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ABSTRACT

A NEw method is presented for a systematic evaluation of the effective elastic tensor C* in a two-component
composite. Both C* and local strain field are expanded in terms of a complete set of elastostatic resonances.
The resonances are found by calculating eigenstates of a certain integral operator, and this can be carried out
in stages. First one finds the eigenstates of individual, isolated grains or fibers, and only then does one attempt
to calculate eigenstates of the entire composite. We apply this procedure to 2D periodic arrays of cylinders—
both hexagonal and square. Using simple matrix perturbation techniques we obtain exact expansions for the
elastic constants in powers of p, the volume fraction of the cylinders, that go up to the order p'! in the case of
bulk modulus of the hexagonal array.

1. INTRODUCTION

Tueories of the effective elastic properties of composite (ie. macroscopically in-
homogeneous) systems have been applied to the calculation of the elastic properties of a
variety of practically useful materials. These include polycrystalline materials as well as
fibrous, fiber reinforced, and granular materials, porous rocks, etc. Various approaches
to the problem have been reviewed by WATT et al. (1976).

In recent years, an approach that is analogous to the quantum scattering theory in
solid state physics has often been used, see, e.g., ZELLER and DEDERICHS (1973),
KORRINGA (1973), GUBERNATIS and KRUMHANSL (1975), KRONER (1977), GUBERNATIS et
al. (1977a,b, 1979), GUBERNATIS (1979), WiLLis (1980a,b) and many others. In this
approach the elastic problem (either static or dynamic) is represented in the form of an
integral equation, as in the case of the scattering problem. This approach led to a
reformulation and extension of various exact bounds, and also produced some
approximate solutions. In this approach, one usually begins by solving the one-grain
scattering problem (frequently, in the Born or long-wave approximations), and then
extends this to a solution of the general problem by multiple scattering techniques. This
procedure is successful when the concentration of inclusions is low, or when the elastic
constants of the inclusions do not differ strongly from those of the host medium, ie.,
when the scattering is weak.

t+ Research supported in part by the United States-Israel Binational Science Foundation under Grant No.
2006/79.
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We also start from a scattering-theory-like representation of the elastostatic
problem, but unlike the usual situation, our scattering operator is symmetric, though
generally non-hermitian. Following a similar approach to one that was used in the
electrostatic case (BERGMAN, 1979a,b) we expand the solution of the elastic problemina
set of eigenstates of the scattering operator. In this way we obtain a representation of
the effective elastic constants in the form of a sum of elastostatic resonance terms, each
one of which can be calculated from a knowledge of the appropriate eigenstate.

In Section 2 we develop the general theory of this approach. As an example, the
results of which are used later, we find exact analytical expressions for the resonances of
an infinitely long cylinder made of an isotropic elastic material embedded in an infinite
isotropic medium.

A knowledge of the elastic resonances of individual, isolated grains allows us to set
up the problem of finding the elastic resonances of the multi-grain system in a
convenient way. This is developed in Section 3, and applied to a practical calculation of
the effective elastic constants of periodic square and hexagonal arrays of cylinders in
Section 4. By employing simple techniques of perturbation theory, this approach
enables us to develop systematic expansions for these constants in powers of the
volume fraction of the cylinders p. (However, we are not limited to expanding in powers
of p!) In lowest order, we obtain in this way (different) Clausius—Mossotti-type
expressions for both the bulk modulus & and the shear moduli of the two systems.
Some higher order corrections to these constants are also calculated—all of them by
using some very simple techniques of perturbation theory. In this way, we obtain
expressions for x correct to order p'! and p’ for hexagonal and cubic arrays,
respectively. For the shear moduli we obtain expressions which are correct to order p*
for both types of arrays.

2. THE GENERAL APPROACH

The strain tensor &, in a composite elastic medium is usually found by solving an
inhomogeneous boundary value problem based on the following differential equation:

0Cimen =0, 2.1

where C,;,(r) is the local elastic stiffness tensor. Note that we do not have to specify
continuity conditions at the interfaces between different components—those are
automatically ensured if we demand that (2.1) be satisfied even in places where C;;, has
a discontinuity. However, (2.1) must be supplemented by the compatibility conditions,
which connect the strain g, with the derivatives of the displacement vector u:

& = 30ty + Oy1ay), 2.2)

as well as by appropriate boundary conditions on u. We will use homogeneous
boundary conditions (see HASHIN, 1970, pp. 44-47), ic.

u; = e)x;, for r=(xy,x, x;)on the boundary, (2.3)

where ¢} is some constant tensor. These boundary conditions would cause ¢; to be a
constant equal to &2} if the sample were homogeneous. In the case of an inhomogeneous
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system, &;; will usually depend on r in a complicated manner, but its volume average will
always be equal to &},

The effective elastic tensor C g?,{, is defined by requiring that the elastic energy density
in a homogeneous sample characterized by C*® and subject to the same boundary
conditions & be equal to the volume average of this quantity in the real, inhomoge-
neous sample

£0C¥0 = iV f eCe dV. 24

In this equation, and often also in subsequent discussions, we have suppressed the
tensorial indices.

The local stiffness tensor C(r) of a two-component composite made of homogeneous
materials with stiffness tensors C*) and C® will be represented with the help of a step
function 6

C(r) = CP+6(r)(CH - C?) = C? +0(r)6C, (2.5)
Lrinside C“ material
0tr) = {O,r outside C) material. (26)
We shall use a somewhat more general form of (2.5)
1
Cr) = CP + ;9(:) oC. 2.7

By allowing s to take arbitrary values, we are actually replacing the C*? material by a
different material, characterized by a stiffness tensor

cv — oy lse = lew 37l e 2.8)
s s s
By a series of transformations, including a transformation from volume to surface
integration, replacement of ¢ by £° at the surface, and a transformation back to volume
integration, we obtain from (2.4) and (2.7) the following forms for C©:
1 1 1
000 — | OCe dV = — | 0™ _ Y
eC%% VJ.S e d erC GdV-!‘-SVJ‘QSéCSdV
1
= g°C{2’s°+;—ﬁ J 0e5Ce dV. (2.9)
Consequently, we define the function F(s) by
1
F(s) = e°C@® —0C@e0 = WJ’QS()éCE dv. (2.10)
Obviously, F(s) is a scalar quantity that depends on our choice of £°.

The strain tensor in a composite material is also the solution of a linear integral
equation (see, e.g., WU and McCULLOUGH, 1977), which replaces (2.1)~2.3) and (2.7)

1
8:‘3'(") = 8,‘0} + ‘; J B(I)fok;(f, l") 5Ck;m,,8w,(l") dv.. (2. 1 1)
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Here G is the tensor Green’s function of the problem—it depends on C® and on the
shape of the sample. Note however, that G is independent of C*) and of the
microgeometry of the composite. Although G is symmetric under the interchanges
i j, k[ (just like C), and under the joint interchange i, j, r < k, [, ¥, we note that the
entire integral operator in (2.11) is not symmetric. We now symmetrize it with the help
of the “square root tensor” of 6C, denoted by K,

KK = oC. (2.12)

Note that K is symmetric under each of the interchanges i« j, k < [, ij «> ki (just like
8C), but is not real unless 6C is positive definite. We now define

p = Ke, (2.13)
H = KGK. (2.14)
Multiplying (2.11) by K from the left we arrive at the following integral equation:

1
pr) = pii+ 5 f@(r)H it ¥) i) AV, (2.15)
or, in a more concise symbolic bra-ket notation,
o 1 A
lp>=1p >+;HIp>- (2.16)

In order to make further progress, we would like to introduce eigenstates of H and
use them to expand the solution of (2.16). Such an expansion requires the definition of a
scalar product between different states

plp'> = f(?(r)ﬂ?j(r)ﬂi,-(r) dv. (2.17)

Note that the integration is confined to the volume of C") material. Because the
operator H is symmetric, but in general non-hermitian, under this scalar product, there
exists a set of right eigenstates | p®) and a (different) set of left eigenstates (5| such
that

H|p®) = s5,1p>, (2.18)

PONH = {59s, (2.19)

The two sets satisfy the bi-orthogonality relations (see, e.g., MORSE and FESHBACH,
1953)

pPpPy =0, for s, #s; (2.20)

When there is degeneracy of eigenvalues, we can always choose the eigenstates so that

they are mutually bi-orthogonal. The only property which is not automatically ensured
is normalizability, i.e.,

P9 p@> # 0. (2.21)
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We will, therefore, have to assume that this property holds for all eigenstates, enabling
us to normalize them to unity. This property must be verified in each particular case. It
holds in the examples which are discussed in the following sections.

In many practical cases 8C is a positive (negative) definite tensor and therefore Kisa
real (pure imaginary) tensor, and consequently the operator H is hermitian. Obviously,
the eigenvalues s, are real in those cases. In Appendix A we prove that the eigenvalues
are real even in the case of non-definite 8C, i.e. non-hermitian H.

By comparing (2.16) and (2.18) we can identify the physical significance of the
eigenstates of H. These are the clastostatic resonances of the sample, i.e., states where
the sample is internally deformed and strained even though the boundaries are
undeformed. Such a situation cannot occur for any physically allowed values of the
elastic constants, and therefore C** in (2.8) must assume unphysical values for s = s,,
i.e., it cannot be positive definite.

Using the definition of the scalar product and formally solving (2.16), we may rewrite
(2.10) in the following form:

1 0
—|%- 222

i 1
F@o) =~ p*1p> = 7<p°*

Note that the left hand state in this equation is the complex conjugate of p°, namely
[pP*> = K*e%* (2.23)

We now use the bi-orthogonal set (assumed to be a complete set) of eigenstates of H in
order to write the following expansion for the identity operator

=310 <. 2249

Using this operator we can bring (2.22) to the following form :

F
Fi) =% == (2.25)
where
1
Fa= <0055 0. (2.26)

In Appendix A we prove that the weights F, are real, and that the product F,-s, is
always negative (in the degenerate case, F, must be replaced in this product by the sum
of all F, corresponding to the same value of s,). By analogy with the electrostatic
problem in a composite material {BERGMAN and KANTOR, 1981), we believe that the
pole spectrum in (2.25) is discrete as long as all the internal interfaces between different
components are smooth surfaces {(i.e., no corners or contact points). To the best of our
knowledge, a rigorous proof of this conjecture exists only for the case when the two
materials are both isotropic and have equal Poisson ratios (KUPRADZE, 1965).
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3. IsoLATED CYLINDRICAL INCLUSION

In this section we discuss the problem of a single infinitely long cylinder, with radius
R and stiffness tensor CY), embedded in an infinite medium with elastic tensor C®
Both C*" and C*® are assumed to be isotropic. We shall concentrate on the two-
dimensional (2D) elastic problem in the plane perpendicular to the cylinder axis.
Adding the third direction is a trivial matter. The stiffness tensor in a 2D isotropic
material has the form

CUP = A028,.8, + 2u0 D 3.1)
where
Ly = ’%‘(5:'&5;:“‘5;'15;&) (3.2)

and where the subscripts stand for two orthogonal directions in the plane. If we are
discussing the plane strain problem, where the u; component of the displacement
vector u vanishes, then the Lamé constants A and p are the same as the usual three-
dimensional constants. However, when we discuss the plane stress situation, where the
613,033, 033 cOmponents of the stress tensor vanish, then 2 must be replaced by 2Au/(4
+2u) (see, e.g., SOKOLNIKOFF, 1956, pp. 250-257). The 2D shear modulus is equal to g,
while the 2D bulk modulus is given by x = A4

In what follows we will discuss, among others, systems with square symmetry. Such
systems are characterized by three independent elastic constants, which we shall choose
as follows:

k= 3(C101 +Cr222+2C 122), (3.3a)
p=Ciao. (3.3b}
M =3Cyyy1+Cr23,—2C 122). (3.39)

The additional shear modulus M coincides with u for an isotropic system.

It is convenient to represent both components of the 2D displacement vector
u{x,, x,) as functions of the complex variable z = x, -+ix,. A detailed calculation of the
elastostatic resonances is given in Appendix B—only the final results are presented
here.

As we explained in Section 2, the eigenstates can occur only for special, non-physical
values of C". In the isotropic case, C'*V is completely characterized by the
bulk modulus x‘V" and the shear modulus u™" of cylindrical material. The resonant
values of these parameters lie upon four curves in the ', u*”" plane, as shown in Fig. 1.
Note that there are no resonances in the physical part of the plane, where ' and p
are both positive.

As we vary s, (2.8) constrains k' and 4™ to move along a straight line in that plane.
The eigenvalues s, are determined by the intersection of that line with the four curves of
Fig. 1. Consequently, there are at most four different eigenvalues, and correspondingly
a high degree of degeneracy.

The vertical line in Fig. 1 (denoted by A) is described by

o g——_ (3.4)
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P

F1G. 1. Location of the resonance values k)" and u™" of the cylinder material in the x, 1 plane. The curves are
defined by (3.4) (line A), (3.7) {line B}, (3.10) (hyperbola branches C and D). In order to draw this set of curves,
we assumed the particular relationship x® = 154 but otherwise the values of xV, k@, ), 12 are

arbitrary.
The corresponding eigenvalue is
oK
Sy = “W’ (3.5
and the right eigenstate is
| 1
e ] , for |z]<R
o\ |VeRR |
pAO =1 P = (3.6)
, -1
(A0} 5.\ 172
Piz R ou 1
e | R - , & .
Jon) (éx) e b or |z|>R

-1

(The superscript O signifies the fact that this is also an eigenstate of angular momentum
J with eigenvalue m = 0, see Appendix B). The corresponding left eigenstate is created
by replacing (6y/6x)*/? in (3.6) by its complex conjugate. The displacement vector field u
of this eigenstate is depicted in Fig. 2(a). Inside the cylinder it corresponds to a pure,
uniform compression, while outside it is proportional to 1/|z|. We call this state a
“compression dipole”.

The horizontal line in Fig. 1 (denoted by B) is described by

#(2},{(2}

(ay - _ ,
K@ 20

u 3.7
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FiG. 2. The displacement vector field u of (a) the compression-dipole and (b) one of the shear-dipole
resonance states (the other one has the same form, but rotated by an angle n/4).

and the corresponding eigenvalue is

o ou(k® +2u) 18
BT T LD+ i) (3:8)
There are infinitely many right eigenstates corresponding to this eigenvalue
—1
R
AB,,,{ e} |72 , for |zl <R
Im .
—i
1
R2m=13 2y | 2,2 /5,\1/2 (R 1
ptzom ), S0 K|S (0K U - (3.92)
" k@24 | k@ \spu Im 0 z*m
Re ! (m+1) R2
mz m
+{Im} - ! [z*”‘“ Tl for |z|> R,
\ i
m—1\"% 1
Ag, = —_— 3.9b
Bm ( 27'[ ) Rm*l ( )

R
where m = 2,3,..., and where (+) corresponds to {I;} on the r.h.s. Each of these

states is also an eigenstate of J2, with an eigenvalue equal to m?, and an eigenstate of the
reflection operator through the x,-axis with the eigenvalue + 1. The left eigenstates are
obtained by replacing ./(dx/dpu) by its complex conjugate in (3.9a). The u-field of the
'+ B2 state is depicted in Fig. 2(b). The u-field of p*~B? is given by the same figure but
rotated by n/4. Inside the cylinder these two states correspond to a pure, uniform shear,
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while outside it they decrease asymptotically like 1/|z|. We will call these states (first
and second) “shear dipoles”.

The curved lines in Fig. 1 (denoted by C, D) are the two branches of a hyperbola
described by the following equation:

1y .y
e
m = _“(2). (3.10)

From these curves, two different eigenvalues are found for s, determined by the
following quadratic equation:

SEp2u PP + k) - sc p[ 24P 0+ (kP + 2uP) 6] + bk = 0 (3.11)

and they are both infinitely degenerate. The right eigenstates are

1
2y (3x\M2 R
ACDm —#%,l—) '—'i € 1 Zm
' K3E \éu Im
’ 0
—1
(£C,Dm) Re *,m—1 2 m-2
pECDm — + Im 1|[mz*z" ' —(m—1)R?*z2""*}|, for |z]<R (3.12a)
—i
e (R N\ 1
AcpmR F{Im} —'1 Tl , for |z]>R
L —1i
m+1 12
Acpm = 1 (3.12b)

o . .
n[gg uh/Rgh) + 2}

where m = 1,2,..., and where u¢}, and x{}, are the values of u* and x*” for s = s¢ p.
The superscripts m and (1) have the same meaning as for the B-type states. The left
eigenstates are obtained by replacing A p,, and (6x/51)*/ in (3.12a) by their complex
conjugates. Qutside the cylinder all of these states decrease with distance faster than the
dipolar states p»® and pf*82),

Different choices of £° (and hence p°) enable us to isolate different parts of the tensor
C® [see (2.10)]. In what follows we shall use the following choices of £°:

Sk 1/2
&y =10, Py = (7) iy (3.13a)
88‘" = Lij1», p%“ = (26”)1/211712’ (3.13b)
oM _ 1 om _ (1"
ejn =3lij11 —1ij20), pij- = 5 (Liji1 —Lij2a). (3.13¢)

The expressions for p° follow from (2.13) and from the K tensor given in (B.5). The
choices (3.13a—) select the coefficients x, p, M, defined by (3.3a—c), respectively. The
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only non-vanishing scalar products that will appear in (2.26) will be (p4%]p%>,
<PUBHNp% and (H7BY| M),

Using these results, we can easily write down the effective elastic constants for a
composite that has just one cylindrical inclusion. Of course, in the limit of an infinite
volume for the host material, the effective constants approach those of the host.
Therefore we are really interested in the corrections of order 1/V for a very large volume
of the system. To order 1/V we thus find that there is only one non-zero term in (2.25).
Choosing p° = p°*, we get
Lo *p A G100y 1 mR*6k

Fs) = — !
©=3 s—5, S 5+ 01/ + 242

(3.14)

where § is the total area of the 2D sample. Taking s = 1 and nothing that the volume
fraction is given by p = nR?/S, we finally get

o) _ 14
© = s R .

Similarly, taking p°® = p°* we get
p
(1/81) + {(® + 242N/ L2121 P + p®)J}

It is obvious that M® = u® in this case, and this can also be verified by a direct
calculation with p°® = p™. Equations (3.15) and (3.16) can also be derived by
considering one cylindrical inclusion in a uniform external strain field (EsHELBY, 1957).

p® =+ (3.16)

4. A SYSTEM OF MaNY INCLUSIONS

It is convenient to set up the problem of many inclusions of one elastic material
embedded in another elastic medium in terms of the eigenstates of the isolated
inclusions. In our discussion of this, we follow a similar discussion given by BERGMAN
(1979a,b) for the electrostatic problem of many inclusions.

For a system consisting of many non-overlapping inclusions we can write the
f-function, which was defined in (2.6), as a sum of #-functions of individual grains:

=Y 0, @.1)

where a is a grain index. Similarly, the operator H can be written as a sum of individual
grain operators [see (2.15)]

A=YH, (4.2)
Each isolated grain has its own set of eigenvalues and of right eigenstates

H,|p™™> = 550" (4.3)

and a similar equation for the left eigenstates. Assuming that {p°®} is a complete set of
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eigenstates inside the gth grain, we use these states to expand any eigenstate p™ of the
entire system inside the grains

01> =3 BROIp™>. (4.4)

The various f-functions have to appear in this equation because the states p™® for a
given a form a complete set of states only inside the grain a. We now use this expansion
in order to rewrite (2.18) as a matrix equation for the expansion coefficients BY). The
resulting equation is

»—Spp) Bl = Z {pP16,H8,] p* > B (4.5)
a%b
where s, is the eigenvalue of p.

The matrix element appearing on the r.hs. can be written explicitly in terms of an
overlap integral between the individual grain states p*® and p°® as follows:

B P10,A0,1p"y = 5,,(p" 16,10 = 5,,[0,5°P*p" AV, for b#a. (46)

Note that the integrand includes summation over the tensorial indices of p, and that the
integration is only over the volume of grain b. This matrix is hermitian if the operator A
is hermitian.

Having found the normalized right and left eigenvectors B{}, B{} as well as the
eigenvalues s, of (4.5), we can again use (2.25) for F(s), with the weights now being
expressed as follows:

1 "
- 7(2 Bsxp"*rp“%) (z Bf:.3<ﬁ“‘“’sp°>) @47

In the hermitian case, the two factors in round brackets are complex conjugates of each
other up to a sign change. Since the overlap integrals decrease with the distance
between two grains, to leading order in p (i, to order p°) we can neglect the r.h.s. of
(4.5). In that order, the eigenstates are equal to the individual grain eigenstates. That is
why (3.15) and (3.16), if used for any system of parallel cylindrical fibers, are correct to
order p'.

In attempting to calculate more accurate results, a great simplification occurs if the
inclusions are all identical, and form a periodic array in space. Clearly in that case the
matrix element of (4.6) depends on the two grain indices a and b only through their
vector separation a—b, and the individual grain eigenvalues s,, = s, are independent of
a. In that case, Bloch’s theorem immediately specifies the dependence of the
eigenvectors on the grain index a

1
BY) = \/ N —— BO(k) 2, (4.8)
Furthermore, since p° is independent of r while p® is a function only of r —a, the scalar
products (p°*|p*®> and ($*®|p°> are independent of a. Consequently, (4.7) simplifies
to

F,= ’;rm(zwk 00| “@>)(z§m(k 0<5lp °>) @9)
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where there is no longer any summation over grain indices. We see that only the k = 0
Bloch states can have non-zero weights, so that only those states need to be considered.
For the k = 0 eigenstates (4.5) becomes

(s,——s,,)Bf," = Z Q,,Bg” (4.10)
where
Qs = Y, <p*P)16,H8,p"™>. 4.11)
a;b

At this point it might be worthwhile to note the similarity of this approach to the
tight-binding method for calculating the quantum-mechanical states of an electron in a
crystal lattice. In principle, we could get a continuous band of eigenvalues s,(k), but only
the k = O state turns out to be important.

5. PERIODIC ARRAY OF CYLINDERS

We now apply the methods developed in the previous section to a calculation of the
effective elastic constants of a composite in the form of a periodic array of parallel,
identical, non-overlapping cylindrical inclusions. Both the inclusions and the host are
taken to be isotropic, and we consider both hexagonal and square arrays. The
individual grain eigenstates were calculated in Section 3 and Appendix B. The overlap
integrals are listed in Appendix C. We still have to evaluate sums over matrix elements
in order to get the @y, of (4.11). This will involve summation of terms such as 1/z™ or
Iz|2/z™ over all the points of an hexagonal or square plane lattice, a task which will
usually have to be accomplished numerically.

A special problem arises in the summation of overlap integrals between two dipole
states: there appears a lattice sum of terms of the form |z|2/z%, which is only semi-
convergent, for which the distant contributions are just as important as the nearby
ones. However, the states of grains that are near the surface of the system are not
accurately given by the results of Section 3, where we assumed that the isolated cylinder
was infinitely far away from the surface. Therefore, we can only use the overlap integrals
of Appendix C to sum over the nearby lattice sites, and we must resort to a different
stratagem for dealing with the distant contributions. For example, the overlap between
two p®® states (compressional dipoles) of different cylinders always vanishes.
Nevertheless, we shall see that the sum of such interactions between all pairs of
cylinders is nonzero: this is caused by the deviation from the infinite volume
expressions as one of the cylinders approaches the surface of the system. Problems
arising from semi-convergence of dipole—dipole interactions are well known, and have
been discussed quite extensively in recent years in the context of elasticity and fluid
mechanics (see, e.g., BATCHELOR, 1974 ; JEFFREY, 1974 ; WILLIS and ACTON, 1976).

It seems, however, that the analogous problem in electrostatics was already solved at
the beginning of this century by means of the concept of the local Lorentz field (cf.
ASHCROFT and MERMIN, 1976 ; BERGMAN, 1979a,b). In Appendix D we show how to
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treat these semi-convergent sums conveniently in our case. According to (D.7),if fand
a are any of the dipolar states (i.e., either compressional or shear), then
Qp=lim Y (FPI0,HO,1p"> 5,08, 6.1

L-w a
O#[b-al<L

where the summation is performed over all the lattice points that lie on the inside of a
circle of radius L, which is afterwards increased to infinity.

If both states are compression dipoles p*® then, as we mentioned before all terms of
that sum vanish and we find

Qao.a0 = —PSa (52

The values of the other Q’s already depend on the point symmetry of the lattice. If the
lattice is invariant under reflection through the x,-axis, then

Quo.+82 = Qao,-p2 = Qun2,-52 = Q 82,452 =0. (5.3)

This can easily be concluded from the expressions for the overlap integrals in
Appendix C.

In the case of a hexagonal lattice we find for the remaining dipolar Q’s that the lattice
sums over a finite circle vanish, and we are left with

Qis2,+m2 = @ 52, -82 = —PSa (5.4)

Thus, taking into account only the strongest (dipole—dipole) interactions, the secular
equation (4.10) for the hexagonal lattice is already in diagonal form:

ssl—p) O 0 B, B%
0 sg(1—p) 0 B8, |=5,{ B%s; | (5.5)
0 Y sa(1—p)/ \B%, B%%,

The same equations hold also for B,. The effective elastic constants will have a similar
form to those of a single cylinder [see (3.15) and (3.16)] but with shifted poles

& _ (2 p
K = N T L= PO+ T’ )

) . Axle) _ (2 r
WO = MO =y )+(1/5u)+{(1—p)(x‘z’+2u‘2’)/[2u‘2’(t<‘2’+#‘”)]}' G

These results are equivalent to the well-known expressions for the Hashin—Shtrikman
bounds on x'* and u © for transversely isotropic composite materials (HasHIN, 1970,
pp. 250-274). An identical expression for k' was obtained by HASHIN and Rosen (1964)
as an exact result for a composite made entirely of parallel, two component, coated
circular cylinders of different sizes but with identical volume ratios. Identical
expressions for both k® and ' can be obtained for dilute isotropic suspensions in 2D,
i.c. aligned cylindrical inclusions (see ESHELBY, 1957 ; HiLr, 1965 and WALPOLE, 1969,
1972). These expressions are the elastostatic analogs of the Clausius~-Mossotti or
Maxwell-Garnett approximation in electrostatics.

In the case of a square lattice, the remaining dipolar Qs involve lattice sums that do
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not vanish. Consequently, we find

1 . / 1 iz

Ooron = i m we(or 3 o ¥ ool
0<lzi<L o<|zi<L
1.92p2 — 1.60p

"("1+(2u‘2’)/(x<2’)"“” w09

Note that the value of the semi-convergent sum of terms |z|%/2* (equal to 2.5076. .. in
units of the lattice constant) depends crucially on the particular type of summation (i.e.,
all the points inside a circle). The secular equation in this case is

$a(l—p) 0 0 " BY
1.60p—1.92p* .
T 0 B
0 0 1 1.60p— 1.92p?
Sp —p + 1+(2,Ll(2)/l€(2)) J B(:)BZ
B

=5, B2 | (59
('B(:)Bz
and the same for BY.

The effective bulk modulus is thus the same as in the hexagonal lattice, but the shear
moduli are different

u(e) - “(2)
+ 14
(1/0m)+(1 — p) e+ 20PN [262 1 + )] + [1(1.60p — 1.92p7)1 /(6 + 4y’
(5.10)
M© = @
+ p
(1/64) + (1 =Y + 2uPY 125D + @]~ [P(1.60p— 1929716+ u®)
(5.11)

Note that (5.10), (5.11) and (5.7) begin to differ already at order p2.

The order of the secular matrix, and with it the accuracy of the result, can easily be
increased : Although @ is an infinite matrix, it is clear that the elements which connect
higher m states are of higher and higher order in p. Therefore, when we truncate the
matrix at some finite order m, we actually get a result which is correct to some finite
order in p. Furthermore, many of the matrix elements vanish because {a) overlap
integrals between some types of states vanish (due to the cylindrical symmetry of
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individual grains), (b) many sums vanish because of the lattice symmetry, €.8. Qa0+ gm
vanishes for a hexagonal (square) lattice unless m is an integral multiple of 6(4).

This allows us to obtain the elastic constants, to a rather high order in p, very easily.
For instance, if we wish to improve the expression for x in an hexagonal lattice, taking
it up to order p'!, we only need to diagonalize the following 2 x 2 matrix:

(0 dp)
sa(1—p) —0.275 m_»—;{z)_*_u. o 3 sz) B(A'{)
/(Brcdp) Sux(6.05p° —6.09p°%) N L I
—0.275 P ES p® sp+ TG T ) By BY, 512)

iy

It can be shown that all other elements of the secular equation do not influence the state
9 to that order. A similar calculation performed for the square lattice yields a result
that is correct to order p’. The bulk moduli for the two cases are then given by the
following expressions :

1-G/(sa—ss)* | G/(sh—sw)?®

(e) _ (2) , 5.13
x +p5k[1~s;—G/(sj\—sB) 1—sg (5.13a)
sa = sa(1—p), (5.13b)

OkO1 16 for the h I latti 5.13
G = 0.0754 W p°, for the hexagonal lattice, {5.13¢)

dxdu .

G = 0.306 w5 5Oy p*, for the square lattice. (5.13d)

From these equations, we see that the corrections to the previous result (5.6) begin with
order p” (p°) for the hexagonal (square) lattice. This enables us to understand why (5.6)
gives such excellent agreement with more precise numerical calculations of k' over a
wide range of values of p in the case of hexagonal lattice, as noted by HasHiN (1970, p.
179).

Similarly, we can extend the results for the shear moduli to higher order in p. For
instance, in the case of the hexagonal lattice, by diagonalizing a 2 x 2 matrix we can
obtain p'® correctly to order p3:

o _ 1-G/(spp) +[G/(spp)]* | G/(sap)*[1 —G/(sup)*]
ue = ju(z)-{-pé,u[ =551l )+ G/sap) T ], {5.14a)
Suic? 2
G = [(;amf;w (2.11p2—~2.26p3)] . (5.14b)

Comparing this result with (5.7) we find that the corrections begin with order p*. Again,
this explains the good agreement between precise numerical results and (5.7) that was
noted by HasuiN (1970, pp. 294-296).

In the case of the square lattice the deviation of ¢ and M from (5.10) and (5.11)
starts with order p°. Oddly enough, these corrections begin at higher order than in the
case of the hexagonal lattice. In this case a 4 x 4 matrix must be treated in order to
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obtain the corrections of order p°. The shear modulus of the square lattice is given by

1O = g4 p 5#[1 —G/A? —R/(sg —50)* — Rp/(sg — sp)*
1 —sp—A—Rc/lsg—sc) —Rplsg—sp)

2 — g )? —sa)?
+ G/A + RC/(SC SD)~ + RD/(SD sB) , (5’ 1 Sa)
1 - SB 1 - SC 1 - SD
Sux® 2
G= [m (2.74p* — 1.95;73)] , (5.15b)
L11(udh)sE o
Rep = e Ty 4, .
> = WP ow o) Gl 21 (139
A=0Q.pz+p2 [see(5.8)] {5.15d)

The other shear modulus M is given by the same expression, except that 0.5, 135>
must be replaced by Q_p,, _5-

6. DISCUSSION

We have presented a completely new approach to the calculation of effective elastic
constants of composites whose microgeometry is known precisely. In the applications
discussed in this article, we were able by rather simple analytical perturbative methods,
to obtain an expansion for these constants in powers of p to a rather high order. In
particular, we obtained Clausius—Mossotti type formulas for a square lattice of fibers
that differ from those that are applicable to a hexagonal lattice (or a random isotropic
configuration). We also obtained higher order corrections to those, and were able to
discuss the validity of the Clausius—Mossotti approximations.

We would like to stress, however, that we are by no means limited to expanding the
elastic constants in powers of p. Using the matrix elements of Appendix C, we can take
any finite portion of the matrix @, of (4.11) and find its eigenvalues and eigenvectors
numerically. Based on experience with the electrostatic problem (see BERGMAN, 1979b),
we are confident that accurate results can be obtained in this way even when the fibers
in the array are very nearly touching. Again, based on experience with the electrostatic
problem (sece Kantor and BERGMAN, 1982), we are confident that random or quasi-
random configurations of cylinders can also be handled effectively.

A different situation occurs when, as it is quite often the case, we do not know the
microgeometry of the composite precisely. In that case we cannot hope to calculate C*
precisely. Nevertheless, if we treat the poles s, and the weights F, in (2.25) as free
parameters and allow them to vary, we can attempt to find rigorous upper and lower
bounds on F(1), and hence on the various effective elastic constants. The representation
of (2.25) turns out to be admirably suited for this procedure. A future article will be
devoted to the derivation of bounds by this method.

Finally, we would like to note that the elastostatic resonances which play so centrala
role in our approach are of course, implicit in other discussions of composites. Thus, the
resonances of an isolated cylindrical inclusion also appear as singularities of the ¢-
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matrix for that system, and the resonances of an array of cylinders also appear as
singularities of the T-matrix for the array. It is in going from the individual inclusion to
the array that we use a procedure that is entirely different from the multiple scattering
series of t-matrices for the total T-matrix, as used, for example, by ZELLER and

DEDERICHS (1973).
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APPENDIX A

In this Appendix we prove that all the eigenvalues s, and all weights F, are real, and that the
product F, - s, is always negative.

Let |p™) be an eigenstate of (2.18) with the eigenvalue s,. From (2.1), (2.7) and the definition of
the resonant state it follows that the strain tensor ¢, which corresponds to this state, satisfies

1
a,[( 2+ . eac,.,.,(,)eg,?] =0, (A1)

and that the corresponding displacement vector u vanishes at the surface of the sample. We now
form the following integral

l
Juﬁ""* @[(Cﬁfk)ﬁ . 05C,~jk,>£§‘7’:| dv =0, (A2)

and add to it a similar expression but with the subscripts i and j interchanged. Integrating by
parts, we transfer the ¢; operator to #{*, the surface integral vanishes, and we are left with

Js“"’*(C‘”%— sl 05C)£“" dv =0. (A.3)
a
Since C® and 8C are both real symmetric matrices, the eigenvalue must be real even in the case
when 6C is not a positive or negative definite form, i.c., even when H is not a hermitian operator.
Since ¢® is an eigenstate of a real integral operator [see (2.11)], and s, is a real eigenvalue, the
real and imaginary parts of ¢® are also eigenstates with the same eigenvalue. By a Gram-
Schmidt-type orthogonalization process we can construct a complete bi-orthogonal set in which
the right eigenstates have the form A,Ke™, where &® is a real tensor and A, is a normalization
constant, and the left eigenstates have the form A*K*:® (in the case of a non-degenerate
eigenvalue this procedure is unnecessary). The normalization condition is

1 = A2[0e™*K2e™ dV = AZ | 8e@56Ce™ dV. (A.4)

From this it follows that A, is a pure real or pure imaginary number, depending upon the sign of
the intepral |0e®3Ce® dV. Comparing (A.3) with (A.4) we find that, since C'¥ is a positive
definite matrix,

sgn A? = sgn [ 055Ce™ dV = —sgn s,. (A.5)
From (2.26) we find

1 AZ 2
F,= v A, fsoéCs‘“) dV-A, Ja“"éCao dv = 7’( jsO(SCs‘“) dV> (A.6)

and hence that F, is real and that
sgn F, = —sgn s,. (A7)

In the case of degenerate eigenvalues s,, these statements are only guaranteed to hold for the total
weight F, of the resonance at s,.

Since C'V and C® are positive definite tensors, we can easily find from (A.3) that s, cannot
exceed 1. If 6C is a positive (negative) definite tensor, then s, is negative (positive).
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APPENDIX B

In this Appendix we describe the main steps in the calculation of the eigenstates of an infinitely
long circular cylinder embedded in an infinite host medium. Both the cylinder and host materials
are assumed to be isotropic.

Since this 2D problem is invariant under rotations about the cylinder axis, this causes some of
the eigenvalues of (2.18) to be infinitely degenerate. In constructing a complete set of bi-
orthogonal eigenstates of A, itis convenient to choose them to be eigenstates of the infinitesimal
rotation operator J as well. The form in which J operates on a strain tensor is given by

0 G — 2 5 ( £11
Je=|il0 0 2 j=i— (B.1)
o¢
1 —_ 1 0 \ 31 2
where ¢ is the azimuthal angle in the plane. It can 1 easily be verified that J is hermitian under the
scalar product defined by (2.17) and that A and J commute.

In order to solve for the eigenstates, we use the methods commonly used in 2D elastostatic
problems (see, e.g. SOKOLNIKOFF, 1956, pp. 257-282), which are slightly modified, because, at this
stage, we allow the eigenstates to be complex. The most general solution of a 2D elastostatic
problem in an isotropic medium may be expressed in the form

1
Uy (x4, Xz) = 5;(2((13"2*45'”‘// + g A* —zA —y),

i
uz(X1, x3) ==5;(~x¢—2*¢’—t/s'+xA*+zA’*+V), (B2)

where u;, and u, are the components of the 2D displacement vector, the elastostatic potentla]s &,
¥, A and y are analytic functions of the complex variable z = x, +ix,, a prime denotes
differentiation and ¥ = 1+ 2u/x.

The eigenvalues of J are all the integers m = 0, +1, +2,... and the elastostatic potentials
corresponding to its m > 0 eigenstates are

U = Az g = Ayt A = ALzl YAz form > 2
oV = Az, Yy =Aglnz+A,;, A=A Inz+A, =A% form=1
¢ =A,z YO =Ay/z, A = Az, PP = Aya/z, form=0.
(B.3)
For m = —|m] ecigenstates we must replace u"™ as produced by the above potentials by its

complex conjugate. The coefficients A, are arbitrary if we only requn‘e these functions to be
eigenstates of J. Their values are however determined when we require that these functions also
be ecigenstates of A, that they decrease to zero for |z] —» oo, and that they be non-singular
everywhere else. This determines certain linear combmatlons of these functions inside and
outside the cylinder. From the continuity conditions at the cylinder surface we finally get four
homogeneous equations with four unknowns for every value of m. Setting the determinant equal
to zero leads to the resonance values of &', p in terms of ), p*,

For |m| 2 2 the resonance values satisfy either (3.7) or (3.10), for Iml == | they satisfy (3.10), and
for m = 0 they satisfy (3.4). The four curves in k, u space are shown in Fig. 1. For a problem with
given values of k™, x, u™, 1@ the values taken by k" and x™ must also lie on the straight
lines given by

1
R S e
s

p = ;1‘”—%:1—6;1. (B4
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Consequently, the actual resonance values of 'Y and u*” in a given problem are the intersection
points of that straight line with the four curves of Fig. 1. Thus there are at most four different
eigenvalues, denoted by s,, sy, 5S¢, 5p [(3.5), (3.8), (3.11)] in correspondence with the curves of Fig. 1.
Correspondingly, there are four pairs of resonance elastic constants k(' u0”; k", pd"’; etc.

Instead of using complex &'s we shall use the linear combinations (™ +¢&("™) and —(&™
—&"™), L.e. the real and imaginary parts of &™), for B-, C- and D-type states (in the A-type state
there is no degeneracy, and therefore ¢ is automatically real). These states are no longer
eigenstates of J, but they are still eigenstates of J2, and at the same time eigenstates of the
reflection operator through the x,-axis. The real and imaginary parts of ¢ have eigenvalues +1
and —1 respectively, for this operator. Multiplying the resonance strain tensors by K [see (2.12)
and (2.13)], which in this case is given by

1
K= ﬁ [\/ (o) — \/ (00,60 + x/ (26pM; 01, (B.5)

we obtain the eigenstates p®, which are given by (3.6), (3.9) and (3.12). In Appendix A we
explained how to construct the set of left eigenstates and how they should be normalized.

APPENDIX C

In this Appendix we list expressions for the overlap integrals between a left cigenstate of one
cylinder situated at the origin and a right eigenstate of another cylinder located at the point z in
the complex plane. The coefficients A, which occur in the formulas were defined in (3.9b) and
(3.12b). The step function 8, corresponds to the cylinder at the origin; R is the radius of the

cylinders; is a binomial coefficient ; 4}, and {1}, are resonance values of p* and k', as
n

defined in Appendix B; and the notation |p'TSP™) means that we can take any possible
combination of superscripts, e.g. [p'T™>, |p!~P™> etc. The matrix element defined by (4.6) is
symmetric, and can be calculated with the help of an overlap integral in two different ways

CPPIOA0") = 510 CFP103]0

= S;,p(ﬁ”"”l()alp“‘“’). (C‘l)
Therefore the overlap integrals which are not listed below may be obtained by using (C.1).
(AP0, p"P> = 0, (C

CFB0o1p By = — (B ol B

2m+n—2) - RZ -2 27
= A Ay R i Re ("”") ~(’"+” )’z‘ (C3)

1+ 2u 3@ n jzmtr m—1 Jjz#

e N

2im+n—2} [~ 2 — 2 7]
2zR (— 1 Im (m+n) R (m+n 2) |z} (4

= Bpmipn 1+ 242/ n T I R z”'+nd
(PECDmQ | plECDMY — (C.5)
(AN G, | p DMy — 0, (C.6)

m—1 1/2 1
“(A0) (£Bm)y _ \/ (2m)R? é_’f iy Re c7
<p |00|P > ABm 1 + K(z)/z‘u(z) 5“ ( l) Im Z*m’ ( N )
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G154 = Agn ke () e 3
L AT
= AgnAc.on 3’%’:’%(_ 1yt (" ;’: 1) Re ;,..—lr (C9)
(BB Golpt Py = — (5B Bolpt Py
_ AB,,AC,D,.%(— 1y ("”: 1) z% (C.10)
AppenNDIX D

In this Appendix we discuss the calculation of lattice sums of dipole—dipole interactions. We
take an approach that is analogous to the one often used in electrostatics for calculating the sum
over dipole-dipole interactions, which leads to the so-called “Lorentz local field” (see, e.g.
ASHCROFT and MERMIN, 1976).

The important properties of the elastic dipole states of an isolated cylinder are that ¢ is
constant inside the cylinder, and that the eigenvalue s, is independent of the cylinder radius. If
we define the elastic polarization density of the cylinder by

P = ;1— 0,0C il (D.1)

ax

then we can find ¢ everywhere else by solving the equation
0;,Cihe™ = — 8, Py (D2)

which is simply (2.1) and (2.7) rewritten in a different way. The sum of dipole—dipole interactions
between all the other cylinders and the one at the origin can be written in terms of an overlap
integral over the volume of that cylinder, in which the integral is the product of p of that cylinder
and the p due to all other cylinder-dipoles. The latter quantity, denoted by p'°® = K¢', is
calculated by considering separately the contribution of the nearby cylinders, i.e., those that lie
within a circle of radius L around the origin (L must be much larger than the cylinder radii and
the intergrain separations), and that of the distant cylinders:

sloc = eloc +8loc (D3)

near far*

In order to calculate the far contribution, we may replace the actual inhomogeneous polarization
density for r > Lin (D.2) by its volume average. That would lead to a solution for ¢ denoted by
ef2e If we made the same replacement for r < Lin (D.2), we would obtain the solution denoted
by efear®. Finally, if we replace the inhomogeneous P;; everywhere by its (homogeneous) volume
averagge, the solution of (D.2) would simply be & = 0 (due to the zero boundary conditions).
Therefore the sum ef257° + gP2°° myst vanish, and we can conclude that

loc _  macro __ macro
Efar = Efar = —&pear (D4)
and hence
loc __ .loc m
% = Snenr—ene.:rm‘ (DS)

In order to evaluate efer° close to the origin, we note that this is again a strain field in a kind of

near

cylinder inclusion at the origin (a very large one—its radius is L!) that is entirely due to the

uniform polarization density — p 6Ce*® inside that cylinder. This is reminiscent of the situation
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we described earlier for the actual cylindrical inclusion at the origin 4, where the strain field could

be viewed as resulting from a uniform polarization density L 8Ce*® inside the cylinder.

Consequently, we may conclude that §72 is the same as &*®), exg;pt for the factor p, namely
eimazre = pes® (D6)

at all points that are inside both cylinders (the large one and the small one).
When this result is used to substitute for the sum of contributions to ¢ from all the dipoles
except the one at the origin, we find
Qo= 3 <PPI6,HE,|p" )

a
O#{a—bi

= X <PPN6,H0,1p" —plp"P10,H0,{p")
0F lagb! <f

= Z <ﬁb(m‘6bﬁga'pa(a)> - aaapéaﬁ‘ (D?)
0#|a g bi<L

In this equation, L must be large enough so that the use of an average polarization density for
r > Lisa good approximation. In practice, one sums the series over a set of circles with larger and
larger L until convergence is obtained [see (5.1)].



