) 

In Appendix B we also give explicit expressions for the moments Q. and Q1 of F(s) for 
the representation of (4.3) in the most general case. We also show that in the case of an 
isotropic mixture of isotropic components and for the choice of boundary conditions 
e” = soy (y = u or p) we obtain 

(4.7) 

Qiy) = -c pm&,, -p,)Gy’“‘Gy’“‘E’Y’(C’o))b,,b,, -‘z: p,6y’“‘b,,( 1 - bny), (4.8) 
mn n 

where &,,(n) = y(n)_._ (0) y , p,, is the volume fraction of the nth component and E(y)(C’o)) is 
defined by (3.17b) or (3.21b) with (K(~),P(~)) replaced by (K(~),$~)). 

Using this more general formalism, we are now able to derive Waipole’s bounds, i.e. 
we can treat the case of non-definite Cot-- Cf2), by a suitable choice of C(O) and b,,. In 
the isotropic case, for instance, we choose (r&O), p(O)) = (min(G, K@‘)), min($“, pt2’)) or 
(K(O), p(O)) = (max(K(‘), f2) K 
6C’“y’ > 0 (all 6C 

), max(p”‘, p’“‘)) and all b,, = 1. For a such a choice all 
(“7) < 0) and we can derive the bounds for F( 1) in the same way as in the 

previous Section. The resulting bounds are similar to (3.18) and (3.22) but with (r&l), p(l)) 
replaced by (max(@, f2) K ), max(iu(“, 6’“‘)) and (rc”), pf2’) replaced by (min(@, K(‘)), 
min(~(i),~(2))). These bounds can be extended to cases of non-isotropic mixtures of 
isotropic materials, as was done in the previous Section. 

In principle, this approach can be implemented even for a composite whose 
components are non-isotropic : We must choose C(O) to be as large as possible (as small 
as possible) under the restrictions 6C (I) > 0, X(” & 0 (SC(‘) < 0, 6C(‘) < 0) and we 
must take all b,, = 1. The bounds on C@) are again obtained from (3.11) (and its 
complementary inequality) in terms of Q, and Q1. The main problem is of course, how 
to calculate QI. Unfortunately, there is no prescription for such a calculation in the 
general case other than (3.5). 

Another advantage of the parametric representation (4.3), (4.4) is that it enables us to 
represent different composites (but having the same microgeometry) by the same 
function F(s) at different values of s, as was explained earlier. As an example we shall 
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consider two mixtures of isotropic components. The first one is composed of C”’ 
= (,‘r’,P’r’) and C’2’ = @‘2), ‘2’ ,U ), and the second one is composed of CC:’ = (K’:‘, &‘) 
and C(j) = C”‘. We will restrict ourselves to the case C”‘-C’2’ 3 0. We start by 
choosing C “I - C”’ in (4.3) and requiring that for some value s = s, # 1 the C(l) - 
material be replaced by C ‘4’. Thus the parameters in (4.3) must be chosen so as to satisfy 

#$’ = li’2’+(/p’ 
-~‘2’YC(s+ - 1)/b,,+ 11, (4.9a) 

& = P’2’+(P’1’ -P’~‘)/[(s+ -1)/b’,+ 11. (4.9b) 

If we treat s+ as given, then the b’s in (4.9) are determined by 

b,, = (K’:)-K’~))(s+ - l)/(~“‘-K’~)), (4.10a) 

b,, = (p’;‘-/~‘~‘)(s+ - l)/(p”‘-p’2’). (4. lob) 

Since both b,, and b,, must be greater than 1 in this case, these equations can be used 
only when the following inequalities are simultaneously valid 

(K’;’ -K”‘)(&‘-/&“) > 0, (4.11) 

# > K’2’, &’ > j&2’, (4.12) 

s+ 3 1 +max for Kc*‘- K’;’ > 0, (4.13a) 

O<s+ d l+min for K”‘- K’:’ < 0. (4.13b) 

Inequalities (4.11) and (4.12) limit the range of applicability of this particular 
implementation of the formalism. Different choices of C”’ (e.g. C”’ = C”‘) allow us to 
circumvent the limitations arising from (4.12) (or a similar pair of inequalities), but an 
inequality similar to (4.11) will always appear. Thus there will be pairs ofcomposites for 
which representation of an elastic modulus by a single function F(s) is impossible. 
Nevertheless, improved bounds can be derived even in those cases by a two-stage 
procedure which will be explained in the next Section. 

Finally we would like to stress that suitable choices of C”’ enable us to treat very 
general cases, including the case of non-definite C”‘- Cc2’. 

5. IMPROVED BOUNDS FROM ADDITIONAL INFORMATION 

In this Section we shall exploit the additional constraint (4.1) to derive improved 
bounds on the effective elastic constants. We shall discuss only the case when all the 
8C’“y’ appearing in (4.3) are positive semi-definite. In that case all the poles s, d 0 and 
their residues F, > 0. The case of all 6C 0~) d 0 in (4.3) is completely analogous. 

Although the entire calculation can be performed using the function F(s), it is 
convenient to introduce a new related function 

H(s) 3 F(s)/(F(s) + E~C’~‘E~) = 1 - E~C’~‘E~/E~C”‘E~. (5.1) 

Clearly, the function H(s) includes the same information about the system as does F(s). 
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Furthermore, we will now show that it also has a similar analytic structure, namely, 

(5.2) 

where the poles h, and the residues H, are all real and satisfy 

St $ h, < 0, H, > 0. (5.3) 

These poles and residues also satisfy certain sum rules. In order to demonstrate these 
properties, we note first that the poles h, must be zeros of the denominator F(s) 
+ &°C’o’~o and that, due to the structure of F(s), these zeros must lie on the negative real 
axis. At these zeros, both F(s) and its derivative are negative, and thus the residues H, 
must be positive. The lower bound s’ on h, arises by noting that even for negative s, as 
long as C(r ; s) of (4.3) is positive semi-definite in all components, C@) wiil also be 
positive semi-definite, and consequently F(s) + E~C”~‘E~ > 0. This will certainly be true 
for any s which is sufficiently negative. If we denote by s’ the most negative value of s for 
which C(r ; s) ceases to be positive semi-definite, then clearly all zeros of F(s) + E~C(~‘E~ 
must lie to its right. By expanding (5.2) and (5.1) in powers of l/s and equating the 
coefficients, we obtain the following moment sum rules for H(s) in terms of 
corresponding quantities of F(s) 

QOH FE c I-1, = Qo~~oc(o)&o, 
a 

QIH s c H,h, = QJE~C(~)~~-Q&, etc. (5.4b) 
a 

We can now manufacture bounds on H(s) in much the same way as we did for F(s), 
and these can of course be translated into bounds on either F(s) or E~C@)E~. We note 
that since H(1) is a monotonicaIly increasing function of F(i), therefore the upper 
(lower) bound on H(1) leads to an upper (lower) bound on F( 1). 

One way to obtain bounds on F(1) and H(1) is by a direct variation of the free 
parameters in (4.5) and (5.2). However, we can obtain bounds more easily by the 
following procedure. We first define two auxiliary functions 

B(s) ZE & - i 
1 s'F(s)-sQ,' 

Y(s) s 
s-s 1 

s(Qu, -~'QoH) - sC(+W(s) - QOHI ’ 
(5.5b) 

Both of these functions have an analytic structure similar to that of F(s) and H(s) : 

(5.6b) 
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where the poles b,, y, and the residues B,, Y, satisfy 

b, < 0, Y* < 0, (5.7a) 

B, > 0, y, < 0. (5.7b) 

Clearly, the poles b, of B(s) are the zeros of s(sF(s) - Qo), and they always include a pole 
at s = 0. Similarly, the poles y, of Y(s) are the zeros of s[(s - s’)H(s) - QoH], and they too 
always include a pole at s = 0. It may be noted that s’, which was defined in (5.3), 
constitutes a lower bound also on b, and y, (and, in fact, also on the poles s, of F(s)), but 
this property will not be used here. The residues B,, Y, can be evaluated in terms of 
derivatives of F and H at appropriate values of s as follows 

1 
- = -b&F(s)-Qo,,+,, = b,C F’s’ 
B, b (b,-s,)’ 

> 0, 

1 
- = -y’~[(~-s’)H(s)--e,$l,=,= = -yEI HB(SI-hf < 0, 
Y, 0 (YE--& 

(5.8b) 

thus demonstrating the inequalities (5.7b). It is now easy to convince ourselves that the 
combinations 

(5.9a) 

sY(s) = c a g$=~%+$&_ (5.9b) 
OL 2 a 3 

are a monotonic increasing function and a monotonic decreasing function, respect- 
ively. If the value of F(s) is known at some point s + (see (4.1)), and, consequently, H(s+), 
B(s+), and Y(s+) are also known, then in the case of s+ > 1 the two inequalities 

B(l) 6 s+B(s+), (5.10a) 

Y(l) 2 s+ Y(s+), (5.10b) 

provide us with an upper bound and a lower bound on F(1) that include the 
information on F(s+). These bounds are always more stringent than the Hashin- 
Shtrikman bounds. Moreover, a simple variational calculation shows that they are the 
best bounds that can be obtained by making use of the extra information on F(s +) (see 
Appendix C). In the case ofs+ < 1, the inequalities (5.10) get their signs reversed, so that 
the upper and lower bounds on F(1) and on E~C(%~ switch roles. 

We should keep in mind that Qo, Qr, QOH, QiH and s’ which appear in (5.4) and (5.5) 
depend on our choice of b,, in (4.4) (see, e.g. (4.7) and (4.8)), which themselves depend on 
s, (see (4.10)). Thus the improved bounds on the effective elastic constants depend on 
s+ and they should be optimized (made as narrow as possible) by a suitable choice of s+. 
The range of values of s + is determined by inequalities of the type (4.13). 

The extent to which the new bounds are an improvement over the Hashin- 
Shtrikman bounds can be demonstrated by the following numerical example : Suppose 
we have a 50°?-50% isotropic mixture of isotropic components C(r) = (JC(~),($‘)) 
= (10,4) and C@) = (1,2). The Hashin-Shtrikman bounds (3.18) and (3.22) on the 
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effective elastic constants of such a composite are 

3.02 < I@) < 4 48 ’ > (5.lla) 

2.78 < p@’ < 2.89. (5.11b) 

Suppose we know that C(T) = (I#,&)) = (7,4.5) for a mixture with the same 
microgeometry but with the C”’ material replaced by C(j) = (30,lO). Using this 
information in (5.10) we obtain the following new bounds 

3.41 < rc@) < 3 99 . 3 (5.12a) 

2.82 < /.P) < 2.86, (5.12b) 

which are clearly much narrower than (5.11). The optimization of these bounds with 
respect to s, (which can vary in the range defined by (4.13b)) was accomplished 
numerically. The minimal upper bound was obtained for s+ + 0 and the maximal 

lower bound was obtained when s, was equal to its maximum allowed value. 
The extent to which we can improve over the Hashin-Shtrikman bounds depends 

strongly on the differences between the elastic constants of the two materials. This fact 
can be demonstrated by the following example: Let us examine again a 50x-50% 
mixture of isotropic materials in which Cc2) = (I&~), p(2)) = (2,0.75) and C(l) 
= (xIc’~), x#~‘) where x is a continuous variable which enables the properties of the C”’ 
material to be varied continuously. Suppose we know that for x = x + = 8, i.e. for Cc:) 
= (16,6), the effective bulk modulus is K ($ = 5. Figure 1 depicts the dependence on x of 
the improved bounds. The upper and lower bounds coincide for x = x +, and begin to 

FIG. 1. Improved upper and lower bounds on the effective bulk modulus K I’) of a two-component composite 
made of isotropic components C(a) = (K”), p@‘) = (Z&0.75), c”’ = (xK@), q&‘)), as a function of x. The dashed 
lines are the Voigt (upper) and the Reuss (lower) bounds. The dot-dashed lines are the two Hashin- 
Shtrikman bounds. The solid lines are our improved bounds, obtained by including the additional 
information that for x = x+ z 8, i.e. for C(r) = Cc:’ = (16,6), the effective bulk modulus is K$? = 5. The 
improvement is most striking for x near x,, but it is quite considerable even far away from that point. Note 
that all the bounds in this figure apply in the case of a two-component composite with an arbitrary 

microgeometry. 
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diverge when x becomes larger or smaller than x + . However, even when x is far away 
from x, the bounds are still considerably narrower than the HashinShtrikman 
bounds. 

The bounds (5.10) can be used even in the case when F(s+) is not known exactly : If 
we only know that F(s+) is somewhere in the range [F;, F’i] then by inserting the 
appropriate end of that range into (5.10) we can still derive an improved bound 
(provided that the range of F(s+) itself is narrower than the Hashin-Shtrikman bounds, 
otherwise no additional information is actually supplied). 

In the previous Section we mentioned cases in which we cannot represent two 
different composites by the same function F(s). Nevertheless, we can derive an 
improved bound even in those cases by a two stage procedure which is demonstrated 
by the following example: If we have two isotropic composites made of isotropic 
components in which the C”’ material is the same but C”’ is different from C(i), and if 
@’ < K”’ < &‘, p'2) < ~'4' < p(l), then the inequality (4.11) is not satisfied and both 
composites cannot be represented by the same function F(s). However we can introduce 
a hypothetical third mixture in which Cy ’ = (~‘l’, &‘). The knowledge of C’J’ can now 
be used to first derive improved bounds on the C (” CC,’ composite, and those bounds , 
can be used in the next stage to derive improved bounds on the Cc2’, C”’ composite. 
Note that at each stage the inequality (4.11) holds. 

5. DISCUSSION 

We have presented a new approach to the calculation of rigorous bounds on the 
effective elastic constants of a composite material. Using this approach, we rederived 
some of the known bounds and extended the range of their validity to lower 
symmetries. An interesting open question is whether these extensions could also have 
been obtained from the correlation-function-dependent bounds of WILLIS (1982). We 
also showed that it is possible to improve these bounds in a straightforward manner by 
including additional information about the material in the form of higher order, 
geometric correlation functions. We then showed that our formalism can also be used 
to include other types of information about the system in order to improve the bounds 
on the effective elastic constants. Specifically, we showed that knowledge of the effective 
elastic constants of one composite can be used to improve the bounds on the elastic 
constants of another composite with the same microgeometry. The bounds thus 
obtained can be considerably narrower than the Hashin-Shtrikman bounds. Other 
types of information, including both equalities and inequalities, can also be in- 
corporated in the derivation of exact bounds. 

It should be kept in mind that the improved bounds which were derived in the 
previous Section are the best possible for a given purametric representation (4.3) und (4.4) 
of C(r; s). We used a particularly simple representation, but even then we still had to 
optimize the bounds numerically with respect to the value of the one parameter s,. 
Although the optimum values of s+ turned out empirically (i.e. by the numerical 
experiments) to be very simple (i.e. either s, = 0 or s, = the maximum possible value) 
for the case we considered, we were not able to derive a generally applicable analytical 
result for the optimal value of s +. Thus this remains an open problem. Moreover, there 



In summary, we believe that the new approach to the derivation of rigorous bounds 
on the elastic moduli of a composite material which was presented here is a very fruitful 
and promising one. While some of its uses and implications for various situations, 
where only partial information is available about the microstructure of the composite, 

have been explored, further work along these lines will surely lead to more new and 
interesting results. 
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is a possibility that a more general parametric representation of C(r ; s) would lead to 
even more stringent bounds on Ccc) from the same information. 

The representation of C@) as a sum of simple poles can also be applied in the case of 
viscoelastic materials, i.e. when the elastic tensor is complex. It seems, however, that 
one must then use a representation that is more general than (4.3) in order to endow 
C(r ; s) with enough freedom to move around in the space of complex elastic constants 
when s is varied. 
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APPENDIX A 

In this Appendix we analyze several cases in which explicit expressions for the first moment Q1 
sum rule (see (3.5)) can be obtained without detailed knowledge of the microgeometry of the 
sample. 

The tensor Green’s function G in (3.5) depends on the shape of the sample as well as on the 
elastic stiffness tensor C”’ (Wu and MCCULLOUGH, 1977). The boundary conditions used to 
derive G (i.e. undisplaced boundaries) imply that the integral SG(r, r’) dl/’ vanishes whenever the 
integration is performed over the entire sample volume. Thus subtraction of a constant from 
O,(r)U,(r’) in (3.5) will not change the result of the integration, and we can rewrite (3.5) in the 
following form 

Q, = -b 
I 

(01(r)0,(r’)-pp:)E”K’G(r,r’)6CEo dl/ dV’. (A.1) 

The constant pi was subtracted from the geometric correlation function O,(r)U,(r’) in order to 
make the average correlation decay to zero for large separation Ir-r’l, and thus have a 
nonsingular Fourier transform. In the infinite volume limit the tensor Green’s function becomes 
translationally invariant, i.e. G(r,r’) = G(r-r’), and we may perform one volume integration 
trivially in (A.l) to obtain 

Q, = E”K 
s 

f; ,(r)G(r) dl/ &YE’, (A.2) 

where 

.f, ,0-r’) = (~~,(r)O,(r’)),,-_p:. (A.3) 

When Cc2’ = (K(~),P(~)) is an isotropic material, the infinite-volume Green’s function G(r; C”‘) 
has a relatively simple form. Its Fourier transform t?(k) (see Wu and MCCULLOUGH, 1977) 
depends only on the direction of k 

Gmn;j(k) = 
A(Z) + $2) k,k,kikj 

p’2’(j~‘2’ + Q&2’) k4 - ;&T (6,ik”kj + ‘,,k,kj + 6,jk”k, + 6,jk,ki), (A.4) 

where it’) and p(Z) are the LamC constants of the C(2) material. The bulk modulus K is related to 
the Lamt: constants by 

? 
ti = i,+ !,L. 

d 
(A.5) 
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If the sample has an isotropic microgeometry, i.e. fi l(r) =fri(r)_and its Fourier transform 
7, ,(k) =yl ,(k) then, by combining this property with the fact that G depends only on the unit 
vector k^ = k/k, we can rewrite (A.2) in the form 

Qi = e”6C~i1(0); 
d s 

G$) dS&, 6Ce”, (A.6) 

where nd is the d-dimensional solid angle in k-space, and fi i(0) = p, -pf. The average of (?(I;) 
over all directions 

Rmnij c _In G,.i,{Q dRd 
d s 

(A.7) 

can be easily evaluated once we realize that the integrals which appear are of only two types, and 
that they can be found without actually performing any integration (see (A.4)). 

1 

s 

k.k. 
_ +!dQ,=$j.. 
Qd 

d II’ 

1 
~ ___ dR, = 

s 

k,k,kikj 

ad k4 

(A.81 

(A.9) 

The result (A.8) is obtained from the following consideration : Under rotations, the integral must 
behave like an invariant second rank symmetric tensor. Thus the only possibility is 

1 - s k,ki dfi, = const. - hij 
Qd k2 

The value of the constant multiplier is determined by considering the trace of the tensor 

1 
-[*dfid=i d~,=l=const:6,,=const:d. 
Sz, k2 d s 

(A.lO) 

(A.1 1) 

By analogous reasoning, the integral of (A.9) must be an invariant fourth rank tensor symmetric 
under any permutation of its indices. Thus it must be proportional to aij&,,, + 6,i6,j+ &,,j6,i 
= 6ij&,,,+21ij,,, with a coefficient whose value is easily found by considering the trace of the 
tensor. Using these results we finally obtain 

Rmnij = -- 
&P’ + (d - 2)/P’ dKc2’ + 2dpC2’ 

d(d + 2)/.i’2’[dK-‘2’ + 2(d - 1)#2’] 6mn6ij- (d + 2),j2)[dK(2) + 2(d- 1)P(2)] 
Imnij. (A.12) 

Thus Qi can be calculated from the expression 

Q1 = PI(~ -~1)~~,8CklrnnRrnnijfiCijrs~lOs (A. 13) 

for an isotropic mixture of components one of which (C”‘) is isotropic. Note that this expression 
can be used also in the case of nonisotropic C(l). When both components are isotropic we may use 
either e” = E'~ (see (3.12)) or e” = eoc (see (3.19)) to derive the expressions (3.17) or (3.21) 
respectively, for Q1 and thereafter the bounds on rc@) and #) ((3.18) and (3.22)). 

However the validity of these bounds can in fact be extended beyond the special case of 
isotropic mixtures. First we note that when both materials are isotropic and a0 = e°K then the 
expression 

&06CG(12)6C&o = - &-2E’“‘. (A.14) 

(J?“’ was defined in (3.17b)) is a constant (i.e., independent of L) and therefore a06CG(r)6Ceo is 
proportional to a delta-function. Thus the integration (A.2) is trivial and (3.17) and the bound 
(3.18) on IC(@ are universally valid regardless ofthe microgeometry ofthe composite! 

There is no such simple rule for an arbitrary shear modulus in an arbitrary composite. 
However, we can find simple rules for a particular linear combination of the shear moduli. In 2D 
we can use co = cog and e” = eoM as defined by (3.19) and (3.25) to define two different functions 
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F(s) and two different first moments Q’$” and Q\“‘, respectively. The expression 

:(EO”GCG(&)K&O’ + FP’K~(&CP) = - ?$E” (A.15) 

(E(@ was defined in (3.21 b)) is a constant (i.e. independent of l) and therefore an expression 
identical to the r.h.s. of (3.21a) is valid for the quantity gQy’+ Q\“‘) irrespective of the symmetry 
of f(r). Thus the bounds (3.22) are valid regardless of the microgeometry of the composite if ,u@’ 
which appears in (3.22) is replaced by the “average shear modulus” $(p@‘+ MC”). 

A similar procedure can be followed for shear moduli in the 3D case, but now we have to 
consider six different shears ~‘“(12) = Iij,2, ~‘~(12) = f(lijll -lijZZ), ~‘“(23) ~‘~(23) ~“‘(31) 
~‘~(31). In order to obtain a constant term similar to (A.15) we must now use the linear 
combination 

We thus conclude that (3.22) is valid for a composite with an arbitrary microgeometry only if we 
replace #’ by 

[2(M”‘( 12) + M’“‘(23) + M”‘( 13)) + 3(#‘( 12) + ~“‘(23) + @‘( 13))]/15, 

where M”‘(l2) = ~~~(12)C(%~~(l2), etc. For a microgeometry with cubic symmetry this 
expression reduces to the form (2M”‘+ 3~“‘)/5. 

APPENDIX B 

In this Appendix we analyse the analytic properties of F(s) in the case of the parametric 
representation (4.3) and (4.4). 

Let s = s, be a pole of F(s). For that value of s, there exists a resonance solution E(“‘, i.e. the 
equation 

(B.1) 

has a non-zero solution for which the corresponding displacement vector II(“) vanishes at the 
boundaries of the sample. In that case the total elastic energy of the sample must vanish (cf. 
Appendix A in I) : 

c’O’ + 1 u,&,)O,bC("Y' P’ d l’ = 0. (B.2) 
ny 

If we restrict ourselves to case of positive 6,, in (4.4) and all 6C W’ > 0 (or all 6C’“Y’ < 0) then by 
considering the imaginary part of (B.2), namely 

c I u,,M21m s, s &,c(a’*6C(“Y’~(=’ d V = 0, 

v h v 
(B.3) 

we arrive to the conclusion that Im s, = 0. Rewriting (B.2) in the form 

s da’* c [~&-,)0,C(“~‘+(l - u,,(s,))~,C~~']E'"' dl’ = 0, 
“>’ 

(B.4) 

we note that there can be no poles in the region s, > 1 (because 0 < u&s,) < 1). Moreover, from 
(B.2) and (B.4) we find that all s, < 0 in the case where all X(“y’ 2 0 and b,, 2 1, and that all 
0 < s, < 1 in the case where all 6C(“y’ < 0 and 0 < b,, < 1. 

The parameters F, and s, in (4.5) satisfy moment sum rules analogous to (3.1). The nth moment 
can be found by calculating the (n + 1)th derivative of F(s) with respect to w 3 l/s : 

n (n+l)! dw”+’ w=o’ 
(B.5) 
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This follows from an expansion of F(s) in (4.5) in powers of w. Thus, in order to evaluate the n = 0 
and n = 1 moments we must find the first and second derivatives of F at w = 0. We do this by 
using the representation for F(s): 

F(s) = ; 
5 

EC& dV-s°C’o’co. (B.6) 

The first variation of that expression is 

AF = $ 
s 

AECE dV+ k 
s 

EACE dV. 03.7) 

The first integral in (B.7) can be shown to vanish by transforming it to a surface integral and using 
the fact that Au = 0 on the surface. Using (4.3) to evaluate AC in terms of the variation of vnyr we 
finally get 

AF = ;I Au,, 6’,~8C(“% d V. 
“7 s 

(B.8) 

In the limit w = 0 (vny = 0) the sample becomes homogeneous, i.e. E = E’ and it is now 
straightforward to obtain Q. from (BS), (B.8) and (4.4) : 

Q. = ; E’ 1 O,~,&'""'E~ dV = C pnb,,~o~c’“%o. 
nY “Y 

(B.9) 

We also note that if all &?“Y) 2 0 (6C (w) < 0) in (B.8) then all the partial derivatives aF/dv,, are 
positive (negative). Under the restrictions on the form of vny, the derivatives dv,,/dw are always 
positive for real w, therefore dF/dw > 0. From this it follows that ail F, > 0 (F, < 0). 

The second variation of F is obtained from (B.8) : 

fA2F = ; 1 Au,, B,AEGC’““‘E dV. 
ny s 

(B.lO) 

We cannot evaluate this expression in the general case. However, for w = 0 (v,? = 0, E = E’) the 
variation As must satisfy the inhomogeneous differential equation 

while the displacement vector Au, which corresponds to AE, vanishes at the boundaries. The 
solution of (B.11) and the homogeneous boundary condition on Au can be written with the help 
of the tensor Green’s function G (see Wu and MCCULLOUGH, 1977), and compare with (2.12)) 
corresponding to C(O). 

hkl(r) = 
s 

c On(r’)AvnyGk,mn(r, r’ ; C(“))GC,,,l~~ dV’. (B.12) 
BY 

Substituting this result in (B.lO) we get 

Note that integrals of this type have already been evaluated in Appendix A. Following the same 
line of reasoning, we rewrite (B.13) in the form 

where 

fA2~ Iv _=o= E” 
( 

c Av,,,~Av,,GC(~~) f,,(r)G(r) dV &?‘) 
nmvfl s > 

E’, 

f,.(r -r’) = <k(r)%(r’)>,, -PP~P”. 

(B.14) 

(B. 15) 
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Expressions (A.2) and (A.3) are special cases of (B.14) and (B.15), respectively. With the help of 
these results it is now a straightforward matter to calculate d’F/dw” at w = 0, and this leads to 

Q,= C 
mnlcy 

&,(r)G(r) d V fiC%“b,pb,, 
I 

-1 [p,c”GC’“Y’&ob,,( 1 -b,,)]. (B.16) 
“7 

As in the case of a two-component composite (see Appendix A) the integrals in this equation can 
always be evaluated for an isotropic mixture of isotropic components. Thus for a0 = co7 
where y = K or y = p we obtain 

Q’? = -c P,(&,, -P,)& (m)by(n’E(Y)(Co)b,,b,,. - 1 pnGycn)bn7( 1 - b,,), (8.17) 
mn n 

where &y(“) = y’“‘- y(O), @‘)(C(‘)) is defined by (3.17b) or (3.21 b) with K”), p(2) replaced by K(O), p(O), 

and the term p,(6,, -p,) is just the value off,,(O). This result for Q 1 can be extended to the case of 
nonisotropic microgeometries, similarly to the way in which it was done for a two-component 
composite in Appendix A. 

APPENDIX C 

In this Appendix we show that the improved bounds (5.10) are the best bounds that can be 
obtained under the circumstances, i.e. when the available information consists of Q,, Qi and 
F(s+) for a given parametrization of F(s) (i.e. a given choice of D”;,(S)). We will limit our discussion 
to the bound(5.1Oa)for thecases, > 1. Other cases, i.e. the bound (5. lob) and the two bounds for 
the case s, < 1, can be treated similarly. 

The zero and first moment sum rules for F(s) have been incorporated in the definition of B(s), 
and they are responsible for the fact that B -+ 0 for s --+ Z. The zero and higher order sum rules on 
B(s) thus depend on the second and higher order sum rules on F(s). Since these higher moments 
are unknown, they do not provide any constraints on B(s). Thus we only have to include the 
constraint arising from knowledge of B(s+). Since B(s) always has a pole at s = 0 (see (5.5a)), the 
easiest way to use this constraint is by forming the combination B( 1) -s + B(s+), in which the pole 
at zero has been eliminated. The unconstrained variation of this quantity is then easily shown to 
be 

A(B(l)--s+B(s,)) = C -ABabZ(s+ -‘) (C.1) 

where the sum over a does not include the pole b, E 0. Having assumed s, > 1, the coefficient of 
AB, is always negative. By taking all AB, negative, B( 1) is thereby increased. An upper bound is 
thus obtained if we let all B, assume their lowest possible values, i.e. B, = 0 for in # 0. We thus 
obtain the upper bound 

B(l)-,s+B(s,) < 0, (C.2) 

which is identical to (5.10a) and is clearly the best possible bound under the circumstances 


