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As the boundary layer between the ocean and atmosphere in the polar regions, sea ice is a critical

component of the global climate system. As temperatures on earth have warmed, the Arctic sea

ice pack in particular has exhibited a dramatic decline in its summer extent. Indeed, the polar

sea ice packs are harbingers of climate change. Predicting what may happen over the next 10,

50 or 100 years requires extensive modeling of critical sea ice processes, and the role that sea

ice plays in the global climate. Currently, large-scale climate models oversimplify many sea ice

processes which can significantly affect predictions. Moreover, monitoring the state of earth’s sea

ice packs, in particular their thickness distributions, provides key data on the impact of global

warming. Mathematics is currently playing an important role in addressing these fundamental

issues, and will likely play an even greater role in the future. Here we give a brief, bullet by

bullet synpopsis of the contents of this article.

1. What is the role of polar sea ice in global climate?

• Sea ice forms the boundary between the polar oceans and the atmosphere, and mediates

the exchange of heat and momentum between them. The polar sea ice packs help regulate

earth’s climate, and are acute indicators of climate change.

• While sea water absorbs most incident solar radiation, sea ice reflects most of it. Earth’s

sea ice packs act as solar heat reflectors, as well as an ocean insulator, keeping significant

heat from escaping to the atmosphere.

• Sea ice is a porous composite of pure ice with liquid brine inclusions. The flow of fluids

through sea ice mediates processes important to climate, from melt pond evolution which

controls the reflectance of the sea ice packs, to upward percolation of sea water which floods

the surface and then freezes, forming snow-ice, an increasingly important component in

the sea ice system. Brine flow though sea ice can also enhance heat exchange.
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• Sea ice hosts algal and bacterial communities which support life in the polar oceans. Nutri-

ent replenishment processes are controlled by fluid transport through the microstructure.

• The state of the polar sea ice packs − their extent and thickness − provide important

information in monitoring climate change.

2. What is the role of mathematics in modeling tranpsort in sea ice?

• Various techniques within the field of homogenization are used to derive macroscopic

information about transport in sea ice from partial information about its microstructure.

• Variational formulations for the trapping constant and mean survival time for diffusion

processes which interact with the pore boundaries are used to obtain rigorous bounds on

the fluid permeability tensor for sea ice, based on general microstructural information.

• Fluid transport in sea ice exhibits a permeable/impermeable transition at a critical brine

volume fraction of about 5%, which controls geophysical and biological processes. X-ray

computed tomography and mapping of the pore microstructure onto random graphs

is used to demonstrate that the brine phase of sea undergoes a transition in connectedness

at this brine volume fraction. Percolation theory is used to theoretically predict the

transition, and to mathematically characterize the thermal evolution of the fluid pores and

their connectedness.

• Lattice and continuum percolation models are used to predict critical behavior of

the fluid permeability in sea ice, with a universal exponent describing the behavior above

the percolation threshold, and critical path analysis yields the scaling factor.

• Hierarchical models developed for porous rocks are used to predict the fluid permebaility

of sea ice over the entire range of brine porosities.
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• A random pipe network, which is equivalent to a random resistor network and is solved

using fast multigrid methods, is used to numerically simulate fluid flow through sea ice.

• Methods of complex analysis and functional analysis are used to obtain rigorous

bounds on the effective complex permittivity of sea ice, the key parameter characteriz-

ing its electromagnetic behavior and the response of sea ice in remote sensing applications,

such as monitoring sea ice thickness.

• Inverse methods yield microstructural information from complex permittivity data,

paving the way for electromagnetic monitoring of fluid and thermal transport in sea ice.

• We have made measurments of fluid and electrical transport in sea ice on a 2007

Antarctic expedition, in order to validate our models and investigate new phenomena.

• Large-scale sea ice and climate models currently do not generally incorporate the key

processes our work on transport describes. These global models have grid sizes on the

order of many kilometers. Future mathematical challenges include quantification of

how local transport properies on the scale of individual floes influence pack behavior on

much larger scales relevant to global models.

This paper is divided into two main parts. In Section 2, we discuss the role of sea ice in

the climate system, and how transport mediates key processes important to issues of climate

change. In the remaining sections we outline how mathematics is being used to model fluid

and electromagnetic transport in sea ice. Only a small number of key references, and starting

points for further reading, are given here. Many of the references for this work can be found in

[8, 9, 10], and a web link to an extensive bibliography is given at the end.
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Figure 1: While winter Arctic sea ice extent (blue) has decreased modestly over the past thirty

years, summer pack ice (yellow) has experienced a dramatic decline, particularly in the last
couple years. The dotted base line represents the average extent during the period 1979−2000.

Some climate scientists wonder if this critical behavior of the system means we have passed
through a so-called tipping point into a new regime. (Figure courtesy of Donald Perovich.)

Sea Ice and its Role in the Global Climate System

Decline of the summer Arctic sea ice pack

Up until about ten years ago, each summer most of the Arctic Ocean was covered with

sea ice of areal extent roughly the same as the continental United States. By 2005, this thick,

perennial ice pack had lost the areal equivalent of the US east of the Mississippi River. By the

end of the 2007 summer melt season, an area comparable to most of the Midwestern US had

been lost as well, and the Arctic ice pack had shrunk by nearly 40 percent from its 1979-2000

average extent. The fabled Northwest Passage was finally open to seafarers for the first time in

human memory. These stunning losses in the extent of summer Arctic sea ice represent perhaps

the most dramatic, large-scale indicator of global warming on the surface of the earth − so far.

The sea ice pack surrounding the continent of Antarctica is mostly seasonal, meaning it melts
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Figure 2: In 1980, the areal extent of the summer Arctic sea ice pack corresponded roughly to
the continental US. By 2005 the area shown in red was gone, and by 2007 the additional area

in purple was gone as well. (Figure courtesy of Donald Perovich.)

in the summer before returning in the cold, dark winter. Will the Arctic become mostly ice-free

in summer like the Antarctic? If so, how long will it take? The answers to such questions are

critical for global climate. The summer Arctic sea ice pack serves as a major part of earth’s

polar refrigerator, cooling it and protecting the Arctic Ocean from absorbing too much solar

heat. One of the central questions of climate science today is to understand why the Arctic ice

pack has declined so precipitously, and to predict how this complex system will evolve in the

coming years. In order to see how mathematics can play a role in addressing such fundamental

issues, let’s first discuss how sea ice forms, explore its material structure, and then outline its

role in global climate and polar ecosystems.

Formation and structure of sea ice

Sea ice is frozen ocean water, which freezes at a temperature of about −1.8◦C, or 28.8◦F.

Initially, tiny plate-like crystals called frazil form near the sea surface. Often they aggregate into

slick patches called grease ice. When sea ice forms in calm conditions, thin sheets of translucent

ice called nilas are seen first, which eventually thicken through congelation into gray then white

ice in large, undeformed floes. Currents or light winds often push the nilas around so that they

slide over each other, a process known as rafting. Rafting nilas is shown in Figure 3 on top. In
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Figure 3: Sea ice forming in Antarctica, with nilas on top and grease ice on the bottom.

turbulent conditions typical of the open ocean, the “greasy” frazil suspension undergoes cyclic

compression in the wave field, and during compression the crystals can freeze together to form

small cakes of slush. They grow larger by accretion and more solid through continued freezing

between the crystals, and form plates with raised rims known as pancake ice [22]. Patches of

new grease ice are shown on the bottom in Figure 3. Pancake ice is shown in the bottom row

of Figure 8. The pancakes in the lower right of Figure 8 are “glued” together in the process of

forming larger floes. Sea ice that melts after one season is called seasonal ice, and sea ice that

survives a summer season is called multiyear ice.

During the austral winter the continent of Antarctica, sitting atop the South Pole, is ringed
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Figure 4: Sea ice was observed in 1975 by Cox and Weeks (see [5]) to be effectively impermeable
to brine drainage for φ below about 5%, and increasingly permeable with φ above 5%.

mostly by seasonal ice on the Southern Ocean, with maximal ice extent in September. The

Arctic is almost the geographical opposite, with an ocean at the North Pole, surrounded by

continents, and covered with both seasonal and multiyear sea ice, of maximal extent in March.

Sea ice should be contrasted with icebergs, glaciers, ice sheets, and ice shelves, which all originate

on land. The great ice sheets covering Antarctica and Greenland are up to two miles thick, and

are composed of glacial ice formed from snow which has been compressed over thousands or

millions of years into ice which flows under great pressure.

As a material, sea ice is quite different from glacial ice. When salt water freezes, the result

is a polycrystalline composite of pure ice with inclusions of liquid brine, air pockets, and solid

salts. As the temperature of sea ice increases, the porosity or relative volume fraction φ of brine

increases. Brine inclusions on the submillimeter scale are shown in the upper left panel of Figure

8, and its centimeter scale polycrystalline structure is shown in the upper right panel.

Sea ice exhibits a very interesting and important critical phenomenon [5]. For brine volume
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Figure 5: The sea ice pack forms the boundary between the ocean and atmosphere in the polar
regions. Here sea smoke forms in the track of the icebreaker Aurora Australis as heat flows

from the warmer ocean to the colder atmosphere. Rougher ice on the right has a larger drag
coefficient than smooth ice, and transfers more momentum from the winds to the ocean below.

fractions φ below about 5%, sea ice is effectively impermeable to fluid flow, while for φ above

5%, it is increasingly permeable. This critical brine volume fraction φc ≈ 5% corresponds to a

critical temperature Tc ≈ −5◦ for a typical bulk sea ice salinity of 5 parts per thousand, termed

the rule of fives. When fluid flows through sea ice, transport is facilitated by brine channels

− connected brine structures ranging in scale from a few centimeters for horizontal slices, to a

meter or more in the vertical direction, as shown in the middle panel of Figure 8.

Ice−ocean−atmosphere interactions and global climate

As the boundary layer between the ocean and atmosphere in the polar regions, sea ice

is a key player in global climate and the world’s ocean system, and is a leading indicator of

climate change [23, 12, 19, 17]. The sea ice pack mediates the exchange of heat, moisture and

momentum between the ocean and atmosphere, the two prinicpal geophysical fluids on earth.

For example, as winds push sea ice around on the ocean surface, momentum is transferred to
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the water below; the rougher the ice, the more efficient the transfer. This process can cause

large-scale overturning in the upper ocean, bringing warmer water to the surface. As another

example, when sea ice freezes, it rejects cold, dense brine, forming descending plumes in the

polar oceans. In the Southern Ocean, this process leads to the formation of Antarctic bottom

water, which then flows like a complex river through the world’s oceans. Another important

process in atmosphere−ocean interactions is the transfer of heat between them. In winter when

the ocean is warmer, heat flows to the atmsophere through the sea ice itself, which forms

an insulating blanket over the ocean, as well as through leads or openings in the pack. The

thermal conductivity of sea ice is thus an important transport coefficient helping to quantify

atmosphere−ocean interactions in coupled climate models.

Roughly speaking, most of the solar radiation which is incident on snow-covered sea ice is

reflected, while most of the solar radiation which is incident on darker sea water is absorbed. Sea

ice is both ocean sunscreen and blanket, preventing solar rays from warming the waters beneath

and thwarting ocean heat from escaping to warm the air above. The ratio of reflected sunlight

to incident sunlight is called albedo. While the albedo of snow-covered ice is close to 1 (larger

than 0.8), the albedo of sea water is close to zero (less than 0.1). If warming temperatures melt

sea ice over time, fewer bright surfaces are available to reflect sunlight, more heat escapes from

the ocean to warm the atmosphere, and the ice melts further. As more ice is melted, the albedo

of the polar oceans decreases, leading to more solar aborption and warming, which in turn leads

to more melting, in a positive feedback loop. It is believed that this so-called ice-albedo feedback

has played an important role in the marked decrease in Arctic sea ice extent in summer [16].

Thus, even a small increase in temperature can lead to greater warming over time, making the

polar regions the most sensitive areas to climate change on earth. Global warming is amplified

in the polar regions. Indeed, global climate models consistently show amplified warming in the

high latitude Arctic, although the magnitude varies considerably across different models. For
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Figure 6: White, ice−covered polar regions are important for reflecting much of the incoming

solar radiation during summer, whereas sea water absorbs most of the incident radiation. The
relectance, or albedo of the sea ice pack is largely determined by melt ponds on the surface,
like those shown on the right in the Arctic in June 2007. Melt pond evolution itself is largely

determined by the fluid permeability of the sea ice below, as well as the sun’s rays.

example, the average surface air temperature at the North Pole by the end of the 21st century

is predicted to rise by a factor of about 1.5 to 4 times the predicted increase in global average

surface air temperature.

In the summer of 2007, the extent of the summer Arctic ice pack reached a record minimum.

Ice mass balance observations show that there was an extraordinarily large amount of melting

on the bottom of the ice in the Beaufort Sea during that summer [16]. Calculations indicate

that solar heating of the upper ocean was the primary source for the observed melting. An

increase in the open water fraction resulted in a 500% positive anomaly in solar heat input to

the upper ocean, triggering an ice−albedo feedback, accelerating the pack ice retreat. Also of

concern is that there has apparently been a significant reduction in the relative amount of thicker,

multiyear ice in the Arctic basin. Many authors have recently acknowledged that a relatively

younger, thinner ice cover is more susceptible to the effects of atmospheric and oceanic forcing

[17]. In the face of predictions for continued warming, the persistence of recent atmospheric

and oceanic circulation patterns, and the amplification of these effects through the ice−albedo

feedback mechanism, it is becoming increasingly likely that the Arctic Ocean will change from
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perennially ice-covered to ice-free in the summer.

As evidenced from the previous discussion, a key determining factor in predicting the future

trajectory of Arctic sea ice is understanding how ice pack albedo evolves. Melt ponds which

form on the surface of the ice, as shown on the right in Figure 6, determine its albedo. Whether

or not these ponds spread, deepen, or drain, is controlled largely by the fluid permeability of

the sea ice, which is one of the main motivations for our studies of fluid transport in sea ice

discussed below.

Another motivation for studying fluid flow in sea ice is the importance of sea ice produc-

tion from freezing of flooded ice surfaces, particularly in the Antarctic, where it is ubiquitous

throughout the pack. As snow loading increases during a storm, a pressure head develops. Sea

water is forced upward through the sea ice, as constrained by its permeability. Net flux to the

surface can occur only if the temperature throughout the entire sea ice layer has exceeded the

critical temperature Tc for fluid flow. Once the surface of the ice is flooded, the slushy mix of

sea water and snow freezes, which a dominant form of ice production in the Antarctic. In fact,

witnessing this process during a powerful winter storm in the Eastern Weddell Sea while on the

Antarctic Zone Flux Experiment (ANZFLUX) in 1994, and watching sea water flood the ice

surface in a rather dramatic fashion, was what motivated the author to begin studying fluid

transport in sea ice. Recent models have even suggested that with increased polar precipitation

accompanying global warming, the Arctic winter sea ice pack could thicken, and that snow-ice

production could become more important in the Arctic. Fluid flow through sea ice also facil-

itates convection-enhanced thermal transport, and the input of brine and fresh water into the

upper ocean from freezing, melting, and drainage processes [23, 19].

Sea ice ecology and fluid transport processes

The brine inclusions in sea ice host extensive algal and bacterial communities [14, 19] which

are essential for supporting life in the polar oceans, such as krill, which themselves support
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Figure 7: The rich Antarctic marine ecosystem in supported by photosynthetic algae (d), which

give sea ice a brownish or yellowish color (e). Nutrient replenishment for these microbes is
controlled by fluid flow through the porous brine microstructure. Krill (c) feed on algae, Emperor

penguins (a) feed on krill, and killer whales (b) spy-hop looking for penguins to eat.
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fishes, penguins, seals, and Minke whales, and on up the food chain to top predators like killer

whales, leopard seals, and polar bears. Nutrient replenishment processes for sea ice microbes

are facilitated by fluid flow through the porous microstrucure. For example, an algal bloom

during the Antarctic fall in the Weddell Sea was fueled by nutrient-laden sea water replacing

cold dense brine draining from freezing slush at the surface, in a convective overturning process.

The bloom effectively shut down, however, once the critical isotherm − above which the ice was

impermeable and below which the ice was permeable − passed through the algae layer during

the fall freeze-up [5].

Multiscale structure of sea ice over ten orders of magnitude

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global

climate is the sheer range of relevant length scales of structure, over ten orders of magnitude

from the submillimeter scale to hundreds of kilometers. In Figures 8 and 9, we show principal

examples of sea ice structure illustrating such a range of scales. Modeling sea ice on a large

scale depends on understanding the physical properties of sea ice at the scale of individual floes

and smaller. Today’s climate models challenge even the most powerful super computers to their

fullest capacity. However, even the largest computers still limit the horizontal resolution to tens

of kilometers and require clever approximations to model the basic physics of sea ice. One of the

central themes is how to use information at a smaller scale to predict behavior at a larger scale,

such as in classical statistical mechanics. In the sections to follow, we focus on the microphysics

of sea ice. That is, we address the fundamental issues of characterizing the brine microstructure

and its thermal evolution, and how to use that knowledge to derive information about the bulk

transport properties of sea ice relevant to climate models, as well as monitoring climate change.
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Figure 8: Multiscale nature of sea ice. Sea ice is structured on many length scales, ranging from

tenths of a millimeter to hundreds of kilometers.
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Figure 9: Multiscale nature of sea ice, continued. Pack ice viewed from ice level (top), from a

helicopter (middle), and from a satellite (bottom).
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Bounds on the Fluid Permeability of Sea Ice

Despite the importance of fluid flow through sea ice in considerations of climate change and

polar ecosystems, little attention had been paid to this problem, particularly from the theoretical

standpoint, prior to our work [5, 9, 8, 26] (with [3] a notable exception). As a first step toward

analyzing the vertical fluid permeability k and its microstructural dependence, we obtained

rigorous upper bounds on k(φ) [9, 8], which we briefly review.

Consider low Reynolds number flow of a fluid through a porous random medium, occupying

a region Ω ⊂ R
3. Brine of viscosity µ occupies the brine pore space Ωb ⊂ Ω, having a relative

volume fraction φ, which is determined by the sea ice temperature T and bulk salinity S [23, 19].

The solid ice phase occupies the ice grain space Ωi ⊂ Ω, having a relative volume fraction 1−φ.

Let χ(x) be the indicator function of the brine pore space, with χ(x) = 1 if x ∈ Ωb and χ(x) = 0

if x ∈ Ωi. The porous microstructure is assumed to have translation invariant statistics for

given T and S, so that an ergodic hypothesis is satisfied, with equivalent ensemble and volume

averaging (in the infinite volume limit), denoted by 〈·〉 [20].

As with many other porous media [20], there is a microscopic length scale ` associated with

the medium. For example, the scale over which the two point correlation function obtained from

χ(x) varies, is a good measure of this length, which is small compared to a typical macroscopic

length scale L, such as a sample size or thickness of a statistically homogeneous layer. Then

the parameter ε = `/L is small, and one is interested in obtaining the effective fluid transport

behavior in the limit as ε → 0. To obtain such information, the method of two-scale homog-

enization or two-scale convergence [20, 11] has been developed in various forms, based on the

identification of two scales: a slow scale x and a fast scale y = x/ε. The velocity and pressure

fields in the brine, vε(x) and pε(x) with x ∈ Ωb, are assumed to depend on these two scales x

and y. The idea is to average, or homogenize over the fast scale using expansion in powers of ε,

which leads to a simpler equation describing the overall behavior of the flow.
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(a) (b)

Figure 10: (a) The conductivity of a two phase composite in a vertical electrical field is maximized
by laminate structures parallel to the field. (b) The vertical fluid permeability of a porous

medium is maximized by vertical pipes with appropriate radii.

The velocity and pressure in the brine phase satisfy the Stokes equations,

∇pε = µ∆vε, ∇ · vε = 0, x ∈ Ωb(ω), (1)

with the no-slip boundary condition on the pore surface vε(x) = 0, x ∈ ∂Ωb. The first equation

in (1) is the steady state fluid momentum equation in the zero Reynolds number limit. The

macroscopic equations can be derived through a two-scale expansion, and by averaging the

leading order term v0 of the velocity over y, one obtains

v(x) = −
1

µ
k ∇p(x), ∇ · v(x) = 0, (2)

where p(x) = p0(x), the leading order term in the expansion of pε(x), and k is the effective

permeability tensor. The first equation in (2) is known as Darcy’s law and the second is the

macroscopic incompressibility condition [11]. We shall be interested in the permeability in the

vertical direction kzz = k, in units of m2.

To motivate our results, consider the effective conductivity tensor σ
∗ of a two phase com-

posite with electrical conductivities σ1 and σ2 in the volume fractions φ and 1−φ. The defining

equations here are J = σE, where J is the current density, E is the electric field, and σ(x) is

the local conductivity taking the values σ1 and σ2. The local fields satisfy

∇×E = 0, ∇ · J = 0, (3)
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and the averaged equation 〈J〉 = σ
∗〈E〉 defines σ

∗, analogous to Darcy’s law. Optimal upper

and lower bounds on a diagonal component σ∗ of σ
∗, such as in the vertical direction, known

as the classical arithmetic and harmonic mean bounds (or elementary bounds) were obtained

almost one hundred years ago by Wiener,

1
φ
σ1

+ 1−φ
σ2

≤ σ∗ ≤ φσ1 + (1 − φ)σ2. (4)

The bounds are optimal since laminates parallel to the field realize the upper bound, as shown

in Figure 10 (a), while laminates perpendicular to the field realize the lower bound.

For the fluid problem, we ask what configuration of the pores maximizes k. Intuitively, the

best arrangement to maximize k is in vertical pipes of appropriate radii, as shown in Figure

10 (b), where in the fluid problem a length scale not present for electrical conductivity arises.

This difference can be seen from the observation that the electrical conductance ge of a cylinder

of unit length and radius r is ge = πr2σ, where σ is the conductivity of the material, while

the fluid conductance gf of a pipe of unit length and inner radius r is gf = πr4/8µ. In [9]

we obtained a pipe bound, k ≤ φ[a(φ)]2/8, with mean brine inclusion horizontal cross-sectional

radius a(φ) = 7 × 10−5 + (1.6 × 10−4)φ meters. The simple pipe bound, based on uniformly

sized pipes whose radii increase with φ or T , captures lab data [9]. However, when considering

Arctic field data where a broader range of inclusion length scales is relevant, some of the data

lie outside the bound. We must consider generalizations which allow for a distribution of radii.

The derivation of such bounds [21, 9, 8] employs diffusion processes in the pore space.

Consider the problem of a tracer diffusing in the fluid phase Ωb ⊂ Ω ⊂ R
3 of a porous

medium. The tracer reacts with partially or completely absorbing traps on the boundary ∂Ωb

of the pore space. Let c(x, t) with x ∈ Ωb be the time dependent concentration of the reactant

governed by the diffusion equation and boundary condition

∂c

∂t
= D∆c+G, x ∈ Ωb, D

∂c

∂n
+ ηc = 0, x ∈ ∂Ωb, (5)
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where D is the diffusion coefficient of the reactant in the fluid, η is a positive surface reaction

rate constant, G is a generation rate of reactant per unit trap-free volume, and n is the unit

outward normal from the pore space. In the diffusion-controlled limit [21], where a reactant

will typically diffuse in the pore space for much longer than the characteristic time associated

with the surface reaction, we consider the steady state problem where the rate of removal of

the reactant by absorbing boundaries is exactly compensated by the production rate per unit

volume G of the reactant.

The parameter of interest is the trapping constant,

γ−1 = 〈uχ〉, (6)

where u is a scaled concentration field satisfying ∆u = −1 in Ωb and u = 0 on the pore

boundaries, obtained from a two-scale expansion of c. The trapping constant is inversely related

to the mean survival time τ for diffusion in the pore space, τ = 1/γφD. Using a variational

definition for the trapping constant with an appropriately constructed trial field yields a general

two-point void lower bound [21]

γ ≥
(1 − φ)2

`2P
, (7)

where `P is a length scale defined in terms of the two-point correlation function of the pores.

In the theory of composite materials, the Hashin-Shtrikman bounds [20, 9, 10] are impor-

tant in providing optimal estimates on effective transport properties using the volume fraction

information as well as isotropy of the material. These bounds are optimal, in that they can be

attained by actual geometries, namely, hierarchical arrays of coated spheres in d = 3 or coated

cylinders in d = 2, filling all space. The two-point void lower bound in (7) can be evaluated

[21] for Hashin-Shtrikman coated cylinder geometries, i.e., brine-filled vertical ice pipes for the

sea ice problem, with appropriate distributions of inclusion radii RI, as shown in Figure 11

(a). Using an inequality relating the permeability tensor to the trapping constant [20] yields an
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Figure 11: (a) Hashin-Shtrikman coated cylinders provide an optimal geometry which attain the
two-point void upper bound for the vertical fluid permebaility. (b) The lognormal pipe bounds
capture all our lab and field data on the vertical permeability of sea ice.

optimal, rigorous upper bound,

k ≤
φ〈R4

I〉

8〈R2
I〉
. (8)

Measured brine inclusion cross-sectional areas A have been found to obey a lognormal distribu-

tion [8]. Then z = lnA has a normal probability density with mean α and variance ρ2,

P (z) =
1

√

2πρ2
e−(z−α)2/2ρ2

. (9)

We evaluated [8] the moments in (8) using the lognormal distribution, yielding

k(φ) ≤
φ

8π
〈A(φ)〉 eρ

2

. (10)

With variance ρ2 ≈ 1 and 〈A(φ)〉 = πa2(φ) as above, the lognormal pipe bound in (10) captures

our Arctic field data, as well as the lab data, as shown in Figure 11 (b). The field data were

taken near Barrow, Alaska in a hydrological bail test, where a cylindrical hole is drilled, a tube

is inserted to seal off horizontal flow, and time series measurements of the water level are used

to estimate the permeability of the ice under the hole.
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impermeable permeable

p = 1/3 p = 2/3

Figure 12: The two dimensional square bond lattice below its percolation threshold pc = 1/2 in
(a), and above its threshold in (b).

Predictions for the Fluid Permeability of Sea Ice

Percolation theory for sea ice

Percolation theory [18, 20, 11] has been used to model disordered materials where the con-

nectedness of one phase dominates effective behavior. Examples range from porous rocks and

bubbly glacial ice to semiconductors and carbon nanutube composites. Consider the square

(d = 2) or cubic (d = 3) network of bonds joining nearest neighbor sites on the integer lattice

Z
d. We’ll initially consider the problem of electrical transport through the network, and then

fluid transport. The bonds are assigned electrical conductivities σ0 > 0 (open) or 0 (closed)

with probabilities p and 1 − p. Groups of connected open bonds are called open clusters, and

the average cluster size grows as p increases. The striking feature of this model is that there is

a critical probability pc, 0 < pc < 1, called the percolation threshold, where an infinite cluster of

open bonds first appears. In d = 2, pc = 1
2 , and in d = 3, pc ≈ 0.25.

The infinite cluster density P∞(p) is defined as the probability that the origin (or any point,

by translation invariance) is contained in the infinte cluster, whose graph is shown in Figure 13

(b). The two-point function τ(x, y) measures the probability that two points x and y belong

to the same open cluster. As |x − y| → ∞, τ(x, y) ∼ exp(−|x − y|/ξ), where ξ is called the
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Figure 13: (a) The correlation length diverges as p→ p−c . (b) The infinite cluster density P∞(p)
vanishes below pc, and takes off with power law behavior above pc. (c) Below pc, there is no

bulk transport, and above pc the tranpsort coefficient takes off with a different power law.

correlation length, which is a measure of the scale of connectedness. The correlation length

diverges as p increases toward pc and the infinite cluster forms, as shown in Figure 13 (a). In

the neighborhood of pc, P∞(p) and ξ(p) exhibit power laws, with

P∞(p) ∼ (p− pc)
β , p → p+

c , ξ(p) ∼ (pc − p)−ν, p→ p−c , (11)

where β and ν are universal critical exponents which are believed to depend only on dimension,

and not on the details of the lattice. In d = 3, β ≈ 0.41 and ν ≈ 0.88 [18].

Let σ∗(p) be the effective conductivity of this random resistor network in the vertical direc-

tion, as defined by Kirchoff’s laws in the infinite volume limit [4]. For p < pc, σ
∗(p) = 0, as

shown in Figure 13 (c). For p > pc near the threshold, σ∗(p) exhibits power law behavior,

σ∗(p) ∼ σ0(p− pc)
t , p → p+

c , (12)

where t is the conductivity critical exponent. For lattices, t is believed to be universal, depending

only on d. The corresponding fluid permeability κ∗(p) of the lattice, where the bonds are open

or closed pipes of fluid conductivity κ0/µ = r20/8µ, behaves like

κ∗(p) ∼ κ0(p− pc)
e , p → p+

c , (13)

where e is the fluid permeabilty exponent. For lattices, it is believed that e = t [20]. In d = 2,

t ≈ 1.3, and in d = 3 [18, 20], t ≈ 2.0. There is also a rigorous bound [4] that t ≤ 2.
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Figure 14: (a) A powder of large polymer spheres mixed with smaller metal spheres [13]. (b)
When the powder is compressed, its microstrucure is similar to that of sea ice in (c).

In view of the apparent critical behavior of brine drainage in columnar sea ice depending

on whether φ is above or below about 0.05 [23], it was reasonable to try and find a percolation

theoretic explanation. However, with pc ≈ 0.25 for the d = 3 cubic bond lattice, it was apparent

that key features of the geometry of the brine microstructure in sea ice were being missed by

lattices. In [5] φc ≈ 0.05 was identified with the critical probability in a continuum percolation

model for compressed powders [13] which exhibit microstructural characteristics similar to sea

ice. The identification explained the rule of fives, as well as data on algal growth and snow-ice

production. The compressed powders, shown in Figure 14, were used in the development of

so-called stealthy or radar absorbing composites.

When we applied the compressed powder model to sea ice about a decade ago, we had no

direct evidence that the brine microstructure undergoes a transition in connectedness at a crit-

ical brine volume fraction. This lack of evidence was due partly to the difficulty of imaging and

quantitatively characterizing the brine inclusions in three dimensions, particularly the thermal

evolution of their connectivity. Through X-ray computed tomography and pore structure analy-

sis [8] we have now analyzed critical behavior of the thermal evolution of brine connectedness in

sea ice single crystals, over a temperature range from −18◦ C to −3◦ C. We have mapped three

dimensional images of the brine phase onto graphs and analyzed their connectivity as functions

of temperature and sample size. Realistic network models of brine inclusions can be derived from
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Figure 15: X-ray CT volume rendering of brine layers within a lab-grown sea-ice single crystal

with S = 9.3 ppt. The (non-collocated) 8 × 8 × 2 mm sub-volumes illustrate a pronounced
change in the micro-scale morphology and connectivity of the brine inclusions during warming.

porous media analysis of 3-D micro-tomography images. Approaches include the well-established

3DMA package (3-Dimensional Medial Axis, see [8] for example), and the developmental tight

dual model of Glantz and Hilpert. In both cases, a 3-D graph of nodes and edges is derived

from the pores and throats. In general terms, the steps are: (1) represent the pore space by a

polyhedral complex; (2) decompose this digital pore space into pores and throats, and compute

individual characteristic radii; (3) map these to nodes and edges, tagged with their respective

radii. The resulting graphs enable imbibition and drainage characterization, connectivity and

critical path analyses (see below).

An example of how brine morphology and connectivity evolves with temperature is shown

in Figure 15. X-ray CT has provided new insight into small-scale, intra-crystalline brine layer

connectivity. Our work provides the first direct observation of an onset in connectivity over

this scale (≈ 1 cm). Notably, the thermal evolution of pore morphology that we observe is

more complex than the classic model [19, 23], a transition from brine sheets to cylindrical to

spheroidal inclusions, which underlies a range of porosity models [19, 23].

While percolation theory has been applied to disordered composites for fifty years, key

functions such as the percolation probability (which equals 0 for p < pc and equals 1 for p >
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pc), the infinite cluster density, the correlation length, and their critical exponents, have been

computed only for idealized models, like the square or cubic lattice, and not for real materials.

In general, it is difficult not only to image the microstructure of complex disordered media, but

to conveniently vary the volume fraction of the connected phase in which one is interested, such

as the pore space in rocks or the doping in semiconductors. However, for sea ice, by changing

the temperature of a single sample we can significantly vary the brine volume fraction. We have

computed these functions from our three dimensional imaging of the pore-space evolution (in

a submitted paper by Pringle, Miner, Eicken and Golden). For example, from analysis of the

two-point connectivity function, we have generated a graph illustrating the divergence of the

correlation length quite similar to Figure 13 (a).

We have also used our data to find anisotropic percolation thresholds using finite-size scaling.

Rather than attempting to compute very sensitive parameters such as the percolation threshold

or critical exponents from real data and its variation in volume fraction, finite-size scaling is a

technique from physics where one exploits the dependence of functions of interest on sample size

to obtain such results. In our case, a key relation is

P∞(pc, L) ∼ L−β/ν, L→ ∞. (14)

In single crystals of sea ice the brine microstrucure is highly anisotropic, with inclusions usually

arranged in layers. Using three different approaches, we have employed finite-size scaling to

obtain anisotropic critical porosities of 4.6±0.7% in the vertical direction, and laterally, 9±2%

parallel to the layers and 14 ± 4% perpendicular to them. The value of about 4.6% in the

vertical direction for single crystals should be smaller than the threshold of about 5% for bulk

connectivity, which it is.

Now we consider the application of percolation theory to understanding the fluid permebaility

of sea ice. In the continuum [18, 20], the permeability and conductivity exponents e and t can

take non-universal values, and need not be equal, such as for the three dimensional Swiss cheese
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model. Continuum models have been studied by mapping to a lattice with a probability density

ψ(g) of bond conductances g. Non-universal behavior can be obtained when ψ(g) is singular

as g → 0+. However, for a lognormal conductance distribution arising from intersections of

lognormally distributed inclusions, as in sea ice, the behavior is universal [8]. Thus e ≈ 2 for

sea ice.

The permeability scaling factor k0 for sea ice, analogous to κ0 in (13), is estimated using

critical path analysis (see the article by the author in [11]). For media with g in a wide range, the

overall behavior is dominated by a critical, bottleneck conductance gc, the smallest conductance

such that the critical path {g : g ≥ gc} spans the sample. With most brine channel diameters

[23] between 1.0 mm and 1.0 cm, spanning fluid paths have a smallest, characteristic radius

rc ≈ 0.5 mm, and we estimate k0 by the pipe-flow result rc
2/8. Thus

k(φ) ∼ 3 (φ− φc)
2 × 10−8 m2, φ→ φ+

c . (15)

In Figure 16 (c), field data with φ in [0.055, 0.15], just above φc ≈ 0.05 [5], are compared with

(15), showing close agreement. A best fit for e of 1.94 was obtained from other data. The striking

result that for sea ice, e ≈ 2, the universal lattice value in three dimensions [20, 4], is due to

the general lognormal structure of the brine inclusion distribution function. The general nature

of our results suggests that similar types of porous media, such as saline ice on extraterrestrial

bodies, may also exhibit universal critical behavior.

Hierarchical models

To model k(φ) over all porosities, not just near the percolation threshold, we consider features

of the brine phase present over the full range − some degree of connectivity, particularly on small

scales, and self-similarity. The basic unit of sea ice microstructure is an ice grain surrounded by

brine and ice, having substructure itself on smaller scales. Hierarchical, self-similar models of

spheres or other grains surrounded by smaller spheres, and so on, with brine of conductivity σw
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Figure 16: (a) Data for k taken in situ on Arctic sea ice, displayed on a linear scale. (b)

The effective permeability κ∗(p) in a lattice percolation model, displayed on a linear scale. (c)
Comparison of Arctic permeability data in the critical regime (25 data points) with percolation

theory in (15). In logarithmic variables the predicted line has the equation y = 2 x− 7.5, while
a best fit of the data yields y = 2.07 x− 7.45, assuming [5] φc = 0.05.

in the pore spaces, have been used to describe the transport properties of sedimentary rocks [24].

Such microstructures are similar to those shown in Figure 11 (a), except in this case the basic

elements are brine coated spheres of ice. Effective medium theory gives Archie’s law σ = σwφ
m

as the conductivity of the model with exact results for the exponent m, such as m = 3/2 for

spherical grains. The corresponding permeability exponent [24] is 2m, so that with k0 as above

and m = 3/2, the simplest hierarchical model yields

k(φ) = 3 φ3 × 10−8 m2. (16)

In Figure 17 (a) the full in situ data set is compared to this theoretical prediction, with close

agreement. From photomicrographs of marine sand microstructures, compacted platey sand

appears the most similar to the cellular substructure of sea ice. In this case, 2m ≈ 3.04, which

is closer to the best fit of 3.05 from our field data. For calcite aggregates and Fontainebleau

sandstone, a cubic power law like (16) agrees closely with permeability data for porosities above

about 10%, with an exponent 2m ≈ 3.05 for Fontainebleau sandstone.

Our results show that the parameters characterizing fluid transport in sea ice are almost
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Figure 17: (a) Comparison of Arctic permeability data (37 data points) with our theoretical
prediction in (16). In logarithmic variables the predicted line has the equation y = 3x − 7.5,
while a best fit of the data yields y = 3.05x− 7.50. Lab data on artificially grown sea ice [3]

give a best fit of y = 3.1x− 7.7 [8]. (b) Comparison of lab data with numerical simulation.

the same as in some crustal, sedimentary rocks. Both types of media exhibit critical behavior

near a percolation threshold, with φc ≈ 5% for sea ice, and φc ≈ 4% for calcite aggregates and

Fontainebleau sandstone. Moreover, even though the porous microstructures in these rocks are

quite different from sea ice, the permeability critical exponent in both cases falls into the lattice

universality class. The permeability exponent of 3 for the hierarchical model is also about the

same in both cases. It is interesting to note that a variation of four orders of magnitude in

the permeability of calcite aggregates is achieved with temperatures ranging from 633 K to 833

K, and with confining pressures from 200 MPa to 300 MPa. For sea ice, a similar variation in

permeability occurs over a temperature range of about 15 K.

Numerical model for fluid flow through sea ice

In [26] we developed a two dimensional random pipe network to simulate fluid flow through

a porous medium, as illustrated in Figure 18. For sea ice the cross-sectional areas A of the pipes

are chosen from the lognormal distribution in (9), with 〈A(φ)〉 as before and ρ2 = 1. The system

is equivalent to a resistor network, which was solved using a fast multigrid method. While the
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Figure 18: (a) Random pipe or resistor network. (b) Close-up of a node and adjoining ducts.

model compared well with lab data for φ > 0.15, it overestimated k(φ) for φ < 0.15 where

percolation effects, which were ignored, become significant. In accordance with our X-ray CT

data, we introduced random disconnections so that the network falls apart as φ decreases. The

results then agree well with the lab data, as shown in Figure 17 (b).

As discussed above, heat is exchanged between the ocean and atmosphere in the polar regions

through sea ice. The thermal conductivity of sea ice is thus an important transport coefficient

entering into climate models. We will not discuss our work in this area, but simply mention

that the methods for studying transport we have outlined here can be applied to bounding and

numerically calculating this important sea ice parameter. One particularly interesting aspect of

the thermal transport problem is that when brine flows through sea ice, such as for temperatures

above the percolation threshold, there is an advective term in the heat equation. A velocity

field helping to move heat around can enhance measured thermal conductivity, which has been

observed in Antarctic sea ice. In conjunction with our fluid permeability work, we have been

theoretically and numerically modeling such processes.
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Sea Ice Remote Sensing:

Monitoring the Impact of Climate Change

Because of the global nature of monitoring earth’s sea ice packs, information is usually obtained

via remote sensing from platforms on satellites, aircraft and ships [15, 2, 7, 6]. The physics

underlying the problem of remotely sensing sea ice concerns the interaction of electromagnetic

waves with a polycrystalline composite of four components: pure ice, brine inclusions, air pock-

ets, and solid salt deposits [23, 19]. Here we’ll focus on the two main constituents in sea ice,

namely, pure ice with brine inclusions. One of the grand challenges of sea ice remote sensing

is to accurately recover the thickness distribution of the pack. Assessing the impact of global

warming on the polar regions involves monitoring not only the ice extent, but the ice volume,

which requires knowledge of ice thickness. While microwaves in the GHz frequency range have

been commonly used in many applications, due to the absorbing nature of the brine phase and

the short wavelengths involved, they typically can only penetrate into the upper portions of a

sea ice floe. Lasers, such as on ICESat illustrated in Figure 19 (a), have been used to bounce

off the ice or snow surface, and when compared with returns from the sea surface in open leads,

can provide thickness estimates. Changes in ice sheet elevation in Antarctica and Greenland

can also be similarly obtained.

Recently there has been increasing interest in using low frequency electromagnetic induction

devices to estimate sea ice thickness [25], as shown in Figure 19 (b). Electromagnetic fields in the

MHz range, with wavelengths on the scale of meters are used to probe the air-ice-ocean interface

and estimate the thickness of the ice layer. The technique relies on a time varying primary

magnetic field (generated by a transmitter coil) inducing eddy currents in the seawater beneath

the comparatively resistive ice. The secondary magnetic field produced is sensed by a receiver

coil, determining an apparent conductivity which results essentially from an integration over the

vertical distance between the instrument and induced currents. Accurate interpretation of the
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Figure 19: (a) NASA’s Ice, Cloud and Land Elevation Satellite (ICESat) over Antarctica. It
bounces laser pulses off the surfaces of ice sheets and sea ice to measure changes in thickness
and monitor climate change. (b) An electromagnetic induction device for measuring sea ice

thickness, called the “Worbot” after Australian sea ice scientist Tony Worby. It is mounted here
on the icebreaker Aurora Australis, in the Antarctic sea ice pack, September 2007.

data relies on understanding how the conductivity of the sea ice, or more generally it complex

permittivity, depends on the microstructural characteristics. For example, current methods of

obtaining thickness estimates assume a single value for the conductivity. However, this key

parameter can vary by over two orders of magnitude with depth throughout a given floe. Since

typical sizes of the brine inclusions are on the submillimeter scale, the electromagnetic behavior

of the sea ice can be treated using the quasistatic approximation, where the wavelength is much

longer than the microstructural scale. Then the electromagnetic response of sea ice can be

characterized by its effective complex permittivity tensor ε
∗. For a given diagonal component

in a particular direction, the real part corresponds to the polarizability, or dielectric constant

in that direction, and the imaginary part corresponds to the conductivity in that direction. For

example, the reflection coefficient of a wave incident on a flat sea ice surface is determined by

the mismatch in complex permittivity between the sea ice and the air above.

There has been considerable work in the past on estimating and bounding ε
∗ for sea ice,

particularly in the microwave region [2, 7]. We’ll discuss here some of our work on bounding ε
∗,
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particularly in this low frequency range, although the mathematics is quite general. We’ll also

discuss how we’ve been inverting these bounds and other information to recover microstructural

characteristics, which is important in monitoring fluid and thermal transport in sea ice. In this

connection, there are new methods, such as cross-borehole tomography developed by M. Ingham

and colleagues, which show promise in reconstructing the permittivity profile of sea ice, and in

turn, the state of the ice itself.

Here we review our work on theoretical bounds on the principal components of ε
∗ with ex-

tensive outdoor tank and in situ data on ε
∗ at 50 MHz, consisting of thousands of measurements,

taken with a capacitance probe [10]. In particular, we compare the low frequency measurements

with the Bergman-Milton bounds [7, 10] for the complex permittivity of a two phase compos-

ite with known constituent permittivities ε1 and ε2 and volume fractions p1 and p2. There

are two types of these bounds which we employ. The first type assumes only the permittivity

and volume fraction information, and are known as the complex elementary or arithmetic and

harmonic mean bounds. The second type further assumes statistical isotropy in the composite

microstructure, and are known as the complex Hashin-Shtrikman bounds.

All the data considered are situated well inside the complex elementary bounds. However,

there are naturally occurring anisotropies in the brine microstructure, such as its preferred

vertical orientation [23, 19], which become more pronounced above the critical brine volume

fraction of about 5% where the brine phase percolates [5]. Also, preferred azimuthal alignment of

the c-axes of individual crystals within the horizontal plane has long been observed in the Arctic,

and was present in the Arctic sea ice whose permittivity was measured in one of the data sets

considered here. Preferred c-axis alignment is attended by anistropy in the brine microstructure,

and anisotropic behavior of the complex permittivity within the horizontal plane. Comparing

the different data sets with the isotropic bounds yields interesting and useful insights about sea

ice microstructure, its evolution with temperature, and its electromagnetic properties. We also
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invert the complex bounds to obtain rigorous estimates of the brine volume fraction from the

permittivity data [6].

Bounds on the complex permittivity of sea ice

Let us briefly describe the analytic continuation method for studying the effective properties

of composite materials [7, 10]. Let the local complex permittivity ε(x) be a spatially stationary

random field in x ∈ R
d, for an appropriate probability space representing the set of realizations

of the random medium. We assume ε(x) for 50 MHz takes the values ε1 = 63.3 + i1930 in brine

and ε2 = 3.06 in ice, and write ε = ε1χ+ε2(1−χ), where χ(x) is again the characteristic function

of the brine phase. Let E(x) and D(x) be the stationary random electric and displacement fields

satisfying the constitutive law D(x) = ε(x)E(x) and the equations

∇×E(x) = 0, ∇ ·D(x) = 0, (17)

with 〈E(x)〉 = ek, where ek is a unit vector in the kth direction for some k = 1, . . . , d, and 〈·〉

means an ensemble average or spatial average over all of R
d.

The effective complex permittivity tensor ε
∗ is defined by

〈D〉 = ε
∗〈E〉. (18)

For simplicity, we focus on one diagonal coefficient ε∗ = ε∗kk. Due to the homogeneity of effective

parameters, ε∗(λε1, λε2) = λε∗(ε1, ε2), ε
∗ depends only on the ratio h = ε1/ε2, and we define

m(h) = ε∗/ε2. The two main properties of m(h) are that it is analytic off (−∞, 0] in the h–plane,

and that it maps the upper half plane to the upper half plane, so that it is an example of a

Herglotz, or Stieltjes function. The key step in the analytic continuation method is obtaining

an integral representation for ε∗.

It is more convenient to work with the function F (s) = 1−m(h), where s = 1/(1−h), which
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is analytic off [0, 1] in the s–plane. It was proven that F (s) has the powerful representation

F (s) =

∫ 1

0

dµ(z)

s− z
, s /∈ [0, 1] , (19)

where µ is a positive measure on [0, 1] (not to be confused with the viscosity from before).

Formula (19) separates the parameter information in s from information about the mixture

geometry contained in µ, a spectral measure of the operator Γχ, where Γ = ∇(−∆)−1∇·.

Statistical assumptions about the geometry are incorporated into µ via its moments µn =

∫ 1
0 z

ndµ(z), which can be calculated from the correlation functions of the random medium, with

µn = (−1)n〈χ[(Γχ)nek] · ek〉.

Bounds on ε∗, or F (s), are obtained by fixing s in (19), varying over admissible measures µ

(or admissible geometries), such as those that satisfy only µ0 = p1, and finding the corresponding

range of values of F (s) in the complex plane. Two types of bounds on ε∗ are obtained. The first

bound R1 assumes only that the relative volume fractions p1 and p2 = 1−p1 of the ice and brine

are known, with µ0 = p1 satisfied. In this case, the admissible set of measures forms a compact,

convex set M0. Since (19) is a linear functional of µ, the extreme values of F are attained by

extreme points of M0, which are the Dirac point measures p1δz. The values of F lie inside the

region R1 bounded by circular arcs, called the complex elementary bounds. The formulas can be

found in [7, 10]. This region collapses to the interval (p1/ε1 + p2/ε2)
−1 ≤ ε∗ ≤ p1ε1 + p2ε2 when

ε1 and ε2 are real, which are the arithmetic (upper) and harmonic (lower) mean bounds. The

complex elementary bounds are optimal and can be attained by coated ellipsoidal geometries

as the aspect ratio varies. If the material is further assumed to be statistically isotropic, i.e.,

ε∗ik = ε∗δik, then µ1 = p1p2/d must be satisfied as well. A smaller bounding region R2 can

then be obatined, which are complex versions of the Hashin-Shtrikman bounds. Extensions of

the analytic continuation method and bounds to multicomponent media involve techniques of

several complex variables.

Now we compare three extensive sets of data on the complex permittivity of sea ice with
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Figure 20: (a) Comparison of data on ε∗ at 50 MHz for sea ice grown in an ice tank with the
elementary bounds, showing excellent correspondence. Data in a brine porosity interval signified

by a given color lie inside the region of the same color. The data colored gray have porosities in
the interval [0.049, 0.051], close to the percolation threshold. The capacitance probe is shown on

the right. (b) Matrix-particle bounds on ε∗ (solid curves), along with the complex elementary
and Hashin-Shtrikman bounds (dotted curves), compared with 4.75 GHz data in red.

the bounds. Measurements were taken in land-fast ice in the Chukchi Sea near Barrow, Alaska

(14,004 data points) and in McMurdo Sound, Antarctica (2,382 data points) and in artificial,

young sea ice in an outdoor tank in Fairbanks, Alaska (6,403 data points). The permittivity

was measured by deploying an array of Stevens Water Monitoring Systems Hydraprobes. Each

Hydraprobe is a coaxial probe with a central tine surrounded by three equally spaced outer tines,

aligned horizontally, as shown in the photo inset in Figure 20 (a). The three outer tines are held

at ground potential, and a voltage is applied to the central tine at 50 MHz frequency, resulting

in a circularly polarized wave with electric field predominantly in the plane perpendicular to the

tines. The complex permittivity measured by the probe represents an average of the components

of ε
∗ in this plane.

In Figure 20 (a) the full data set for the Fairbanks ice tank experiment is displayed along

with a series of regions R1(φ), for the indicated values of the brine porosity φ. The data has

been grouped into intervals of porosity, [0.02, 0.03], [0.03, 0.04], ..., [0.08, 0.09], with a different

color for each interval. The corresponding elementary bound has the same color. All the data

in each interval lie inside the corresponding bound. The data marked with the gray color lies in
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Figure 21: Comparison of ice tank data on the complex permittivity of sea ice at 50 MHz over

ranges of φ with the elementary (outer) and isotropic (inner) bounds. The data violate, or lie
outside, the isotropic bounds as brine volume increases through the percolation threshold and
an anisotropic, connected brine structure is formed.

the porosity interval [0.049, 0.051], which corresponds to the percolation threshold of about 5%

conjectured in [5].

It is useful to note that tighter bounds [7] on ε∗ can be obtained if the material is known to

have a matrix-particle structure with separated inclusions, like sea ice at temperatures colder

than its critical temperature. In this case, the support of µ lies in an interval [sm, sM ], 0 <

sm < sM < 1. The more separated the inclusions, the smaller the support interval, and the

tighter the bounds. Comparison of higher frequency 4.75 GHz data (red dots) on the complex

permittivity ε∗ of sea ice for ε1 = 51 + i45 and ε2 = 3.1, with a series of bounds [7] is shown in

Figure 20 (b). The outer dotted curves are complex arithmetic and harmonic mean bounds, and

the inner curves are Hashin-Shtrikman bounds. The solid bounds are matrix-particle versions.

The parameter q measures inclusion separation, and can be bounded using permittivity data.

In Figure 21 we display a series of comparisons of the 50 MHz data in the porosity intervals

shown, with corresponding elementary bounds R1(φmax) and the isotropic bounds R2(φmax),

where φmax is the largest porosity in each interval. The development of anisotropy in the dielec-

tric measurements, or violation of the isotropic bounds, as brine volume increases through 5%,
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Figure 22: Comparison of the actual brine porosity φ with time to the inverse lower bounds, for

the ice tank data in (a) and for the Barrow data in (b).

is consistent with an increasingly connected and vertically elongated brine microstructure. This

behavior in the data would likely be accentuated if the electric field were oriented predominantly

in the vertical direction.

Inverse bounds for structural parameters

The objective of inverse bounds is to use data about the electromagnetic response of sea ice to

recover information about its structural parameters, in particular its brine volume fraction φ, or

porosity. As mentioned above, the porosity φ can be written as a function of the bulk ice salinity

S and temperature T , as derived by semi-empirical approaches from the sea ice phase relations.

Given salinity information, for example, inverting for porosity yields temperature information.

The inverse method [6] we use here yields intervals of uncertainty for the brine volume fraction

φ. Given an observed value of the complex permittivity ε∗, φ is increased until the value of ε∗

touches one boundary of the region R1 described in the previous section, and is then decreased

until the value touches the other boundary. This procedure gives a range of values φ`
1 ≤ φ ≤ φu

1 ,

with

φ`
1 = |f |2

Im(s)

Im(f)
, φu

1 = 1 −
|g|2Im(t)

Im(g)
, (20)

where f is the known value of F (s) and g is the known value of G(t) = 1− ε∗/ε1 with t = 1− s.
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normal bone osteoporotic

Figure 23: Bone porosity can be estimated from torsional modulus data using reconstruction

of the spectral measure, similar to estimating brine porosity in sea ice from permittivity data.
Such work will help in monitoring osteoporosis [1]. The math doesn’t care if it’s sea ice or bone!

If the material is further assumed to be statistically isotropic, second order inverse bounds

φ`
2 ≤ φ ≤ φu

2 can be obtained. We mention recent progress by E. Cherkaev and colleagues on

developing methods for reconstructing µ from bulk property measurements. Such methods will

likely be useful in obtaining more detailed information about sea ice microstructure, as they

have been for bone microstructure, and in monitoring osteoporosis [1].

In Figure 22 (a), the actual brine porosity φ(t) as a function of time t for the ice tank exper-

iment is compared with the lower inverse bound φ`
1. Due to the high contrast in the materials,

the corresponding upper bound is quite large and currently provides little information. We see

that the actual data lies above the lower bound, and that the variations in the reconstructed

lower bound follow the variations in the actual porosity. In Figure 22 (b), the actual brine

porosity for the Barrow data is compared with the lower inverse bounds φ`
1 and φ`

2. The inverse

bounds are obeyed, and the variations in φ(t) are reflected in the reconstructions.
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Measurements of fluid and electrical transport in Antarctic sea

ice

During September and October of 2007, Adam Gully (University of Utah math student) and

I participated in a six week voyage into the Antarctic sea ice pack. The Sea Ice Physics and

Ecosystem eXperiment (SIPEX), conducted off the coast of East Antarcica, was a major com-

ponent of Australia’s project contributions to the worldwide International Polar Year activities

of 2007-2008. An extensive science program conducted by 45 scientists from 10 nations was led

jointly by the Antarctic Climate & Ecosystems Cooperative Research Centre (ACE CRC) and

the Australian Antarctic Division. Valuable information was obtained that will help develop

more accurate global climate models and will also help us understand how polar ecosystems

might respond to future climate change.

Researchers employed a suite of cutting-edge technologies, including airborne laser altime-

try and radar, and an under-ice remotely operated vehicle (ROV). For the first time ever in

Antarctica, helicopter flights covered thousands of kilometers tracking over the sea ice, gather-

ing large-scale information about the height of the snow and ice surfaces above sea level. The

helicopter data were complemented by information gathered from ice coring and other work

directly on the ice. The combined information will help validate satellite altimetry data, which

will eventually be used to monitor changes in sea ice thickness around Antarctica.

Biologists combined classical ice coring techniques with the ROV to study the underside

of the sea ice, to map the distribution of sea ice algae. The ROV observations showed high

concentrations of Antarctic krill living on the underside of the sea ice as well as in cracks

between ice floes. Other scientists worked on ice algae physiology and sea ice biogeochemistry

to better understand processes in the Antarctic sea ice zone during the transition from winter

to summer. Oceanographers studied the water mass properties and currents beneath the sea

ice and found that, contrary to what was expected, the patterns of sea ice drift appear to be
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c d

Figure 24: The author taking a sea ice core in (a), and making a permeability measurement in

(b), by measuring the rate at which sea water fills in the partial hole through the ice. (c) Adam
Gully (right) sets up a Wenner array, while Kazu Tateyama takes thickness measurements with
an EM induction instrument. (d) The Wenner array was adapted to take direct measurements

of the vertical conductivity of extracted sea ice cores.
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affected more by ocean currents than by wind.

Gully and I conducted field studies of the fluid and electrical transport properties of first

year sea ice, in conjunction with our mathematical modeling work. We made the first fluid

permeability measurements of Antarctic pack ice, and conducted fluid tracer experiments on

extracted blocks of sea ice. In close connection with these fluid measurements, we used surface

impedance tomography via a Wenner electrode array to reconstruct the conductivity profile of

the ice. We also modified our Wenner configuration to directly measure the vertical conductivity

component of extracted cores - a first for sea ice. These measurements will allow the fluid

permeability data to be directly related to sea ice electrical properties. Our electrical work,

joint with voyage leader Tony Worby, was done in the same exact locations and configurations as

EM induction thickness measurements conducted by Japanese sea ice scientist Kazu Tateyama

for later correlation. We are still in the process of analyzing the data and preparing it for

publication, so our results will be presented elsewhere.

Conclusions and future challenges in sea ice modeling

Numerous challenges remain in the modeling of sea ice for climate applications. Many important

processes are only crudely represented, such as snow-ice formation, albedo evolution, aspects of

the snow pack overlying the ice cover, and the parameterization of ice strength and dynamic-

driven ice ridging and rafting. Figure 25 shows dire model predictions for the decline of the

summer Arctic sea ice pack, and much work remains to refine these predictions based on our

increasing knowledge of important processes in sea ice, and how the pack interacts with the

ocean and atmosphere.

Our work on fluid transport is central to a broad range of problems in the geophysics and

biology of sea ice, yet fundamental studies have been lacking. We have developed a unified

theory of the fluid permeability of sea ice and its dependence on microstructural evolution with
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1990-1999 2010-2019 2040-2049

Figure 25: Coupled climate model simulations from the Community Climate System Model,

version 3, showing September sea ice concentration averaged for three different time periods
(left to right) 1990-1999, 2010-2019, and 2040-2049. The white line indicates the simulated ice
extent, defined as the 15% ice concentration contour. This and other similar climate models

suggest significant sea ice loss will occur over the next 50 years, and near ice-free September
conditions may be reached in the Arctic by the mid-21st century. Some scientists predict such

a decline over an even shorter period of time. (Courtesy of Marika Holland.)

temperature. The theory ties together different approaches to estimating effective composite

behavior, and closely captures laboratory and Arctic field data. We have also made progress

in CT imaging of sea-ice microstructure, quantifying the thermal evolution of pore connectivity

and morphology at the (sub)granular scale, which in turn has informed the theoretical advances.

Our work on sea ice electrical properties helps provides a theoretical basis for new techniques in

remote sensing, in particular those which help to monitor the impact of climate change.

Our work demonstrates how to link information about the micro-scale structure to macro-

scopic transport properties, which in turn constrain global-scale processes of climatological and

biological importance. The results yield simple parameterizations of fluid transport through sea

ice in terms of porosity φ, and therefore the state variables T and S, and can help to improve

the representation of sea ice in climate, biogeochemical and geophysical models. Future studies

will have to examine how these findings impact the simulation of heat and fluid flow through

sea ice in large-scale models, which currently oversimplify such processses.
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Figure 26: Antarctica is not only of great scientific interest, but is a place of unique beauty and
exciting adventures.
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