Twistronics, Quasicrystals, and Exotic Composite Materials

Kenneth M. Golden Department of Mathematics University of Utah

Moiré superlattice twisted bilayer graphene

quasiperiodic Penrose tiling

Sea Ice is a Multiscale Composite Material *microscale*

brine inclusions

H. Eicken

Golden et al. GRL 2007

Weeks & Assur 1969

millimeters

polycrystals

Gully et al. Proc. Roy. Soc. A 2015

centimeters

brine channels

D. Cole

K. Golden

mesoscale

macroscale

Arctic melt ponds

Antarctic pressure ridges

sea ice floes

sea ice pack

K. Golden

J. Weller

kilometers

NASA

meters

HOMOGENIZATION for Composite Materials

Maxwell 1873 : effective conductivity of a dilute suspension of spheres Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean **bounds** on effective conductivity Hashin and Shtrikman 1962 : variational **bounds** on effective conductivity

widespread use of composites in late 20th century due in large part to advances in mathematically predicting their effective properties

brine volume fraction and *connectivity* increase with temperature

$T = -15 \,^{\circ}\text{C}, \ \phi = 0.033$ $T = -6 \,^{\circ}\text{C}, \ \phi = 0.075$ $T = -3 \,^{\circ}\text{C}, \ \phi = 0.143$

 $T = -8^{\circ} C, \phi = 0.057$

X-ray tomography for brine in sea ice

 $T = -4^{\circ} C, \phi = 0.113$

Golden et al., Geophysical Research Letters, 2007

percolation theory

probabilistic theory of connectedness

 p_c depends on type of lattice and d

smallest p for which there is an infinite open cluster

 $p_c = 1/2$ for d = 2

Remote sensing of sea ice

sea ice thickness ice concentration

INVERSE PROBLEM

Recover sea ice properties from electromagnetic (EM) data

8*

effective complex permittivity (dielectric constant, conductivity)

brine volume fraction brine inclusion connectivity Effective complex permittivity of a two phase composite in the quasistatic (long wavelength) limit

the components

 $\epsilon^* = \epsilon^* \left(\frac{\epsilon_1}{\epsilon_2} \right)$, composite geometry

What are the effective propagation characteristics of an EM wave (radar, microwaves) in the medium?

Analytic Continuation Method for Homogenization

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Golden and Papanicolaou, Comm. Math. Phys. 1983

complexities of mixture geometry

spectral properties of operator (matrix) ~ quantum states, energy levels for atoms

eigenvectors

eigenvalues

EXTEND to: polycrystals, advection diffusion, waves through ice pack

direct calculation of spectral measures

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015

- depends only on the composite geometry
- discretization of microstructural image gives binary network
- fundamental operator becomes a random matrix
- spectral measure computed from eigenvalues and eigenvectors

once we have the spectral measure μ it can be used in Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, magnetic permeability, diffusion, fluid flow properties

earlier studies of spectral measures

Day and Thorpe 1996 Helsing, McPhedran, Milton 2011

Spectral computations for sea ice floe configurations

UNIVERSAL Wigner-Dyson distribution

Eigenvalue Statistics of Random Matrix Theory

Wigner (1951) and Dyson (1953) first used random matrix theory (RMT) to describe quantized energy levels of heavy atomic nuclei.

 $[N]_{ij} \sim N(0,1),$ $A = (N+N^T)/2$ Gaussian orthogonal ensemble (GOE) $[N]_{ij} \sim N(0,1) + iN(0,1),$ $A = (N+N^T)/2$ Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

Universal eigenvalue statistics arise in a broad range of "unrelated" problems!

Anderson localization

disorder-driven

metal / insulator transition

Anderson 1958 Mott 1949 Evangelou 1992 Shklovshii et al 1993

Wave equations

propagation vs. localization in wave physics: quantum, optics, acoustics, water waves

Laplace + Diffusion equations

we find percolation-driven

Anderson transition for classical transport in composites

mobility edges, localization, universal spectral statistics

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

but no wave interference or scattering effects at play!

Where to look to see this behavior exploited in tunable media that display rich transport properties?

Go back to the dawn of ordered, aperiodic materials quasicrystals.

Shechtman et al. 1984 Levine & Steinhardt 1984

Order to Disorder in Quasiperiodic Composites

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, Communications Physics 2022

quasiperiodic checkerboard _{Stampfli}, 2013

energy surface Al-Pd-Mn quasicrystal Unal et al., 2007

dense packing of dodecahedra 3D Penrose tiling Tripkovic, 2019

quasiperiodic crystal quasicrystal

ordered but aperiodic

lacks translational symmetry

Shechtman et al., 1984 Levine & Steinhardt, 1984

Holmium-magnesium-zinc quasicrystal

aperiodic tiling of the plane - R. Penrose 1970s

local conductivity in 1D inhomogeneous material

$$\sigma(x) = 3 + \cos x + \cos kx$$

effective conductivity

$$\sigma^*(k) = \begin{cases} \text{constant} & k \text{ irrational} & \text{quasiperiodic} \\ f(k) & k \text{ rational} & \text{periodic} \end{cases}$$

Golden, Goldstein, Lebowitz, Phys. Rev. Lett. 1985

line of slope k through an infinite checkerboard

Classical transport in quasiperiodic media

Golden, Goldstein, and Lebowitz Phys. Rev. Lett. 1985 J. Stat. Phys. 1990

1D two component composite material

effective conductivity $\sigma^*(k)$ effective resistivity $1/\sigma^*(k) = 1 - G(k)$

$$G(k) = \begin{cases} 0, & k \text{ irrational} \\ 1/pq, & k = p/q \text{ rational} \end{cases}$$

continuous at *k* irrational discontinuous at *k* rational

Moiré patterns generate two component composites

rotation and dilation

Small Difference in Moiré Parameters

Big Difference in Material Properties

Wide Variety of Microgeometries

Wide Variety of Microgeometries

Order to disorder in quasiperiodic composites

Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

twisted bilayer composites

sea ice - inspired high tech spin off

tunable Moiré composites with exotic properties

(optical, electrical, thermal, ...), Anderson localization; our Moiré patterned geometries are similar to twisted bilayer graphene

but can be engineered on any scale!

we bring the solid state physics framework for electronic transport and band gaps in semiconductors to classical transport in periodic and quasiperiodic composites

Anderson transition as twist angle is tuned

photonic crystals and quasicrystals

communications physics

Explore content Y About the journal Y Publish with us Y

<u>nature</u> > communications physics

Order to disorder in quasiperiodic composites

constellation of periodic systems in a sea of randomness

David Morison, N. Benjamin Murphy ... Kenneth M. Golden Article 14 June 2022

Moiré parameter space

Featured

Article Open Access 10 Jan 2023	Versatile tuning of Kerr soliton microcombs in crystalline microresonators High-repetition rate microresonator-based frequency combs offer powerful and compact optical frequency comb sources that are of great importance to various applications. Here, the authors extend the tunability of the Kerr soliton frequency combs by exploiting thermal effects and frequency stabilization techniques. Shun Fujii, Koshiro Wada Takasumi Tanabe	
Article	Compliant mechanical response of the ultrafast folding protein EnHD	b c 250-1 (01.07) (01
Open Access	under force	200- 2 150-
12 Jan 2023	Exhibiting low-energy (un)folding barriers and fast kinetics, ultrafast folding proteins are enticing models to study protein dynamics. The authors use single molecule force spectroscopy AFM to capture the compliant behaviour hallmarking the dynamics of ultrafast folding proteins under force.	

Antonio Reifs, Irene Ruiz Ortiz ... Raul Perez-Jimenez

Fractal arrangement of periodic systems

Sequential insets zooming into smaller regions of parameter space.

size of the dots ~ length of period

(large dot ~ small period; small dot ~ large period; white space ~ "infinite" period)

Conclusions

1. Spectral analysis of percolation in sea ice has led to a random matrix theory picture for Anderson phenomena in classical transport through composites.

2. Here we introduce twisted bilayer composites that display exotic transport behavior as the twist angle and dilation factor are tuned.

3. Applies to all classical transport properties: electrical and thermal conductivity, optical, diffusive, etc. -- OVER ALL LENGTH SCALES

Modeling sea ice leads to unexpected areas of math, physics, and engineering!

of the American Mathematical Society

November 2020

Volume 67, Number 10

The cover is based on "Modeling Sea Ice," page 1535.

Thank you to so many postdocs, graduate students, undergraduates, high school students and colleagues who contributed to this work!

U. of Utah students in the Arctic and Antarctic (2003-2022): closing the gap between theory and observation - making math models come alive and experiencing climate change firsthand.

THANK YOU

Office of Naval Research

Applied and Computational Analysis Program Arctic and Global Prediction Program

National Science Foundation

Division of Mathematical Sciences Division of Polar Programs

Australian Government

Department of the Environment and Water Resources Australian Antarctic Division

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999