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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties
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brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an in�nite open cluster

bond

  open
cluster

correlation length

(p) ~ξ |          | − ν

characteristic scale 
 of connectedness

p − pc

10 ppc

ξ

percolation threshold

ν universal: depends only on d

development of long range order

pc depends on type of lattice and d



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



complexities of mixture geometry

 spectral properties of operator (matrix) 
~ quantum states, energy levels for atoms

Bartleby.com

distilled

2D lattice
spectral
measure µ

distilled

gap

EXTEND to: polycrystals, advection di�usion, waves through ice pack

0 1

Analytic Continuation Method

Bergman 1978, Milton 1979
Golden & Papanicolaou 1983

Stieltjes Integral Representations
for Homogenized Parameters

eigenvectors eigenvalues



direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

uncorrelated level repulsion

UNIVERSAL 
Wigner-Dyson 
distribution 



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
              to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1), A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

               

Universal eigenvalue statistics arise in a broad  range  of “unrelated” problems!

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the first billion zeros 
of the Riemann zeta function

GUE



propagation vs. localization in wave physics: 
     quantum, optics, acoustics, water waves

metal / insulator transition

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Evangelou  1992
Shklovshii et al  1993

Anderson localization

we �nd percolation-driven 

mobility edges, localization, universal spectral statistics

but no wave interference or scattering e�ects at play!

disorder-driven

Wave equations

Laplace + Di�usion
         equations



Where to look to see this behavior exploited in 
tunable media that display rich transport properties? 

Go back to the dawn of 
ordered, aperiodic materials - 

quasicrystals.
Shechtman et al. 1984

Levine & Steinhardt 1984



Order to Disorder in Quasiperiodic Composites

Holmium–magnesium–zinc quasicrystal

aperiodic tiling of the plane - R. Penrose 1970s energy surface Al-Pd-Mn quasicrystal
Unal et al., 2007

quasiperiodic checkerboard
Stamp�i, 2013

dense packing of dodecahedra
3D Penrose tiling Tripkovic, 2019

quasiperiodic crystal
         quasicrystal

ordered but aperiodic
lacks translational symmetry

Shechtman et al., 1984 

Levine & Steinhardt, 1984

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, Communications Physics 2022



σ(x) = 3 + cos x + cos kx

σ∗ =
k

k{ irrational
rationalf(k)

constant

local conductivity in 1D inhomogeneous material

(k)

effective conductivity

quasiperiodic

periodic

Golden, Goldstein, Lebowitz, Phys. Rev. Lett. 1985
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{G(k) = 
    0,     k irrational
1/pq,    k = p/q  rational

Golden, Goldstein, and Lebowitz
Phys. Rev. Lett. 1985

J. Stat. Phys. 1990

  line of slope k through 
an infinite checkerboard

effective conductivity σ  (k)*

effective resistivity 1/ σ  (k) = 1 - G(k)*

Classical transport in quasiperiodic media

continuous at k irrational
discontinuous at k rational

1D two component composite material



Moiré patterns generate two component composites

rotation and dilation



twisted bilayer graphene

Yao et al., 2018

 superconducting
magic twist angle



  

Small Difference in Moiré Parameters

      Big Difference in Material Properties



  

Wide Variety of Microgeometries

HighLow

E



  

Wide Variety of Microgeometries



����������������������������������������
��������
������	

Order to disorder in quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

Anderson transition as twist angle is tunedwe bring the solid state physics framework for electronic 
transport and band gaps in semiconductors to classical 
transport in periodic and quasiperiodic composites

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

photonic crystals and quasicrystals

sea ice - inspired high tech spin o�
tunable Moiré composites with exotic properties 

(optical, electrical, thermal, ...), Anderson localization; our Moiré 
patterned geometries are similar to twisted bilayer graphene 

but can be engineered on any scale!

twisted bilayer composites



constellation of periodic systems in a sea of randomness

Moiré parameter space
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Fractal arrangement of periodic systems

Sequential insets zooming into smaller regions of parameter space.

                                            size of the dots ~ length of period  
(large dot ~ small period; small dot ~ large period; white space ~ “in�nite” period)



Conclusions

 

 

Modeling sea ice leads to unexpected 
areas of math, physics, and engineering! 

1.Spectral analysis of percolation in sea ice has led to a random matrix theory 
picture for Anderson phenomena in classical transport  through composites. 

2. Here we introduce twisted bilayer composites that display exotic 
transport behavior as the twist angle and dilation factor are tuned. 

3. Applies to all classical transport properties: electrical and thermal 
conductivity, optical, di�usive, etc.   --  OVER  ALL LENGTH SCALES
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Thank you to so many postdocs, graduate students, undergraduates, 
high school students and colleagues who contributed to this work! 

U. of Utah students in the Arctic and Antarctic (2003-2022): closing the gap between theory 
and observation - making math models come alive and experiencing climate change �rsthand.
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