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ABSTRACT 

A NEW method is presented for a systematic evaluation of the effective elastic tensor Ccc) in a two-component 
composite. Both Ct” and local strain field are expanded in terms of a complete set of elastostatic resonances. 
The resonances are found by calculating eigenstates of a certain integral operator, and this can be carried out 
in stages. First one finds theeigenstates of individual, isolated grains or fibers, and only then does one attempt 
to calculate eigenstates of the entire composite. We apply this procedure to 2D periodic arrays of cylinders- 
both hexagonal and square. Using simple matrix perturbation techniques we obtain exact expansions for the 
elastic constants in powers of p, the volume fraction of the cyhnders, that go up to the order pi i in the case of 
bulk modulus of the hexagonal array. 

1. INTRODUCTION 

THEORIES of the effective elastic properties of composite (i.e. macroscopically in- 
homogeneous) systems have been applied to the calculation of the elastic properties of a 
variety of practically useful materials. These include polycrystalline materials as well as 
fibrous, fiber reinforced, and granular materials, porous rocks, etc. Various approaches 
to the problem have been reviewed by WATT et al. (1976). 

In recent years, an approach that is analogous to the quantum scattering theory in 
solid state physics has often been used, see, e.g., ZELLER and DEDERICHS (1973), 

KORRINGA (19731, GUBERNATIS and RRUMHANSL (1975), KR~NER (1977), GUBERNATIS et 

al. (1977a,b, 1979), GUBERNATIS (1979), WILLIS (198Oa,b) and many others. In this 
approach the elastic problem (either static or dynamic) is represented in the form of an 
integral equation, as in the case of the scattering problem. This approach led to a 
reformulation and extension of various exact bounds, and also produced some 
approximate solutions. In this approach, one usually begins by solving the one-grain 
scattering problem (frequently, in the Born or long-wave approximations), and then 
extends this to a solution of the general problem by multiple scattering techniques. This 
procedure is successful when the concentration of inclusions is low, or when the elastic 
constants of the inclusions do not differ strongly from those of the host medium, i.e., 
when the scattering is weak. 

i’ Research supported in part by the United States-Israei Binational Science Foundation under Grant No. 
2GQ6/79. 
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We also start from a scattering-theory-like representation of the elastostatic 
problem, but unlike the usual situation, our scattering operator is symmetric, though 
generally con-hermitian. Following a similar approach to one that was used in the 
electrostatic case (BERGMAN, 1979a, b) we expand the solution of the elastic problem in a 
set of eigenstates of the scattering operator, In this way we obtain a representation of 
the effective elastic constants in the form of a sum of elastostatic resonance terms, each 
one of which can be calculated from a knowledge of the appropriate eigenstate. 

In Section 2 we develop the general theory of this approach. As an example, the 
results of which are used later, we find exact analytical expressions for the resonances of 
an infmitely long cylinder made of an isotropic elastic material embedded in an infinite 
isotropic medium. 

A knowledge of the elastic resonances of individual, isolated grains allows us to set 
up the problem of finding the elastic resonances of the multi-grain system in a 
convenient way. This is developed in Section 3, and applied to a practical calculation of 
the effective elastic constants of periodic square and hexagonal arrays of cylinders in 
Section 4. By employing simple techniques of perturbation theory, this approach 
enables us to develop systematic expansions for these constants in powers of the 
volume fraction of the cylinders p. (However, we are not limited to expanding in powers 
of p!) In lowest order, we obtain in this way (different) Clausius-Mossotti-type 
expressions for both the bulk modulus k and the shear moduli of the two systems. 
Some higher order corrections to these constants are also calculated-all of them by 
using some very simple techniques of perturbation theory. In this way, we obtain 
expressions for K correct to order p” and p7 for hexagonal and cubic arrays, 
respectively. For the shear moduli we obtain expressions which are correct to order p5 
for both types of arrays. 

2. THE GENERALAPPROACM 

The strain tensor ski in a composite elastic medium is usually found by solving an 
inhomogeneous boundary value problem based on the following differential equation : 

ajCijklEkl = O* (2.1) 

where C,,(r) is the local elastic stiffness tensor. Note that we do not have to specify 
continuity conditions at the interfaces between different components--those are 
automatically ensured if we demand that (2.1) be satisfied even in places where Cijkl has 
a discontinuity. However, (2.1) must be supplemented by the compatibility conditions, 
which connect the strain ski with the derivatives of the displacement vector u : 

&kl = %(&A + &%A (2.2) 

as well as by appropriate boundary conditions on u. We will use homogeneous 
boundary conditions (see HASHIN, 1970, pp. 44-47), i.e. 

ui = E~Xj, for r = (x1,x2,x3) on the boundary, (2.3) 

where E$ is some constant tensor. These boundary conditions would cause sij to be a 
constant equal to E: if the sample were homogeneous. In the case of an inhomogeneous 
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system, Eij wili usually depend on r in a complicated manner, but its volume average will 
always be equal to E$ 

The effective elastic tensor C$& is defined by requiring that the elastic energy density 
in a homogeneous sample characterized by C@) and subject to the same boundary 
conditions et be equal to the volume average of this quantity in the real, inhomoge- 
neous sample 

1 
E~C(%~ = - 1 

V s 
ECE dl/. (2.4) 

In this equation, and often also in subsequent discussions, we have suppressed the 
tensorial indices. 

The local stiffness tensor C(r) of a two-component composite made of homogeneous 
materials with stiffness tensors C(r) and Ct2’ will be represented with the help of a step 
function # 

C(r) = C(2)+~(r)(Cc1)-Ct”)) E 02)+ Q(r)hC, (2.5) 

e(r) = 
1, r inside C(l) material 

0 I‘ outside C”’ material. 9 
(2.6) 

We shall use a somewhat more general form of (2.5) 

C(r) = Ct2) + i O(r) SC. (2.7) 

By allowing s to take arbitrary vaIues, we are actually replacing the Cd’ material by a 
different material, characterized by a stiffness tensor 

c(1)’ = c’2’+& = !@‘+ S-l 
-C(Z) 

S s s . 
(2.8) 

By a series of transformations, including a transformation from volume to surface 
integration, replacement of s by so at the surface, and a transformation back to volume 
integration, we obtain from (2.4) and (2.7) the following forms for P): 

E~C(%~ = ; 
s 

E’CE d V = ; 
s 

F~C’~‘E dV+ -& 
s 

8r06Cc d V 

= E~C%~ + -$- @~~i%‘c d K (2.9) 

Consequently, we define the function F(s) by 

(2.10) 

Obviously, F(s) is a scalar quantity that depends on our choice of co. 
The strain tensor in a composite material is also the solution of a linear integral 

equation (see, e.g., WV and MCCULLOUGH, 1977), which replaces (2.1)-(2.3) and (2.7) 
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Here G is the tensor Green’s function of the problem-it depends on Cc2) and on the 
shape of the sample. Note however, that G is independent of C(l) and of the 
microgeometry of the composite. Although G is symmetric under the interchanges 
i c--) j, k ++ 1 (just like C), and under the joint interchange i, j, r ++ k, 1, r’, we note that the 
entire integral operator in (2.11) is not symmetric. We now symmetrize it with the help 
of the “square root tensor” of 6C, denoted by Kijkl 

KK = X. (2.12) 

Note that K is symmetric under each of the interchanges i ++ j, kc) 1, ij c-) kl (just like 
X), but is not real unless SC is positive definite. We now define 

p E KE, (2.13) 

H = KGK. (2.14) 

Multiplying (2.11) by K from the left we arrive at the following integral equation : 

Pij(r) = P: + f 
s 

W)Hijdr, r’)pdr’) d I/‘, 

or, in a more concise symbolic bra-ket notation, 

IP) = IPO>+fm. 

(2.15) 

In order to make further progress, we would like to introduce eigenstates of fi and 
use them.to expand the solution of (2.16). Such an expansion requires the definition of a 
scalar product between different states 

(PIP’) = W9pi+j(r)4j(r) dv. s (2.17) 

Note that the integration is confined to the volume of C(l) material. Because the 
operator fi is symmetric, but in general non-hermitian, under this scalar product, there 
exists a set of right eigenstates Ip’“)) and a (different) set of left eigenstates (p”‘“‘I such 
that 

The two sets satisfy the bi-orthogonality relations 
1953) 

(2.18) 

(2.19) 

(see, e.g., MORSE and FESHBACH, 

(p”‘“‘I p@)) = 0, for s a # s /J’ (2.20) 

When there is degeneracy of eigenvalues, we can always choose the eigenstates so that 
they are mutually bi-orthogonal. The only property which is not automatically ensured 
is normalizability, i.e., 

(p”(@)lp(@) # 0. (2.2 1) 



Elastostatic resonances 359 

We will, therefore, have to assume that this property holds for all eigenstates, enabling 
us to normalize them to unity. This property must be verified in each particular case. It 
holds in the examples which are discussed in the following sections. 

In many practical cases 6C is a positive (negatives definite tensor and therefore K is a 
real (pure imaginary) tensor, and consequently the operator & is hermitian. Obviously, 
the eigenvalues s, are real in those cases. In Appendix A we prove that the eigenvalues 
are real even in the case of non-definite SC, i.e. non-hermitian A. 

By comparing (2.16) and (2.18) we can identify the physical significance of the 
eigenstates of r?. These are the elastostatic resonances of the sample, i.e., states where 
the sample is internally deformed and strained even though the boundaries are 
undeformed. Such a situation cannot occur for any physically allowed values of the 
elastic constants, and therefore Cif’ * m (2.8) must assume unphysical values for s = s,, 
i.e., it cannot be positive definite. 

Using the definition of the scalar product and formally solving (2.15), we may rewrite 
(2.10) in the following form : 

F(s) = -$ (po*,p) = $” (pO* I I &J PO>. (2.22) 

Note that the left hand state in this equation is the complex conjugate of p”, namely 

/PO*) = K*&o*. (2.23) 

We now use the bi-orthogonal set (assumed to be a complete set) of eigenstates of fi in 
order to write the following expansion for the identity operator 

Using this operator we can bring (2.22) to the following form : 

(2.24) 

(2.25) 

where 

F 
c( 

z i- (pO*~p’~‘)(p”f”‘lpO) 
V 

(2.26) 

In Appendix A we prove that the weights F, are real, and that the product F;s, is 
always negative (in the degenerate case, F, must be replaced in this product by the sum 
of all F, corresponding to the same value of s,). By analogy with the electrostatic 
problem in a composite material (BERGMAN and KANTOR, 1981), we believe that the 
pote spectrum in (2.25) is discrete as long as all the internal interfaces between different 
components are smooth surfaces (i.e., no corners or contact points). To the best of our 
knowledge, a rigorous proof of this conjecture exists only for the case when the two 
materials are both isotropic and have equal Poisson ratios (KUPRADZE, 1965). 
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FIG. 1. Location of the resonance values 8)’ and p W’ of the cylinder material in the K,P plane. The curves are 
defined by (3.4) (line A), (3.7) (line B), (3.10) (hyperbola branches C and D). In order to draw this set of curves, 
we assumed the particular relationship h *(21 = 1.5$‘), but otherwise the values of tc(rj, K(‘), p(‘), f11*’ are 

arbitrary. 

The corresponding eigenvalue is 

and the right eigenstate is 

> for ]z/ G R 

(3*6) 

(The superscript 0 signifies the fact that this is also an eigenstate of angular momentum 
J^ with eigenvalue pn = 0, see Appendix B). The corresponding left eigenstate is created 
by replacing (8~/6ti)r/’ in (3.6) by its complex conjugate. The displacement vector field u 
of this eigenstate is depicted in Fig. 2(a). Inside the cylinder it corresponds to a pure, 
uniform compression, while outside it is proportional to l/121. We call this state a 
“compression dipole”. 

The horizontal line in Fig. 1 (denoted by B) is described by 

(21 (2) 
P (I)‘_._ I* K 

K(2) + 2c(‘2” (3.7) 
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(a) ( b) 

FIG. 2. The displacement vector field u of (a) the compression-dipole and (b) one of the 
resonance states (the other one has the same form, but rotated by an angle n/4). 

and the corresponding eigenvalue is 

6/&P’ +2/P’) 
‘B = - 2P~2’(K’2’ + P~2’)’ 

There are infinitely many right eigenstates corresponding to this eigenvalue : 

for 1zI d R, 

shear-dipole 

(3.8) 

#fW = 

, for Izl > R, 

(3.9a) 

(3.9b) 

where m = 2 3 and where (-L-) corresponds to 
Re 

7 ,...> 
i I Im 

on the r.h.s. Each of these 

states is also an eigenstate of .?‘, with an eigenvalue equal to m2, and an eigenstate of the 
reflection operator through the x,-axis with the eigenvalue + 1. The left eigenstates are 
obtained by replacing ,/(&c/8~) by its complex conjugate in (3.9a). The u-field of the 
P(+~‘) state is depicted in Fig. 2(b). The u-field of pCmB2’ is given by the same figure but 
rotated by x/4. Inside the cylinder these two states correspond to a pure, uniform shear, 



Elastostatic resonances 363 

while outside it they decrease asymptotically like l/lzJ. We will call these states (first 
and second) “shear dipoles”. 

The curved lines in Fig. 1 (denoted by C, D) are the two branches of a hyperbola 
described by the following equation : 

pY,w’ 

K(1)‘+2P(1)’ = -p 
(2) 

. (3.10) 

From these curves, two different eigenvalues are found for s, determined by the 
following quadratic equation : 

&2p’2’(pL’2 + .(2’) + Sc,,[2/.P’6K + (r&2) + 2/P’)6~] +6/&c = 0 

and they are both infinitely degenerate. The right eigenstates are 

(3.11) 

&,~,,a [g (;y” {;} (;)zm 
P 

(fC,Dm) = [mz*zm-l-(m- l)Pz”-21 

A C,Dm 

A C,Dm E 

i[ 

m+l 112 I 
mtl 

It Ii R 

1 7 for IzJ < R (3.12a) 

9 for IzI > R 

(3.12b) 

where m = 1,2,. . . , and where A?$ and $6 are the values of p(l)’ and K(‘)’ for s = sc,,. 
The superscripts m and (k) have the same meaning as for the B-type states. The left 
eigenstates are obtained by replacing Ac,n, and (&c/S,U)‘~~ in (3.12a) by their complex 
conjugates. Outside the cylinder all of these states decrease with distance faster than the 
dipolar states p’*O) and p(*“). 

Different choices of .s” (and hence p”) enable us to isolate different parts of the tensor 
C@) [see (2. lo)]. In what follows we shall use the following choices of e” : 

E?K = ‘6.. 
V 2 I,’ (3.13a) 

E?.‘I = 1.. 
V lJ129 p$ = (26/4”2Zij12, (3.13b) 

E0.M = *(lijll -I.. ) 
IJ lJ22 3 tzijl 1 -lij22). (3.13c) 

The expressions for p” follow from (2.13) and from the K tensor given in (B.5). The 
choices (3.13a-c) select the coefficients K, p, M, defined by (3.3a-c) respectively. The 
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only non-vanishing scalar products that will appear in (2.26) will be (@(Ao)lpOX), 
(P”i+a2)/P0”) and (jjf-a2)]poM)_ 

Using these results, we can easily write down the effective elastic constants for a 
composite that has just one cylindrical inclusion. Of course, in the limit of an infinite 
volume for the host material, the effective constants approach those of the host. 
Therefore we are really interested in the corrections of order l/V for a very large volume 
of the system. To order l/V we thus find that there is only one non-zero term in (2.25). 
Choosing p” = p°K, we get 

F(s) = i (P”“*lP’Ao’>(~(Ao)lPou) =2 1 7tR26tc 

s S--s‘4 s s + liX/(rP + 2@‘) 
(3.14) 

where S is the total area of the 2D sample. Taking s = 1 and nothing that the volume 
fraction is given by p = xR2/S, we finally get 

Similarly, taking p” = p”fl we get 

(3.15) 

(3.16) 

It is obvious that M@) = it@) . m this case, and this can also be verified by a direct 
calculation with p* = p O”. Equations (3.15) and (3.16) can aiso be derived by 
considering one cylindrical inclusion in a uniform external strain field (ESHELBY, 1957). 

4. A SYSTEM OF MANY INCLUSIONS 

It is convenient to set up the problem of many inclusions of one elastic material 
embedded in another elastic medium in terms of the eigenstates of the isolated 
inclusions. In our discussion of this, we follow a similar discussion given by BERGMAN 
(1979a, b) for the electrostatic problem of many inclusions. 

For a system consisting of many non-overlapping inclusions we can write the 
5-function, which was defined in (2.6), as a sum of 5-functions of individual grains : 

5=CBu (4.1) 
a 

where a is a grain index. Similarly, the operator fi can be written as a sum of individual 
grain operators [see (2.15)] 

(42) 

Each isolated grain has its own set of eigenvalues and of right eigenstates 

& / pafab> = s,, 1 fe)) (4.3) 

and a simiIar equation for the left eigenstates. Assuming that {,P~(‘~) is a complete set of 
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eigenstates inside the ath grain, we use these states to expand any eigenstate p(‘) of the 
entire system inside the grains 

8lp”‘) = C B$&lp”‘“‘). (4.4) 
L?oL 

The various O-functions have to appear in this equation because the states pa{@ for a 
given a form a complete set of states only inside the grain a. We now use this expansion 
in order to rewrite (2.18) as a matrix equation for the expansion coefficients BtA. The 
resulting equation is 

(s~-s~~)B~~ = c (Cib”B’Itfgf?e,lpa(~z)>B~~ 
oa 

afb 
where s, is the eigenvalue of p(‘). 

(4.5) 

The matrix element appearing on the r.h.s. can be written explicitly in terms of an 
overlap integral between the individual grain states pbtat and pn@) as follows : 

(~~(~)lO~~e~l~“(a~} = ~,,($‘(~~J&,lp~~~)) = s~=~~~~~(~)*~‘(~) dV, for b # a. (4.6) 

Note that the integrand includes summation over the tensorial indices of p, and that the 
integration is only over the volume of grain b. This matrix is hermitian if the operator fi 
is hermitian. 

Having found the normalized right and left eigenvectors B@, &” as well as the 
eigenvalues s, of (4.5), we can again use (2.25) for F(s), with the weights now being 
expressed as follows : 

F, = + 
( 

x B~;<(pQ*lp”‘“‘) 
)( 

c @(p”“‘“‘lpD) 
> 

. (4.7) 
rra *a 

In the hermitian case, the two factors in round brackets are complex conjugates of each 
other up to a sign change. Since the overlap integrals decrease with the distance 
between two grains, to leading order in p (i.e., to order p*) we can neglect the r.h.s. of 
(4.5). In that order, the eigenstates are equal to the individual grain eigenstates. That is 
why (3.15) and (3.16), if used for any system of parallel cylindrical fibers, are correct to 
order p l. 

In attempting to calculate more accurate results, a great simplification occurs if the 
inclusions are all identical, and form a periodic array in space. Clearly in that case the 
matrix element of (4.6) depends on the two grain indices a and b only through their 
vector separation a-b, and the individual grain eigenvalues s,, = s, are independent of 
a. In that case, Bloch’s theorem immediately specifies the dependence of the 
eigenvectors on the grain index a 

B:,’ JN a 
r = i!__ B(r)(k) eik.s_ 

Furthermore, since p” is independent of r while p*@) is a function only of r - a, the scalar 
products (p”* I pa@)) and (do(‘)] p”> are independent of a. Consequently, (4.7) simplifies 
to 
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where there is no longer any summation over grain indices. We see that only the k = 0 
Bloch states can have non-zero weights, so that only those states need to be considered. 
For the k = 0 eigenstates (4.5) becomes 

(s, - s&B$” = c Qs,B:’ (4.10) 
LI 

where 

(4.11) 
D 

a#b 

At this point it might be worthwhile to note the similarity of this approach to the 
tight-binding method for calculating the quantum-mechanical states of an electron in a 
crystal lattice. In principle, we could get a continuous band of eigenvalues s,(k), but only 
the k = 0 state turns out to be important. 

5. PERIODIC ARRAY OF CYLINDERS 

We now apply the methods developed in the previous section to a calculation of the 
effective elastic constants of a composite in the form of a periodic array of parallel, 
identical, non-overlapping cylindrical inclusions. Both the inclusions and the host are 
taken to be isotropic, and we consider both hexagonal and square arrays. The 
individual grain eigenstates were calculated in Section 3 and Appendix B. The overlap 
integrals are listed in Appendix C. We still have to evaluate sums over matrix elements 
in order to get the Qaa of (4.11). This will involve summation of terms such as l/zm or 
Izl’/zm over all the points of an hexagonal or square plane lattice, a task which will 
usually have to be accomplished numerically. 

A special problem arises in the summation of overlap integrals between two dipole 
states : there appears a lattice sum of terms of the form lz12/z4, which is only semi- 
convergent, for which the distant contributions are just as important as the nearby 
ones. However, the states of grains that are near the surface of the system are not 
accurately given by the results of Section 3, where we assumed that the isolated cylinder 
was infinitely far away from the surface. Therefore, we can only use the overlap integrals 
of Appendix C to sum over the nearby lattice sites, and we must resort to a different 
stratagem for dealing with the distant contributions. For example, the overlap between 
two p’AO’ states (compressional dipoles) of different cylinders always vanishes. 
Nevertheless, we shall see that the sum of such interactions between all pairs of 
cylinders is nonzero: this is caused by the deviation from the infinite volume 
expressions as one of the cylinders approaches the surface of the system. Problems 
arising from semi-convergence of dipole-dipole interactions are well known, and have 
been discussed quite extensively in recent years in the context of elasticity and fluid 
mechanics (see, e.g., BATCHELOR, 1974; JEFFREY, 1974; WILLIS and ACTON, 1976). 

It seems, however, that the analogous problem in electrostatics was already solved at 
the beginning of this century by means of the concept of the local Lorentz field (cf. 
ASHCROFT and MERMIN, 1976; BERGMAN, 1979a, b). In Appendix D we show how to 
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treat these semi-convergent sums conveniently in our case. According to (D.7), if fi and 
cr are any of the dipolar states (i.e., either compressional or shear), then 

where the summation is performed over all the lattice points that lie on the inside of a 
circle of radius L, which is afterwards increased to infinity. 

If both states are compression dipoles tAo) p then, as we mentioned before all terms of 
that sum vanish and we find 

QAO,AO - -Ps,. (5.2) 

The values of the other Q’s already depend on the point s~metry of the lattice. If the 
lattice is invariant under reflection through the x,-axis, then 

Q AO,+B~ = QAO,-~2 = Q+sz.-s2 = Q-s2,+s2 =O. (5.3) 

This can easily be concluded from the expressions for the overlap integrals in 
Appendix C. 

In the case of a hexagonal lattice we find for the remaining dipolar Q’s that the lattice 
sums over a finite circle vanish, and we are left with 

Q +182,+i32 = Q-B2,-B2 = -P% (5.4) 

Thus, taking into account only the strongest (dipoledipole) interactions, the secular 
equation (4.10) for the hexagonal lattice is already in diagonal form : 

i 

%(l-P> 0 
0 %dl -PI (5.51 
0 0 

~~~~~p~ ~~~~= ~,~~~~. 

The same equations hold also for 8,. The effective elastic constants will have a similar 
form to those of a single cylinder [see (3.15) and (3.16)] but with shifted poles 

,(tt -_ f‘p”+ P 
(i/&c) + [{ 1 - p)/(@ + ,fP)] ’ 

These results are equivalent to the well-known expressions for the Ha&in-Shtrikman 
bounds on JP and ,U (e) for transversely isotropic composite materials (HAs~N, 1970, 
pp. 250-274). An identical expression for K@) was obtained by HASHIN and ROSEN (1964) 
as an exact result for a composite made entirely of parallel, two component, coated 
circular cylinders of different sizes but with identical volume ratios. Identical 
expressions for both K(=) and pee) can be obtained for dilute isotropic suspensions in 2D, 
i.e. aligned Gy~ndrieal inclusions (see ESHELBY, 1957 ; HILL, 1965 and WALPOLE, 1969, 
1972). These expressions are the elastostatic analogs of the Clausius-Mossotti or 
Maxwell-Garnett approximation in electrostatics. 

In the case of a square lattice, the remaining dipolar Q’s involve lattice sums that do 
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not vanish. Consequently, we find 

Q 
1 

rtBZ,fB2 = + lim Re(6R4 C f -2R2 C 
1+(2/P/W3 t -4 m 

O<l:J<L 0<15[<L 
1.92p2- 1.6Op = 

f 1 +(2pwy(K.(29 -p 
> 

‘I+ (5.8) 

Note that the value of the semi-convergent sum of terms {z12/z” (equal to 2.5076.. . in 
units of the lattice constant) depends cruciallv on the narticular tvtle of summation (i.e., _ _A 

all the points inside a circle). The secular equation in this case is 

i 

%(I -P) 0 0 -BQ 

0 
1.6Op- 1.!?2&? 

1+(2jP~/iP) 
0 

0 0 
1.60~ - 1.92~’ 

1 + (2j_P’/K’2’) ~~ 

-B’& 

,-B?,, 

i- A0 
’ B(‘) : 

\ 

= s, (5.9) 

and the same for &Y). 
The effective bufk modulus is thus the same as in the hexagonal lattice, but the shear 
moduli are different 

+ (l/S~) +(I -p)(@+ 2/P))/[zy’2’(rc’2’+;~2))] + [?&2)(1.60&J- f.92pZ)]/(rc(2’ +$3)’ 
(5.10) 

+ (l/&) + (1 --p)(#P’ + 2~(2~)~~2~(21(~(2} +$, - [Ic’2’(1,6Op - 1.92p2)]/(K’~’ i- ,LP) . 
(5.11) 

Note that (5.10), (5.11) and (5.7) begin to differ already at order p2. 
The order of the secular matrix, and with it the accuracy of the result, can easily be 

increased : Although Q is an infinite matrix, it is clear that the elements which connect 
higher m states are of higher and higher order in p. Therefore, when we truncate the 
matrix at some finite order m, we actually get a result which is correct to some finite 
order in p. Furthermore, many of the matrix elements vanish because (a) overlap 
integrals between some types of states vanish (due to the cylindrical symmetry of 
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individual grains), (b) many sums vanish because of the lattice symmetry, e.g. QAO, +s,,, 
vanishes for a hexagonal (square) lattice unless na is an integral multiple of 6(4). 

This allows us to obtain the elastic constants, to a rather high order in p, very easily. 
For instance, if we wish to improve the expression for race) in an hexagonal lattice, taking 
it up to order prr, we only need to diagonalize the following 2 x 2 matrix : 

s + ~~~(2){6.05~5 - 6.09~6) 
B fi’Z’(@ + $“‘) (5.12) 

\ 

It can be shown that all other elements of the secular equation do not influence the state 

P (*‘) to that order. A similar calculation performed for the square lattice yields a result 
that is correct to order p7. The bulk moduli for the two cases are then given by the 
following expressions : 

f&e) = ‘2’+p& 
1 - G/(s; - s~)~ 

1 - & - G/( s; - sB) 
+ GW, - d2 1 l-s, ’ (5.13a) 

$3 = sA(l -p), (5.13b) 

G = 0.0754 (,(s, + P(2j)2 p6, for the hexagonal lattice, 

G?c& 
G = 0.306 (,(2, +Pf2j)2 p4, for the square lattice. 

(5.13c) 

From these equations, we see that the corrections to the previous result (5.6) begin with 
order p7 (p5) for the hexagonal (square) lattice. This enables us to understand why (5.6) 
gives such excellent agreement with more precise numerical calculations of KY(~) over a 
wide range of values of p in the case of hexagonal lattice, as noted by HASHM (1970, p. 
179). 

Similarly, we can extend the results for the shear moduli to higher order in p. For 
instance, in the case of the hexagonal lattice, by diagonalizing a 2 x 2 matrix we can 
obtain pfef correctly to order pJ : 

j&e’ =: /&tr + p& 
[ 

1 - %‘h4 + lXh’~~,~)l~ 
1 - sd 1 - PI + G/(s~P) 

G= 
6p?c’2” 

(tC(2f + PcL’2))P’2’ (2.1 lp2 - 2.26p3) 1 
2 

* 

(5.14a) 

(5.14b) 

Comparing this result with (5.7) we find that the corrections begin with order p4. Again, 
this explains the good agreement between precise numerical results and (5.7) that was 
noted by HASHIN (1970, pp. 294-296). 

In the case of the square lattice the deviation of p(“’ and Mfef from (5.10) and (5.11) 
starts with order p5. Oddly enough, these corrections begin at higher order than in the 
case of the hexagonal lattice. In this case a 4 x 4 matrix must be treated in order to 
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obtain the corrections of order p’. The shear modulus of the square lattice is given by 

p(e) =: $2’ _tp& 
1 - G/A2 - RJ(sn - sc)’ - Rr,/(sn - s,J2 

1 - sn - A - R&sB - sc) - Rn(s, - sn) 

G/A2 

+ l-S, 
+ R&c -SD)? + R&b - sr,)’ 

l-s, 1 , t5 1 saj 
l-s, * 

(515b) 

(5.15c) 

A=Q +B2,+BZ cS= W311. (515d) 

The other shear modulus M(‘) is given by the same expression, except that Q+BZ, +Bz 
must be replaced by Q_B2, _B2. 

6. DISCUSSION 

We have presented a completely new approach to the calculation of effective elastic 
constants of composites whose microgeometry is known precisely. In the applications 
discussed in this article, we were able by rather simple analytical perturbative methods, 
to obtain an expansion for these constants in powers of p to a rather high order. In 
particular, we obtained Clausius-Mossotti type formulas for a square lattice of fibers 
that differ from those that are applicable to a hexagonal lattice (or a random isotropic 
configuration). We also obtained higher order corrections to those, and were able to 
discuss the validity of the Clausius-Mossotti approximations, 

We would like to stress, however, that we are by no means limited to expanding the 
elastic constants in powers of p. Using the matrix elements of Appendix C, we can take 
any finite portion of the matrix Q,@ of (4.11) and find its eigenvalues and eigenvectors 
numerically. Based on experience with the electrostatic problem (see BERGMAN, 1979b), 
we are confident that accurate results can be obtained in this way even when the fibers 
in the array are very nearly touching. Again, based on experience with the electrostatic 
problem (see KANTOR and BERGMAN, 1982), we are confident that random or quasi- 
random configurations of cylinders can also be handled effectively. 

A different situation occurs when, as it is quite often the case, we do not know the 
microgeometry of the composite precisely. In that case we cannot hope to calculate C@) 
precisely. Nevertheless, if we treat the poles sa and the weights F, in (2.25) as free 
parameters and allow them to vary, we can attempt to find rigorous upper and lower 
bounds on F(l), and hence on the various effective elastic constants. The representation 
of (2.25) turns out to be admirably suited for this procedure. A future article will be 
devoted to the derivation of bounds by this method. 

Finally, we would like to note that the elastostatic resonances which play so central a 
role in our approach are of course, implicit in other discussions ofcomposites. Thus, the 
resonances of an isolated cylindrical inclusion also appear as singularities of the t- 
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matrix for that system, and the resonances of an array of cylinders also appear as 
singularities of the T-matrix for the array. It is in going from the individual inclusion to 
the array that we use a procedure that is entirely different from the multiple scattering 
series of t-matrices for the total T-matrix, as used, for example, by ZELLER and 
DEDERICHS (1973). 
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APPENDIX A 

In this Appendix we prove that all the eigenvalues s, and all weights F, are real, and that the 
product F, * s, is always negative. 

Let Ip(“)) be an eigenstate of (2.18) with the eigenvalue s,. From (2.1), (2.7) and the definition of 
the resonant state it follows that the strain tensor E(‘), which corresponds to this state, satisfies 

(A.11 

and that the corresponding displacement vector u vanishes at the surface of the sample. We now 
form the following integral 

(-4.2) 

and add to it a similar expression but with the subscripts i and j interchanged. Integrating by 
parts, we transfer the aj operator to ui @)*, the surface integral vanishes, and we are left with 

~~l~)*(C(z)+~OdC)e’“’ dV = 0. 64.3) 

Since C@’ and 6C are both real symmetric matrices, the eigenvalue must be real even in the case 
when 6C is not a positive or negative definite form, i.e., even when Z? is not a hermitian operator. 

Since E@) is an eigenstate of a real integral operator [see (2.1 l)], and s, is a real eigenvalue, the 
real and imaginary parts of E@) are also eigenstates with the same eigenvalue. By a Gram- 
Schmidt-type orthogonalization process we can construct a complete bi-orthogonal set in which 
the right eigenstates have the form A,K&(“‘, where E ‘OL’ is a real tensor and A, is a normalization 
constant, and the left eigenstates have the form A,*K*@) (in the case of a non-degenerate 
eigenvalue this procedure is unnecessary). The normalization condition is 

1 = A,Z l ~E’“‘*K~E’“’ dV = A; l BE(~)SCE@) d V. (A.4) 

From this it follows that A, is a pure real or pure imaginary number, depending upon the sign of 
the intekral ~&‘“‘~CE w dV Comparing (A.3) with (A.4) we find that, since C”’ is a positive 
definite matrix, 

From (2.26) we find 

sgn AZ = sgn s BE(“)BCE(~) d V = - sgn s,. (A.5) 

F, = ;A& /~“8C~@) dV+A, /@dCs” dV = $( /E”6CF”’ dV) 64.6) 

and hence that F, is real and that 

sgn F, = -sgn s,. (A.7) 

In the case ofdegenerate eigenvalues s,, these statements are only guaranteed to hold for the total 
weight F, of the resonance at s,. 

Since C(l) and C@) are positive definite tensors, we can easily find from (A.3) that s, cannot 
exceed 1. If 6C is a positive (negative) definite tensor, then s, is negative (positive). 



Elastostatic resonances 

APPENDIX B 

373 

In this Appendix we describe the main steps in the ~culation of the eigenstates of an in~nitely 
long circular cylinder embedded in an infinite host medium. Both the cylinder and host materials 
are assumed to be isotropic. 

Since this 2D problem is invariant under rotations about the cylinder axis, this causes some of 
the eigenvalues of (2.18) to be infinitely degenerate. In constructing a complete set of bi- 
orthogonal eigenstates of I?, it is convenient to choose them to be eigenstates of the infinitesimal 
rotation operator J^ as well. The form in which +.? operates on a strain tensor is given by 

where C$ is the azimuthal angle in the plane. It can easily be verified that J^ is hermitian under the 
scalar product defined by (2.17) and that i? and J” commute. 

In order to solve for the eigenstates, we use the methods commonly used in 2D dastostatic 
problems (see, e.g. SOKOLNIKO~, 1956, pp. 257-282), which are slightly modified, because, at this 
stage, we allow the eigenstates to be complex. The most general solution of a 2D elastostatic 
problem in an isotropic medium may be expressed in the form 

where ul, and t12 are the components of the 2D displacement vector, the elastostatic potentials 4, 
$, A and y are analytic functions of the complex variable z = x1 +ix,, a prime denotes 
differentiation and 2 =_i + 2&. 

The eigenvalues of J are all the integers m = 0, SfI 1, f 2,. . . and the elastostatic potentials 
corresponding to its m > 0 eigenstates are 

p0 = A,Zm+l 
3 

$““’ = A zzm- I, A(‘“’ = A3/zm-l, y(“” AJP+ 1 , for m 2 2 

4”’ = A+‘, I,V’) = A, In zt A,, A(l) = A, In z+A 9, y(‘) = Ai0/z2, for m = 1 

t$“’ = A, 1 z, y!J”) = A 1 &T, Ato) = A z 13 5 yto) = A,,/z, for m = 0. 
(B.3) 

For m = - lrn/ eigenstates we must replace u(“) as produced by the above potentials by its 
complex conjugate. The coefficients Ai are arbitrary if we only require these functions to be 
eigenstates of .?. Their values are however determined when we require that these functions also 
be eigenstates of 8, that they decrease to zero for lzl 4 M, and that they be non-singular 
everywhere else. This determines certain linear combinations of these functions inside and 
outside the cylinder. From the continuity conditions at the cylinder surface we finally get four 
homogeneous equations with four unknowns for every value of m. Setting the determinant equal 
to zero leads to the resonance values of JC(‘)‘, p”)’ in terms of K(~), pc2). 

For Irnl 3 2 the resonance values satisfy either (3.7) or (3.10), for Jml = 1 they satisfy (3.10), and 
for m = 0 they satisfy (3.4). The four curves in K, ~1 space are shown in Fig. 1. For a problem with 
given values of K(I), K(‘), p(l), p(‘) the values taken by &)’ and p(l)’ must also lie on the straight 
lines given by 

#)’ 5 &+!.& 
s ’ 

(B.41 
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Consequently, the actual resonance values of Ic”)’ and $‘)’ . in a given problem are the intersection 
points of that straight line with the four curves of Fig. 1. Thus there are at most four different 
eigenvalues, denoted by sA, sn, so sn [(3.5), (3.8), (3.1 l)] in correspondence with the curves of Fig. 1. 
Correspondingly, there are four pairs of resonance elastic constants rcg?, &r; r&r, &r; etc. 

Instead of using complex E% we shall use the linear combinations (~(“)+s(-~)) and -@@‘f 
--E(-‘@), i.e. the real and imaginary parts of s @‘), for B-, C- and D-type states (in the A-type state 
there is no degeneracy, and therefore E is automatically real). These states are no longer 
eigenstates of J, but they are still eigenstates of I*, and at the same time eigenstates of the 
reflection operator through the x,-axis. The real and imaginary parts of e(“‘) have eigenvalues + 1 
and - 1 respectively, for this operator. Multipl~ng the resonance strain tensors by K [see (2.12) 
and (2.13)], which in this case is given by 

Kij#i = -.L CJtsIc) -J(sPtl Sijsk* + ~(2~~)zij~*, 

42 

(B.5) 

we obtain the eigenstates pfn), which are given by (3.6), (3.9) and (3.12). In Appendix A we 
explained how to construct the set of left eigenstates and how they should be normalized. 

APPENDIX C 

In this Appendix we list expressions for the overlap integrals between a left eigenstate of one 
cylinder situated at the origin and a right eigenstate of another cylinder located at the point z in 
the complex plane. The coefficients A, which occur in the formulas were defined in (3.9b) and 
(3.12b). The step function Be corresponds to the cylinder at the origin; R is the radius of the 

cylinders ; 
m . 

0 
IS a binomial coefficient; p&:6 and YC& are resonance values of $‘r and r&r)‘, as 

defined in Appendix B; and the notation ~LJ(*‘*~“) > means that we can take any possible 
combination of superscripts, e.g. lp ccCm)), lp(-D”)) etc. The matrix element defined by (4.6) is 
symmetric, and can be calculated with the help of an overlap integral in two different ways 

(~*(~)l~~~e=l~u(~~) = s~=(~*(~)l~*i~=(a)) 

= sb,(li;b~qe.ip~~~~). (C.1) 

Therefore the overlap integrals which are not listed below may be obtained by using (C.l). 

(~(A*)leol~(Ao)) = 0, G-4 

G++Bm)l~oiP (+Bn)) = _(~(-am)l~olp(-Bn)) 

= AB,AB, 
2nR2’“+“-2’ 

1 + 2/P/K(2) 
(-1)” Im 

(p”fiC.D”‘~~,l~f*C.D”)) = 0, (C.5) 

<~(AO)l~ol~(iC,Dm)) _; 0, (C.6) 

(C.7) 
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l&,lp’Ao’) = A,,,/(2#?’ g 
0 

112 
(y(+Bm) Ref, 

= AB~&.D~ 

2*Rl'"+"'&g 

(m- 1)p (-l) 

= Aem&.~n 
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(C-8) 

(C-9) 

(C.10) 

APPENDIX D 

In this Appendix we discuss the calculation of lattice sums of dipole-dipole interactions. We 
take an approach that is analogous to the one often used in electrostatics for calculating the sum 
over dipole-dipole interactions, which leads to the so-called “Lorentz local field” (see, e.g. 
ASHCROFT and MERMIN, 1976). 

The important properties of the elastic dipole states of an isolated cylinder are that E(‘) is 
constant inside the cylinder, and that the eigenvalue s,, is independent of the cylinder radius. If 
we define the elastic polarization density of the cylinder by 

(D.1) 

then we can find E everywhere else by solving the equation 

ajc$s;p) = -ajqy) (D.2) 

which is simply (2.1) and (2.7) rewritten in a different way. The sum of dipoledipole interactions 
between all the other cylinders and the one at the origin can be written in terms of an overlap 
integral over the volume of that cylinder, in which the integral is the product of p of that cylinder 
and the p due to all other cylinder-dipoles. The latter quantity, denoted by p”” = KsLoc, is 
calculated by considering separately the contribution of the nearby cylinders, i.e., those that lie 
within a circle of radius L around the origin (L must be much larger than the cylinder radii and 
the intergrain separations), and that of the distant cylinders : 

&loo = E!& + &Z. (D.3) 

In order to calculate the far contribution, we may replace the actual inhomogeneous polarization 
density for r > L in (D.2) by its volume average. That would lead to a solution for E denoted by 
Efnr macro. If we made the same replacement for r < L in (D.2), we would obtain the solution denoted 
by ez$‘. Finally, if we replace the inhomogeneous Pij everywhere by its (homogeneous) volume 
average, the solution of (D.2) would simply be E 3 0 (due to the zero boundary conditions). 
Therefore the sum ~r:sacfo + crrcro must vanish, and we can conclude that 

&far - Efnr 
lot _ macro = _smac’o 

“‘ZX (D.4) 

and hence 

In order to evaluate e;tF close to the origin, we note that this is again a strain field in a kind of 
cylinder inclusion at the origin (a very large one-its radius is L!) that is entirely due to the 

uniform polarization density A p ICE” . inside that cylinder. This is reminiscent of the situation 
Llll 
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we described earlier for the actual cyhndricai inclusion at the origin a, where the strain field could 

be viewed as resulting from a uniform polarization density &riCs”(ur inside the cylinder. 

Consequently, we may conclude that E~:F is the same as E@), except for the factor p, namely 

a:;;? = pea’(=) 03.6) 

at all points that are inside both cylinders (the large one and the small one). 
When this result is used to substitute for the sum of contributions to E from all the dipoles 

except the one at the origin, we find 

Qs. = c ($ts~Jf&r?t3&“‘“‘) 

Of,:-bl 

= c (~bfP)/s*#o,lp”‘“‘>-p(p~~‘1B,E?e,lp”’”’) 

Ofln%l<L 

= C (~6c8)l@?t?,lp”‘“‘> -a,&,, (D.71 

Clf,~~bl<L 

In this equation, L must be large enough so that the use of an average polarization density for 
r > L is a good approximation. In practice, one sums the series over a set of circles with larger and 
larger L until convergence is obtained [see (5.1)]. 


