Clausius~-Mossotti-type approximation for elastic moduli of a three-
dimensional, two-component composite
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A new approach to the problem of calculating the bulk elastic moduli of two-component
composites with a specified microgeometry is applied to the problem of a 3-D system of circular-
cylindrical inclusions with cubic symmetry. Explicit expressions, valid at least up to and
including terms of order p” (where p is the volume fraction of the inclusions), are obtained for the
bulk compressibility and the two shear moduli. The approximation used, which is the leading
order in a systematic expansion of the bulk moduli, is related to the Clausius—Mossotti

approximation of electrostatics.

PACS numbers: 62.20.Dc, 46.30.Cn, 03.40.Dz

In a recent article, we introduced a new approach to the
problem of calculating the effective elastic moduli C*) of
two-component composite materials with a specified micro-
geometry.'? The approach, which was based on a calcula-
tion of the elastostatic resonances of the system, was applied
to composites in the form of regular two-dimensional (2-D)
arrays of circular-cylindrical inclusions of an isotropic elas-
tic material C"" embedded in an isotropic host C®. For the
cases of hexagonal and square arrays, we were able to obtain
an explicit expansion of the 2-D effective moduli C'” in pow-
ers of the volume fraction p of the C‘" component up to a
rather high order [e.g., the 2-D compressibility ' was eval-
uated up to and including O( p'') terms for the hexagonal
array).

In this letter, we give a preliminary discussion as well as
results for an interesting two-component, three-dimensional
(3-D) composite geometry. As in I (Ref. 1), we consider an
array of identical circular-cylindrical, nonoverlapping inclu-
sions of an isotropic material C "'in anisotropic host C ™, but
now the cylinders are grouped into three families x,y,z ac-
cording to which of the coordinate axes they lie parallel to.
In this array, which has a simple-cubic space symmetry, the
axes of the x cylinders intersect the y,z plane at the square
array of points (0,mb,nb ), where m,n are integers, and b is the
“lattice parameter.” Similarly, the p-cylinder axes intersect
the x,z plane at the points [#5,0,(m + 1}b ], and the z-cylin
der axes interesect the x,p plane at the points
[(m + 1)b,(n + 1)b,0]. All the cylinders have the same radius
a which must satisfy

a<b/4, (1)
in order to ensure that the cylinders are nonoverlapping (see
Fig. 1).

In this letter we describe our method of calculation and
obtain explicit approximate expressions for the bulk com-
pressibility ', where

«=1Cy;, +3C (2}
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and for the two bulk shear moduli ' ,m'®, where
1=Cs,, (3)
mE%(Cnn — Ci122)s {4)

{m = 0 in an isotropic elastic material}.

Our approach begins by considering a family of compo-
sites with the same microgeometry but with different values
of C"Yand C ?, depending on a parameter s. This is described
by writing C (r} in the following form:

Cr)=C? + [6,{r)/s](C — C?), (3)

where 6, is a step function that takes the value 1 when r is
inside the C'" component, and zero otherwise. The actual
composite under consideration is retrieved if we set s = 1;
but, in general, we will consider C ¥ to be a function of s.
Moreover, we will allow s to take “unphysical values,” i.e.,
either real values that lead to a nonpositive definite C (r), or
even complex values.

In I we showed that any elastic coefficient of the com-

FIG. 1. Schematic drawing of some of the circular-cylindrical inclusions
that form the cubic array. Depicted are three x, one y, and one z cylinder.
The configuration avoids overlap so long as the radius of the cylinders @ and
the lattice constant b satisfy @ < 1b. The maximum filling fraction of the
inclusions, attained when a = !, is 7/16=0.20.
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posite can be written as a sum of simple poles in the following
form:

F,
ECUisle — EC Ve =T ——, (6)

where summation over tensorial indices is implied on the
left-hand side, and where the poles s, and the weights F,, on
the right-hand side are all real. Each pole is obtained as an
eigenvalue or resonance of the elastostatic problem in the
specified microgeometry, while the weight is obtained from a
knowledge of the eigenfunction ¢, (r) (i.e., the strain field of
the resonance) and of the constant strain field € that de-

scribes a uniform boundary condition on the composite:

F, = lV U dV(r)e°5Ce, (r)]z/ U dV0,e,5Ce, ]

sC=Cc"_c®. (7)

Confining ourselves at first to the 3-D eigenstates of an
isolated cylindrical inclusion, we find that although they
comprise an infinite set, only a small number of them have a
nonzero weight F, in the expansion of Eq. (6), no matter
what boundary conditions €® we choose. For example, if we
take €, = §,,/3 (in this case €’Ce® = «), we find that the only
contributing states for a z cylinder through the origin are

|
1
1 for p<a
: ° 9
“ —1 , 0 -1 0\, !
+1 a—2c0s2¢+ 0 0 a—zsin2¢ forp>a
o/” o/*
—
_ 6+ discrete dipole array by a uniform continuous strain polar-
' A+ 2u, ’ ization, and taking into account the correct boundary condi-
tions). The resulting matrix of interactions between ¢, states,
and summed over all cylinder pairs, is found to be
54 I~-p 1 it 2 4
€= OA for psa, (9) Xy —p —P I—P ,
— 2(8A4 + bu) A S
So=0, where each row or column represents the ¢, states on cylin-

where we have used cylindrical coordinates ( p,4,z) around
the z axis, and introduced the 3-D Lamé constant
A =Kk — 2u/3. We note that the state ¢, already appeared as
a 2-D eigenstate of the cylinder in I, where it was called “2-D
compression dipole.” The state ¢, did not appear before—it
is a 3-D state which could be called a “longitudinal compres-
sion diople.” It is a special state for many reasons, not least of
which is the fact that it does not interact with any other state.

Consequently, the only interactions between eigen-
states of different cylinders that must be considered in lead-
ing order are interactions between the states €,. These can be
calculated in the form of overlap integrals between the eigen-
functions, as described in I. For states of parallel cylinders,
this was already done in I, so that we only need to add a
calculation of the overlap integral for €, states of perpendicu-
lar cylinders. The two body interactions must now be
summed over all the cylinder pairs in the system, and in the
case of summation over dipole-dipole interactions special
care must be taken in doing this since the sums do not con-
verge absolutely. We have evaluated these sums by using a
Clausius—Mossotti-type procedure,’ in which a sum is
broken up into near terms (evaluated exactly for a square-
symmetric array of cylindrical shape that is far from the
boundaries) and faraway terms (evaluated by replacing the
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ders along one of the coordinate axes. The eigenvalues and
eigenvectors of this matrix are easily found, and we get the
following result for the bulk compressibility x, = €°C'¥ €”:

PO /(BA + Bu)

O p). 10
T+ (1 P62 + /s 1 209 T 0P 110

This result is valid at least up to and including terms of order
O ( p?)(in order to decide whether the next correctionis O ( p°)
or higher, we have to calculate the next order in the pertur-
bation series—this will be done in a forthcoming article).

In order to calculate analogous expressions for the bulk
shear moduli, we must choose an appropriate uniform
boundary condition €°, and then determine the individual-
cylinder eigenstates that have a nonzero weight, as well as
any states that are degenerate with those. We then use degen-
erate state perturbation theory, as before. Choosing

0 1 0
&= o ol (11a)
0
we find
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o =€"Ce’ = p, + pbu
B2+ 3§ plAy + 2u,)

245 + § plAs + 2u,)

g
3y + 43 = pIoplds + 3u,)/(A; + 2p45) + 0.80pSp(A, 4 w2)/ (A, + 2u,)

while choosing

+ O(pY,(11b
3ﬂz+é(3—p)5u) (7L

1
1
€ = = -1 , (12a)
0
we find*
. 1 Sudk
L, =e"C e =y, 4 — ik
SN F
N LpSu {1 + 4 pSup,/ (2641, — Su(d, + o)1)
1+ 33 — plp/ma)lAs + 3ua)/(Ay + 2u5) — 0.27p(0p/ps)As + o)/ (An + 2p0) — 4 plu/ (A, + 2u,)]
1 p[8uP /(64 + 8u)] {1 — 4p(BA + S/ [ 2624, — Sy + t1)]
L u)1{1 — 4p( ) Mo — Sl + 1) }+0(p3). (120)

1+ (64 + 8u)/ (A, + 2u,)

In these cases, we know that the next correction terms are
O ( p*). We would also like to point out that the numerical
factors 0.80 and 0.27 that appear in Eqgs. (11b) and (12b) are
not exact; they were evaluated to the indicated accuracy by
series summation.

We note that Eq. (10) coincides with one of the Hashin—
Shtrikman bounds,* but that we have obtained it here as an
approximation that is valid to O ( p?) for the cubic array of
cylinders. Equations (11b) and (12b) are, however, complete-
ly new. Moreover, all three expressions are not only known
to be correct up to a specific order in p, but can be extended
to higher orders as well by continuing the perturbation ex-
pansion for C'. These extensions, as well as a detailed expo-
sition of the theory leading to our results, will be given else-
where.
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*A review of the traditional approaches to this problem, as well as an ex-
haustive list of references, can be found in J. P. Watt, G. F. Davies, and R.
J. O’Connell, Rev. Geophys. Space Phys. 14, 541 (1976).

‘This equation ceases to be valid when a quotient inside one of the square
brackets becomes large due to a nearly vanishing denominator. This corre-
sponds to an accidental degeneracy of two isolated-cylinder eigenstates, in
which case their interaction cannot be treated by perturbation theory as we
have done here.

*Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11, 127 {1963).
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