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Abstract This is the first part of the review article which focuses on theory and
applications of Herglotz-Nevanlinna functions in material sciences. It starts with
the definition of scalar valued Herglotz-Nevanlinna functions and explains in detail
the theorems that are pertinent to applications, followed by a short overview of the
matrix-valued and operator-valued versions of these functions and the properties
that carry over from scalar cases. The theory is complemented by some applications
from electromagnetics that are related to the sum rules.More applications ofHerglotz
Nevanlinnna functions in material sciences can be found in Part II.

1 Introduction

This review article deals with theory and applications of Herglotz-Nevanlinna func-
tions, which are functions analytic in the complex upper half-plane and with non-
negative imaginary part. They appear in surprisingly many circumstances and have
been studied and utilized for a long time, which also explains why they do appear
under several names. Here we are going to call them Herglotz-Nevanlinna functions
(or Herglotz for short).
Even if the definition at first sight does not seem to be very restrictive, it does

have strong implications. For more than a century it is known that the set of all
Herglotz-Nevanlinna functions is described via an integral representation using three
parameters only, two numbers and a positive Borel-measure (satisfying a reasonable
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growth condition). This explicit parametrization has made them a very powerful tool
which has been used effectively both in pure mathematics as well as in applications.
It turns out that with such relatively simple functions, amazingly much informa-

tion can be encoded. For example, Herglotz-Nevanlinna functions are in one-to-one
correspondence with passive (one-port) systems. This means that the corresponding
function "knows everything about the system". Another example are Sturm-Liouville
differential operators, appearing in mathematical physics. Here for a given operator
its spectrum can be completely described in terms of the singularities of the cor-
responding Titchmarsh-Weyl coefficient, which is a Herglotz-Nevanlinna function.
And even more, this function can still be used in order to describe the spectrumwhen
the boundary conditions are changed. But these functions are not only used when
working with a single system or operator, but can also be employed to deal with
a whole class of problems simultaneously, as for instance when finding common
bounds for the performance of all antennas that fit into a given volume (e,g., a ball
of given radius), independently of their particular shape. In the study of compos-
ite materials, a similar situation arises in deriving bounds on effective properties
when only the volume fractions are given; these bounds only depend on the volume
fraction.
In recent years there has been a series of workshops where mathematicians work-

ing in pure mathematics and in applied mathematics and experts in various appli-
cations have met. All participants have one common interest, Herglotz-Nevanlinna
functions, but with very different perspectives and approaches. This two-part review
article is an attempt to reflect and to present in a systematic and unified way the
various pieces of mathematical theorems underpinning a diverse set of applications.
The structure of the current paper is as follows. After this introduction, in Section

2 we review the mathematical background for Herglotz-Nevanlinna functions and
provide a common basis for the applications presented in Section 3 and in Part II,
which is concluded with possible generalizations of the theory.
Section 2 starts with the the well-known integral representation (Section 2.2),

followed by various aspects that we consider to be relevant in the chosen applica-
tions. In particular, the behavior of a Herglotz-Nevanlinna function on/towards the
real line (i.e., at the boundary of the domain) is detailed in Sections 2.3 and 2.7.
In material sciences often the functions do have more specific properties, which are
discussed in 2.4; in particular, Stieltjes functions are characterized. Besides the inte-
gral representation, other (equivalent) representations are also presented in Section
2.5. In Section 2.6, it is explained how Herglotz-Nevanlinna functions appear in the
mathematical description of passive systems, and in Section 2.8 we review briefly
the matrix- (and operator-)valued Herglotz-Nevanlinna functions.
Section 3 (as well as Section 2 in Part II) is devoted to applications, where we

present a diverse set of applications inmaterial sciences with the underlying common
theme of Herglotz Nevanlinna functions. The common feature here is that the use of
Herglotz-Nevanlinna functions makes it possible to handle a large class of problems
at once, instead of changing the models according to details such as the shape of
inclusions. In particular, in several situations physical bounds can be derived, which
provide estimates of e.g., performance under certain conditions. In the applications
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presented here, the independent variable is either the frequency (in electromagnetics,
poroelastics, quasi-static cloaking as well as time dispersive, dissipative systems) or
the material contrasts (for composite material).
In Section 3.1 we describe how sum rules can be employed for deriving bounds for

electromagnetic structures, and in Section 3.2 passive realizations/approximations
of non-passive systems are found via optimization in terms of the corresponding
Herglotz-Nevanlinna functions.
More applications can be found in Part II. They involve bounds on effective

properties of composite materials, numerical treatment of a costly memory term in
the modeling of poroelastic materials as well as bounds for quasi-static cloaking
and identifying certain time dispersive and dissipative systems as restrictions of
Hamiltonian systems.
Even if all these examples demonstrate the effectiveness of Herglotz-Nevanlinna

functions, there are situations in applications that cannot be treated by thesemethods,
but would requiremore general classes of functions. This applies for instance for non-
passive systems, e.g., appearing in electromagnetics, for which the analytic function
in question might have non-positive imaginary part as well. Another example are
composite materials with more than two phases. Then, even if the corresponding
analytic functions still have positive imaginary part, they are not covered by the
treatment above, since they depend on more than only one complex variable.
Therefore, in Section 3 of Part II we provide an overview of the mathematics

that is available for different classes of functions that extend the classical Herglotz-
Nevanlinna class and we expect to them be relevant for applications in material
sciences.
We hope that this two-part review paper can be both helpful for people working in

applications (by providing mathematical references for different aspects of Herglotz-
Nevanlinna functions as well as their generalizations for future work) and interesting
for pure mathematicians (by pointing out some relevant applications of Herglotz-
Nevanlinna functions).

2 Mathematical background

2.1 Definition and first examples

In this article, the complex upper half plane is denoted by C+ := {𝑧 ∈ C : Im 𝑧 > 0}
and the right half plane by C+ := {𝑧 ∈ C : Re 𝑧 > 0}.

Definition 1 A function ℎ : C+ → C is called a Herglotz-Nevanlinna function if it
is analytic in C+ and satisfies Im ℎ(𝑧) ≥ 0 for all 𝑧 ∈ C+.

These functions appear at various places with different names: Herglotz, Nevan-
linna, Pick, R-function (or some combination of these). In pure mathematics Nevan-
linna seems to be most used whereas in applications often Herglotz is prefered.
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Example 1 It is easy to check that the following functions belong to this class

𝑓1 (𝑧) = − 1
𝑧 − 3 𝑓2 (𝑧) = 𝑖 𝑓3 (𝑧) = − 1

𝑧 + 𝑖 𝑓4 (𝑧) = Log 𝑧 𝑓5 (𝑧) =
√
𝑧,

where for the last two functions the branch is chosen such that the functions map C+
into the upper half plane. Other, maybe less obvious, examples are

𝑓6 (𝑧) = tan 𝑧 𝑓7 (𝑧) =
log

(
Γ(𝑧 + 1)

)
𝑧 log 𝑧

,

where Γ(𝑧) denotes the Gamma-function; see [6, 7]

Remark 1 By definition for a Herglotz-Nevanlinna function Im 𝑓 (𝑧) ≥ 0 for all
𝑧 ∈ C+. However, it follows from a version of the maximum principle that if there
is a point 𝑧∗ ∈ C+ such that Im 𝑓 (𝑧∗) = 0 then 𝑓 is a (real) constant function.

Hence, if 𝑓 and 𝑔 are non-constant Herglotz-Nevanlinna functions then the com-
position 𝐹 (𝑧) := 𝑓

(
𝑔(𝑧)

)
is a Herglotz-Nevanlinna function as well. In particular, if

𝑓 . 0 is Herglotz-Nevanlinna then both 𝑔1 (𝑧) := 𝑓
(
− 1
𝑧

)
and 𝑔2 (𝑧) := − 1

𝑓 (𝑧) are
Herglotz-Nevanlinna functions.
When considering limits towards real points, then usually only non-tangential

limits 𝑧→̂𝑥0 are considered, this means that 𝑧 tends to 𝑥0 ∈ R in some Stolz-domain
𝐷 𝜃 := {𝑧 ∈ C+ : 𝜃 < Arg(𝑧 − 𝑥0) < 𝜋 − 𝜃}, where 0 < 𝜃 < 𝜋

2 .

Remark 2 Herglotz-Nevanlinna functions can also be characterized via the boundary
behavior only, namely an analytic function 𝑓 : C+ → C is Herglotz-Nevanlinna if
and only if it holds lim

𝑧→̂𝑥0
Im 𝑓 (𝑧) ≥ 0 (as a finite number or +∞) for all 𝑥0 ∈ R∪{∞}.

2.2 Integral representation

The main tool in the work with Herglotz-Nevanlinna functions is the following
explicit representation, which in principle has been known for more than a century;
see e.g., [25] and also [11].

Theorem 1 A function 𝑓 : C+ → C is a Herglotz-Nevanlinna function if and
only if there are numbers 𝑎 ∈ R, 𝑏 ≥ 0 and a (positive) Borel measure 𝜇 with∫
R

1
1+𝜉 2 𝑑𝜇(𝜉) < ∞ such that

𝑓 (𝑧) = 𝑎 + 𝑏𝑧 +
∫
R

(
1

𝜉 − 𝑧 −
𝜉

1 + 𝜉2

)
𝑑𝜇(𝜉). (1)

Moreover, 𝑎, 𝑏, and 𝜇 are unique with this property.

Note that the term 𝜉

1+𝜉 2 is needed for assuring the convergence of the integral.
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Remark 3 Alternatively, representation (1) can also be written as

𝑓 (𝑧) = 𝑎 + 𝑏𝑧 +
∫
R

1 + 𝜉𝑧
𝜉 − 𝑧 𝑑𝜎(𝜉) (2)

with the finite measure 𝜎 given by 𝑑𝜎(𝜉) := 𝑑𝜇 ( 𝜉 )
1+𝜉 2 .

Given a Herglotz-Nevanlinna function the constants 𝑎 and 𝑏 can be read off directly,
namely, it holds

𝑎 = Re 𝑓 (𝑖) and 𝑏 = lim
𝑦→∞

𝑓 (𝑖𝑦)
𝑖𝑦

. (3)

Example 2 For the functions in Example 1 we have for instance 𝜇1 = 𝛿3, the point
measure with mass 1 at the point 𝜉0 = 3, is the representing measure for 𝑓1, for 𝑓2 the
measure is a multiple of the Lebesgue measure 𝜇2 = 1

𝜋
𝜆R, whereas the representing

measure 𝜇3 of 𝑓3 is absolutely continuous with respect to the Lebesgue measure and
has density 1

𝜋 (1+𝜉 2) , i.e. 𝑑𝜇3 (𝜉) =
1

𝜋 (1+𝜉 2) 𝑑𝜆R (𝜉).

Given the function, its representing measure can be reconstructed via the following
formula, known as the Stieltjes inversion formula; see e.g., [25]

Proposition 1 Let 𝑓 be a Herglotz-Nevanlinna function with integral representation
(1). Then for 𝑥1 < 𝑥2 it holds

𝜇
(
(𝑥1, 𝑥2)

)
+ 1
2
𝜇 ({𝑥1}) +

1
2
𝜇 ({𝑥2}) = lim

𝑦→0+

1
𝜋

∫ 𝑥2

𝑥1

Im 𝑓 (𝑥 + 𝑖𝑦) 𝑑𝑥, (4)

or, in a weak formulation, if ℎ is a compactly supported smooth function in 𝐶10 (R),
then ∫

R
ℎ(𝜉)𝑑𝜇(𝜉) = lim

𝑦→0+

1
𝜋

∫
R
ℎ(𝑥) Im 𝑓 (𝑥 + 𝑖𝑦) 𝑑𝑥,

Moreover, point masses are given by

lim
𝑧→̂𝛼

(𝛼 − 𝑧) 𝑓 (𝑧) = 𝜇
(
{𝛼}

)
. (5)

By definition a Herglotz-Nevanlinna function is defined in the upper halfplane C+
only. However, it can be extended naturally also to the lower half plane C−, since the
integral in the right-hand side of (1) is well defined for all 𝑧 ∈ C \R. This extension
is symmetric with respect to the real line, i.e.

𝑓 (𝑧) = 𝑓 (𝑧) 𝑧 ∈ C \ R, (6)

and is hence called symmetric extension.

Example 3 For some of the functions from Example 1 the symmetric extensions are

𝑓1 (𝑧) = − 1
𝑧 − 3 𝑓2 (𝑧) =

{
𝑖 Im 𝑧 > 0

−𝑖 Im 𝑧 < 0 𝑓3 (𝑧) =
{
− 1
𝑧+𝑖 Im 𝑧 > 0

− 1
𝑧−𝑖 Im 𝑧 < 0

.
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2.3 Boundary behavior

We first note that for a Herglotz-Nevanlinna function 𝑓

lim
𝑦→0+

𝑓 (𝑥 + 𝑖𝑦) exists for almost all 𝑥 ∈ R.

To see this, let 𝜑 be a Möbius transform that maps the unit disk D onto the open
upper halfplane C+, e.g. 𝜑(𝑤) = 𝑖 1+𝑤1−𝑤 . If 𝑓 is a Herglotz-Nevanlinna function then
the function ℎ(𝑤) := 𝜑−1

(
𝑓 (𝜑(𝑤))

)
is a bounded analytic function in D and hence

has boundary values almost everywhere. Therefore it is also true for the Herglotz-
Nevanlinna function 𝑓 .
The weak form of the Stieltjes inversion formula also shows that the limit of

the imaginary part always exists in the distributional sense. However, for pointwise
limits, and good properties of the function on the boundary, more assumptions on
the measure have to be imposed.
Let 𝑓 be given with integral representation (1). If there is an interval (𝑥1, 𝑥2) such

that (𝑥1, 𝑥2) ∩ supp 𝜇 = ∅, then for every 𝑥 ∈ (𝑥1, 𝑥2) the integral in (1) exists and is
real analytic. Hence the function can be extended analytically to the lower half plane
and this analytic extension coincides with the symmetric extension.
But also in other cases it can be possible to extend the Herglotz-Nevanlinna

function analytically over (some part of) the real line. But then, in general, the
continuation will not coincide with the symmetric extension. A characterization of
this situation in terms of the measure is given in the following theorem; see [18].

Proposition 2 Let 𝑓 be a Herglotz-Nevanlinna function with representation (1). Then
𝑓 can be continued analytically onto the interval (𝑥1, 𝑥2) if and only if the measure
𝜇 is absolutely continuous with respect to the Lebesgue measure 𝜆 on this interval
and the density 𝜚(𝑡) is real analytic on (𝑥1, 𝑥2). In this case,

𝑓 (𝑧) = 𝑓 (𝑧) + 2𝜋𝑖𝜚(𝑧),

where 𝜚(𝑧) denotes the analytic continuation of the density 𝜚.

Example 4 The function 𝑓2 in Example 1 can be extended as an entire function,
𝑓2 (𝑧) ≡ 𝑖, whereas 𝑓3 can be extended analytically only to the punctured plane
C \ {−𝑖}.

Loosely speaking, an analytic density guarantees an analytic boundary function.
However, for the boundary function to be continuous it is not sufficient to assume
that 𝜇 has a continuous density. As a counter example, consider the density

𝜚(𝜉) =

− 1
ln 𝜉

, 𝜉 ∈ (0, 𝛾],

0, 𝜉 ∈ [−𝛾, 0],
, (7)
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which is continuous on the [−𝛾, 𝛾] for any 𝛾 ∈ (0, 1), but for which the the cor-
responding Herglotz-Nevanlinna function does not admit a continuous extension to
𝑥 = 0.
The appropriate assumption here turns out to be Hölder continuity. A function 𝜚 :

(𝑥1, 𝑥2) → R is called Hölder continuous with exponent 𝛼, that is 𝜚 ∈ 𝐶0,𝛼 (𝑥1, 𝑥2),
if there exists a constant 𝐶 > 0 such that

|𝜚(𝜉1) − 𝜚(𝜉2) | ≤ 𝐶 · |𝜉1 − 𝜉2 |𝛼 for all 𝜉1, 𝜉2 ∈ (𝑥1, 𝑥2).

The following theorem relies on some well known results; a detailed proof for the
current situation is given in [23, Theorem 2.2].

Proposition 3 . Let 𝑓 be a Herglotz-Nevanlinna function with representation (1) and
assume that there is an interval (𝑥1, 𝑥2) where the measure 𝜇 is absolutely continuous
with respect to the Lebesgue measure 𝜆 with Hölder continuous density 𝜚. Then for
every compact interval 𝐼 ⊂ (𝑥1, 𝑥2) the function 𝑓 admits a continuous extension to
C+ ∪ 𝐼. This continuation is given via the Hilbert transform

𝑓 (𝑥) = 𝑎 + 𝑏𝑥 + 𝑝.𝑣.
∫
R

(
1

𝜉 − 𝑥 − 𝜉

1 + 𝜉2

)
𝑑𝜚(𝜉) + 𝑖𝜋𝜚(𝑥), 𝑥 ∈ 𝐼,

where the integral is taken as a principal value at 𝜉 = 𝑥.

2.4 Subclasses

In this section we focus on how properties of the measure in the integral representa-
tion (1) are related to properties of the function.
We start with the so-called symmetric functions, which are important for instance

in connection with passive systems, cf., Section 2.6.

Definition 2 A Herglotz-Nevanlinna function is called symmetric if

𝑓 (−𝑧) = − 𝑓 (𝑧). (8)

Such functions are purely imaginary on the imaginary axes and can be characterized
in the following way.

Proposition 4 A Herglotz-Nevanlinna function 𝑓 with representation (1) is symmet-
ric if and only if 𝑎 = 0 and 𝜇 is symmetric with respect to 0, i.e., 𝜇(𝐵) = 𝜇(−𝐵) for
every Borel set 𝐵 in R. In this case, the representation can be written as

𝑓 (𝑧) = 𝑏𝑧 + 𝑝.𝑣.
∫
R

1
𝑡 − 𝑧 𝑑𝜇(𝑡) for 𝑧 ∈ C+,

where 𝑝.𝑣. denotes the principle value at ∞.
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The functions behavior at∞ is closely related to the properties of the representing
measure 𝜇 and related simplifications of the representation The following statements
can be found in [25]. The first theorem characterizes when the term 𝜉

1+𝜉 2 is needed
in the integral.

Theorem 2 Let 𝑓 be a Herglotz-Nevanlinna function with representation (1). Then
the following are equivalent:

(i)
∫ ∞

1

Im 𝑓 (𝑖𝑦)
𝑦

𝑑𝑦 < ∞

(ii)
∫
R

1
1 + |𝜉 | 𝑑𝜇(𝜉) < ∞

(iii) 𝑓 (𝑧) = 𝑠 +
∫
R

1
𝜉 − 𝑧 𝑑𝜇(𝜉) with some 𝑠 ∈ R.

In this case 𝑠 = lim
𝑦→∞

𝑓 (𝑖𝑦) = lim
𝑦→∞

Re 𝑓 (𝑖𝑦) = 𝑎 −
∫
R

𝜉

1+𝜉 2 𝑑𝜇(𝜉).

The next theorem characterizes functions with bounded measure.

Theorem 3 Let 𝑓 be a Herglotz-Nevanlinna function with representation (1). Then
the following are equivalent:

(i) lim
𝑧→̂∞

𝑓 (𝑧)
Im 𝑧

= 0 and lim sup
𝑧→̂∞

|𝑧 |Im 𝑓 (𝑧) < ∞

(ii)
∫
R
𝑑𝜇(𝜉) < ∞.

Hence also in this case 𝑓 (𝑧) = 𝑠 +
∫
R

1
𝜉 − 𝑧 𝑑𝜇(𝜉), with 𝑠 ∈ R.

An important subclass of Herglotz-Nevanlinna functions are Stieltjes functions;
see also [25].

Definition 3 A holomorphic function 𝑓 : C \ [0, +∞) → C is called a Stieltjes
function if

• Im 𝑓 (𝑧) ≥ 0 for Im 𝑧 > 0
• 𝑓 (𝑥) ≥ 0 for 𝑥 ∈ (−∞, 0).

These functions can be characterized in several different ways:

Theorem 4 Let 𝑓 be holomorphic in the domain C \ [0, +∞). Then the following are
equivalent:

(a) 𝑓 is a Stieltjes function.
(b) 𝑓 can be represented as

𝑓 (𝑧) = 𝑠 +
∫
[0,∞)

1
𝜉 − 𝑧 𝑑𝜇(𝜉)

with 𝑠 ≥ 0 and
∫
[0,∞)

1
1+𝜉 𝑑𝜇(𝜉) < ∞.
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(c) 𝑓 is a Herglotz-Nevanlinna function (analytically continued onto R−), which
satisfies

∫ ∞
1
Im 𝑓 (𝑖𝑦)

𝑦
𝑑𝑦 < ∞ and lim

𝑦→∞
𝑓 (𝑖𝑦) ≥ 0.

(d)The functions 𝑓 (𝑧) and ℎ1 (𝑧) := 𝑧 𝑓 (𝑧) are Herglotz-Nevanlinna functions.
(e)The functions 𝑓 (𝑧) and ℎ2 (𝑧) := 𝑧 𝑓 (𝑧2) are Herglotz-Nevanlinna functions.

In this case 𝑠 = lim
𝑥→−∞

𝑓 (𝑥).

Moreover, symmetric Herglotz-Nevanlinna functions can be represented via
Stieltjes functions.

Theorem 5 A function 𝑓 is a symmetric Herglotz-Nevanlinna function, i.e., 𝑓 (−𝑧) =
− 𝑓 (𝑧), if and only if there exists a Stieltjes function ℎ such that 𝑓 (𝑧) = 𝑧ℎ(𝑧2).

Note that in some places the notion Stieltjes function means that additionally
all moments of the representing measure exist. Other versions of Stieltjes functions
where the functions are analytic on the other half-line are used in Section 2.1.1 of
Part II.
Another important subclass is rational Herglotz-Nevanlinna functions. Here the

term rational might be understood in two different ways. One way is to think about
functions for which there exists a rational function in C such that its restriction to the
upper half plane coincides with the given function, e.g., 𝑓1, 𝑓2, and 𝑓3 in Example
1, as well as in connection with electrical circuit networks cf., Example 9. Note that
these functions might have absolutely continuous measure, like 𝑓2 and 𝑓3.
But rational can also be interpreted in a more strict way, namely that the integral

representation gives a rational function in C, or in other words, that the symmetric
extension is rational in C. Among the above named examples only 𝑓1 is rational also
in this sense. Rational functions in this stricter meaning are exact those functions for
which the measure is a finite sum of Dirac measures, as eg., when deriving bounds
in Section 2.1.1 of Part II.
Also, more generally, meromorphic Herglotz-Nevanlinna functions have been

investigated, e.g., in connection with inverse problems. An important property are
the interlacing of zeros and poles on the real line.

2.5 Other representations

Besides the integral representation there also exist other ways to represent Herglotz-
Nevanlinna functions.

2.5.1 Operator representations

Representations using resolvents have been used in different contexts. The theorem
below follows straightforwardly from Example 5 or can be seen as a special case of
the results in e.g., [27]. Here self-adjoint linear relations are used; they can be viewed
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asmulti-valued operators. For a detailed overview of relations in inner product spaces
see [14] or [5, Chapter 1].

Theorem 6 A function 𝑓 is a Herglotz-Nevanlinna function if and only if there exist
a Hilbert space H , a self-adjoint linear relation 𝐴 in H , a point 𝑧0 ∈ C+ and an
element 𝑣 ∈ H such that

𝑓 (𝑧) = 𝑓 (𝑧0) + (𝑧 − 𝑧0)
(
(𝐼 + (𝑧 − 𝑧0) (𝐴 − 𝑧)−1)𝑣, 𝑣

)
H
. (9)

Moreover, if H = 𝑠𝑝𝑎𝑛{(𝐼 + (𝑧 − 𝑧0) (𝐴 − 𝑧)−1)𝑣 : 𝑧 ∈ 𝜚(𝐴)}, where 𝑠𝑝𝑎𝑛 denotes
closed linear span and 𝜚(𝐴) the resolvent set of 𝐴, then the representation is called
minimal. In this case the representation is unique up to unitary equivalence.

If the representation is minimal then it can be shown that hol( 𝑓 ) = 𝜚(𝐴), meaning
that the function 𝐹 (more precisely, its symmetric continuation to the lower halfplane
and to those real points where possible) is analytic exactly in the resolvent set of
the representing relation 𝐴. In particular, isolated eigenvalues of 𝐴 are poles of 𝑓 .
Non-isolated eigenvalues are then called generalized poles and can be characterized
analytically as well. Since unitarily equivalent relations do have the same spectral
properties, these are intrinsic for the function as well.
There are different (equivalent) ways to construct such an operator representation.

Example 5 If, for instance, the integral representation (1) is given, then the above
representation can be realized as follows: If in the integral representation 𝑏 = 0
then H = 𝐿2𝜇 and 𝐴 is actually an operator. namely, 𝐴 is multiplication by the
independent variable, i.e. 𝑔(𝜉) ↦→ 𝜉 ·𝑔(𝜉). If 𝑧0 is fixed than 𝑣 ∈ 𝐿2𝜇 might be chosen
as 𝑣(𝜉) = 1

𝜉−𝑧0 .
If 𝑏 > 0 then the space has an additional one-dimensional component, namely,

H = 𝐿2𝜇 ⊕C and 𝐴 is not an operator but a relation with non-trivial multivalued part
𝐴(0). The relation 𝐴 is acting in 𝐿2𝜇 as multiplication by the independent variable
and has the second component as multivalued part, i.e., 𝐴(0) = {0} × C.

In Theorems 2 and 3, some properties of the function have been related to certain
properties of the measure that lead to simplifications of the integral representation.
In the following theorem these results are extended to the operator representation.

Theorem 7 Let 𝑓 be a Herglotz-Nevanlinna function given by representation (9).
Then

1. lim
𝑦→∞

𝑓 (𝑖𝑦)
𝑦

= 0 if and only if the relation 𝐴 is an operator, i.e., its multi valued

part is trivial.

2.
∫ ∞

1

Im 𝑓 (𝑖𝑦)
𝑦

𝑑𝑦 < ∞ if and only if 𝑣 ∈ dom(( |𝐴| + 𝐼)1/2).
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3. lim
𝑧→̂∞

𝑓 (𝑧)
Im 𝑧

= 0 and lim sup
𝑧→̂∞

|𝑧 |Im 𝑓 (𝑧) < ∞ if and only if 𝐴 is an operator and

𝑣 ∈ dom(𝐴). In this case

𝑓 (𝑧) = 𝑠 +
(
(𝐴 − 𝑧)−1𝑢, 𝑢

)
H

with 𝑠 ∈ R and 𝑢 := (𝐴 − 𝑧0)𝑣.
Operator representations appear naturally in connection with spectral problems

for self-adjoint operators. For instance, the spectrum of a Sturm-Liouville operator
can be characterized in terms of the singularities of the corresponding Titchmarsh-
Weyl function, which in many cases is a Herglotz-Nevanlinna functions. Then 𝐴 is
the differential operator and 𝜇 can be interpreted as the spectral measure, see eg,
[16] and references therein or Chapter 6 in [5].
Abstractly speaking, scalar Herglotz-Nevanlinna functions do appear in con-

nection with rank one perturbations of self-adjoint operators, see eg., [2], or in
connection with self-adjoint extensions of a symmetric operator with deficiency
indices (1, 1), [1]. Given such a symmetric operator and one fixed self-adjoint exten-
sion, then there exists a Herglotz-Nevanlinna function, the so-called Q-function (in
the sense of Krein) or abstract Weyl-function, such that all self-adjoint extensions
can be parameterized via Kreins resolvent formula. Moreover, also the spectrum of
any (minimal) extension is given in terms of (the singularities of fractional linear
transformations of) this Herglotz-Nevanlinna function .

2.5.2 Exponential representation

If 𝑓 is a Herglotz-Nevanlinna function then the function 𝐹 (𝑧) := Log( 𝑓 (𝑧)) is
also Herglotz-Nevanlinna. Since Im 𝐹 is bounded, it follows that 𝐹 has an integral
representation with an absolute continuous measure and no linear term i.e. 𝑏 = 0.
This observation leads to the following representation.

Proposition 5 A function 𝑓 is a Herglotz-Nevanlinna function if and only if there
exists a real constant 𝛾 and a density 𝜗 such that

𝑓 (𝑧) = exp
(
𝛾 +

∫
R

(
1

𝑡 − 𝑧 −
𝑡

1 + 𝑡2

)
𝜗(𝑡)𝑑𝜆R (𝑡)

)
.

For details, in particular, concerning the relation between 𝜇 from (1) and 𝜗 see [3]
and [4].

2.6 Passive systems

SymmetricHerglotz-Nevanlinna functions are also characterized in terms ofLaplace-
transforms of certain distributions, see eg. the classical text [32].
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Consider an operator 𝑅 that acts on distributions D ′(R,C) as a convolution
operator, i.e., there exists 𝑌 ∈ D ′ such that 𝑅(𝜑) = 𝑌 ★ 𝜑 for all 𝜑 ∈ D ′ such that
this action is well-defined.

Definition 4 A convolution operator 𝑅 = 𝑌★ is called (admittance-) passive if for
every test function 𝜑 ∈ D the output 𝑅(𝜑) =: 𝜓 is locally integrable and

Re
[∫ 𝑡

−∞
𝜑(𝜏)𝜓(𝜏)𝑑𝜏

]
≥ 0, ∀𝑡 ∈ R.

It can be shown that every passive operator 𝑅 is causal (i.e. supp𝑌 ⊆ [0,∞)) and
it is of slow growth (i.e.𝑌 ∈ S′, where S′ denotes the set of Schwartz distributions).
For a convolution operator that is causal and of slow growth, the Laplace transform

𝑊 := L(𝑌 ) of its defining distribution is well defined and holomorphic in the right
halfplane, see e.g. [32] for details.
Furthermore, a real distribution is a distribution that maps real test functions to

real numbers and a convolution operator is called real if it maps real distributions
into real distributions. A holomorphic function is called positive real (or for short
PR) if it maps the right half plane into itself and takes real values on the real line.
Passive operators are in a one-to-one correspondence with the positive real func-

tions in the sense of the following theorem, which, however, is formulated in terms
of Herglotz-Nevanlinna functions.

Theorem 8 Given a real passive operator 𝑅 = 𝑌★ , the function 𝑓 (𝑧) := 𝑖𝑊 ( 𝑧
𝑖
), is a

symmetric Herglotz-Nevanlinna function (where𝑊 = L(𝑌 )).
Conversely, given a symmetric Herglotz-Nevanlinna function 𝑓 , the convolution

operator 𝑅 := L−1 (𝑊)★ for𝑊 (𝑠) := 1
𝑖
𝑓 (𝑖𝑠) is passive and real.

Remark 4 Here the Laplace transform 𝑊 is itself a positive real function. In appli-
cations sometimes this transfer function is considered directly; see e.g., Example
10, or alternatively the Laplace transform is combined with a multiplication of 𝑖
in the independent variable, and is then called the Fourier-Laplace transform, as in
Equation (38) of Part II.

2.7 Asymptotic behavior

Generally speaking the growth of the function at a boundary point in R ∪ {∞} is
closely related to the behavior of the measure at this point, e.g., (5). In this section
we demonstrate how the function’s asymptotic behavior and the moments of the
measure are related; see [28] for an overview and [8] for the proofs.
We start with noting that for every Herglotz-Nevanlinna function 𝑓 , one has

𝑓 (𝑧) = 𝑏1𝑧 + 𝑜(𝑧) as 𝑧→̂∞,

and
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𝑓 (𝑧) = 𝑎−1
𝑧

+ 𝑜( 1
𝑧
) as 𝑧→̂0,

where 𝑏1 = 𝑏 in the integral representation (1) and 𝑎−1 = −𝜇({0}). Some functions
do even admit expansions of higher order. We first consider expansions at∞.

Definition 5 AHerglotz-Nevanlinna function 𝑓 has an asymptotic expansion of order
𝐾 at 𝑧 = ∞ if for 𝐾 ≥ −1 there exist real numbers 𝑏1, 𝑏0, 𝑏−1, . . . , 𝑏−𝐾 such that 𝑓
can be written as

𝑓 (𝑧) = 𝑏1𝑧 + 𝑏0 +
𝑏−1
𝑧

+ . . . + 𝑏−𝐾
𝑧𝐾

+ 𝑜
( 1
𝑧𝐾

)
as 𝑧→̂∞. (10)

Remark 5 This means that

lim
𝑧→̂∞

𝑧𝐾
(
𝑓 (𝑧) − 𝑏1𝑧 − 𝑏0 −

𝑏−1
𝑧

− . . . − 𝑏−𝐾
𝑧𝐾

)
= 0. (11)

Moreover, the coefficients 𝑏− 𝑗 are given by

𝑏− 𝑗 = lim
𝑧→̂∞

𝑧 𝑗
(
𝑓 (𝑧) − 𝑏1𝑧 − 𝑏0 −

𝑏−1
𝑧

− . . . −
𝑏−( 𝑗−1)

𝑧 𝑗−1

)
. (12)

The following theorem relates the asymptotic expansion to the moment of the
measure.

Theorem 9 Let 𝑓 be a Herglotz-Nevanlinna function with representing measure 𝜇 in
(1) and 𝑁∞ ≥ 0. Then 𝑓 has an asymptotic expansion of order 2𝑁∞+1 at 𝑧 = ∞ if and
only if the measure 𝜇 has finite moments up to order 2𝑁∞, i.e.,

∫
R
𝜉2𝑁∞𝑑𝜇(𝜉) < ∞.

Moreover, in this case∫
R
𝜉𝑘𝑑𝜇(𝜉) = −𝑏−𝑘−1 for 0 < 𝑘 ≤ 𝑁∞. (13)

Since thesemoments can be calculated by amodified version of the Stieltjes inversion
formula, this result can be reformulated in the following way, known as sum-rules.
See [8] for a rigorous derivation.

Theorem 10 Let 𝑓 be a Herglotz-Nevanlinna function. Then, for some integer 𝑁∞ ≥
0, the limit

lim
𝜀→0+

lim
𝑦→0+

∫
𝜀< |𝑥 |< 1

𝜀

𝑥2𝑁∞ Im 𝑓 (𝑥 + 𝑖𝑦)𝑑𝑥 (14)

exists as a finite number if and only if the function 𝑓 admits at 𝑧 = ∞ an asymptotic
expansion of order 2𝑁∞ + 1. In this case, the following sum rules hold

lim
𝜀→0+

lim
𝑦→0+

1
𝜋

∫
𝜀< |𝑥 |< 1

𝜀

𝑥𝑛Im 𝑓 (𝑥 + 𝑖𝑦)𝑑𝑥 =
{
𝑎−1 − 𝑏−1, 𝑛 = 0
−𝑏−𝑛−1, 0 < 𝑛 ≤ 2𝑁∞

. (15)

Example 6 Note that the assumption that the coefficients in expansions (10) are real
is essential. Consider e.g., the function 𝑓 (𝑧) = 𝑖 for 𝑧 ∈ C+, which admits expansions
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of arbitrary order if non-real coefficients are allowed. However, the limits (14) do
not exist. This example also shows that not every Herglotz-Nevanlinna function does
admit a sum rule.

Expansions at 𝑧 = 0 are defined analogously. This can either be done explicitly,
as below, or via the expansion at ∞ for the Herglotz-Nevanlinna function �̃� (𝑧) :=
𝑓 (−1/𝑧). The above remark applies then accordingly.

Definition 6 AHerglotz-Nevanlinna function 𝑓 has an asymptotic expansion of order
𝐾 at 𝑧 = 0 if for 𝐾 ≥ −1 there exist real numbers 𝑎−1, 𝑎0, 𝑎1, . . . , 𝑎𝐾 such that 𝑓 can
be written as

𝑓 (𝑧) = 𝑎−1
𝑧

+ 𝑎0 + 𝑎1𝑧 + . . . + 𝑎𝐾 𝑧𝐾 + 𝑜
(
𝑧𝐾

)
as 𝑧→̂0. (16)

Theorem 11 Let 𝑓 be a Herglotz-Nevanlinna function. Then, for some integer 𝑁0 ≥
1, the limit

lim
𝜀→0+

lim
𝑦→0+

∫
𝜀< |𝑥 |< 1

𝜀

Im 𝑓 (𝑥 + 𝑖𝑦)
𝑥2𝑁0

𝑑𝑥 (17)

exists as a finite number if and only if 𝑓 admits at 𝑧 = 0 an asymptotic expansion of
order 2𝑁0 − 1. In this case the following sum rules hold

lim
𝜀→0+

lim
𝑦→0+

1
𝜋

∫
𝜀< |𝑥 |< 1

𝜀

Im 𝑓 (𝑥 + 𝑖𝑦)
𝑥𝑝

𝑑𝑥 =

{
𝑎1 − 𝑏1, 𝑝 = 2
𝑎𝑝−1, 2 < 𝑝 ≤ 2𝑁0

. (18)

Example 7 The Herglotz-Nevanlinna function 𝑓 (𝑧) = tan(𝑧) has the asymptotic
expansion

tan(𝑧) = 𝑧 + 𝑧
3

3
+ 2𝑧

5

15
+ . . . as 𝑧→̂0 (19)

and tan(𝑧) = 𝑖+𝑜(1) as 𝑧→̂∞ (which, however, is not an asymptotic expansion in the
sense of (10)). We thus find that 𝑎1 = 1, 𝑎3 = 1/3, 𝑎5 = 2/15, and 𝑏1 = 0 (whereas
𝑏0 does not exist), and hence the following sum rules apply.

lim
𝜖→0+

lim
𝑦→0+

1
𝜋

∫
𝜖 ≤ |𝑥 | ≤1/𝜖

Im tan(𝑥 + 𝑖𝑦)
𝑥𝑝

𝑑𝑥 =


1 𝑝 = 2
1/3 𝑝 = 4
2/15 𝑝 = 6

(20)

Remark 6 Note that the case of 𝑝 = 1 is not included in Theorem 11. In order to
guarantee this limit to be finite, it is required that 𝑓 admits asymptotic expansions
of order 1 at both 𝑧 = ∞ and 𝑧 = 0. In this case, the limit equals 𝑎0 − 𝑏0.

Remark 7 Note that the exponents in (14) and (17) are even. A corresponding state-
ment for odd exponents, meaning that the existence of the limit is equivalent to the
existence of the expansion, does not hold. A counterexample is given in [8, p. 9].

Remark 8 The counterpart of Theorem 9 for the operator representation (9) is 𝑣 ∈
dom(𝐴𝑁∞ ) if and only if an asymptotic expansion of order 2𝑁∞ + 1 at 𝑧 = ∞ exists.
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For symmetric Herglotz-Nevanlinna functions (8), the non-zero coefficients of
odd and even order in an asymptotic expansion are necessarily real-valued and purely
imaginary, respectively, and hence expansions (16) and (10) stop at the appearance
of the first imaginary term, or the first non-existing term. If the assumptions in both
Theorems 10 and 11 are satisfied, i.e., that both asymptotic expansions exist up
to order 2𝑁0 − 1 and 2𝑁∞ + 1, respectively, these together with Remark 6 can be
summarized as

2
𝜋

∫ ∞

0+

Im 𝑓 (𝑥)]
𝑥2𝑛

𝑑𝑥 := lim
𝜀→0+

lim
𝑦→0+

2
𝜋

∫ 1/𝜀

𝜀

Im ℎ(𝑥 + 𝑖𝑦)]
𝑥2𝑛

𝑑𝑥 = 𝑎2𝑛−1 − 𝑏2𝑛−1 (21)

for 𝑛 = −𝑁∞, . . . , 𝑁0.

2.8 Matrix- and operator- valued Herglotz-Nevanlinna functions

So far in this text the values of the functions considered have been complex numbers,
but much of the theory can be extended to matrix- or even operator-valued functions;
see [15] for a detailed overview.
LetH0 be a complexHilbert space and denote byL(H0) andB(H0) the spaces of

linear and bounded linear operators inH0, respectively. In case of finite dimensional
H0, say dimH0 = 𝑛, these two spaces coincide and are identified with the space of
matrices C𝑛×𝑛. For 𝑇 ∈ L(H0) we denote by 𝑇∗ the adjoint operator; for 𝑇 ∈ C𝑛×𝑛
this is the conjugate transpose of the matrix 𝑇 .

Definition 7 A function 𝐹 : C+ → B(H0) is called Herglotz-Nevanlinna if it is
analytic and Im 𝐹 (𝑧) ≥ 0 for 𝑧 ∈ C+, where Im 𝐹 (𝑧) := 1

2𝑖 (𝐹 (𝑧) − 𝐹 (𝑧)
∗).

Also these functions can be represented via an integral representation as in Theorem
1.

Theorem 12 A function 𝐹 : C+ → L(H0) is a Herglotz-Nevanlinna function if and
only if there are operators 𝐶 = 𝐶∗ and 𝐷 ≥ 0 ∈ L(H0) and a (positive) L(H0)-
valued Borel measure Ω with

∫
R

1
1+𝜉 2 𝑑 (Ω(𝜉)x, x)L(H0) < ∞ for all x ∈ H0 such

that
𝐹 (𝑧) = 𝐶 + 𝐷𝑧 +

∫
R

(
1

𝜉 − 𝑧 −
𝜉

1 + 𝜉2

)
𝑑Ω(𝜉). (22)

Moreover, 𝐶, 𝐷, and Ω are unique with this property.

Here an operator-valued measure is defined via a non-decreasing operator-valued
(distribution) function; see [15].

Remark 9 As in Theorems 2 and 3 the representation simplifies under certain growth
conditions. More precisely, these theorems hold true even in the operator-valued case
if the growth conditions are considered weakly, e.g., (i) in Theorem 2 becomes
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∞∫
0

(Im 𝐹 (𝑖𝑦)x, x)H0
𝑦

𝑑𝑦 ≤ ∞

for all x ∈ H0. Also the results in Section 2.3 hold in this weak sense.

Also the operator representations can be extended to this case.

Theorem 13 A function 𝐹 : C+ → B(H0) is a Herglotz-Nevanlinna function if and
only if there exist a Hilbert space H , a self-adjoint linear relation 𝐴, a point 𝑧0 ∈ C+
and a map Γ ∈ L(H0,H) such that

𝐹 (𝑧) = 𝐹 (𝑧0)∗ + (𝑧 − 𝑧0)Γ∗ (𝐼 + (𝑧 − 𝑧0) (𝐴 − 𝑧)−1)Γ. (23)

Moreover, if H = 𝑠𝑝𝑎𝑛{(𝐼 + (𝑧 − 𝑧0) (𝐴 − 𝑧)−1)Γx : 𝑧 ∈ 𝜚(𝐴) and x ∈ H0}, then
the representation is called minimal. In this case the representation is unique up to
unitary equivalence.

For scalar functions, i.e., H0 = C, the linear mapping Γ : C → H acts as 1 ↦→ 𝑣,
where 𝑣 is the element in the scalar representation Theorem 6.
Similarly as in Theorems 2 and 3, certain assumptions on the growth of the

function 𝐹 guarantee simplified representations. As an example we give one result,
which will be used in Section 2.4 of Part II.

Theorem 14 Let 𝐹 : C+ → B(H0) be a Herglotz-Nevanlinna function with repre-
sentation (23). Then

lim
𝑧→̂∞

∥𝐹 (𝑧)∥
Im 𝑧

= 0 and lim sup
𝑧→̂∞

|𝑧 | · ∥Im 𝐹 (𝑧)∥ < ∞

if and only if 𝐴 is an operator and Γ ⊂ dom(𝐴). In this case

𝐹 (𝑧) = 𝑆 + Γ∗
0 (𝐴 − 𝑧)−1Γ0 (24)

with Γ0 := (𝐴 − 𝑧0)Γ and 𝑆 = 𝑆∗ ∈ L(H0).

In particular, this theorem implies the following corollary.

Corollary 1 For a Herglotz-Nevanlinna function 𝐹 : C+ → B(H0) the growth
condition lim sup

𝑦→∞
𝑦∥𝐹 (𝑖𝑦)∥ < ∞ implies that

𝐹 (𝑧) = Γ∗
0 (𝐴 − 𝑧)−1Γ0, (25)

where 𝐴 is a self-adjoint operator in a Hilbert space H and Γ0 ∈ L(H0,H).
Moreover, there exists a minimal representation, that is, a representation for which
it holds H = 𝑠𝑝𝑎𝑛{(𝐴 − 𝑧)−1)Γ0x : 𝑧 ∈ 𝜚(𝐴) and x ∈ H0}, that is unique up to
unitary equivalence.

Example 8 Both the functions
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𝐹 (𝑧) =
(
𝑧 1
1 − 1

𝑧

)
and �̃� (𝑧) := −𝐹 (𝑧)−1 = 1

2
·
(
− 1
𝑧
−1

−1 𝑧

)
are Herglotz-Nevanlinna functions.

The above example illustrates a general phenomenon for matrix (and operator)
functions, namely, the point 𝑧 = 0 is both a pole and a zero of 𝐹; it is also a pole of
the inverse 𝐹−1. In particular, det 𝐹 (𝑧) ≡ −2, and hence the poles of 𝐹 can not be
read off from the scalar function det 𝐹 (𝑧), but the matrix structure has to be taken
into account.
Whereas scalar Herglotz-Nevanlinna functions do appear in connection with

extensions of symmetric operators with deficiency index 1, higher defect leads to
matrix-valued functions (for finite deficiency index) or operator-valued functions
(for infinite deficiency index). As an example, consider differential operators. If
such an operator acts on functions defined on the half line R+ (which has only one
boundary point, 𝑥 = 0) then the minimal operator will in general have deficiency
index 1 and hence the corresponding Titchmarsh-Weyl function is a scalar Herglotz-
Nevanlinna function. If however, one considers either a compact interval (with
2 boundary points) or differential operators on finite graphs (with finitely many
boundary points) the corresponding Weyl function is a matrix-valued Herglotz-
Nevanlinna function, where the number of boundary points determines its size.
Partial differential operators defined on some domain in R𝑛 (with boundary that
consists of infinitely many points) give rise to operator valued Herglotz-Nevanlinna
functions. See e.g., the recent books [29, 5] and references therein.
Other examples for matrix valued Herglotz-Nevanlinna functions do appear e.g.,

in connection with array antennas [24].

3 Applications

In this section, as well as in Part II, we give examples of applications, whereHerglotz-
Nevanlinna functions are utilized. They stem fromquite different areas but in terms of
the underlyingmathematics they have a lot in common.Herewe focus on applications
in electromagnetics and techniques that are related to the sum rules. As is mentioned
in the introduction, there are also applications where the functions depend on the
contrast of materials rather than frequency; see Section 2.1 of Part II. Here we want
to point out these similarities in an informal way, more precise definitions are then
given in the respective application below or in Part II.
First of all, the description of most of the problems in some way involves a

convolution operator. This might be related to time-invariance (also called time-
homogeneity), or it can appear as a memory term or a time-dispersive integral term.
Another common feature isCausality, which means that the current state depends

only on the time evolution in the past but not on the future. Mathematically, causality
amounts to the fact that the the convolution kernel is supported on one half line only,
which implies that its Fourier (or Laplace) transform is an analytic function, in the
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upper (or lower) half plane. In the applications with contrast the analyticity arises
from the coercivity of a certain sesquilinear form.
In general the analytic functions given in thiswaywill not beHerglotz-Nevanlinna,

but an additional assumption is needed. This might be e.g., passivity or power
dissipation, which imposes a sign restriction on the imaginary (or real) part, and
this is how Herglotz-Nevanlinna functions appear. In many situations there is a one-
to-one correspondence between the systems and the Herglotz-Nevanlinna functions
describing them.
In the following sections as well as in Part II we summarize results from different

areas and try to make their connections to the mathematical background in Section
2 more explicit. We try to use the notations as close as possible to the original
papers in order to make them more accessible to the reader. Unfortunately, this leads
to unavoidable clashes in some notations, which we will point out explicitly if the
context there is not enough to resolve the ambiguity of notation.

3.1 Sum rules and physical bounds in electromagnetics

In Section 2.6 the mathematical definition of passive systems was given and it
was explained that such systems are in one-to-one correspondence with symmetric
Herglotz-Nevanlinna functions. Here we are going to give a physical motivation
including an example from electromagnetics and demonstrate how the sum rules
are used to derive physical bounds. We are following closely the exposition in [28],
where also additional references can be found.
Physical objects that cannot produce energy are usually considered as passive.

However, whether a system is passive or not (in the mathematical sense) depends
very much on the definition of the input and the output.
More precisely, consider one-port systems. These are systems consisting of one

input and one output parameter, which can be measured at the so-called ports of
these systems. As an example one might think of an electric circuit with two nodes
to which one can input a signal, e.g., a current, and measure a voltage.
The one-port systems we consider here are assumed to be linear, continuous and

time-translationally invariant. Hence the system is in convolution form, [32], i.e., if
𝑢(𝑡) denotes the input, then the output 𝑣(𝑡) is given by

𝑣(𝑡) = (𝑤 ★ 𝑢) (𝑡) :=
∫
R
𝑤(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏, (26)

with impulse response 𝑤(𝑡). As before, we restrict ourselves to real-valued systems,
i.e., the systems where the impulse response 𝑤 is real-valued. One way to define
passivity for such systems is so-called admittance passivity defined in Definition 4
[31, 32], where

Wadm (𝑇) := Re
∫ 𝑇

−∞
𝑣(𝑡)𝑢(𝑡)𝑑𝑡 ≥ 0 (27)
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for all 𝑇 ∈ R and all 𝑢 ∈ 𝐶∞
0 (i.e., smooth functions with compact support).

Here,Wadm (𝑇) represents all energy the system has absorbed until time 𝑇 and
hence this definition means that the system absorbs more energy than it emits, or in
other words, the system does not produce energy.
It can be shown, [32], that the impulse response 𝑤 of a passive system has the

representation

𝑤(𝑡) = 𝑏𝛿′(𝑡) + 𝐻 (𝑡)
∫
R
cos(𝜉𝑡)𝑑𝜇(𝜉), (28)

where 𝑏 ≥ 0, 𝛿′ denotes the derivative of the Dirac distribution, 𝐻 the Heaviside
step function and 𝜇 a Borel measure satisfying the growth condition from Theorem
1. This implies that the Laplace transform of the impulse response (28),𝑊 (𝑠) gives
rise to a symmetric Herglotz-Nevanlinna function, cf., Theorem 8, which has exactly
the parameters 𝑏 and 𝜇.
Let us have a closer look at a few examples of passive systems in electromagnetics

from [28].

Example 9 Input impedance of electrical circuit networksConsider a simple elec-
tric one-port circuit containing passive components, i.e., each resistance 𝑅, induc-
tance 𝐿 and capacitance 𝐶 are positive. The input signal to this system is the
real-valued electric current 𝑖(𝑡) and its output signal is the voltage 𝑣(𝑡), see Fig. 1a.
As an explicit example, consider the simple circuit in Fig. 1b. In order to check that
this system is passive, we calculateWadm (𝑇) from (27).

𝑖 (𝑡)

−

+

𝑣(𝑡) Circuit

a)
𝑖 (𝑡) 𝐿

𝑅

−

+

𝑣(𝑡)

b)

Fig. 1: a) A general electric circuit; b) A simple circuit example.

For a given input current 𝑖(𝑡), the output voltage is given by 𝑣(𝑡) = 𝐿 𝑑 𝑖 (𝑡)
𝑑𝑡

+ 𝑅𝑖(𝑡)
and can be written as 𝑣 = 𝑤★𝑖, where 𝑤 = 𝐿𝛿′ + 𝑅𝛿 is the impulse response. Hence,
the integral (27) becomes

Wadm (𝑇) =
∫ 𝑇

−∞

(
𝐿
𝑑 𝑖(𝑡)
𝑑𝑡

𝑖(𝑡) + 𝑅𝑖(𝑡)2
)
𝑑𝑡 =

𝐿

2
𝑖(𝑇)2 + 𝑅

∫ 𝑇

−∞
𝑖(𝑡)2𝑑𝑡 ≥ 0, (29)

and the system is admittance-passive. The transfer function (i.e., here the input
impedance), which by definition is the Laplace transform of the impulse response,
becomes, in this case, the positive real (PR)-function

𝑍in (𝑠) = 𝑠𝐿 + 𝑅 (30)
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and hence 𝑓 (𝑧) := 𝑖𝑍in (−𝑖𝑠) is a Herglotz-Nevanlinna function. This simple exam-
ple generalizes to circuit networks composed of arbitrary number and combinations
of passive resistors, capacitances and inductances resulting in rational PR func-
tions [19]. Moreover, it is straightforward to include transformers and transmission
lines as well as multiple input and output systems resulting in matrix valued PR
functions [12].

Given a Herglotz-Nevanlinna function, the integral identities in Theorems 10 and
11 have been applied in order to derive physical bounds on passive systems, see
e.g., [8]. In the engineering and physics literature, these integral identities appear in
various forms and special cases and are also often referred to as sum rules [26, 8].
For Herglotz-Nevanlinna functions, the integral identities are given on the real

axis where 𝑧 = 𝑥 is often interpreted as angular frequency𝜔 (in rad/𝑠), wave number
𝑘 = 𝜔/𝑐0 (in m−1), or as wavelength 𝜆 = 2𝜋/𝑘 (in m).
In many practical electromagnetic applications, it is reasonable to assume some

partial knowledge regarding the low- and/or high-frequency asymptotic expansions
of the corresponding Herglotz-Nevanlinna function, such as the static and the optical
responses of a material, or a structure. In these cases, the sum rules can be used to
obtain inequalities by constraining the integration interval to a finite bandwidth in the
frequency (or wavelength) domain, and thereby yielding useful physical limitations
in a variety of applications.
As illustration, we treat the following classical example by applying the theory

presented in Section 2.7, even though residue calculus could also be used to solve
this problem.

Example 10 The resistance-integral theorem
Consider a passive circuit consisting of a parallel
connection of a capacitance𝐶 and an impedance
𝑍1 (𝑠) that does not contain a shunt capacitance
(i.e., 𝑍1 (0) is finite and 𝑍1 (∞) ≠ 0), see the
figure besides. Then the input impedance of this
circuit is given by 𝑍 (𝑠) = 1/(𝑠𝐶 + 1/𝑍1 (𝑠)),
which is a PR-function in the Laplace variable
𝑠 ∈ C+, and hence the system is admittance
passive.

𝑍 (𝑠) ⇒
1
𝑠𝐶

𝑍1 (𝑠)

The asymptotic expansions are 𝑍 (𝑠) = 𝑍1 (0) +𝑜(𝑠) as 𝑠→̂0 and 𝑍 (𝑠) = 1/(𝑠𝐶) +
𝑜(𝑠−1) as 𝑠→̂∞. Here, the corresponding Herglotz-Nevanlinna function is ℎ(𝜔) :=
𝑖𝑍 (−𝑖𝜔) for 𝜔 ∈ C+. Its low- and high-frequency asymptotics are

ℎ(𝜔) = 𝑜(𝜔−1) as 𝜔→̂0 and ℎ(𝜔) = − 1
𝜔𝐶

+ 𝑜(𝜔−1) as 𝜔→̂∞. (31)

In terms of (16) and (10), we have 𝑎−1 = 0 and 𝑏−1 = −1/𝐶, and thus the sum rule
(21) with 𝑛 = 0 gives

2
𝜋

∫ ∞

0+
Re [𝑍 (−𝑖𝜔)]𝑑𝜔 =

2
𝜋

∫ ∞

0+
Im [ℎ(𝜔)]𝑑𝜔 = 𝑎−1 − 𝑏−1 =

1
𝐶
. (32)
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By integrating only over a finite frequency intervalΩ := [𝜔1, 𝜔2], and estimating
this integral from below, we obtain the bound

Δ𝜔 inf
𝜔∈Ω
Re [𝑍 (−𝑖𝜔)] ≤

∫ ∞

0+
Re [𝑍 (−𝑖𝜔)]𝑑𝜔 =

𝜋

2𝐶
, (33)

where Δ𝜔 := 𝜔2 −𝜔1. Consequently, inequality (33) limits the product between the
bandwidth and the minimum resistance over the given frequency interval; see also
[9].

Compositions of Herglotz-Nevanlinna functions can be used to construct new
Herglotz-Nevanlinna functions and, hence, also new sum rules, cf., also Section 2.3
in Part II. Here, we illustrate this for a case where the minimal temporal dispersion
for metamaterials is determined, by first transforming the problem to the question
of determining the minimum amplitude of a Herglotz-Nevanlinna function over a
bandwidth, [21, 8].
When a dielectric medium is specified to have inductive properties (i.e., has

negative permittivity) over a given bandwidth, it is regarded as a metamaterial. A
given negative permittivity value at a single frequency is always possible to achieve.
For instance, the plasmonic resonances in small metal particles can be explained by
e.g., using Drude or Lorentz models. However, when a constant negative permittivity
value is prescribed over a given bandwidth, the passivity of the material will imply
severe bandwidth limitations, see e.g., [21].
To derive these limitations based on Herglotz-Nevanlinna functions, we start by

considering the following general situation: Let ℎ0 be a fixed Herglotz-Nevanlinna
function that can be extended continuously to a neighbourhood of the compact
intervalΩ ⊂ R and has the large argument asymptotics ℎ0 (𝑧) = 𝑏01𝑧 + 𝑜(𝑧) as 𝑧→̂∞.
Denote by 𝐹 (𝑥) := −ℎ0 (𝑥) the negative of ℎ0. We are now looking for a Herglotz-
Nevanlinna function ℎ which has the same continuity property on the real line as
ℎ0 and with an asymptotic expansion ℎ(𝑧) = 𝑏1𝑧 + 𝑜(𝑧) as 𝑧→̂∞ and lies as close
as possible to the given anti-Herglotz function 𝐹. In particular, we aim to derive a
lower bound for the error norm

∥ℎ − 𝐹∥𝐿∞ (Ω) := sup
𝑥∈Ω

|ℎ(𝑥) − 𝐹 (𝑥) |. (34)

To this end, the following auxiliary Herglotz-Nevanlinna function ℎΔ (𝑧), for Δ > 0,
is used

ℎΔ (𝑧) :=
1
𝜋

∫ Δ

−Δ

1
𝜉 − 𝑧 𝑑𝜉 =

1
𝜋
Log

𝑧 − Δ

𝑧 + Δ
=


𝑖 + 𝑜(1) as 𝑧→̂0
−2Δ
𝜋𝑧

+ 𝑜(𝑧−1) as 𝑧→̂∞.
(35)

Note that Im ℎΔ (𝑧) ≥ 1
2 for |𝑧 | ≤ Δ and Im 𝑧 ≥ 0. Next, consider the composite

Herglotz-Nevanlinna function ℎ1 (𝑧) := ℎΔ
(
ℎ(𝑧) + ℎ0 (𝑧)

)
. Since ℎ(𝑧) + ℎ0 (𝑧) =

(𝑏1 + 𝑏01)𝑧 + 𝑜(𝑧) as 𝑧→̂∞ the new function ℎΔ has the the asymptotic expansions
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ℎ1 (𝑧) = 𝑜(𝑧−1) as 𝑧→̂0 and ℎ1 (𝑧) =
−2Δ

𝜋(𝑏1 + 𝑏01)
𝑧−1 + 𝑜(𝑧−1) as 𝑧→̂∞. (36)

Then the sum rule (21) with 𝑛 = 0 becomes

2
𝜋

∫ ∞

0+
Im ℎ1 (𝑥)𝑑𝑥 = 𝑎−1 − 𝑏−1 =

2Δ
𝜋(𝑏1 + 𝑏01)

. (37)

Choosing Δ := sup𝑥∈Ω |ℎ(𝑥) + ℎ0 (𝑥) |, the following integral inequalities follow

1
𝜋
|Ω| ≤ 2

𝜋

∫
Ω

Im ℎ1 (𝑥)︸    ︷︷    ︸
≥ 12

𝑑𝑥 ≤ 2
𝜋

∫ ∞

0+
Im ℎ1 (𝑥)𝑑𝑥 =

2 sup𝑥∈Ω |ℎ(𝑥) + ℎ0 (𝑥) |
𝜋(𝑏1 + 𝑏01)

(38)

or
∥ℎ + ℎ0∥𝐿∞ (Ω) ≥ (𝑏1 + 𝑏01)

1
2
|Ω|, where |Ω| =

∫
Ω

𝑑𝑥. (39)

Example 11 Metamaterials and temporal dispersion
Consider now a dielectric metamaterial with a constant, real-valued and negative

target permittivity 𝜖t < 0 to be approximated over an interval Ω. In this case, the
function of interest is 𝐹 (𝑧) = 𝑧𝜖t and hence we have ℎ0 (𝑧) = −𝐹 (𝑧) with 𝑏01 = −𝜖t.
Let 𝜖 (𝑧) be the permittivity function of the approximating passive dielectric material,
and ℎ(𝑧) = 𝑧𝜖 (𝑧) the corresponding Herglotz-Nevanlinna function with 𝑏1 = 𝜖∞, the
assumed high-frequency permittivity of the material, and the approximation interval
Ω = 𝜔0 [1 − 𝐵/2, 1 + 𝐵/2], where 𝜔0 is the center frequency and 𝐵 the relative
bandwidth with 0 < 𝐵 < 2. The resulting physical bound obtained from (39) is
given by

∥𝜖 (·) − 𝜖t∥𝐿∞ (Ω) ≥
(𝜖∞ − 𝜖t)𝐵
2 + 𝐵 . (40)

Note that the variable 𝑥 corresponds here to angular frequency, also commonly
denoted as 𝜔 (in rad/s).
Other applications are related to scattering passive systems, see e.g., [32, 8] for a

precise definition. Scattering passive systems have transfer functions that map C+ to
the unit disk. To use (21), one then first constructs a Herglotz-Nevanlinna function
by mapping the unit disk to C+. This map can be made in many different ways
and the particular choice depends on the asymptotic expansion and the physical
interpretation of the system. The Cayley transform, logarithm, and addition are most
common in applications. For examples see e.g., [8].

3.2 Physical bounds via convex optimization

In this section it is exemplified how Herglotz-Nevanlinna function’s can be used
to identify or approximate passive systems with given properties. This approach is
based on convex optimization related to the functions integral representation.
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To facilitate the computation of a numerical solution using a software such as e.g.,
CVX [17], it is necessary to first impose some a priori constraints on the class of
approximating Herglotz-Nevanlinna functions. In view of Section 2.3 we restrict our-
selves here to approximating Herglotz-Nevanlinna functions that are locally Hölder
continuous on some given intervals on the real line.
A passive approximation problem is considered where the target function 𝐹 is an

arbitrary complex valued continuous function defined on an approximation domain
Ω ⊂ R consisting of a finite union of closed and bounded intervals of the real axis.
The norms used, denoted by ∥ · ∥𝐿𝑝 (𝑤,Ω) , are weighted 𝐿 𝑝 (Ω)-norms with a positive
continuous weight function 𝑤 on Ω, and where 1 ≤ 𝑝 ≤ ∞.
Here for any approximating function ℎ we assume that it is the Hölder continuous

extension (to Ω) of some Herglotz-Nevanlinna function generated by an absolutely
continuous measure 𝜇 having a density 𝜇′ which is Hölder continuous on the closure
𝑈 of an arbitrary neighborhood 𝑈 ⊃ Ω of the approximation domain. Then, cf.,
Proposition 3, both the real and the imaginary parts of ℎ are continuous functions
on Ω. Moreover, it holds that Im ℎ(𝑥) = 𝜋𝜇′(𝑥) on 𝑈 the real part is given by the
associated Hilbert transform. As we consider real systems only, the approximating
Herglotz-Nevanlinna function ℎ can be assumed to be symmetric and its real part
hence admits the representation

Re ℎ(𝑥) = 𝑏𝑥 + 𝑝.𝑣.
∫
R

𝜇′(𝜏)
𝜏 − 𝑥 𝑑𝜏 for 𝑥 ∈ Ω, (41)

where 𝑝.𝑣. denotes the principal values both at∞ and 𝑥.
The continuity of ℎ on Ω implies that the norm ∥ℎ∥𝐿𝑝 (𝑤,Ω) is well-defined for

1 ≤ 𝑝 ≤ ∞.
If approximating the function 𝐹 by Herglotz-Nevanlinna functions ℎ on Ω one is

interested in the greatest lower bound on the approximation error by

𝑑 := inf
ℎ
∥ℎ − 𝐹∥𝐿𝑝 (𝑤,Ω) , (42)

where the infinum is taken over all Herglotz-Nevanlinna functions ℎ generated by a
measure having a Hölder continuous density on𝑈.
In general, a best approximation achieving the bound 𝑑 in (42) does not exist. In

practice, however, the problem is approached by using numerical algorithms such as
CVX, solving finite-dimensional approximation problems using e.g., B-splines, with
the number of basis functions 𝑁 fixed during the optimization, cf., [30, 23]. Here, a
B-spline of order 𝑚 ≥ 2 is an 𝑚 − 2 times continuously differentiable and compactly
supported positive basis spline function consisting of piecewise polynomial functions
of order𝑚−1, i.e., linear, quadratic, cubic, etc., and which is defined by𝑚 +1 break-
points [13]. For the density Im ℎ(𝑥) of the approximating symmetric function ℎ here
it is made the ansatz of a finite B-spline expansion

𝜋𝜇′(𝑥) =
𝑁∑︁
𝑛=1

𝜁𝑛 (𝑝𝑛 (𝑥) + 𝑝𝑛 (−𝑥)) (43)
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for 𝑥 ∈ R, where 𝜁𝑛 are optimization variables for 𝑛 = 1, . . . , 𝑁 , and 𝑝𝑛 (𝑥) are
B-spline basis functions of fixed order 𝑚 which are defined on the given partition.
The real part Re ℎ(𝑥) for 𝑥 ∈ Ω is then given by (41), and can be expressed as

Re ℎ(𝑥) = 𝑏𝑥 − 𝜁0
𝑥

+
𝑁∑︁
𝑛=1

𝜁𝑛 (𝑝𝑛 (𝑥) − 𝑝𝑛 (−𝑥)) , 𝑥 ∈ Ω, (44)

where 𝑝𝑛 (𝑥) is the (negative) Hilbert transform of the B-spline function 𝑝𝑛 (𝑥) and
where a point mass at 𝑥 = 0 with amplitude 𝑐0 has been included. Any other a priori
assumed point masses can be included in a similar way.
Consider now the following convex optimization problem

minimize ∥ℎ − 𝐹∥𝐿𝑝 (𝑤,Ω)

subject to 𝜁𝑛 ≥ 0, for 𝑛 = 0, . . . 𝑁,
𝑏 ≥ 0,

(45)

where the optimization is over the variables (𝜁0, 𝜁1, . . . , 𝜁𝑁 , 𝑏). Note that the objec-
tive function in (45) above is the norm of an affine form in the optimization variables.
Hence, the objective function is a convex function in the variables (𝜁0, 𝜁1, . . . , 𝜁𝑁 , 𝑏).
The uniform continuity of all functions involved implies that the solution to (45)

can be approximated within an arbitrary accuracy by discretizing the approximation
domain Ω (and the computation of the norm) using only a finite number of sample
points. The corresponding numerical problem (45) can now be solved efficiently by
using the CVX Matlab software for disciplined convex programming. The convex
optimization formulation (45) offers a great advantage in the flexibility in which
additional or alternative convex constraints and formulations can be implemented;
see also [30, 23].

Example 12 A canonical example for convex optimization is passive approximation
of metamaterials; see also [21, 30, 23]. As in Example 11 the variable 𝑥 corresponds
here to angular frequency, also commonly denoted as 𝜔 (in rad/s). A typical ap-
plication is with the study of optimal plasmonic resonances in small structures (or
particles) for which the absorption cross section can be approximated by

𝜎abs ≈ 𝑘Im 𝛾, (46)

where 𝑘 = 2𝜋/𝜆 is the wave number, 𝜆 the wavelength and where 𝛾 is the electric
polarizability of the particle; see [10]. As e.g., the polarizability of a dielectric
sphere with radius 𝑎 is given by 𝛾(𝑥) = 4𝜋𝑎3 (𝜖 (𝑥) − 1)/(𝜖 (𝑥) + 2) where 𝜖 (𝑥) is the
permittivity function of the dielectric material inside the sphere.
A surface plasmon resonance is obtained when 𝜖 (𝑥) ≈ −2, and, hence, we specify

that the target permittivity of our metamaterial is 𝜖t = −2. However, a metamaterial
with a negative real part cannot, in general, be implemented as a passivematerial over
a given bandwidth c.f., [20]. Based on the theory of Herglotz-Nevanlinna functions
and associated sum rules, the physical bound in (40) can be derived, where 𝜖∞ is the
high-frequency permittivity of the material, 𝜖t < 𝜖∞, Ω = 𝜔0 [1 − 𝐵/2, 1 + 𝐵/2], 𝜔0
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the center frequency and 𝐵 the relative bandwidth with 0 < 𝐵 < 2, c.f., [20]. The
convex optimization formulation (45) can be used to study passive realizations (43)
and (44) that satisfies the bound (40) as close as possible. Here, the approximating
Herglotz-Nevanlinna function is ℎ(𝑥) = 𝑥𝜖 (𝑥), the target function 𝐹 (𝑥) = 𝑥𝜖t, 𝜁0 the
amplitude of a point mass at 𝑥 = 0, 𝑏 = 𝜖∞ and a weighted norm is used defined
by ∥ 𝑓 ∥𝐿∞ (𝑤,Ω) = max𝑥∈Ω | 𝑓 (𝑥)/𝑥 | assuming that 0 ∉ Ω. For numerical examples
of these kind of approximations as well as with non-passive systems employing
quasi-Herglotz functions (Section 3.1 in Part II) see [23, 22, 28].
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