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Abstract Part II of the review article focuses on the applications of Herglotz-
Nevanlinna functions in material sciences. It presents a diverse set of applications
with details and the role of Herglotz-Nevanlinna functions clearly pointed out. This
paper is concluded by a collection of existent generalizations of the class of Herglotz-
Nevanlinna functions that are motivated by potential applications.

1 Introduction

In this part of the review paper, we present a wide class of applications of Herglotz-
Nevanlinna functions in material sciences. We start with the application in the
static theory of two-phase composite materials, where the scalar-valued Herglotz-
Nevanlinna functions correspond to the effective properties of the composite ma-
terials. Following this is an example showing how the matrix-valued Herglotz-
Nevanlinna function theory can be applied to study the permeability tensor of a
porous material. In both applications, the independent variable of the correspond-
ing Herglotz-Nevanlinna functions is the contrast of material properties. The other
group of applications presented in this paper demonstrates the power of Herglotz-
Nevanlinna functions in the study of systems of equations where the energy dissipa-
tion and dispersion satisfied causality and passivity, whose mathematical definition
can be clearly specified in terms of the Herglotz Nevanlinna functions. After pre-
senting their various applications in material sciences, we conclude this paper by
introducing several classes of functions which can be considered as various general-
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izations of the Herglotz-Nevanlinna functions motivated by some emerging research
field in physics and engineering.
The paper is organized as follows. Section 2.1 deals with composite materials

and bounds on effective properties. In Section 2.2 it is demonstrated how the usage
of Herglotz-Nevanlinna functions can avoid a numerically costly memory term in
modeling of materials. Section 2.3 shows how bounds for quasi-static cloaking can
be derived. In Section 2.4 a general representation theorem of Herglotz-Nevanlinna
functions is used in order to identify certain time dispersive and dissipative systems
as restrictions of Hamiltonian systems.
Even if all these examples demonstrate the effectiveness of Herglotz-Nevanlinna

functions, there are situations in applications that cannot be treated by thesemethods,
but would requiremore general classes of functions. This applies for instance for non-
passive systems, e.g., appearing in electromagnetics, for which the analytic function
in question might have non-positive imaginary part as well. Another example are
composite materials with more than two phases. Then, even if the corresponding
analytic functions still have positive imaginary part, they are not covered by the
treatment above, since they depend on more than only one complex variable.
In Section 3 we therefore provide an overview of the mathematics that is available

for different classes of functions that extend the classical Herglotz-Nevanlinna class
and we expect to be relevant for applications in material science.
Note that items that are already defined in Part I will not be defined again in this

part.
We hope that this review can be both helpful for people working in applications

(by providing mathematical references for different aspects of Herglotz-Nevanlinna
functions as well as their generalizations for future work) and interesting for pure
mathematicians (by pointing out some relevant applications of Herglotz-Nevanlinna
functions).

2 Applications

This section starts with the applications arising in the study of effective properties
of composite materials, followed by the application in broadband passive quasi-
static cloaking and is concluded with a delicate application of the operator-valued
Herglotz-Nevanlinna function theory for understanding the Hamiltonian structure of
time dispersive and dissipative systems.
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2.1 Effective properties of two-phase composite materials

2.1.1 Effective properties of composite materials and bounds by using theory
of the Stieltjes function

Composite materials made of pure homogenous phases are abundant around us, eg.
reinforced concrete, plywood, fluid saturated sand, cancellous bones and sea-ice.
Suppose the scale of the microstructure of a bulk composite sample is much smaller
than the size of the sample; it makes sense to use the effective moduli to describe
the properties of composite materials. For example, the effective permittivity of
a complex fluid or the effective Young’s modulus of a cancellous bone sample.
Intuitively, these effective properties should depend on the properties of the pure
phases as well as how these constituents are arranged, i.e. the microstructure of the
composite. For multi-laminated microstructure, there are exact algebraic formulas
for computing the effective properties as certain averages of the properties of the
constituents; see [70]. However, for most microstructures, there is no exact "mixing
theory formula" that can be used to compute the effective properties even though the
effective properties are well defined by the homogenization theory [9][49][87][83].
For the history of the development and the limitations of various formulas for com-
puting the effective dielectric constants for simple microstructures, see [10] for
details. Instead of looking for the exact formulas, many researchers have looked
into the possibility of finding bounds of effective properties from the given con-
stituent properties and information of the microstructure; see [84][46, 47, 45][79]
[10][11][13][12][71][69][66][43][29][72][19][42], just to name a few. From this
vast and rich literature emerges the beautiful bounding method based on the analytic
properties of the effective moduli as a function of the dielectric constants of the pure
phases; it was first described in [10] by David Bergman and further developed and
extended from real-valued bounds to the general complex bounds by GraemeMilton
in [68][71]. The new method provides a way for deriving the bounds without the
use of variational principles. The first rigorous derivation of the Stieltjes function
representation for the effective dielectric parameters of a two-phase composite is
given in 1983 by Kenneth Golden and George Papanicolaou [43] in a random media
setting. To fix ideas, we start with a brief description of the proof in [43].
Let (Ω, F , 𝑃) be a probability space and the permittivity tensor 𝜖𝜖𝜖 (x, 𝜔) a station-

ary random field, where 𝜔 is a realization in Ω and x the spatial coordinates in R𝑑
with 𝑑 ∈ N and 𝑑 ≥ 2. Specifically, there exists a bijective group transformation
𝜏𝜏𝜏x from Ω to Ω, 𝜏𝜏𝜏x𝜏𝜏𝜏y = 𝜏𝜏𝜏x+y for all x, y ∈ R𝑑 such that 𝑃(𝜏𝜏𝜏x𝐴) = 𝑃(𝐴) for all
x ∈ R𝑑 and 𝐴 ∈ F . Suppose the permittivity tensor 𝜖𝜖𝜖 (x, 𝜔) can be represented by a
measurable function 𝜖𝜖𝜖 (𝜔) on Ω as follows

𝜖𝜖𝜖 (x, 𝜔) = 𝜖𝜖𝜖 (𝜏𝜏𝜏−x𝜔). (1)

It is further assumed to be bounded and satisfies the ellipticity condition, i.e. there
exist two positive numbers 𝛼 and 𝛽 so that 𝛼𝜉𝜉𝜉 · 𝜉𝜉𝜉 ≤ 𝜖𝜖𝜖 (x, 𝜔)𝜉𝜉𝜉 · 𝜉𝜉𝜉 ≤ 𝛽𝜉𝜉𝜉 · 𝜉𝜉𝜉 for all
x, 𝜉𝜉𝜉 ∈ R𝑑 . Since all the random fields considered here are stationary, the solutions
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of the form in (1) are sought for, i.e.

E(x, 𝜔) = Ẽ(𝜏𝜏𝜏−x𝜔), D(x, 𝜔) = D̃(𝜏𝜏𝜏−x𝜔). (2)

Consider the electrostatic Maxwell’s equations for the random stationery electric
field E(x, 𝜔) and the electric induction field D(x, 𝜔)

D(x, 𝜔) = 𝜖𝜖𝜖 (x, 𝜔)E(x, 𝜔), ∇ × E(x, 𝜔) = 0, ∇ · D(x, 𝜔) = 0

and
∫
Ω

E(x, 𝜔)𝑃(𝑑𝜔) = E (3)

with a prescribed constant electric field E as its assemble average. Let the constant
vector 𝐸 be e 𝑗 , the unit vector in the 𝑗-th direction, 𝑗 = 1, · · · , 𝑑 and denote the
corresponding solution as E 𝑗 and D 𝑗 . The effective permittivity tensor 𝜖𝜖𝜖∗ is then
defined as

𝜖𝜖𝜖∗e𝑙 :=
∫
Ω

D𝑙 (x, 𝜔)𝑃(𝑑𝜔) =
∫
Ω

𝜖𝜖𝜖 (x, 𝜔)E𝑙 (x, 𝜔)𝑃(𝑑𝜔), 𝑙 = 1, · · · 𝑑. (4)

It can be shown that these assemble averages of the solution do not depend on x.
The variational formulation plays an important role in the proof; it is described
here. First consider the Hilbert space 𝐻 := 𝐿2 (Ω, F , 𝑃) endowed with the inner
product ( 𝑓 , �̃�)𝐻 :=

∫
Ω
𝑓 (𝜔)�̃�(𝜔)𝑃(𝑑𝜔). Define the operator 𝑇x acting on 𝑓 ∈ 𝐻 as

𝑇x 𝑓 (𝜔) := 𝑓 (𝜏𝜏𝜏−x𝜔). Because 𝜏𝜏𝜏x is measure preserving, 𝑇x forms a unitary group
and has closed densely defined infinitesimal generator 𝐿 𝑗 := 𝜕

𝜕𝑥 𝑗
𝑇x

���
x=0
for each

𝑗 = 1, · · · , 𝑑 with domainD 𝑗 ⊂ 𝐻. ThenD :=
⋂𝑑
𝑗=1 D 𝑗 ⊂ 𝐻 is a Hilbert space with

the inner product ( 𝑓 , �̃�)D :=
∫
Ω
𝑓 (𝜔)�̃�(𝜔)𝑃(𝑑𝜔) + ∑𝑑

𝑖=1
∫
Ω
𝐿𝑖 𝑓 (𝜔)𝐿𝑖 �̃�(𝜔)𝑃(𝑑𝜔).

Since the problem (3) is equivalent to findingE in a curl-free space, andE = E+G
with a zero-average field G, the following Hilbert space of vector-valued functions
with inner product (·, ·)H := (·, ·)𝐻 is considered

H :=
{
𝑓 𝑗 (𝜔) ∈ 𝐻 |𝐿𝑖 𝑓 𝑗 = 𝐿 𝑗 𝑓𝑖 weakly ,

∫
Ω

𝑓 𝑗 (𝜔)𝑃(𝑑𝜔) = 0, 𝑖, 𝑗 = 1, · · · , 𝑑
}
.

The variational formulation of (3), after taking into account (2), is to find G̃𝑙 (𝜔) ∈ H
such that ∫

Ω

�̃�𝜖𝜖 (𝜔) (G̃𝑙 (𝜔) + e𝑙 )̃f (𝜔)𝑃(𝑑𝜔) = 0 for all f̃ ∈ H (5)

where e𝑙 is the unit vector in the 𝑙-th direction, 𝑙 = 1, · · · , 𝑑. This problem is well-
posed because the bilinear form is coercive w.r.t. the 𝐻-norm and the Lax-Milgram
lemma can be applied. Letting f̃ = G̃𝑘 in (5) and using the definition in (4) and the
fact that e𝑘 = Ẽ𝑘 − G̃𝑘 , one obtains the following symmetric form
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𝜖𝜖𝜖∗e𝑙 · e𝑘 = 𝜖∗𝑘𝑙 =
∫
Ω

�̃�𝜖𝜖 (𝜔)Ẽ𝑙 (𝜔)Ẽ𝑘 (𝜔)𝑃(𝑑𝜔), 𝑘, 𝑙 = 1, · · · , 𝑑. (6)

To specialize to the two-phase case with isotropic constituents, consider 𝜖𝜖𝜖 (x, 𝜔) =
𝜒1 (x, 𝜔)𝜖1I + 𝜒2 (x, 𝜔)𝜖2I with 0 < 𝜖1 ≤ 𝜖2 < ∞ and indicator functions 𝜒𝑝 , 𝑝=1,2
such that �̃�1 (𝜔) + �̃�2 (𝜔) = 1. For example, �̃�1 (𝜔) equals one for all realizations
𝜔 ∈ Ω for which the origin is occupied by the material with permittivity 𝜖1. Define
the contrast ℎ := 𝜖2

𝜖1
. The variational formulation now reads∫

Ω

[ �̃�1 (𝜔) + ℎ�̃�2 (𝜔)] (G̃𝑙 (𝜔) + e𝑙) · f̃ (𝜔)𝑃(𝑑𝜔) = 0 for all f̃ ∈ H (7)

and the effective permittivity 𝜖𝜖𝜖 defined in (4), as a function of ℎ, can be expressed
as follows

𝜖∗𝑘𝑙 (ℎ) = 𝜖1

[
𝛿𝑘𝑙 + (ℎ − 1)

∫
Ω

( �̃�2 (𝜔)𝐸 𝑙𝑘 (ℎ, 𝜔)𝑃(𝑑𝜔)
]

(8)

or equivalently, one can focus on the function

𝑚𝑘𝑙 (ℎ) := (𝜖1)−1𝜖∗𝑘𝑙 (ℎ) =
[
𝛿𝑘𝑙 + (ℎ − 1)

∫
Ω

( �̃�2 (𝜔)𝐸 𝑙𝑘 (ℎ, 𝜔)𝑃(𝑑𝜔)
]

(9)

Note that𝑚𝑘𝑙 (1) = 𝛿𝑘𝑙 by definition. If one replaces the inner product (·, ·)𝐻 with the
one for complex-valued functions (by complex conjugating one of the functions), then
the sesquilinear form in (7) is coercive in ℎ ∈ C \ (−∞, 0]. Hence by Lax-Milgram
lemma, there is a unique solution for all 𝜖1, 𝜖2 ∈ C such that 𝜖2

𝜖1
∈ C \ (−∞, 0].

This further implies that 𝜖𝜖𝜖 (ℎ) is analytic in ℎ ∈ C \ (−∞, 0] and so is the effective
permittivity 𝜖𝜖𝜖∗ (ℎ).
To obtain the spectral representation, first note that (7) can be written formally in

terms of the Kronecker 𝛿 as (by thinking of 𝐺𝑙
𝑘
as the gradient of a function because

it is curl-free, i.e. 𝐺𝑙
𝑘
= 𝐿𝑘𝜓

𝑙 for some scalar function 𝜓𝑙 , 𝑘 = 1, . . . , 𝑑)

𝑑∑︁
𝑘=1

𝐿𝑘 [ �̃�1 (𝜔) + ℎ�̃�2 (𝜔) (𝐺𝑙𝑘 + 𝛿𝑘𝑙)] = 0, 𝑙 = 1, · · · , 𝑑.

Rewriting the above expression in the following form

𝑑∑︁
𝑘=1

𝐿𝑘𝐺
𝑙
𝑘 + (ℎ − 1)

𝑑∑︁
𝑘=1

𝐿𝑘 �̃�2 (𝜔) (𝐺𝑙𝑘 + 𝛿𝑘𝑙) = 0, 𝑙 = 1, · · · , 𝑑 (10)

Define △̃ :=
∑𝑑
𝑞=1 𝐿

2
𝑞 . Thenwe see that formally 𝐿 𝑗 (△̃)−1 ∑𝑑

𝑘=1 𝐿𝑘𝐺
𝑙
𝑘
= 𝐿 𝑗 (△̃)−1△̃𝜓𝑙 =

𝐿 𝑗𝜓
𝑘 = 𝐺𝑙

𝑗
. By applying 𝐿 𝑗 (−△̃−1) to (10), followed by adding 𝛿 𝑗𝑙 on both sides,

the desired expression is achieved
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(𝐺𝑙𝑗 + 𝛿 𝑗𝑙) + (1 − ℎ)
𝑑∑︁
𝑘=1

𝐿 𝑗 (−△̃−1)𝐿𝑘 �̃�2 (𝐺𝑙𝑘 + 𝛿𝑘𝑙) = 𝛿 𝑗𝑙 , 𝑗 , 𝑙 = 1, · · · , 𝑑. (11)

Define a new variable 𝑠 := 1
1−ℎ and the operator 𝐵 𝑗𝑘 := 𝐿 𝑗 (−△̃−1)𝐿𝑘 �̃�2 It can

be shown that B is a self-adjoint bounded linear operator with respect to the inner
product

< �̃� , �̃� >:=
∫
Ω

�̃�2 (𝜔) �̃� · �̃�, �̃� , �̃� ∈ (𝐿2 (Ω, F , 𝑃))𝑑

∥B̃∥ ≤ 1. Then the integral equation above becomes

Ẽ𝑙 (ℎ) = G̃𝑙 (ℎ) + e𝑙 =

(
I + B̃

𝑠

)−1

e𝑙 , 𝑠 =
1

1 − ℎ . (12)

Applying the spectral theory of self-adjoint operators and taking into account the
fact that 𝑠 ∈ [−1, 0] must be in the resolvent set, the solution is represented in terms
of the projection-valued measure Q(𝑑𝑧) associated with B

𝐺𝑙𝑗 + 𝛿 𝑗𝑙 = 𝑠
∫ 1

0

(Q(𝑑𝑧)e𝑙) 𝑗
𝑠 − 𝑧 , 𝑙, 𝑗 = 1, . . . , 𝑑 for all 𝑠 ∈ C \ [0, 1] . (13)

Therefore the effective property in (8) is given by the following integral representation
formula (IRF)

𝜖∗𝑘𝑙 (ℎ) = 𝜖1

[
𝛿𝑘𝑙 −

∫ 1

0

𝜇𝑘𝑙 (𝑑𝜉)
𝑠 − 𝜉

]
, where ℎ = 1 − 1

𝑠
(14)

and 𝜇𝑘𝑙 (𝑑𝜉) =
∫
Ω

�̃�2 (𝜔) (Q(𝑑𝜉)e𝑙)𝑘𝑃(𝑑𝜔)

In [43], the function 𝑚 defined in (9) is used in the main theorem, which shows that
the diagonal terms in the effective permittivity tensor can be represented in terms of
a Stieltjes function with finite positive Borel measures. The main theorem is stated
below.

Theorem 1 ( [43]) Let 𝑠 = 1
1−ℎ and 𝐹𝑘𝑙 (𝑠) = 𝛿𝑘𝑙 − 𝑚𝑘𝑙 (ℎ). There exists (not

necessarily positive) finite Borel measures 𝜇𝑘𝑙 (𝑑𝜉) defined on 0 ≤ 𝜉 ≤ 1 such that
the diagonals 𝜇𝑘𝑘 (𝑑𝜉) are positive measures satisfying 𝐹𝑘𝑙 (𝑠) =

∫ 1
0
𝜇𝑘𝑙 (𝑑𝜉 )
𝑠−𝜉 for all

𝑠 ∈ C \ [0, 1].

This theorem has been generalized for a special case of polycrystalline materials in
[73].
Note that 𝑠 = ∞ or equivalently ℎ = 1 corresponds to the case of 𝜖1 = 𝜖2, i.e.

homogeneous media. Once the IRF is obtained, the relation between the moments
of the finite measure and the microstructure 𝜒2 can be established by comparing the
coefficients of the Laurent series expansion of the IRF at 𝑠 = ∞ and the Taylor series
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expansion of 𝑚𝑖𝑘 at ℎ = 1, which involves differentiation w.r.t. ℎ of the right hand
side of (9).

𝜇
(𝑛−1)
𝑘𝑙

:=
∫ 1

0
𝑧𝑛−1𝜇𝑘𝑙 (𝑑𝑧) =

(−1)𝑛−1

𝑛!
𝑚

(𝑛)
𝑘𝑙

(1), 𝑛 = 1, 2, · · · .

To evaluate 𝑚 (𝑛)
𝑘𝑙
, the derivatives of Ẽ𝑙 are needed. They can be calculated by

expanding (12) near 𝑠 = ∞ (ℎ = 1) because the functions are analytic there. By
comparing the Taylor coefficients at ℎ = 1 on the left-hand-side with the Laurent
coefficents on the right hand side, it is clear that

1
𝑛!
𝑑𝑛Ẽ𝑙

𝑑ℎ𝑛

���
ℎ=1

= B𝑛e𝑙 , 𝑛 = 0, 1, 2, . . . , 𝑙 = 1, . . . 𝑑. (15)

This directly implies that the 𝑛-th moments are related to the (𝑛 + 1)-point
correlation functions of the microstructure. Some explicit relations can be derived.
For example, differentiating both sides of (9) leads to

𝜇
(0)
𝑘𝑙

= 𝑚′
𝑘𝑙 (1) =

∫
Ω

( �̃�2 (𝜔)𝐸 𝑙𝑘 (1, 𝜔)𝑃(𝑑𝜔) +
[
(ℎ − 1)

∫
Ω

�̃�2 (𝜔)
𝑑𝐸 𝑙

𝑘

𝑑ℎ
𝑃(𝑑𝜔)

] ���
ℎ=1

= 𝑝2𝛿𝑘𝑙

where 𝑝2 is the volume fraction of material 2. If the microstructure 𝜒2 (x, 𝜔) is spa-
tially isotropic, then one can also obtain the exact expression of 𝜇 (1)

𝑘𝑙
by differentiating

(9) twice, applying (15) and using the kernel function of (−△)−1 to obtain

𝜇
(1)
𝑘𝑙

= −1
2
𝑚′′
𝑘𝑙 (1) = −

∫
Ω

�̃�2 (𝜔)
𝑑𝐸 𝑙

𝑘

𝑑ℎ
(1, 𝜔)𝑃(𝑑𝜔) = 𝑝1𝑝2

𝑑
𝛿𝑘𝑙

where 𝑝1 := 1 − 𝑝2.
Instead of in the setting of an unbounded, stationery random media, the Stieltjes

IRF for two-phase composites with isotropic constituents can also be derived in a
bounded and deterministic setting with various types of boundary conditions. For
example, see [86] for the permittivity tensor and [52],[75] [20] for elasticity tensors.
A very nice feature of a Stieltjes IRF like (14) is the separation of influence - the

contrast 𝑠 is in the integrand while all the mircostructural information is encoded
in the measure. It has been used to formulate the problem of finding bounds on 𝜖𝑖𝑖
as a linear optimization problem over the set of all measures supported in [0, 1]
with constraints on the first 𝑛 moments. Specifically, letM be the set of all positive
finite Borel measures on [0, 1] and consider 𝑚(ℎ) := 𝑚11 (ℎ), its IRF and the set of
measures with constraints on the first 𝑛 moments

1 − 𝑚(ℎ; 𝜇) = 𝐹 (𝑠) =
∫ 1

0

𝜇(𝑑𝜉)
𝑠 − 𝜉 , 𝑠 =

1
1 − ℎ , 𝑠 ∈ C \ [0, 1],

M(𝑎0, . . . , 𝑎𝑛−1) :=
{
𝜇
��𝜇 ∈ M, 𝜇 (0) = 𝑎0, 𝜇

(1) = 𝑎1, . . . , 𝜇
(𝑛−1) = 𝑎𝑛−1

}
.
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where 𝑎 𝑗 > 0, 𝑗 = 0, . . . , 𝑛 − 1 form a positive definite sequence [3] so they can
be the first 𝑛 moments of a measure. To study the possibles values of the effective
properties by mixing two given materials with contrast ℎ, consider the following set
of possible values

Λ(ℎ, 𝑎0, . . . , 𝑎𝑛−1) :=
{
1 − 𝐹 (𝑠, 𝜇) ∈ C

�� 𝜇 ∈ M(𝑎0, . . . , 𝑎𝑛−1), 𝑠 ∈ C \ [0, 1]
}

Note that not all measures correspond to a microstructure and hence Λ contains
values that are not achievable by any microstructure. Nevertheless, it contains all
possible values of 𝜖∗11 (ℎ). Clearly, with a fixed value of 𝑠 ∈ C \ [0, 1], 1 − 𝐹 (𝑠, 𝜇) is
a bounded linear map onM(𝑎0, . . . , 𝑎𝑛−1), which is a compact and convex subset of
M in the topology of weak convergence. Therefore,Λ(ℎ, 𝑎0, . . . , 𝑎𝑛−1) is a compact
and convex set in C and the extreme points ofM(𝑎0, . . . , 𝑎𝑛−1) are weak limits of
measures of the form [53]

𝑑𝜎(𝜉) =
𝑛∑︁
𝑘=1

𝛼𝑘𝛿(𝜉 − 𝜉𝑘), 𝛼𝑘 ≥ 0, 1 > 𝜉1 > 𝜉2 > · · · > 𝜉𝑛 ≥ 0

and
𝑛∑︁
𝑘=1

𝛼𝑘𝜉
𝑗

𝑘
= 𝑎 𝑗 , 𝑗 = 0, 1, . . . , 𝑛 − 1. (16)

A crucial step in deriving the bounds is to note the structure of interlacing poles and
zeros of the functions represented by the type of measures in (16). Consider

𝑚(ℎ; 𝑑𝜎) := 1 −
∫ 1

0

𝑛∑︁
𝑘=1

𝛼𝑘𝛿(𝜉 − 𝜉𝑘)
𝑠 − 𝜉 = 1 −

𝑛∑︁
𝑘=1

𝛼𝑘

𝑠 − 𝜉𝑘
,

which is a rational function of 𝑠. Let 𝑠 = 𝜌𝑘 , 𝑘 = 1, . . . , 𝑛, 𝜌1 ≥ 𝜌2 ≥ · · · ≥ 𝜌𝑛 be
the zeros of 𝑚(ℎ); they must be of real-valued because of the IRF of 𝑚. Then the
following expression is valid

𝑛∏
𝑘=1

𝑠 − 𝜌𝑘
𝑠 − 𝜉𝑘

= 1 −
𝑛∑︁
𝑘=1

𝛼𝑘

𝑠 − 𝜉𝑘
⇒ 𝛼 𝑗 = −

∏𝑛
𝑘=1 (𝜉 𝑗 − 𝜌𝑘)∏
𝑘≠ 𝑗 (𝜉 𝑗 − 𝜉𝑘)

The fact that 𝛼 𝑗 ≥ 0 for all 𝑗 = 1, . . . , 𝑛 and the additional physical constraint
𝑚(0, 𝑑𝜎) > 0 then lead to the interlacing property

0 ≤ 𝜉𝑛 ≤ 𝜌𝑛 ≤ · · · ≤ 𝜉1 ≤ 𝜌1 ≤ 1

The bounds on 𝜖∗11 can now be derived as follows. Suppose the volume fraction 𝑝2
is given. Then the corresponding bounding function 𝑚(ℎ; 𝑑𝜎) (or extreme points of
Λ(ℎ; 𝑝2)) has the following form because of its zero 𝑠 = 𝜉1 + 𝑝2 ≤ 1

𝑚(ℎ; 𝑑𝜎) = 1 − 𝑝2
𝑠 − 𝜉1

, 0 ≤ 𝜉1 ≤ 1 − 𝑝2. (17)
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If real valued ℎ is considered and ℎ ≥ 1 (𝑠 < 0) then the bounds of 𝑚(ℎ; 𝜇) are the
well-known geometric bound and the algebraic bound

1 − 𝑝2
𝑠 − (1 − 𝑝1)

≤ 𝑚(ℎ; 𝜇) ≤ 1 − 𝑝2
𝑠

⇒ 1
1 − 𝑝2 + 𝑝2

ℎ

≤ 𝑚(ℎ; 𝜇) ≤ 1 − 𝑝2 + ℎ𝑝2.

If complex-valued ℎ is considered, then (17) provides the bounding curve for the
convex hull of Λ(ℎ; 𝑝2) consisting of a cord and an arc.
If themicrostructure is assumed to be isotropic, thenΛ(ℎ; 𝑝2,

𝑝1 𝑝2
𝑑

) is considered.
When ℎ is real and greater than one, the same procedure recovers the well known
Hashin-Shtrikman bounds

1 + 𝑝2
1
ℎ−1 + 𝑝1

𝑑

≤ 𝑚(ℎ) ≤ ℎ + 𝑝1
1

1−ℎ + 𝑝2
𝑑ℎ

.

When ℎ is of complex values, the convex hull of 𝜆(ℎ; 𝑝2,
𝑝1 𝑝2
𝑑

) is bounded by two
arcs. More details about the bounding curves can be found in [27] and [70].
The bounding curves have been utilized for finding bounds on volume fractions

of two-component composites from given complex-valued permittivity [67][27].
The separation of influence also makes this type of IRF very useful in retrieving
microstructural information from given data on the effective parameters [25][26][18]
[86] [74][44]. The process of reconstructing themeasure fromdata of 𝜖𝑖𝑖 (ℎ) is termed
dehomogenization, whose theoretical foundation is established by E. Cherkaev in
[25]. For applications of IRF in the study of transport in fluid, see [5, 6, 7][73].

2.1.2 IRF for permeability tensors with positive matrix-valued measures

In Theorem 1, the Stieltjes function IRF is concluded only for diagonal terms of
the effective permittivity tensor 𝜖𝜖𝜖 . A matrix-valued IRF seems to be a more suitable
choice for the study of 𝜖𝜖𝜖 . Moreover, the IRF in Theorem 1 has such a simple form
due to the fact that |𝑠𝐹𝑘𝑘 (

√
−1𝑠) | < 𝑀 for all 𝑠 > 0, i.e. 𝐹𝑘𝑘 decays fast enough

along the imaginary axis; this simplifies the IRF for Herglotz-Nevanlinna function
significantly. In this section, an application that corresponds to a matrix-valued
analytic function that is analytic in C+ ∪ (0,∞) and does not satisfy the fast decay
condition along the imaginary axis will be presented. The Herglotz functions that
are analytic on one half line of the real axis have been studied by Kac and Krein
in [51], where they are referred to as the Stieltjes function of class S and S−1. In
different references of the literature, the definitions of these two classes sometimes
appeared to be interchanged based on whether the singularities are on the left real
axis or the right real axis but the representation theorems for each class has also been
modified accordingly. Listed below is the definition that best suits the application
to be presented in this section and which is a matrix version of a modification of
Definition 3 in Part I.

Definition 1 [37, 54]
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1. A matrix-valued function F holomorphic in C \ (−∞, 0] is of class S if the
following two criteria are satisfied.
F(𝑧)−F∗ (𝑧)

𝑧−�̄� ≥ 0 if 𝐼𝑚(𝑧) ≠ 0 and F(𝑥) ≥ 0 for 𝑥 > 0.
2. A matrix-valued function F holomorphic in C \ (−∞, 0] is of class S−1 if the
following two criteria are satisfied.
F(𝑧)−F∗ (𝑧)

𝑧−�̄� ≤ 0 if 𝐼𝑚(𝑧) ≠ 0 and F(𝑥) ≥ 0 for 𝑥 > 0.
Theorem 2 1. F(𝑧) belongs to class S if and only if there exists a monotonically

increasing matrix-valued function 𝜎𝜎𝜎(𝑡) such that the following IRF holds for
𝑧 ∈ C \ (−∞, 0]

F(𝑧) = 𝐴𝐴𝐴 +𝐶𝐶𝐶𝑧 +
∫ ∞

+0

𝑧

𝑧 + 𝑡 𝑑𝜎
𝜎𝜎(𝑡)

where 𝐴𝐴𝐴 ≥ 0,𝐶𝐶𝐶 ≥ 0,
∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) < ∞ and 𝐴𝐴𝐴 +𝐶𝐶𝐶 +

∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) > 0.

2. F(𝑧) belongs to class S−1 if and only if there exists a monotonically increasing
matrix-valued function𝜎𝜎𝜎(𝑡) such that the following IRF holds for 𝑧 ∈ C\ (−∞, 0]

F(𝑧) = 𝐴𝐴𝐴 + 𝐶𝐶𝐶
𝑧
+

∫ ∞

+0

1
𝑧 + 𝑡 𝑑𝜎

𝜎𝜎(𝑡)

where 𝐴𝐴𝐴 ≥ 0,𝐶𝐶𝐶 ≥ 0,
∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) < ∞ and 𝐴𝐴𝐴 +𝐶𝐶𝐶 +

∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) > 0.

The application considered here is about the transport property of porousmaterials in
the framework of homogenization of periodic media. The Darcy permeability tensor
K(𝐷) plays the role of quantifying the transport of fluid in porous media. To study
how the microstructure of a porous media influence its Darcy permeability tensor,
K(𝐷) is treated in [28] as the limiting case of the two-fluid problem where each
isotropic fluid is characterized by its viscosity 𝜇 𝑗 , 𝑗 = 1, 2.The two-fluid problem is
originally formulated in [58] for studying the Stokes equations of flows mixed with
tiny stationery bubbles (inclusions). The mixture is assumed to occupy a region Ω
and the tiny inclusions are periodically distributed. The tininess of the inclusions
leads to the assumption that the side of the periodic cell is 0 < 𝜖 ≪ 1 while the
diameter of Ω is 𝑂 (1). Let 𝑄 denote the unit periodic cell (0, 1)𝑛, 𝑛 = 2, 3 that
contains disjoint parts 𝑄1 and the inclusion 𝑄2 with interface Γ = 𝜕𝑄1 ∩𝑄2 = 𝜕𝑄2
such that𝑄 = 𝑄1∪𝑄2∪Γ and Γ∩𝜕𝑄 = ∅.We assume inclusions𝑄2 can distribute in
any possible way in a scaled period cell 𝜖𝑄 as long as they do not touch one another or
the periodic cell boundary 𝜕 (𝜖𝑄). For any given 0 < 𝜖 ≪ 1, the domainΩ is covered
by a periodic extension of 𝜖𝑄; the extension is denoted by 𝜖𝑄 = 𝜖𝑄1 ∪ 𝜖𝑄2 ∪ 𝜖Γ.
For any fixed 𝜖 , the hosting fluid has constant viscosity 𝜇1 and occupies region

Ω𝜖1 := Ω ∩ 𝜖𝑄1 while the inclusions has constant viscosity 𝜇2 and occupies region
Ω𝜖2 := Ω ∩ 𝜖𝑄2. The interface between the hosting fluid and the inclusion fluid is
denoted by Γ𝜖 , i.e. Γ𝜖 = Ω𝜖1 ∩ Ω𝜖2 and Ω = Ω𝜖1 ∪ Ω𝜖2 ∪ Γ𝜖 . To make this problem
amenable to the theory of Herglotz-Nevanllina functions, we assume 𝜇1 > 0 and
𝜇2 = 𝑧𝜇1 with 𝑧 ∈ C. In the tensor notation, it is

�̃�𝑖 𝑗𝑘𝑙 (x; 𝑧) = (𝜒2 (x)𝑧𝜇1 + 𝜒1 (x)𝜇1)
(𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘)

2
=.. 𝜇(x; 𝑧)𝐼𝑖 𝑗𝑘𝑙 , 𝑧 ∈ C. (18)



Herglotz-Nevanlinna functions: II 11

The two-fluid problem for the unknown fluid velocity u𝜖 and fluid pressure 𝑝 𝜖 is
formulated as follows

div (2�̃�𝜇𝜇𝜖 (x; 𝑧)𝑒(u𝜖 )) − ∇𝑝 𝜖 = −f in Ω𝜖1 ∪Ω𝜖2
divu𝜖 = 0 in Ω𝜖1 ∪Ω𝜖2

u𝜖 = 0 on 𝜕Ω
Ju𝜖 K = 0, u𝜖 · n = 0 on Γ𝜖

J𝜋𝜋𝜋𝜖 K · n =
(
J𝜋𝜋𝜋𝜖 · nK · n

)
n on Γ𝜖

(19)

where 𝑒(u𝜖 ) = (∇u𝜖 + ∇Tu𝜖 )/2, f is a square integrable momentum source, J·K
denotes the jump across Γ𝜖 , n the exterior normal vector of Ω𝜖2 , and the stress
tensors 𝜋(u𝜖 (x; z)) is defined as (will be denoted 𝜋(u𝜖 ) for short)

𝜋(u𝜖 )ij = 2�̃�𝜖ijkle(u
𝜖 (x; z))kl − p𝜖 (x; z)𝛿ij. (20)

The first jump condition in system (19) describes the continuity of u𝜖 across the
interface while the second jump condition states that only the normal traction can
have a jump across the interface, i.e. the tangential (or shear) traction has to be
continuous across the interface.
Similar to [58], it can be shown by using the Lax-Milgram lemma that for every

fixed 0 < 𝜖 ≪ 1,(19) has a unique solution u𝜖 and 𝑝 𝜖 is unique up to a constant for
all 𝑧 ∈ C \ (−∞, 0]. To obtain convergence results, 𝑝 𝜖 is properly normalized to the
new pressure 𝑝 𝜖 by a procedure described in [58]. As 𝜖 → 0, the solution u𝜖 and
𝑝 𝜖 converge as follows

u𝜖

𝜖2 → u0 weakly in L2 (𝛀)3, p̃𝜖 → P strongly in L2 (𝛀)/C

where u0 and 𝑃 satisfy the homogenized system:{
u0 = −K(∇𝑃 − f) in Ω

div u0 = 0 in Ω
(21)

where the self-permeability K is defined as

𝐾𝑖 𝑗 (𝑧) ..=
∫
𝑄

𝑢𝑖𝑗 (x;𝑧)𝑑y =

∫
𝑄

ui (x;𝑧) · e 𝑗𝑑y (22)

by the 𝑄-periodic, divergence-free solution uk to the following cell problem
divy

(
2�̃�(y; 𝑧)𝑒(uk) − pkI

)
+ e𝑘 = 0 in 𝑄1 ∪𝑄2

J𝜋𝜋𝜋K · n =
(
J𝜋𝜋𝜋 · nK · n

)
n on Γ

(23)

where y denotes the coordinates for the unit periodic cell 𝑄 and the viscosity tensor
in 𝑄1 ∪𝑄2 is
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�̃�𝑖 𝑗𝑘𝑙 (y; 𝑧) = (𝜒2 (y)𝑧𝜇1 + 𝜒1 (y)𝜇1)𝐼𝑖 𝑗𝑘𝑙 = 𝜇(y; 𝑧)𝐼𝑖 𝑗𝑘𝑙 . (24)

The function space for the cell problem is the Hilbert space

𝐻 (𝑄) :=
{
v : v ∈ 𝐻1 (𝑄1 ∪𝑄2)3

���� divyv = 0, v · n = 0 in 𝐻− 1
2 (Γ),

JvKΓ = 0, v is 𝑄- periodic
}

(25)

endowed with inner product

(u, v)Q =

∫
Q

2𝜇1e(u) : e(v)dy (26)

where the induced norm is denoted by ∥u∥2
𝑄 := (u, u)Q and the contraction product

of two 𝑛 × 𝑛 matrices A = {𝑎𝑖 𝑗 }, B = {𝑏𝑖 𝑗 } is A : B =
∑𝑛
𝑖, 𝑗=1 𝑎𝑖 𝑗𝑏𝑖 𝑗 . Let R(𝑄)

denote the space of rigid body displacement in𝑄, i.e. u = Ay+bwith constant skew-
symmetric matrix 𝐴 and constant vector b in 𝐻 (𝑄). Then we have 𝐻 (𝑄) ∩ R(𝑄) =
{0} becauseA = 0 due to the𝑄-periodicity and periodic and u ·n = 0 implies b = 0.
Hence Korn’s inequality can be applied to show that the norm ∥ · ∥𝑄 is equivalent to
the𝐻1 (𝑄)-norm. In this setting, it is proved in [28] by using the Lax-Milgram lemma
that the cell problem has a unique solution u(y, z) ∈ H(Q) and 𝑝(y, 𝑧) ∈ 𝐿2 (𝑄)/C
for all 𝑧 ∈ C\ (−∞, 0]. Also, u(z) is analytic inC\ (−∞, 0] and so isK(𝑧). Moreover,
K in (22) can be expressed as the following quadratic form

𝐾𝑖 𝑗 (𝑧) =
∫
𝑄

2�̃�(y; 𝑧)𝑒(ui (z)) : 𝑒(uj (z))𝑑y (27)

and its conjugate transpose K∗ := K𝑇 is

(𝐾∗)𝑖 𝑗 (𝑧) =
∫
𝑄

𝑢
𝑗

𝑖
(𝑧)𝑑y =

∫
𝑄

2�̃�(y; 𝑧)𝑒(uj (z)) : 𝑒(ui (z))𝑑y. (28)

1. Because 𝐾𝑖 𝑗 (𝑧) − 𝐾∗
𝑖 𝑗
(𝑧) = 2𝜇1 (𝑧 − 𝑧)

∫
𝑄2
𝑒(ui (z)) : 𝑒(uj (z))𝑑y, we have

𝐾𝑖 𝑗 (𝑧) − 𝐾∗
𝑖 𝑗
(𝑧)

𝑧 − 𝑧 = −2𝜇1

∫
𝑄2

𝑒(ui (z)) : 𝑒(uj (z))𝑑y = −(uj, ui)Q2 =: −Aij

The matrix 𝐴𝐴𝐴 is obviously Hermitian. Furthermore, for any 𝜉𝜉𝜉 ∈ C3, we have∑𝑛
𝑖, 𝑗=1 𝜉𝑖𝐴𝑖 𝑗𝜉 𝑗 = (∑𝑛

𝑗=1 𝜉 𝑗uj,
∑n

i=1 𝜉iui)Q2 ≥ 0. Therefore,

K(𝑧) − K∗ (𝑧)
𝑧 − 𝑧 ≤ 0 if 𝐼𝑚(𝑧) ≠ 0.

2. For 𝑥 > 0, recall that 𝐾𝑖 𝑗 (𝑥) =
(
(uj, ui)Q1 + x(uj, ui)Q2

)
. With a similar argument

as before, we have
K(𝑥) ≥ 0 for 𝑥 > 0
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With these two properties and the fact that K is holomorphic in C \ (−∞, 0], we see
that K(𝑧) is a Stieltjes function of class S−1. Therefore, by Theorem 2 there exists
a monotonically increasing matrix-valued function 𝜎𝜎𝜎(𝑡) such that the following
integral representation formula holds for 𝑧 ∈ C \ (−∞, 0]

K(𝑧) = 𝐴𝐴𝐴 + 𝐶𝐶𝐶
𝑧
+

∫ ∞

+0

1
𝑧 + 𝑡 𝑑𝜎

𝜎𝜎(𝑡)

where 𝐴𝐴𝐴 ≥ 0,𝐶𝐶𝐶 ≥ 0,
∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) < ∞ and 𝐴𝐴𝐴 +𝐶𝐶𝐶 +

∫ ∞
+0

1
1+𝑡 𝑑𝜎𝜎𝜎(𝑡) > 0. It is proved

in [28] that there exist two positive numbers 𝐸1, 𝐸2 > 1 such thatK(𝑧) is analytic in
(−∞,−2𝐸2

1) ∪ (− 1
2𝐸2

2
, 0); 𝐸1 and 𝐸2 are the extension constant related to𝑄1 and𝑄2.

It is also shown in [28] that K(∞) = K(𝐷) , the Darcy permeability of porous media
defined in the appendix of [82] by L. Tartar. Also, K(0) = K(𝐵) , the permeability
when the inclusion is bubbles. Therefore, the IRF above can be simplified to

K(𝑧) = K(𝐷) +
∫ 2𝐸2

1

1
2𝐸2

2

1
𝑧 + 𝑡 𝑑𝜎

𝜎𝜎(𝑡)

This shows an interesting fact that with 𝜇1 ∈ R fixed, the larger the inclusion viscosity
is, the smaller the permeability. To see how the microstructure influences K, a new
variable 𝑠 := 1

𝑧−1 is defined. As a function of 𝑠, K can be shown to be a function of
class S and hence can be expressed with a monotonically increasing matrix-valued
function 𝜌𝜌𝜌(𝑡) as follows

K(𝑠) = K(𝐷) +
∫ 2𝐸2

2
1+2𝐸2

2

1
1+2𝐸2

1

𝑠

𝑠 + 𝑡 𝑑𝜌
𝜌𝜌(𝑡), (29)

which is valid for all 𝑠 ∈ C\ [− 2𝐸2
2

1+2𝐸2
2
,− 1

1+2𝐸2
1
]. Finally, the link between themoments

of measure 𝜌𝜌𝜌 and the microstructure can be established by expansion at 𝑠 = ∞. See
[28] for details.

2.2 Numerical treatment of memory terms in the modeling of materials

In this section, the Stieltjes function structure of the memory kernel is utilized to
design an efficient numerical scheme for solving the poroelastic wave equations.
In the modeling of wave propagation in poroelastic media such as bones and fluid

saturated rock or viscoelastic materials such as polymeric fluid, the current state
depends on the history of the time evolution of the state from the starting time. As
a result, the governing equations contain a time convolution term whose integrand
consists of the unknown state function and a pre-described time-dependent kernel
function 𝐾; this convolution integral is referred to as the memory term. For a time
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domain solver, it poses the challenges of a proper time-stepping scheme. In the
literature, it has been handled by storing the history of the solution such as in [65]
or a proper design of quadrature rules for approximating the memory term in the
time domain, e.g. [59] and the reference therein. For poroelastic wave equations, the
memory term appears in the equations referred to as the generalized Darcy’s law
that relates the pore pressure 𝑝, the solid velocity v and relative velocity of the fluid
w.r.t. to the solid q

−∇𝑝 = 𝜌 𝑓
𝜕v
𝜕𝑡

+
(
𝜌 𝑓

𝜙

)
�̌�𝛼𝛼 ★

𝜕q
𝜕𝑡
, 𝑡 > 0, (30)

where the matrix �̌�𝛼𝛼 is the inverse Fourier-Laplace transform of the 𝛼𝛼𝛼 defined in
(31). The physical origin of the memory term is due to the fact that at the micro-
scale (scale of the pore size) in the frequency domain, the boundary layer of the
viscous pore fluid is frequency dependent, e.g. the viscous skin depth is inversely
proportional to the square root of the frequency. In the seminal papers [16, 17], M.
A. Biot calculated a critical frequency 𝑓𝑐, which separates the regime of laminar
pore fluid flow from that of turbulent pore fluid flow and each regime corresponds
to a different expression of 𝛼𝛼𝛼(𝜔).
However, the discrepancy between the model prediction and experiment observa-

tion of wave dissipation has prompted the study of high-frequency corrections that
are more general than the one proposed in [17]. In order to describe these corrections,
we need to introduce the physical quantity that encapsulates this complicated vis-
codynamics, i.e. the dynamic tortuosity tensor 𝛼𝛼𝛼(𝜔) and the dynamic permeability
tensor K(𝜔) with 𝜔 being the frequency. For 𝜔 ≠ 0, 𝛼𝛼𝛼(𝜔) and K(𝜔) are related as
follows:

𝛼𝛼𝛼(𝜔) = 𝑖𝜂𝜙

𝜔𝜌 𝑓
K(𝜔)−1 (31)

with 𝑖 :=
√
−1. and 𝜙, 𝜂, 𝜌 𝑓 being the volume fraction, the dynamic viscosity and

the density of the pore fluid, respectively.
To keep the discussion simple, we consider the isotropic case 𝛼𝛼𝛼(𝜔) = 𝛼(𝜔)I.
One of the most widely used corrections is derived in [50]

𝛼(𝜔) = 𝛼∞ + 𝑖𝜂𝜙

𝜔𝐾0𝜌 𝑓

(
1 −

4𝑖𝛼2
∞𝐾

2
0 𝜌 𝑓𝜔

𝜂Λ2𝜙2

) 1
2

=: 𝛼𝐷 (𝜔), (32)

where 𝐾0 is the static permeability, 𝛼∞ the limit of 𝛼 at infinite frequency and Λ
a structure parameter related to the surface-to-volume ratio of the pore space; all
of these parameters can be measured. See [50]. An important ingredient in their
derivation is the causality of 𝐾 (𝜔). This is carried out by first considering the
gradient force and the fluid velocity field that are time-harmonic with frequency
𝜔, i.e. the one-sided Fourier transform, followed by extending 𝐾 (𝜔) for complex-
valued 𝜔. A function defined on the complex 𝜔-plane is causal if and only if it is
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analytic in the upper half plane. Another requirement in the JKD derivation is that a
real-valued stimulus ∇𝑝𝑒−𝑖𝜔𝑡 +∇𝑝𝑒𝑖𝜔𝑡 should result in a real-valued response. This
leads to the symmetry constraint 𝐾 (−𝜔) = 𝐾 (𝜔). According to [50], the function
in (32) was chosen because it is the simplest form of functions that are causal and
satisfies the aforementioned symmetry constraint. Of course, there is no reason why
it has to be in this form. Indeed, in [24], [88] and [80], it is shown that when the
cross-section of the pore space varies rapidly enough, the JKD formula in (32)
severely underestimates the imaginary part of the measured dynamic tortuosity for
low frequency 𝜔 ≤ 𝜔0 := 𝜂𝜙

𝐾0𝜌 𝑓 𝛼∞
.

In [4], the spectrum {𝜖 𝑗 }∞𝑗=1 of the incompressible Stokes equation with kinetic
viscosity 𝜈, in the pore space is used to derive the following general integral repre-
sentation formula (IRF) for the dynamic permeability

𝐾 (𝜔) = 𝜈

𝐹

∫ Θ1

0

Θ𝑑𝐺 (Θ)
1 − 𝑖𝜔Θ , with 𝐺 (Θ) =

∑
Θ𝑛≤Θ 𝑏

2
𝑛∑∞

𝑛=1 𝑏
2
𝑛

, 𝐹 :=

(
𝜙

∞∑︁
𝑛=1

𝑏2
𝑛

)−1

(33)

where Θ1 := (𝜈𝜖1)−1 < ∞, 𝑑𝐺 is a positive measure with mass 1 and 𝑏𝑛 > 0,
𝑛 = 1, 2, . . . , ordered in the same order as the non-decreasing eigenvalues, are
defined by the orthogonal spectral system of the Stokes equations. This implies the
dependence of 𝐾 on the pore space geometry is encoded in the measure 𝑑𝐺. Note
that 0 < 𝜖1 ≤ 𝜖2 ≤ · · · , 𝜖𝑛 → ∞ as 𝑛→ ∞.
The integral representation for𝐾 in (33) shows that𝐾 is not aHerglotz-Nevanlinna

function itself. However, as it was noted in [77], the permeability in (33) can be
related to a Stieltjes function with the new variables 𝑠 := −𝑖𝜔 ,𝜉 := − 1

𝑠
and

𝑅(𝜉) := −𝑠
(
𝐹

𝜈

)
𝐾 (𝑖𝑠) =

∫ Θ1

0

Θ𝑑𝐺 (Θ)
𝜉 − Θ

=:
∫ Θ1

0

𝑑𝜆(Θ)
𝜉 − Θ

. (34)

As a result, the tortuosity 𝛼 can be represented as follows

𝛼(𝜔) = 𝜂𝜙

𝜌 𝑓𝐾0

(
𝑖

𝜔

)
+

∫ Θ1

0

𝑑𝜎(Θ)
1 − 𝑖𝜔Θ for 𝜔 such that −

𝑖

𝜔
∈ C \ [0,Θ1], (35)

where 𝑑𝜎 is a positive Borel measure that has a Dirac mass at Θ = 0 with strength
𝛼∞. It is also shown in [77] that the JKD tortuosity in (32) is indeed a special case of
(35) by finding the corresponding 𝑑𝜎 for (32). In the context of JKD permeability
𝐾𝐷 (𝜔), this IRF result implies that the geometry parameter Λ is related to the
microstructure as follows

Λ =

√√√ 2𝐾0𝛼∞

𝜙[ 𝜇1 (𝑑𝜆𝐷 )
𝜇2

0 (𝑑𝜆𝐷 ) − 1]
, (36)
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where 𝜇0 and 𝜇1 are the zero-th moment and the first moment, respectively, of the
corresponding measure in (34) for the JKD permeability. We note that the commonly
used formula in the literature is Λ ≈

√︃
2𝛼∞𝐾0
𝜙/4 .

According to the theorem proved in [41], the multi-point rational approximation
𝑃𝑛−1/𝑄𝑛 of every Stieltjes function 𝑓 (𝑧) =

∫ 𝑏
𝑎

𝑑𝜆(𝑡)
𝑧−𝑡 is itself a Stieltjes function∫ 𝑏

𝑎

𝑑𝛽 (𝑡)
𝑧−𝑡 with a bounded, non-decreasing 𝛽(𝑡). Hence the poles of the rational

approximation of a Stieltjes function are all simple with positive residue and located
in [𝑎, 𝑏]. Moreover, It is shown there that the convergence is geometrical with order
2𝑛 in any compact set on the complex plane. We state the theorem that is relevant to
the approximation of 𝛼 here.

Theorem 3 ([41]) Let 𝑓 be a Stieltjes function of the form
∫ 𝑏
𝑎

𝑑𝜆(𝑡)
𝑧−𝑡 and let 𝛾𝑘 , be

a set of interpolation points, consisting of 𝑘1 real points 𝑥1, · · · , 𝑥𝑘1 ∈ R \ [𝑎, 𝑏],
and 𝑘2 non-real points 𝑧1, · · · , 𝑧𝑘2 ∈ C \ R. Let 𝑃𝑛−1 (𝑧) and 𝑄𝑛 (𝑧) be polynomials
of degree at most 𝑛 − 1 and 𝑛, respectively, with 𝑘1 + 𝑘2 + 𝑘3 = 2𝑛 such that the
following relations are satisfied{

𝑓 (𝑧)𝑄𝑛 (𝑧) − 𝑃𝑛−1 (𝑧) = 𝐴(𝑧)
∏𝑘1
𝑗=1 (𝑧 − 𝑥 𝑗 )

∏𝑘2
𝑗=1 (𝑧 − 𝑧 𝑗 ) (𝑧 − 𝑧 𝑗 )

𝑓 (𝑧)𝑄𝑛 (𝑧) − 𝑃𝑛−1 (𝑧) = 𝐵(𝑧)𝑧𝑛−𝑘3−1,

where 𝐴(𝑧), 𝐵(𝑧) are analytic in C \ [𝑎, 𝑏] and 𝐵(𝑧) bounded at ∞. Then for the
multi-point rational approximation it holds:

1. [𝑛 − 1/𝑛] 𝑓 (𝑧) := 𝑃𝑛−1 (𝑧)
𝑄𝑛 (𝑧) =

∫ 𝑏
𝑎

𝑑𝛽 (𝑡)
𝑧−𝑡 for some bounded, non-decreasing function

𝛽(𝑡).
2. Denote by 𝛾𝑘 , 𝑘 = 1, . . . 2𝑛 the interpolation points, fix one interpolation point 𝑣

and denote𝐺𝑘 (𝑧) := 𝜓𝑣 (𝑧)−𝜓𝑣 (𝛾𝑘 )
1−𝜓𝑣 (𝑧)𝜓𝑣 (𝛾𝑘 )

, where𝜓𝑣 (𝑧) =
√
𝑧−𝑏−

√︃
𝑣−𝑏
𝑣−𝑎

√
𝑧−𝑎

√
𝑧−𝑏+

√︃
𝑣−𝑏
𝑣−𝑎

√
𝑧−𝑎

is a conformal

mapping that maps C \ [𝑎, 𝑏] onto the interior of the unit circle and 𝑣 onto 0.
If 𝑎, 𝑏 are finite numbers then there exists a constant 𝐾𝑣, dependent on 𝑓 and 𝑣
but not on 𝑛, such that for 𝑧 ∈ C \ [𝑎, 𝑏] it holds���� 𝑓 (𝑧) − 𝑃𝑛−1 (𝑧)

𝑄𝑛 (𝑧)

���� ≤ 𝐾𝑣
1

max( |𝑧 − 𝑎 |, |𝑧 − 𝑏 |)
1

1 − |𝜓𝑣 (𝑧) |
· Π2𝑛

𝑘=1 |𝐺𝑘 (𝑧).

Moreover, if for all 𝑛 the interpolation points 𝛾𝑘 are at least at a fixed non-zero
distance away from [𝑎, 𝑏], then there exists △𝐹 < 1 such that |𝐺𝑘 (𝑧) | ≤ △𝐹 < 1
and hence���� 𝑓 (𝑧) − 𝑃𝑛−1 (𝑧)

𝑄𝑛 (𝑧)

���� ≤ 𝐾𝑣
1

max( |𝑧 − 𝑎 |, |𝑧 − 𝑏 |)
1

1 − |𝜓𝑣 (𝑧) |
(△𝐹)2𝑛. (37)

Therefore, the approximation converges geometrically in any compact set that does
not intersect with [𝑎, 𝑏].

Now, we rewrite (35) in terms of 𝜉 and rearrange terms to obtain
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𝛼(𝜉) + 𝜂𝜙

𝜌 𝑓𝐾0
𝜉 − 𝛼∞ = 𝜉

∫ Θ1

+0

𝑑𝜎(Θ)
𝜉 − Θ

.

Theorem 3 implies that

𝜉

∫ Θ1

+0

𝑑𝜎(Θ)
𝜉 − Θ

≈ 𝜉
𝑛∑︁
𝑘=1

𝜌𝑘

𝜉 − 𝜋𝑘
, with 𝜌𝑘 > 0 and 0 < 𝜋𝑘 < Θ1

with error bound�����𝜉∫ Θ1

+0

𝑑𝜎(Θ)
𝜉 − Θ

− 𝜉
𝑛∑︁
𝑘=1

𝜌𝑘

𝜉 − 𝜋𝑘

����� ≤ |𝜉 |
max( |𝜉 |, |𝜉 − Θ1 |)

𝐾𝑣

|1 − 𝜓𝑣 (𝜉) |
(△𝐹)2𝑛.

Changing the variable back to 𝑠, it is clear that there exists 𝑟𝑘 > 0 and 𝑝𝑘 > 0 such
that

𝛼(𝑠)≈ 𝜂𝜙

𝜌 𝑓𝐾0

(
1
𝑠

)
+ 𝛼∞ +

𝑛∑︁
𝑘=1

𝑟𝑘

𝑠 − 𝑝𝑘
for 𝑠 ∈ C \ (−∞,− 1

Θ1
] .

The 𝑟𝑘 and 𝑝𝑘 can be accurately computed from given nodes (𝑠 𝑗 , 𝛼(𝑠 𝑗 ))𝑛𝑗=1 by using
two-sided residue approximation with arbitrary precision arithmetics; see [78] [85]
for details. Let L be the Fourier-Laplace transform (note that this differs from the
Laplace transform in e.g., Section 2.6 in Part I by a factor 𝑖)

L 𝑓 (𝜔) :=
∫
R+
𝑓 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 =: 𝑓 (𝜔). (38)

We approximate the transform of the memory term as follows:

L[�̌� ★ 𝜕q
𝜕𝑡

] (𝑠) = 𝛼(𝑠) (𝑠q̂ − q(0)) ≈
(
𝛼∞ +

𝑛∑︁
𝑘=1

𝑟𝑘

𝑠 − 𝑝𝑘
+ 𝑎
𝑠

)
(𝑠q̂ − q(0))

= 𝛼∞ (𝑠q̂ − q(0)) +
(
𝑎 +

𝑛∑︁
𝑘=1

𝑟𝑘

)
q̂ +

(
𝑛∑︁
𝑘=1

𝑟𝑘 𝑝𝑘

𝑠 − 𝑝𝑘

)
q̂

−
(
𝑛∑︁
𝑘=1

𝑟𝑘

𝑠 − 𝑝𝑘
+ 𝑎
𝑠

)
q(0), where 𝑎 :=

𝜂𝜙

𝜌 𝑓𝐾0
.

Furthermore, for each of the terms in the sum, since all the singularities 𝑝𝑘 are
restricted to the left of 𝑠 = − 1

Θ1
, the inverse Laplace transform can be performed

exactly by integrating along the imaginary axis (Theorem 9.1.1 in [33])

L−1
[

1
𝑠 − 𝑝𝑘

]
(𝑡) = 1

2𝜋𝑖
lim
𝑅→∞

∫ 𝑖𝑅

−𝑖𝑅

1
𝜁 − 𝑝𝑘

𝑒𝜁 𝑡𝑑𝜁 = 𝑟𝑘𝑒
𝑝𝑘 𝑡 , 𝑡 > 0.

This integral is calculated by integrating along [−𝑅𝑖, 𝑅𝑖] ∪ {𝑠 = 𝑅𝑒𝑖 𝜃 |𝜋/2 < 𝜃 <

3𝜋/2} and applying the residue theorem and letting 𝑅 → ∞. As a result, we have
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for 𝑡 > 0 (
�̌� ★

𝜕q
𝜕𝑡

)
(x, 𝑡) :=

∫ 𝑡

0
�̌�(𝜏) 𝜕q

𝜕𝑡
(x, 𝑡 − 𝜏)𝑑𝜏

≈ 𝛼∞
𝜕q
𝜕𝑡

+
(
𝑎 +

𝑛∑︁
𝑘=1

𝑟𝑘

)
q −

𝑛∑︁
𝑘=1

𝑟𝑘 (−𝑝𝑘)𝑒𝑝𝑘 𝑡 ★ q

−
(
𝑛∑︁
𝑘=1

𝑟𝑘𝑒
𝑝𝑘 𝑡 + 𝑎𝐻 (𝑡)

)
q(0),

where 𝐻 denotes the Heaviside function. Applying a strategy similar to those in the
literature [21], we define the auxiliary variables Θ𝑘 , 𝑘 = 1, . . . , 𝑛 such that

𝜃𝑘 (x, 𝑡) := (−𝑝𝑘)𝑒𝑝𝑘 𝑡 ★ q. (39)

It can be easily checked that 𝜃𝑘 , 𝑘 = 1, . . . , 𝑀 , satisfies the following equation:

𝜕𝑡𝜃𝑘 (x, 𝑡) = 𝑝𝑘𝜃𝑘 (x, 𝑡) − 𝑝𝑘q(x, 𝑡). (40)

Finally, we can replace the generalized Darcy’s law (30) with the following system
that has no explicit memory terms

𝜕𝑡𝜃𝑘 (x, 𝑡) = 𝑝𝑘𝜃𝑘 (x, 𝑡) − 𝑝𝑘q(x, 𝑡), 𝑘 = 1, · · · , 𝑛

−∇𝑝 = 𝜌 𝑓
𝜕v
𝜕𝑡

+
(
𝜌 𝑓 𝛼∞ 𝑗

𝜙

)
𝜕q
𝜕𝑡

+
(
𝜂

𝐾0 𝑗
+
𝜌 𝑓

𝜙

𝑛∑︁
𝑘=1

𝑟𝑘

)
q

−
(
𝜌 𝑓

𝜙

) 𝑛∑︁
𝑘=1

𝑟𝑘𝜃𝑘 −
𝜌 𝑓

𝜙

(
𝑛∑︁
𝑘=1

𝑟𝑘𝑒
𝑝𝑘 𝑡 + 𝑎

)
q(x, 0), 𝑡 > 0

(41)

(42)

The generalization to anisotropic tortuosity function 𝛼 is straightforward and has
been implemented numerically in [85].

2.3 Broadband passive quasi-static cloaking

The sum rules for Herglotz-Nevanlinna functions can be applied to explain and quan-
tify the limitations of broadband quasi-static cloaking. In this section, we summarize
the results from the paper by Cassier and Milton [22].
Here the geometry is as follows: Ω ⊂ R3 is an open bounded set, which in this

context is thought of as the whole device. Let then O ⊂ Ω be a bounded simply
connected dielectric inclusion with Lipschitz boundary such that the cloak Ω \ O is
open and connected.
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Consider the Maxwell equations for D (electric induction), B (magnetic induc-
tion), E (electric field) and H (magnetic field)

𝜕𝑡D − ∇ × H = −J, 𝜕𝑡B + ∇ × E = −J𝐵, ∇ · D = 0, ∇ · B = 0. (43)

Suppose the external electric current J and magnetic current J𝐵 are absent; one has
J = J𝐵 = 0. Let 𝜖0 and 𝜇0 denote the permittivity constant and the permeability
constant of vacuum, respectively. The Maxwell equations are supplemented with the
constitutive laws

D = 𝜖0E + P and B = 𝜇0H + M (44)

where the electric polarization P and the magnetic polarization M are defined by
the time convolution with the real-valued electric susceptibility function 𝜒𝐸 and the
magnetic susceptibility function 𝜒𝑀 as follows

P = 𝜖0𝜒𝐸 ★E and M = 𝜖0𝜒𝑀 ★H. (45)

The functions considered are as follows: for each x ∈ Ωwehave 𝜒𝐸 (x, ·), 𝜒𝑀 (x, · ) ∈
𝐿1 (R) and E,H, 𝜕𝑡E, 𝜕𝑡H ∈ 𝐿2 (R) as a function of 𝑡. Also, for each fixed 𝑡 ∈ R
E,H, 𝜕𝑡E, 𝜕𝑡H ∈ 𝐿2 (Ω) as functions of x.
The causality assumption of the material, i.e. E(·, 𝑡) and H(·, 𝑡) cannot influence

D(·, 𝑡 ′) and B(·, 𝑡 ′) for 𝑡 ′ < 𝑡, implies that 𝜒𝐸 (·, 𝑡) and 𝜒𝑀 (·, 𝑡) are supported in
𝑡 ≥ 0. Applying the Laplace-Fourier transform (38) to (44) and (45), the following
relations in the frequency domain are obtained:

D̂(𝜔) = 𝜖0 (1 + �̂�𝐸 (𝜔))Ê(𝜔) =: 𝜖 (𝜔)Ê(𝜔), (46)
B̂(𝜔) = 𝜇0 (1 + �̂�𝑀 (𝜔))Ê(𝜔) =: 𝜇(𝜔)Ê(𝜔). (47)

For real-valued 𝜔, 𝜖 (𝜔) and 𝜇(𝜔) are the usual dielectric permittivity and the
magnetic permeability, respectively. The assumption of 𝜒𝐸 (x, ·), 𝜒𝑀 (x, ·) ∈ 𝐿1 (R)
leads to the fact that all the functions involved in (46) and (47) are analytic in C+ and
continuous in the topological closure 𝑐𝑙 (C+)= C+ ∪ R. Moreover, by applying the
Riemann-Lebesgue theorem to 𝜒𝐸 and 𝜒𝑀 , one has �̂�𝐸 (𝜔) → 0 and �̂�𝑀 (𝜔) → 0
as |𝜔 | → ∞ in 𝑐𝑙 (C+). Therefore, 𝜖 (𝜔) → 𝜖0 and 𝜇(𝜔) → 𝜇0 as 𝑐𝑙 (C+) ∋ 𝜔 → ∞.
The passivity assumption that demands non-negative electric/magnetic energy loss
is formulated as

E𝑎 (𝑡) =
∫ 𝑡

−∞

∫
Ω

𝜕𝑡D(x, 𝑠) · E(x, 𝑠) + 𝜕𝑡B(x, 𝑠) · H(x, 𝑠)𝑑x𝑑𝑠 ≥ 0, 𝑡 ∈ R. (48)

Then the Plancherel theorem implies that

E𝑎 (∞) = 1
2𝜋
𝑅𝑒

∫
R

∫
Ω

−𝑖𝜔
(
𝜖 (x, 𝜔) |Ê(x, 𝜔) |2 + �̂�(x, 𝜔) |Ĥ(x, 𝜔) |2

)
𝑑x𝑑𝜔 ≥ 0.



20 Miao-Jung Yvonne Ou and Annemarie Luger

Since this has to hold for all E and H, it must be true that 𝜔Im (𝜖 (𝜔)) ≥ 0 and
𝜔Im (𝜇(𝜔)) ≥ 0 for all real-valued 𝜔. These properties of �̂�𝐸 , �̂�𝑀 , 𝜖 (𝜔) and 𝜇(𝜔)
prompt the study of functions 𝑓 : 𝑐𝑙 (C+) → C that satisfy the following hypotheses

• H1: 𝑓 is analytic in C+ and continuous in 𝑐𝑙 (C+). (causality)
• H2: 𝑓 (𝑧) → 𝑓∞ > 0 as |𝑧 | → ∞ in 𝑐𝑙 (C+).
• H3: 𝑓 (−𝑧) = 𝑓 (𝑧), 𝑧 ∈ 𝑐𝑙 (C+)
• H4: Im ( 𝑓 (𝑧) ≥ 0 for all 𝑧 ∈ R+ (passivity).

Note that 𝑓 here is not a Herglotz-function, however, Remark 2 in Part I implies that
the function 𝑣(𝜔) := 𝜔 𝑓 (

√
𝜔) is, and this fact will be utilized below.

The problem of passive, quasi-static cloaking for incident plane waves is formu-
lated in [22] as follows. LetO be a bounded, simply connected Lipschitz domain with
constant permittivity 𝜖I with 𝜖 > 𝜖0 and non-dispersive (frequency independent) in
the frequency range [𝜔−, 𝜔+]. The cloak is assumed to have permittivity 𝜖 (x, 𝜔) and
occupies the space Ω \ O surrounding the inclusion O.

Ω denotes the bounded region occupied by the cloak and O and it is assumed that
the permittivity in R3 \Ω is 𝜖0I. In the quasi-static case, the time derivatives in (48)
are negligible and hence E must be the gradient of some scalar potential. Let the
incident plane wave be E0, a uniform field in R3, which will interact with the device
Ω and the scattered field with potential𝑉𝑠 will be generated.𝑉𝑠 satisfies the equation{

∇ · (𝜖𝜖𝜖 (x, 𝜔)∇𝑉𝑠) = ∇ · (𝜖𝜖𝜖 (x, 𝜔) − 𝜖𝑜I) in R3,

𝑉𝑠 (x, 𝜔) = 𝑂 (1/|x|) as |x| → ∞.
(49)

Moreover, the total field 𝑉 is related to 𝑉𝑠 by 𝑉 (x, 𝑡) = −E0 · x +𝑉𝑠 (x, 𝑡).
Because the cloak occupying Ω \ O is assumed to be passive, the permittivity

𝜖𝜖𝜖 (x, 𝜔) satisfies the following conditions for almost all x ∈ Ω \ O

• H̃1: 𝜖𝜖𝜖 (x, ·) is analytic on C+ and continuous on 𝑐𝑙 (C+).
• H̃2: 𝜖𝜖𝜖 (x, 𝜔) → 𝜖0I as |𝜔 | → ∞ in 𝑐𝑙 (C+).
• H̃3: 𝜖𝜖𝜖 (x,−𝜔) = 𝜖𝜖𝜖 (x, 𝜔) ∀𝜔 ∈ 𝑐𝑙 (C+).
• H̃4: Im 𝜖𝜖𝜖 (x, 𝜔) ≥ 0∀𝜔 ∈ R+
• H̃5: 𝜖𝜖𝜖 (x, 𝜔)𝑇 = 𝜖𝜖𝜖 (x, 𝜔), ∀𝜔 ∈ 𝑐𝑙 (C+) (reciprocity principle).

For the well-posedness of (49), two additional conditions are imposed.

• H̃6: 𝜖𝜖𝜖 (·, 𝜔) ∈ 𝐿∞ (Ω \ O) ∀𝜔 ∈ 𝑐𝑙 (C+) such that sup𝜔∈𝑐𝑙 (C+) ∥𝜖𝜖𝜖 (·, 𝜔)∥𝐿∞ (Ω\O) ≤
𝑐1 with positive constant 𝑐1.

• H̃7a: There exists 𝑐2 (𝜔) > 0 and 𝛾(𝜔) ∈ [0, 2𝜋) such that for all𝜔 ∈ 𝑐𝑙 (C+), one
has |Im (𝑒𝑖𝛾 (𝜔)𝜖𝜖𝜖 (x, 𝜔)E ·E) ≥ 𝑐2 (𝜔)∥E∥2, ∀E ∈ C3 and for almost all x ∈ Ω\O.

• H̃7b: For all𝜔0 ∈ R, there exists 𝑐3 (𝜔0) > 0, 𝛿 > 0 and 𝛾(𝜔0) ∈ [0, 2𝜋) such that
for all 𝜔 ∈ 𝐵(𝜔0, 𝛿), one has |Im (𝑒𝑖𝛾 (𝜔0)𝜖𝜖𝜖 (x, 𝜔)E · E) ≥ 𝑐3 (𝜔0)∥E∥2, ∀E ∈ C3

and for almost all x ∈ Ω \ O.

With these assumptions on 𝜖𝜖𝜖 (x, 𝜔), it is shown in [22] that the potential of the total
electric field that satisfies the condition 𝑉 (x, 𝜔) = −E0 · x +𝑂 (1/|x|) as |x| → ∞ is
of the form
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𝑉 (x, 𝜔) = −E0 · x + (𝛼𝛼𝛼(𝜔)E0) · x
4𝜋𝜖0 |x|3

+𝑂 (1/|x|3) (50)

as |x| → ∞ for all 𝜔 ∈ 𝑐𝑙 (C+) ∪ {∞}, where the complex-valued 3×3 polarizability
tensor 𝛼𝛼𝛼(𝜔) is given by

𝛼𝛼𝛼(𝜔)E0 =

∫
Ω

(𝜖𝜖𝜖 (x, 𝜔) − 𝜖0I) (E0 + ∇𝑉𝑠 (x, 𝜔)) 𝑑x. (51)

The key point is that 𝛼𝛼𝛼(𝜔) describes the leading term of the far-field scattered field.
Hence the broadband cloaking of the dielectric inclusion O in the frequency interval
[𝜔−, 𝜔+] is achieved when 𝛼𝛼𝛼(𝜔) vanishes for all 𝜔 ∈ [𝜔−, 𝜔+]. It is proved in
[22] that if 𝜖𝜖𝜖 (x, 𝜔) satisfies the hypotheses 𝐻1-𝐻7𝑏, then the function 𝑓 (𝜔) :=
𝛼𝛼𝛼(𝜔)E0 · E0 satisfies hypotheses 𝐻1-𝐻4. Consequently,

𝑣(𝜔) := 𝜔 𝑓 (
√
𝜔) = 𝜔𝛼𝛼𝛼(

√
𝜔)E0 · E0 (52)

is a Herglotz-Nevanlinna function analytic in C \ R0
+ and negative in R−. Note that

𝑣 is not a Stieltjes function, since it has the "wrong sign" on the negative half line.
Furthermore, 𝑓 (∞) = 𝛼(∞)𝛼(∞)𝛼(∞)E0 · E0 holds, which is positive for any non-zero field
E0. This immediately leads to the conclusion that𝛼𝛼𝛼(𝜔) cannot vanish in any interval
[𝑥−, 𝑥+] with 𝑥−, 𝑥+ ∈ R+ and 𝑥− ≠ 𝑥+. Because if is does vanish, so does 𝑓 ; then
the Schwarz reflection principle and the analytic continuation imply 𝑓 is identically
zero in C+, which contradicts the fact 𝑓 (∞) > 0. Therefore, broadband cloaking is
not possible for a quasi-static passive cloak.
We conclude this section by explaining the main ingredients in the derivation of a

more refined quantification of the fundamental limits of broadband passive cloaking
in quasi-statics presented in [22].
Since the polarizability tensor 𝛼𝛼𝛼(𝜔) with real-valued 𝜔 is of interest in physics,

the Herglotz-Nevanlinna function setting is to extract information from the behavior
of 𝛼𝛼𝛼(𝜔) as a function in 𝑐𝑙 (C+) to conclude something useful for its behavior on
the positive real line. One important tool for making this connection is the sum
rule, as stated in Theorem 10 in Part I, which is applied to the composition with an
appropriate window function. This same technique is also used in Section 3.1 in
Part I.
To be able to focus on a finite interval [−△, △] ⊂ R, △ > 0, the function ℎ𝑚 is

defined as

ℎ𝑚 (𝑧) :=
∫ △

−△

𝑑𝑚(𝜉)
𝜉 − 𝑧 (53)

where𝑚 belongs toM△, the set of finite positive Borelmeasure supported in [−△, △]
such that 𝑚( [−△, △]) = 1. Obviously, ℎ𝑚 (𝑧) is a Herglotz-Nevanlinna function. By
using the theorems in [15] and [22], the following asymptotic behavior can be
concluded
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ℎ𝑚 (𝑧) = −𝑚({0})
𝑧

+ 𝑜
(

1
𝑧

)
, as |𝑧 |→̂0 and ℎ𝑚 (𝑧) = −1

𝑧
+ 𝑜

(
1
𝑧

)
, as |𝑧 |→̂∞

Since for any function 𝑓 that satisfies H1-H4, the corresponding function 𝑣(𝑧) :=
𝑧 𝑓 (√𝑧) is a Herglotz-Nevanlinna function in C \R+ and negative in R−, the compo-
sition 𝑣𝑚 (𝑧) := ℎ𝑚 (𝑣(𝑧)) is again a Herglotz-Nevanlinna function with the following
asymptotic expansion

𝑣𝑚 (𝑧) = −𝑚({0})
𝑓 (0)𝑧 + 𝑜

(
1
𝑧

)
, as |𝑧 |→̂0 and 𝑣𝑚 (𝑧) = − 1

𝑓∞𝑧
+ 𝑜

(
1
𝑧

)
, as |𝑧 |→̂∞.

Theorem 10 in Part I for 𝑛 = 0 immediately implies that for any given finite interval
[𝑥−, 𝑥+] ⊂ R and any 𝑚 ∈ M△, one has

lim
𝑦→0+

1
𝜋

∫ 𝑥+

𝑥−

Im 𝑣𝑚 (𝑥 + 𝑖𝑦)𝑑𝑥 ≤ lim
𝜂→0+

lim
𝑦→0+

1
𝜋

∫
𝜂< |𝑥 |<𝜂−1

Im 𝑣𝑚 (𝑥 + 𝑖𝑦)𝑑𝑥

=
1
𝑓∞

− 𝑚({0})
𝑓 (0) ≤ 1

𝑓∞
. (54)

If the cloak is lossy in the finite band [𝜔−, 𝜔+], i.e. Im 𝜖𝜖𝜖 (x, 𝜔) in (51) is not
negligible in [𝜔−, 𝜔+], then (52) implies Im 𝑣(𝑥) and hence Im 𝑣𝑚 is not negligible
for 𝑥 ∈ [𝜔2

−, 𝜔
2
+] := [𝑥−, 𝑥+]. The choice of 𝑑𝑚(𝜉) = 111[−△,△] ( 𝜉 )

2△ 𝑑𝜉 results in ℎ𝑚 (𝑧) =
1

2△ log 𝑧−△
𝑧+△ for all 𝑧 ∈ C+ (branch cut at R+). Consequently, a lower bound of

Im ℎ𝑚 (𝑧) can be easily derived to be Im ℎ𝑚 (𝑧) ≥ 𝜋
4△𝐻 (△ − |𝑧 |), where 𝐻 is the

Heaviside function.
Taking into account the sum rule in (54), one has

lim
𝑦→0+

𝜋

4△

∫ 𝑥+

𝑥−

𝐻 (△ − |𝑣(𝑥 + 𝑖𝑦) |)𝑑𝑥 ≤ lim
𝑦→0+

1
𝜋

∫ 𝑥+

𝑥−

Im 𝑣𝑚 (𝑥 + 𝑖𝑦)𝑑𝑥 ≤ 𝜋

𝑓∞
.

Applying the Lebesgue Dominated Convergence theorem to the left side leads to∫ 𝑥+
𝑥−
𝐻 (△ − |𝑣(𝑥) |)𝑑𝑥 ≤ 4△

𝑓∞
. Finally, letting △ = max𝑥−≤𝑥≤𝑥+ |𝑣(𝑥) | in the previous

inequality leads to the bound 1
4 (𝑥+ − 𝑥−) 𝑓∞ ≤ max𝑥∈[𝑥− ,𝑥+ ] |𝑣(𝑥) |. By identifying

𝑥 = 𝜔2, the inequality can be directly translated to the following bound on the
polarizability tensor in the frequency band

1
4
(𝜔2

+ − 𝜔2
−)𝛼𝛼𝛼(∞)E0 · E0 ≤ max

𝜔∈[𝜔− ,𝜔+ ]

���𝜔2𝛼𝛼𝛼(𝜔)E0 · E0

��� .
Suppose the cloak has a transparent window in the band [𝜔−, 𝜔+], i.e. Im 𝜖𝜖𝜖 (x, 𝜔) = 0
for 𝜔 ∈ [𝜔−, 𝜔+] for almost all x ∈ Ω \ O. Then the corresponding 𝑣(𝑧) in (52)
is real-valued for 𝑧 ∈ [𝜔2

−, 𝜔
2
+] := [𝑥−, 𝑥+] because of (49) and (51). In this case,

more refined bounds can be derived because first of all, 𝑣(𝑧) can be extended to
be an analytic function in 𝐷 := C \ {[0, 𝑥−] ∪ [𝑥+,∞)}. By letting the measure
used in ℎ𝑚 be a Dirac measure 𝑚 = 𝛿𝜁 with 𝜁 = 𝑣(𝑥0) for some 𝑥0 ∈ (𝑥−, 𝑥+)
and choosing △ so that −△ < 𝜉 < △, one has 𝑣𝛿𝜁 (𝑧) = 1

𝑣(𝑥0)−𝑣(𝑧) , which is a
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Herglotz-Nevanlinna function with a real pole at 𝑥0 and hence must be of mul-
tiplicity 1. Therefore, 𝑣′(𝑥0) ≠ 0. Moreover, this pole must be isolated because
𝑣(𝑥0) − 𝑣(𝑧) is analytic in 𝐷. Therefore, there must exist a small neighborhood
N around 𝑥0 where 𝑣𝛿𝜁 can be expressed as 𝑣𝛿𝜁 (𝑧) =

𝑔 (𝑧)
𝑧−𝑥0

with 𝑔(𝑧) analytic in
N , 𝑔′(𝑥0) = 1

𝑣′ (𝑥0) and real-valued in N ∩ [𝑥−, 𝑥+] =: (𝑎, 𝑏). The sum rule (54)
implies lim𝑦→0+

1
𝜋

∫ 𝑏
𝑎

Im 𝑣𝛿𝜁 (𝑥 + 𝑖𝑦)𝑑𝑥 ≤ 𝜋
𝑓∞
. On the other hand, explicit calcula-

tion can be performed to get lim𝑦→0+
1
𝜋

∫ 𝑏
𝑎

Im 𝑣𝛿𝜁 (𝑥 + 𝑖𝑦)𝑑𝑥 = 𝜋
𝑣′ (𝑥0) . So one has

0 < 𝑓∞ ≤ 𝑣′(𝑥0) for all 𝑥0 ∈ [𝑥−, 𝑥+]. This implies 𝑓∞ · (𝑥1 − 𝑥2) ≤ 𝑣(𝑥1) − 𝑣(𝑥2) for
any 𝑥1, 𝑥2 ∈ [𝑥−, 𝑥+] such that 𝑥2 < 𝑥1. Suppose 𝑣(𝑥2) = 0, then 𝑣(𝑥1) ≥ 𝑓∞ · 𝑥1 for
all 𝑥2 < 𝑥1. Similarly, if 𝑣(𝑥1) = 0, then 𝑣(𝑥2) ≤ − 𝑓∞ · 𝑥1 for all 𝑥1 > 𝑥2 in [𝑥−, 𝑥+].
Therefore, even if 𝛼𝛼𝛼 is zero at 𝜔0 ∈ [𝜔−, 𝜔+], one will have 𝛼𝛼𝛼(𝜔) ≤ −𝛼𝛼𝛼(∞) 𝜔

2
0−𝜔

2

𝜔2

if 𝜔 ≤ 𝜔 < 𝜔0 and 𝛼𝛼𝛼(𝜔) ≥ 𝛼𝛼𝛼(∞) 𝜔
2
0−𝜔

2

𝜔2 if 𝜔0 < 𝜔 ≤ 𝜔+.
For the broadband passive quasi-static cloaking (BPQC) problem, the Herglotz-

Nevanlinna function structure of the function 𝑣(𝜔) in (52) and the accompanied sum
rules not only lead to a proof that BPQC is impossible but also give quantitative
limitations of BPQC through providing useful lower bounds.

2.4 Hamiltonian structure of Time Dispersive and Dissipative Systems

Wave dissipation and dispersion appears in many materials. For example, the dy-
namic tortuosity describes both the dissipation and dispersion mechanism for the
poroelastic materials. Also, the dispersive nature of the Maxwell’s equations is re-
vealed by the frequency dependent permittivity, permeability and the susceptibility
functions (46),(47). These are examples of linear time dispersive and dissipative
(TDD) systems. In a series of work, Figotin and Schenker [38][40][39] developed
a framework for studying the Hamiltonian structure of the linear TDD. Specifically,
they consider problems of the following form in a Hilbert space setting

𝑚𝜕𝑡v(𝑡) = −𝑖Av(𝑡) −
∫ ∞

0
a(𝜏)v(𝑡 − 𝜏)𝑑𝜏 + f (𝑡) (55)

where 𝑚 > 0 is a positive mass operator in a Hilbert space 𝐻0, A a self-adjoint
operator in 𝐻0, f (𝑡) ∈ 𝐻0 a generalized external force and a(𝑡) an operator valued
retarded friction function that satisfies a(𝑡) = 0 for 𝑡 > 0. The total work done
by 𝑓 is 𝑊 =

∫ ∞
−∞ Re {(v(𝑡), f (𝑡))}𝑑𝑡. The term −𝑖Av(𝑡) −

∫ ∞
0 a(𝜏)v(𝑡 − 𝜏)𝑑𝜏 is

interpreted as the force that 𝑣 exerts on itself at time 𝑡 with −𝑖Av(𝑡) regarded as the
instantaneous term. The time dispersive integral term

∫ ∞
0 a(𝜏)v(𝑡 − 𝜏)𝑑𝜏 is based

on two fundamental requirements of time homogeneity and causality. As a simple
example, consider a non-magnetic medium by setting J𝐵 = 0,H = B (henceM = 0),
∇ · J = 0 and 𝜇0 = 𝜖0 = 1 in (43)-(45). The corresponding TDD for this case is
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v(x, 𝑡) =
(
E(x, 𝑡)
B(x, 𝑡)

)
∈ 𝐻0

𝐻0 := {v ∈ 𝐿2 (R, 𝐻 (𝑑𝑖𝑣,R3) × 𝐻 (𝑑𝑖𝑣,R3)) |∇ · E = 0 = ∇ · B}

A =

(
0 𝑖∇×

−𝑖∇× 0

)
, a(𝑡) =

(
𝜕𝑡 𝜒𝐸I3×3 03×3

03×3 03×3

)
, f (𝑡) =

(
J
0

)
This space of 𝐻0 is sometimes referred to as {v ∈ 𝐿2 (C6) |∇ · E = 0 = ∇ · B} in the
literature. The difficulty of studying the spectral theory a TDD system can be easily
seen by considering the time-frequency Fourier transform �̂�(𝜔) :=

∫ ∞
−∞ 𝑒

𝑖𝜔𝑡 𝑣(𝑡)𝑑𝑡.
Note that here the Fourier transform is denoted in the same way as the Laplace-
Fourier transform in the preceding sections. Then the TDD system (55) becomes

𝜔𝑚v̂(𝜔) = (A − 𝑖â(𝜔))v̂(𝜔) + 𝑖f̂ (𝜔) =: Â(𝜔)v̂(𝜔) + 𝑖f̂ (𝜔).

The Kramers-Kronig relations imply that Â is non-self-adjoint as long as â ≠ 0 and
hence the eigenvectors of the problem 𝜔𝑚e𝜔 = (A − 𝑖â(𝜔))e𝜔 are not necessarily
orthogonal for distinct 𝜔 and may not form a basis for 𝐻0. This challenge can be
addressed by the method of conservative extension of the TDD system [38] by first
noting that Â is not an arbitrary non-selfadjoint operator because the friction operator
â has to satisfy certain characteristic properties of physical laws. Also, as is pointed
out in [38, 39, 40], for all DD systems that are physical, the frequency dependence
of â originates from ignoring its coupling with another system, whose variables are
referred to as the hidden degree of freedom of the TDD system. Hence by finding
the coupling system, there will be a Hamiltonian structure of the extended system,
which consists of the original TDD system and the coupling system.
Based on this idea, a coupled system is introduced

𝑚𝜕𝑡v(𝑡) = −𝑖Av(𝑡) − 𝑖ΓΓΓw(𝑡) + f (𝑡) (56)
𝜕𝑡w(𝑡) = −𝑖ΓΓΓ†v(𝑡) − 𝑖ΩΩΩ1w(𝑡),ΩΩΩ1 is self-adjoint in 𝐻1 (57)

where 𝐻1 denotes the Hilbert space of the hidden variables w, ΓΓΓ : 𝐻1 → 𝐻0 the
coupling operator between the hidden variable w and the observable variable v.
Following the notation in the papers reviewed here, ΓΓΓ† denotes the adjoint of ΓΓΓ. This
extended system should give the original TDD (55) after eliminating w. Note that
the second equation implies w = −𝑖

∫ ∞
0 𝑒−𝑖ΩΩΩ1𝜏ΓΓΓ†v(𝑡 − 𝜏)𝑑𝜏. Using this to eliminate

w in the first equation leads to the necessary condition

a(𝑡) = ΓΓΓ𝑒−𝑖ΩΩΩ1𝑡ΓΓΓ†, 𝑡 > 0. (58)

This spectral representation of the friction function a(𝑡) indicates how the unknowns
(w,ΩΩΩ1, 𝐻1) of the desired conservative extension can be recovered from the given
a(𝑡). Suppose a(𝑡) has the general form

a(𝑡) = 𝛼∞𝛿(𝑡) + 𝛼(𝑡)
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where 𝛼∞ = 𝛼
†
∞ ≥ 0, 𝛿(𝑡) is the Dirac function and 𝛼(𝑡) is for every 𝑡 ≥ 0 a bounded

non-negative operator in 𝐻0 such that

0 ≤ 𝛼∞ ≤ 𝐶I𝐻0 , 𝐶 < ∞, and sup
𝑡≥0

∥𝛼(𝑡)∥𝐵(𝐻0) < ∞. (59)

Note that 𝛼∞ corresponds to the classic and familiar friction constant. Then (58)
implies that ΓΓΓ is unbounded if 𝛼∞ ≠ 0 because a(0) = ΓΓΓΓΓΓ† = 𝛼∞𝛿(𝑡). Moreover,
a(𝑡) is extended to 𝑡 ≤ 0 by

a𝑒 (𝑡) = ΓΓΓ𝑒−𝑖ΩΩΩ1𝑡ΓΓΓ†, −∞ < 𝑡 < ∞. (60)

Note that a𝑒 (−𝑡) = a†𝑒 (𝑡). As a result, the following power dissipation condition must
hold

W𝑓 𝑟 (v) := −1
2

∫ ∞

−∞

∫ ∞

−∞
(v(𝑡), a𝑒 (𝑡−𝜏)v(𝜏))𝑑𝑡𝑑𝜏

= −1
2

∫ ∞

−∞
∥𝑒𝑖𝛀1𝑡ΓΓΓ†v(𝑡)𝑑𝑡∥2 ≤ 0 (61)

This power dissipation condition is also a sufficient condition for the existence of
a conservative extension for a TDD system [38]. The construction of the conser-
vative extension involves finding the essentially unique triplet (𝐻1,ΓΓΓ,ΩΩΩ1) from the
extended friction operator a𝑒. Reconstruction in the time domain can be carried out
by using Bochner’s theorem. However, due to the unboundedness of the operator ΓΓΓ
for the general case 𝛼∞ ≠ 0, the time-domain reconstruction of the triplet involves
subtle technicalities for dealing with the unbounded operator; see [38]. On the other
hand, as is pointed out also in [38], if one formulates the reconstruction problem in
the complex frequency form, there will be no unbounded operator involved. The in-
tuition is based on the observation that the Fourier transform of the friction function
a(𝑡) is â(𝜁) = 𝛼∞ + �̂�(𝜁), which is an analytic operator function. Assume v(𝑡) = 0
and f (𝑡) = 0 for 𝑡 ≤ 0. In this setting, the first step is to Fourier transform the TDD
problem (55) to obtain the following linear response equation

(𝜁𝑚 − A + 𝑖â(𝜁))v̂(𝜁)=: 𝑖𝔄(𝜁)−1
= 𝑖f̂ (𝜁), Im 𝜁 > 0. (62)

The power dissipation condition (61) becomes

Re â(𝜁):= â(𝜁) + â(𝜁)†

2
≥ 0 for Im 𝜁 > 0

which implies (𝜁𝑚− [A−𝑖â(𝜁)]) is invertible for Im 𝜁 > 0 becauseA is self-adjoint.
Define the admittance operator as𝔄(𝜁) := 𝑖(𝜁𝑚−A+𝑖â(𝜁))−1 for Im 𝜁 > 0. Note that
then both the the operator valued functions 𝑖â(𝜁) and 𝑖𝔄(𝜁) are Herglotz-Nevanlinna
functions. The equation above can be written as the admittance equation

v̂(𝜁) = 𝔄(𝜁)f̂ (𝜁), Im 𝜁 > 0.
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From the definition of the admittance operator 𝔄, it is clear that one can recover
𝑚, A and â from 𝔄 as follows:

𝑚−1 = − lim
𝜂→∞

𝜂𝔄(𝑖𝜂), A = − lim
𝜂→∞

Im𝔄−1 (𝑖𝜂), â(𝜁) = 𝑖(𝜁𝑚 − A) + 𝔄−1 (𝜁)

To identify the spectral decomposition of â, one applies the same transform to the
conserved system (57) and eliminates ŵ to obtain 𝔄(𝜁) = 𝑖[𝜁𝑚 − A − ΓΓΓ(𝜁I𝐻1 −
ΩΩΩ1)−1ΓΓΓ†]−1. A comparison with the admittance operator defined by (62) reveals that

â(𝜁) = 𝑖ΓΓΓ(𝜁I𝐻1 −ΩΩΩ1)−1ΓΓΓ†. (63)

Besides the power dissipation condition Re â(𝜁) ≥ 0 for Im 𝜁 > 0, the condition
(59) implies

â(𝜁) = 𝛼∞ + �̂�(𝜁), ∥�̂�(𝜁)∥𝐵(𝐻0) ≤
sup𝑡≥0 ∥𝛼(𝑡)∥𝐵(𝐻0)

Im 𝜁
.

This implies that Theorem 14 in Part I can be applied to show the existence of the
space of the hidden variables and the operators in the spectral decomposition (63).
Below this theorem is formulated as it is in Theorem 3.13 in [38]. Note thatΩ1Ω1Ω1 and
ΓΓΓ† here correspond to 𝐴 and Γ0, respectively, in Equation (24) of Part I.

Theorem 4 Let 𝐺 (𝜁) be a 𝐵(𝐻0)-valued analytic function in C+ with Im𝐺 (𝜁) ≥ 0
for 𝜁 ∈ C+. If 𝐺 satisfies the growth condition lim sup𝜂→+∞ 𝜂∥𝐺 (𝑖𝜂)∥ < ∞, then 𝐺
has the following representation

𝐺 (𝜁) = ΓΓΓ(ΩΩΩ1 − 𝜁I𝐻1 )−1ΓΓΓ† (64)

with ΩΩΩ1 a self-adjoint operator on a Hilbert space 𝐻1 and ΓΓΓ : 𝐻1 → 𝐻0 a bounded
map such that

ΓΓΓΓΓΓ†v = lim
𝜂→+∞

−𝑖𝜂𝐺 (𝑖𝜂)v for all v ∈ 𝐻0.

If 𝐻1 is minimal in the sense that { 𝑓 (ΩΩΩ1)ΓΓΓ†v : 𝑓 ∈ 𝐶𝑐 (R), 𝑣 ∈ 𝐻0} is dense in 𝐻1,
then {𝐻1,ΩΩΩ1,ΓΓΓ} is uniquely determined up to an isomorphism.

By identifying𝐺 (𝜁) = 𝑖â(𝜁) in the theorem, we see that (63) has a unique solution up
to an isomorphism. Therefore, the conservative extension of (62) exists. In [38], the
extended system for dielectric Maxwell’ equations with a Lorentzian susceptibility
function 𝜒 is constructed. The Hamiltonian structure of the TDD can then be studied
via the Hamiltonian structure of the conservative extended system.

3 More general classes of functions

As we have seen in the preceding sections there are a wide range of applications
where Herglotz-Nevanlinna functions are a valuable tool. However, there are also
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many situations where Herglotz-Nevnalinna functions do not suffice. If, for instance,
a causal system is not passive then the corresponding analytic function will not
have positive imaginary part. Or if a composite material does consist of more than
two materials then the corresponding function will depend on more than only one
variable.
On the mathematical side the class of Herglotz-Nevanlinna functions has been

generalized in several directions. To give a short overview, we will concentrate
on scalar generalizations only, even if some results do hold for matrix or operator
functions as well.

3.1 Quasi-Herglotz functions

The class of Herglotz-Nevanlinna functions forms a cone (as it is closed under linear
combinations with non-negative coefficients) but not a vector space (since multiples
with coefficents other then non-negative do not preserve the Herglotz-Nevanlinna
property). As also differences of Herglotz-Nevanlinna functions do appear in ap-
plications, the class of quasi-Herglotz functions has been introduced, see [48]. For
more details concerning this section see [63].

Definition 2 A function 𝑞 : C \ R → C is called a quasi-Herglotz function if it
can be written in the form 𝑞 = ℎ1 − ℎ2 + 𝑖(ℎ3 − ℎ4), where ℎ𝑖 for 1 = 1, 2, 3, 4 are
Herglotz-Nevanlinna functions (symmetrically extended to the lower halfplane).

Example 1 Every analytic function 𝑞 : C+ → Cwith Im 𝑞(𝑧) ≥ −𝑐 for some 𝑐 > 0 is
a quasi-Herglotz function, since it can be written in the form 𝑞(𝑧) = (𝑞(𝑧) + 𝑖𝑐) − 𝑖𝑐,
with both 𝑞 + 𝑖𝑐 and 𝑖𝑐 Herglotz-Nevanlinna functions.

It is obvious from the definition that this class coincides with all linear combi-
nations of Herglotz-Nevanlinna functions. Hence these functions also can be char-
acterized in terms of an integral representation, however, with complex measures.
Recall that complex measures by definition are finite, see e.g., [81, Chapter 6], and
hence the representation of the form of Equation (2) in Part I is used.

Proposition 1 A function 𝑞 is a quasi-Herglotz function if and only if there exist real
numbers 𝑎 and 𝑏 and a complex measure 𝜎 such that

𝑓 (𝑧) = 𝑎 + 𝑏𝑧 +
∫
R

1 + 𝜉𝑧
𝜉 − 𝑧 𝑑𝜎(𝜉). (65)

Moreover, 𝑎, 𝑏, and 𝜎 are unique with this property.

Note that quasi-Herglotz functions by definition are defined both in the upper and
the lower- halfplane. In contrast to Herglotz-Nevanlinna functions the values in one
halfplane do not determine the values in the other.

Example 2 The functions
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𝑞1 (𝑧) =
{
𝑖 Im 𝑧 > 0

−𝑖 Im 𝑧 < 0 and 𝑞2 (𝑧) =
{
𝑖 Im 𝑧 > 0
𝑖 Im 𝑧 < 0

do coincide in the upper halfplane, but not in the lower. Both are quasi-Herglotz
functions as they can be written in the form (65) with (𝑎1, 𝑏1, 𝜇1) = (0, 0, 1

𝜋
𝑑𝜆R)

for 𝑞1 (as in Example 2 of Part I) and (𝑎2, 𝑏2, 𝜇2) = (𝑖, 0, 0) for 𝑞2.

Considering the difference of the two functions in the example above shows that there
are non-trivial quasi-Herglotz functions vanishing identically in one half-plane. All
these have been characterized in [63].
Given a function, neither the definition nor the characterization in Proposition

1 are practical to check whether it is a quasi-Herglotz function or not. But these
functions can also be characterized by their analytic properties.

Theorem 5 Let 𝑞 : C\R→ C be a holomorphic function. Then 𝑞 is a quasi-Herglotz
function if and only if the function 𝑞 satisfies, first, a growth condition, namely, that
there exists a number 𝑀 ≥ 0 such that for all 𝑧 ∈ C \ R

|𝑞(𝑧) | ≤ 𝑀
1 + |𝑧 |2
|Im 𝑧 | , (66)

and, second, the regularity condition

sup
𝑦∈(0,1)

∫
R

��𝑞(𝑥 + 𝑖𝑦) − 𝑞(𝑥 − 𝑖𝑦)�� 𝑑𝑥

1 + 𝑥2 < ∞. (67)

An important subclass are real quasi-Herglotz functions; these are real linear com-
binations of Herglotz-Nevanlinna functions or, equivalently, functions that admit an
integral representation (65) with a signed (i.e., real) measure 𝜎. It can be shown that
these functions are exactly those, which are symmetric with respect to the real line,
i.e., 𝑞(𝑧) = 𝑞(𝑧).
It can be noted that quasi-Herglotz functions also appear naturally when dealing

with Herglotz-Nevanlinna functions only, namely as the off-diagonal elements of
matrix-valued Herglotz-Nevanlinna functions.

3.2 Generalized Nevanlinna functions

In the definition of Herglotz-Nevanlinna functions the sign of the imaginary part is
required to be positive. However, using the integral representation, it can be shown
that this is equivalent to the requirement that the so-called Nevanlinna kernel

𝑁 𝑓 (𝑧, 𝑤) :=
𝑁 (𝑧) − 𝑁 (𝑤)

𝑧 − 𝑤 (68)

is positive. Recall, that a kernel 𝑁 (𝑧, 𝑤) is said to be positive definite if for any choice
of 𝑁 ∈ N and 𝑧1, . . . , 𝑧𝑁 ∈ D the matrix
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𝑁 (𝑧𝑖 , 𝑧 𝑗 )

)
𝑖, 𝑗=1,...𝑁

is positive semidefinite.
This view leads to the following generalization by considering kernelswith finitely

many negative squares, [56]. A kernel is said to have 𝜅 negative squares if every such
matrix above has at most 𝜅 negative eigenvalues and 𝜅 is minimal with this property.

Definition 3 A function 𝑞 : D ⊂ C+ → C is called a generalized Nevanlinna
function if it is meromorphic in C+ and the Nevanlinna kernel 𝑁𝑞 has finitely many
negative squares. If this number is 𝜅 then 𝑞 ∈ N𝜅 .

Generalized Nevanlinna functions do also admit an integral representation, but it
is much more involved than Equation (1) in Part I; see [56, Satz 3.1.].
The operator representation, however, carries over quite naturally. The only differ-

ence compared to Equation (23) in Part I is that in this case the space is not a Hilbert
space, but a Pontryagin space, that is a vector space equipped with an indefinite inner
product, such that any non-positive subspace is finite dimensional.

Theorem 6 A function 𝑞 is a generalized Nevanlinna function if and only if there
exist a Pontryagin space K, a self-adjoint linear relation 𝐴, a point 𝑧0 ∈ C+ and an
element 𝑣 ∈ K such that

𝑞(𝑧) = 𝑞(𝑧0) + (𝑧 − 𝑧0)
[
(𝐼 + (𝑧 − 𝑧0) (𝐴 − 𝑧)−1)𝑣, 𝑣

]
K . (69)

Moreover, if K = 𝑠𝑝𝑎𝑛{(𝐼 + (𝑧− 𝑧0) (𝐴− 𝑧)−1)𝑣 : 𝑧 ∈ 𝜚(𝐴)}, then the representation
is called minimal. In this case K has 𝜅 negative squares if and only if 𝑞 ∈ N𝜅 and
the representation is unique up to unitary equivalence.

The conditions on the function 𝑞 for simplified representations are literally the same
as before and Theorem 7 in Part I holds for generalized Nevanlinna functions as well.
From Theorem 6 and the spectral properties of self-adjoint relations in Pontryagin

spaces it follows directly that a generalized Nevanlinna function 𝑞 ∈ N𝜅 has at most 𝜅
poles in the upper half plane C+, and there are at most 𝜅 real points 𝛼 ∈ R (including
∞) where it does not hold that lim𝑧→̂𝛼 (𝛼 − 𝑧)𝑞(𝑧) exists as a non-negative number.
These exceptional points (non-real and real) are exactly those eigenvalues, for which
the corresponding eigenspace is not a positive subspace. These points are called
generalized poles not of positive type. Generalized zeros not of positive type of 𝑞
are by definition the generalized poles not of positive type of the inverse function
𝑞(𝑧) := − 1

𝑞 (𝑧) (which belongs to the same class N𝜅 as 𝑞). The importance of these
points becomes visible in the following characterization; see [35] and also [32].

Theorem 7 A function 𝑞 is a generalized Nevanlinna function if and only if there is
a rational function 𝑟 and a Herglotz-Nevanlinna function 𝑓 such that

𝑞(𝑧) = 𝑟 (𝑧) 𝑓 (𝑧)𝑟 (𝑧). (70)
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In this case 𝑞 ∈ N𝜅 if and only if deg 𝑟 = 𝜅. Moreover, 𝑟 is of the form 𝑟 (𝑧) =∏ℓ
𝑖=1 (𝑧 − 𝛼𝑖)∏𝑚
𝑗=1 (𝑧 − 𝛽 𝑗 )

, where 𝛼𝑖 are the generalized poles not of positive type and 𝛽 𝑗 are

the generalized zeros not of positive type of 𝑞 and 𝜅 = max{ℓ, 𝑚}.

Generalized Nevanlinna functions with polynomial 𝑟 appear for instance in con-
nection with Sturm-Liouville operators with strongly singular potentials or, more
abstractly, with strongly singular perturbations of self-adjoint operators in Hilbert
spaces, see e.g., [36, 34, 57].

Remark 1 A generalized Nevanlinna function 𝑞 does satisfy lim
𝑧→̂𝑥0

Im 𝑞(𝑧) ≥ 0 (as a

finite number or +∞) for all but finitely many 𝑥0 ∈ R∪ {∞}, cf., Remark 2 in Part I.

Remark 2 Also matrix- and operator valued generalized Nevanlinna functions can
be defined via a corresponding kernel condition. The operator representation in
Theorem 13 of Part I carries over with the same changes as for scalar functions. The
factorization, however, becomes a lot more delicate. The first part holds with rational
factors 𝑅(𝑧) and 𝑅(𝑧)∗, but these are not of a comparably simple form, in particular,
since generalized poles and zeros can be at the same points. For details see [60, 61].

3.3 Pseudo-Nevanlinna functions

Definition 4 A function 𝑔 is called Pseudo-Nevanlinna function if it can be written
as the quotient of two bounded analytic functions (defined in C+) and satisfies
lim
𝑧→̂𝑥0

Im 𝑔(𝑧) ≥ 0 for almost all 𝑥0 ∈ R.

Note that every Herglotz-Nevanlinna function belongs to this class since it can
be written as a fractional linear transformation of a function mapping C+ into the
closed unit disc D. Moreover, by Remark 1 generalized Nevanlinna functions are
also pseudo-Nevanlinna functions.
It has been shown in [31, 30] that pseudo-Nevanlinna functions can also be

characterized via a factorization, extending Theorem 7. To this end one needs to
introduce the so-called density functions; these are particular pseudo-Nevanlinna
functions, which are non-negative (or∞) on the real line.

Theorem 8 A function 𝑔 is a pseudo-Nevanlinna function if and only if there exists a
density function 𝐼 and a Herglotz-Nevanlinna function 𝑔0 such that 𝑔(𝑧) = 𝐼 (𝑧)𝑔0 (𝑧).

To be precise, in [31] Pseudo-Caratheodory functions are studied; these are cor-
responding generalizations of Caratheodory functions, i.e., holomorphic functions
mapping the open unit disk D to the closed right halfplane C+ ∪ 𝑖R. However, due
to the topic of this text here we consider the corresponding version for the upper
halfplane.
The introduction of Pseudo-Caratheodory functions was motivated by problems

arising in digital signal processing and in the theory of circuits and systems.
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3.4 Functions in several variables

For analytic functions in one variable in the upper halfplane C+ there are two
equivalentways of definingHerglotz-Nevanlinna functions, either by the requirement
that Im 𝑓 (𝑧) has to be non-negative or that the Nevanlinna kernel 𝑁 𝑓 (𝑧, 𝑤) has to be
positive semidefinite. When considering functions in several variables, however, the
generalizations along these two ways lead into different directions, in one case the
functions are represented by some kind of resolvents, in the other case by integrals.
In the following we use the notation z = (𝑧1, 𝑧2, . . . , 𝑧𝑛) and consider analytic

functions 𝐻 : (C+)𝑛 → C, that is 𝐻 is analytic in each variable 𝑧 𝑗 for 𝑗 = 1, . . . , 𝑛.

3.4.1 Loewner functions

Definition 5 A function 𝐻 : (C+)𝑛 → C is called a Loewner function if it is
holomorphic and there exist positive semidefinite kernels 𝐴1, . . . , 𝐴𝑛 on (C+)𝑛 such
that

𝐻 (z) − 𝐻 (w) =
𝑛∑︁
𝑗=1

(𝑧 𝑗 − 𝑤 𝑗 )𝐴 𝑗 (z,w) (71)

for all z,w ∈ (C+)𝑛.

Loewner functions with 𝑛 = 1 are exactly Herglotz-Nevanlinna functions in one
variable.
For 𝑛 > 1 these functions have been characterized in different ways, in particular,

as operator monotone functions; see [2]. It has also been shown that functions in
this class admit an operator representation, [1]. As an example we give one result,
corresponding to Theorem 7 in Part I with 𝑠 = 0, in order to show the flavor of such
representations.

Theorem 9 A function 𝐻 : (C+)𝑛 → C is a Loewner function satisfying

lim inf
𝑦→∞

𝑦 |Im𝐻 (𝑖𝑦, . . . , 𝑖𝑦) | < ∞

if and only if there exists a Hilbert space H , a self-adjoint operator 𝐴 in H , positive
contractions 𝑌1, . . . , 𝑌𝑛 with 𝑌1 + . . . + 𝑌𝑛 = 𝐼H , and an element 𝑣 ∈ H such that

𝐻 (z) =
(
(𝐴 − 𝑧1𝑌1 − . . . − 𝑧𝑛𝑌𝑛)−1𝑣, 𝑣

)
H
.

For Loewner functions, transfer function realizations have also been established;
see [8].
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3.4.2 Herglotz-Nevanlinna functions.

The other way of considering several variables leads to the following, more general,
definition.

Definition 6 A function 𝐹 : (C+)𝑛 → C is called Herglotz-Nevanlinna function if it
is holomorphic and Im 𝐹 (z) ≥ 0 for all z ∈ (C+)𝑛.

It can be shown that not only for 𝑛 = 1 but also for 𝑛 = 2 the class of Herglotz-
Nevanlinna functions do coincide with the class of Loewner functions. However, it
is known that this is not true for 𝑛 > 2. If 𝑛 > 2, then every Loewner function is a
Herglotz-Nevanlinna function, but not conversely.
For the larger class of Herglotz-Nevanlinna functions in several variables a char-

acterization via an integral representation has been shown. In order to formulate this
result we introduce the following notation. For z ∈ (C+)𝑛 and t ∈ R𝑛 define

𝐾𝑛 (z, t) := 𝑖

(
2

(2𝑖)𝑛
𝑛∏
ℓ=1

(
1

𝑡ℓ − 𝑧ℓ
− 1
𝑡ℓ + 𝑖

)
− 1

(2𝑖)𝑛
𝑛∏
ℓ=1

(
1

𝑡ℓ − 𝑖
− 1
𝑡ℓ + 𝑖

))
, (72)

which for 𝑛 = 1 coincides with the integrand in Equation (1) of part I.
Moreover, we say that a Borel measure 𝜇 onR𝑛 satisfies the Nevanlinna condition

if for all z ∈ C+𝑛 and all indices ℓ1, ℓ2 ∈ {1, 2, . . . , 𝑛} with ℓ1 < ℓ2 it holds∫
R𝑛

1
(𝑡ℓ1 − 𝑧ℓ1 )2 (𝑡ℓ2 − ¯𝑧ℓ2 )2

𝑛∏
𝑗=1

𝑗≠ℓ1 ,ℓ2

(
1

𝑡 𝑗 − 𝑧 𝑗
− 1
𝑡 𝑗 − 𝑧 𝑗

)
𝑑𝜇(t) = 0. (73)

Then the following theorem holds; see [62, Theorem 4.1].

Theorem 10 A function 𝐹 : (C+)𝑛 → C is a Herglotz-Nevanlinna function if and
only if there exist a real number 𝑎 ∈ R, a vector b ∈ [0,∞)𝑛 and a positive Borel
measure 𝜇 onR𝑛 satisfying the Nevanlinna condition and with

∫
R𝑛

∏𝑛
ℓ=1

1
1+𝑡2

ℓ

𝑑𝜇(t) <
∞ such that

𝐹 (z) = 𝑎 +
𝑛∑︁
ℓ=1

𝑏ℓ 𝑧ℓ +
1
𝜋𝑛

∫
R𝑛
𝐾𝑛 (z, t)𝑑𝜇(t). (74)

Furthermore, for a given function 𝐹, the triple of representing parameters (𝑎, b, 𝜇)
is unique.

Note that for 𝑛 = 1 the Nevanlinna condition is satisfied for every measure (which
satisfies the necessary growth condition) and hence this theorem becomes Theorem
1 in Part I. However, for 𝑛 > 1 this condition is rather restrictive and measures
satisfying it are rather particular. For example such a measure cannot have final total
mass and hence, in particular, not compact support. There are also other geometric
restrictions on the support; see [64].
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4 Summary

In this two-part survey paper, we start with introducing the various forms ofHerglotz-
Nevanlinna functions. These definitions are very simple to describe but imply many
properties that are physically relevant. As can be seen from the diverse set of ap-
plications presented here, the Herglotz-Nevanlinna functions indeed provide a clear
mathematical language for describing important physical properties such as passivity
and causality. From there, a rigorous analysis can be applied to derive useful proper-
ties of these physical system such as the bounds of effective properties of materials
or to suggest a way to fabricate materials of desired properties through exploiting the
links between some simple forms of Herglotz-Nevanlinna functions and laminated
microstructure structure or their links with some simple circuits. Numerically, the
Herglotz-Nevanlinna function theory points a way for approximating memory terms
that appear very often in a dispersive system but whose description are given only
in the frequency domain. Also, it can provide a framework for studying the spectral
theory of a TDD system.
Some very interesting results which involve yet another variation of Herglotz

function can be found in the paper by Cassier, Welters and Milton [23], where the
Dirichlet-to-Neumann(DtN) map for the time-harmonic Maxwell’s equations of a
two-component composite is proved to be a Herglotz-Nevanlinna function of the
variable (𝜔𝜇1, 𝜔𝜇2, 𝜔𝜖1, 𝜔𝜖2) in (C+)4, which represents the electromagnetic prop-
erties of the isotropic constituent materials. To extend the result to the general case
of anisotropic constituents, which can be spatially piecewise-constant or continuous,
the authors define the class of Herglotz-Nevanlinna functions on an open, connected
and convex set of matrices with positive definite imaginary parts. To preserve the
Herglotz function structure, they use the trajectory method [14] [70, Section 18.6] to
define a trajectory 𝑠(𝜔) that maps 𝜔 to the matrix-valued (𝜔𝜇𝜇𝜇1, 𝜔𝜇𝜇𝜇2, 𝜔𝜖𝜖𝜖1, 𝜔𝜖𝜖𝜖2) and
show that the DtN map is a Herglotz-Nevanlinna function along each trajectory. The
implication of this result in electric-impedance-tomography is yet to be discovered.
With all the applicationswhereHerglotz-Nevanlinna functions have been success-

fully applied, there are still many open problems that demand further investigations.
For example, the IRF for a three-phase dielectric composite has been derived in [42]
by using the theory of Herglotz-Nevanlinna functions of two complex variables [55].
Also, for the purpose of separating the influence of contrasts and microstructure, a
two-parameter IRF has been derived for composites of isotropic elastic materials in
[76] using the results in [55]. However, in these applications, the relations between
the moments and the microstructure become much more complicated. Besides, the
characterization of extreme sets of measures of two variables are no longer just weak
limits of sum of Dirac measures. Also, suppose a set of measurements from a causal
and passive system is polluted by noise; how can one design a filter to recover the
’nearest’ Herglotz-Nevanlinna function that best represents the measured data?With
the advance of material sciences, there are materials with negative indices and sys-
tems that emit energy; how should the Herglotz-Nevanlinna function be generalized
accordingly? As is described in Section 3, there have been some generalization on
the pure mathematics side. We believe that progress on generalizations can be sped
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up by collaboration and communication between mathematicians and researchers
in various fields of materials sciences through the availability of a set of common
mathematical languages and notation.
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