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Abstract
This article focuses on the mathematical problem of reconstructing the
dynamic permeability ωK ( ) and dynamic tortuosity of poroelastic composites
from permeability data at different frequencies, utilizing the analytic structure
of the Stieltjes function representation of ωK ( ) derived by Avellaneda and
Tortquato (1991 Phys. Fluids A 3 2529), which is valid for all pore space
geometry. The integral representation formula (IRF) for dynamic tortuosity is
derived and its analytic structure exploited for reconstructing the function from
a finite data set. All information of pore-space microstructure is contained in
the measure of the IRF. The theory of multipoint Padé approximates for
Stieltjes functions guarantees the existence of relaxation kernels that can
approximate the dynamic permeability function and the dynamic tortuosity
function with high accuracy. In this paper, a numerical algorithm is proposed
for computing the relaxation time and the corresponding strength for each
element in the relaxation kernels. In the frequency domain, this approximation
can be regarded as approximating the Stieltjes function by rational functions
with simple poles and positive residues. The main difference between this
approach and the curve fitting approach is that the relaxation times and the
strengths are computed from the partial fraction decomposition of the multi-
point Padé approximates, which is the main subject of the proposed approx-
imation scheme. With the idea from dehomogenization, we also established
the exact relations between the moments of the positive measures in the IRFs
of permeability and tortuosity with two important parameters in the theory of
poroelasticity: the infinite-frequency tortuosity α∞ for the general case and the
weighted volume-to-surface ratio Λ for the JKD model, which is regarded as a
special case of the general model. From these relations, we suggest a new way
for evaluating these two microstructure-dependent parameters from a finite
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data set of permeability at different frequencies, without assuming any specific
forms of the functions except the fact that they satisfies the IRFs. Numerical
results for JKD permeability and tortuosity are presented.

Keywords: Dynamic permeability/tortuosity, poroelasticity, Stieltjes functions,
Biot-JKD equations, multipoint Pade approximants, moments, ill-posed
problems

(Some figures may appear in colour only in the online journal)

1. Notations

The notations used in this paper are listed here.

• =A B: means A is defined by B
• =A B: means A defines B
• ≈A B means A is approximated by B
• Superscript D is added to parameters to denote their values in the Johnson, Koplik and
Dashen (JKD) model.

• λd is reserved for the positive measure in the IRF of permeability functions.
• σd is reserved for the positive measure in the IRF of tortuosity functions.

2. Introduction

Poroelasticity theory is a homogenized model for solid porous media containing slightly
compressible fluids that can flow through the pore structure. This field was pioneered by
Maurice A Biot, who developed his theory of poroelasticity from the 1930s through the
1960s; a summary of much of Biotʼs work can be found in his 1956 and 1962 papers [10–12].
Biot theory uses linear elasticity to describe the solid portion of the medium (often termed the
skeleton or matrix), linearized compressible fluid dynamics to describe the fluid portion, and
Darcyʼs law to model the aggregate motion of the fluid through the matrix. While it was
originally developed to model fluid-saturated rock and soil, Biot theory has also been used in
underwater acoustics [13, 36, 37], and to describe wave propagation in in vivo bone
[24, 25, 35]. Biotʼs equations have been validated mathematically through applying homo-
genization techniques by various authors, e.g. [5, 6, 17, 23, 38, 67]. Regularity of solutions to
isotropic poroelastic equations has been studied in [60].

Biot theory predicts rich and complex wave phenomena within poroelastic materials.
Three different types of waves appear: fast P waves analogous to standard elastic P waves, in
which the fluid and matrix show little relative motion, and typically compress or expand in
phase with each other; shear waves analogous to elastic S waves; and slow P waves, where
the fluid expands while the solid contracts, or vice versa. The slow P waves exhibit substantial
relative motion between the solid and fluid compared to waves of the other two types. The
viscosity of the fluid dissipates poroelastic waves as they propagate through the medium, with
the fast P and S waves being lightly damped and the slow P wave strongly damped. The
viscous dissipation also causes slight dispersion in the fast P and S waves, and strong
dispersion in the slow P wave.
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A variety of different numerical approaches have been used to solve poroelastic equations.
Carcione, Morency, and Santos provide a thorough review of the previous literature [18]. The
earliest numerical work in poroelasticity seems to be that of Garg [33], using a finite difference
method in 1D. Finite difference and pseudospectral methods have continued to be popular since
then, with further work by Mikhailenko [50], Hassanzadeh [40], Dai et al [26], and more recently
Chiavassa and Lombard [22], among others. Finite element approaches began being used in the
1980s, with Santos and Oreñaʼs work [58] being one of the first. Boundary element methods have
also been used, such as in the work of Attenborough, Berry, and Chen [4]. Spectral element
methods have also been used in both the frequency domain [28] and the time domain [51]. With
the recent rise of discontinuous Galerkin methods, DG has been applied to poroelasticity in several
works, such as that of de la Puente et al [27]. A Finite Volume Method solver for 2D and 3D
Biotʼs equations can be found in [45] and [46]. There have also been semi-analytical approaches to
solving the poroelasticity equations, such as that of Detournay and Cheng [29], who analytically
obtain a solution in the Laplace transform domain, but are forced to use an approximate inversion
procedure to return to the time domain. Finally, there has been significant work on inverse
problems in poroelasticity, for which various forward solvers have been used [16, 59]; of parti-
cular note is the paper of Buchanan, Gilbert, and Khashanah [15], who used the finite element
method (specifically the FEMLAB software package) to obtain time-harmonic solutions for
cancellous bone as part of an inversion scheme to estimate poroelastic material parameters, and the
later papers of Buchanan and Gilbert [14], where the authors instead used numerical contour
integration of the Greenʼs function. In [59], numerical results from Biotʼs equations are compared
with the experimental measurement of ultrasound propagation in cancellous bone. The physical
parameters involved in the drag force are the tortuosity and the permeability.

In the Biot equations for wave propagation in poroelastic materials [10, 11], a critical
frequency ωc is defined. For frequency below ωc, the pore fluid flow is laminar and the
friction term which takes into account the viscous interaction between the solid matrix and
pore fluid is modeled by the product of friction constant and the difference between the fluid
velocity and the solid velocity. We refer to this set of equations as low-frequency Biot
equations. For frequency higher than ωc, the friction constant is multiplied by a frequency-
dependent function to correct for the departure from laminar flow; this leads to a memory
term in the time domain Biot equations. The exact form of the memory kernel is not known
except for specific pore shapes such as parallel tubes [6, 11]. This set of equations are referred
to as high-frequency Biot equations.

The need for quantifying the dissipationʼs dependance on frequency for more general
pore space geometry prompted the work in the seminal paper [43] by Johnson, Koplik and
Dashen (JKD), in which the theory of dynamic fluid permeability ωK ( )D and dynamic
tortuosity ωT ( )D was developed for describing the inertial coupling and viscous coupling
between matrix solid and pore fluid. Using the causality argument, they derived the necessary
symmetries and analytic properties of ωK ( ) and ωT ( ) when ω is extended to the complex
values. Most importantly, they postulated the simplest forms of ωK ( ) and ωT ( ) which satisfy
those properties. These two functions contain a tunable parameter Λ take into account of the
dependence on pore space geometries. However, it is very difficult to measure and is usually
calculated through the empirical formula [54] Λ α ϕ≈ ∞K2 ( 4)0 , where α∞ is the infinite-
frequency tortuosity, K0 the static permeability and ϕ the porosity. The problem is that it is
not clear how well this formula approximates Λ and even if it does, the measurement of α∞ is
very difficult and is still an active research area [3, 30, 31, 42, 48, 63].

The Biot–JKD equations refer to the set of Biot equations modified by the JKD theory. In
Biot–JKD equations no critical frequency is defined and the friction term (the drag force) is
always a memory term.
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Due to the numerical complexity brought by the memory terms, most time-domain
(versus frequency domain) solvers in the literature consider low-frequency Biotʼs equations
even though it is well known in geological and biological applications that low-frequency
Biot equations underestimate wave dissipation when compared with experiments. There have
been a few papers which proposed different methods for handling the memory terms. Among
them, the most popular ones are the fractional derivative approach for Biot–JKD model,
which requires complicated quadrature rules [47] and the phenomenological one which
proposed to approximates the memory terms with sums of exponential decay kernels [19, 64].
The latter is more computationally efficient but it is not clear how the weights and decay rates
of the exponential decay kernels can be found in a systematic way.

The aims of this paper are

1. To utilize the integral representation formula (IRF) of dynamic permeability, which is
derived in [7], to develop a numerical scheme that can reconstruct the dynamic
permeability function from any finite set of data measured at different frequencies. Unlike
the JKD model, it does not impose any specific form on the permeability function.

2. To use the proposed numerical scheme, together with the relation between tortuosity and
permeability, to reconstruct the tortuosity function from the finite data set. The weights
and decay rates of the exponential decay kernel then come naturally along this process
due to the mathematical structure of the tortuosity IRF derived in this paper.

3. To quantify how microstructure affects the tortuosity and other effective parameters
relevant to drag force, which is known to be an important signaling mechanism for
activating the cell process for bone remodeling, [44, 49, 53, 55–57].

The paper is organized as follows. In section 3, definition of permeability and its role in the
poroelastic equations, the mathematical tools essential to the derivation of the tortuosity IRF and
the inversion scheme are explained. In section 4, the numerical scheme for reconstructing
permeability functions from a finite data set is presented. Numerical results for the Biot–JKD
model, which is regarded as a special case, are demonstrated. The proof that the JKD perme-
ability function indeed can be represented as an IRF with a probability measure is also given
there. In section 5, an IRF of the dynamic tortuosity function is derived. With this IRF, we prove
that the time domain dynamic tortuosity function can be approximated by a combination of the
Dirac function at t = 0 and a sum of exponentially decay kernels whose rates and strengths can
be computed from the proposed numerical scheme. Numerical results for the JKD tortuosity is
demonstrated there. In section 6, we present three exact (versus approximated) mathematical
formulas which quantify how the geometry of pore space affects various effective poroelastic
parameters through moments. Finally, in section 7 we summarize the results and compare our
exact formula for Λ with an existing empirical formula. Also, future work is pointed out there.

3. Mathematical background

3.1. Permeability and tortuosity

For a rigid porous medium filled with Newtonian pore fluid with density ρf and dynamic
viscosity η, a key effective property is the fluid permeability tensor K , which is described by
the so-called Darcyʼs law, [6, 7, 43, 62]


η

= −U
K

p, (1)
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where U is the averaged fluid velocity over a representative volume element (RVE) of the
porous medium and p the applied pressure gradient; this is referred to as the static
permeability. If the applied pressure gradient is oscillatory with frequency ω, then the induced
averaged fluid velocity will also be oscillatory and proportional to  ωp ( ) by

ω ω
η

ω= −U
K

p( )
( )

( ), (2)

where ωK ( ) is referred to as the dynamic permeability, [7, 43]. ωK ( ) varies with ω because
the viscous interaction between fluid and solid varies with frequency, as indicated by the
frequency dependent viscous skin depth η ρ ω2 f . For ω ≠ 0 the tortuosity tensor T is
related to ωK ( ) by

ω ηϕ
ωρ

ω ω ω= = − =−T K T( )
i

( ), i 1 (note ( ) has a pole at 0). (3)
f

1

As was mentioned in section 2, there are two different forms of drag forces in Biot equations,
depending on whether it is below or above the critical frequency ω ϕη ρ α= ∞K:c f 0,

=K K: (0)0 , [20]; for a low frequency, in the frequency domain, the drag force is ×b (fluid
velocity relative to solid velocity) with ηϕ=b K2

0, whereas for a high frequency, the
constant b is replaced by ω·b F ( ) where ω →FIm ( ( )) 0 and ω →FRe ( ( )) 1 as ω → 0.
Biot derived the exact expression of ωF ( ) for thin circular tubes in terms of zero-order Kelvin
functions of the first kind, [10] and assumed the same functional form for all other pore
geometry by a heuristically defined correction constant. In [43], the Biot–JKD equations are
proposed by unifying the two types of friction terms in Biotʼs equations withth a frequency-
dependent function. For isotropic poroelastic materials, based on physics-based argument and
exact calculation of parallel circular tubes, JKD postulated the isotropic dynamic tortuosity to
be of the form

ω α ηϕ
ωα ρ

α ρ ω

ηΛ ϕ
α ω= − − =∞

∞

∞
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟T

K

K
( ) 1

i
1 i

4
: ( ) (4)D

f 0

2
0
2

f

2 2

with the tunable geometry-dependent constant Λ, and (3) implies

ω
α ρ ω

ηΛ ϕ

α ρ ω
ηϕ

= − −∞ ∞
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟K K

K K
( ) 1

4i i
, (5)D

0

2
0
2

f

2 2

0 f

1

where η ρ ν= f is the dynamic viscosity of pore fluid.
The homogenization analysis in [6] and physical arguments in [43] shows that the

permeability in Biot–JKD equations for poroelastic materials is identical to that for porous
media with a rigid matrix. Furthermore, the permeability can be mathematically characterized
as a functional of the solution to the unsteady Stokes equation, [7]

   
ρ

ν δ∂
∂

= − + △ + · = = ∂
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ e

t

p
v t

v
v v v 0( ) in , 0 in , on , (6)

f
0 1 1

where e is an arbitrary unit vector if K is statistically isotropic, v0 a constant, ν the kinetic
viscosity, δ t( ) the Dirac delta function, 1 the region occupied by pore fluid and ∂ is the
interface between fluid phase and solid phase in the RVE with periodic condition (or
statistically homogeneous in the random media setting) on the outer boundary of RVE. As is
indicated in [7], the results can be easily generalized to all statistically homogeneous
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anisotropic K . However, we assume K is isotropic in this paper for simplicity. It is shown in
[7] the solution x tv( , ) can be expressed as a sum of the normal modes Ψn

∑ Ψ= Θ

=

∞
−x xt v bv( , ) e ( ), (7)

n

n
t

n0

1

n

where Ψn are the eigenfunctions of the Stokes system

  Ψ ϵ Ψ Ψ Ψ Θ νϵ△ + = − · = = ∂ = −Q and 0 in , 0 on , : ( ) (8)n n n n n n n n1 1
1

ϵ ϵ< ⩽ ⩽ ⋯0 1 2 and ϵ → ∞n as → ∞n . Θn are the viscous relaxation times and Θ1 referred
to as the principal viscous relaxation time. The eigenfunctions are orthonormal in the sense

 ∫ Ψ Ψ δ· =x x x
1

( ) ( )d (Kronecker delta) (9)m n mn
1 1

and the bn in (7)

 ∫ Ψ= ·e x xb
1

( )d . (10)n n
1 1

In [7] it is shown through the classical Hodge decomposition argument that the infinite-
frequency tortuosity α∞ can be mathematically expressed as

∑α ϕ= =∞
=

∞ −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F b . (11)

n
n

1

2

1

This shows the microstructure information affects α∞ through the projection of the applied
flow direction on the normal modes of the Stokes equation in the pore space.

3.2. Darcyʼs laws in poroelastic equations and permeability IRF

The state variables for both Biot and Biot–JKD equations are v (solid velocity), q (fluid
velocity relative to the solid) and p (pore pressure). Note that v and p have different meanings
from before and will stay unchanged hereafter. The stress-velocity formulation of Biot–JKD
equations in a plane-strain case consists of

τ α∂ = ∂ + ∂ + ∂ + ∂ + ∂( )c v c v M q q s (12)t xx
u

x x
u

z z x x z z t11 13 1 1

τ α∂ = ∂ + ∂ + ∂ + ∂ + ∂( )c v c v M q q s (13)t zz
u

x x
u

z z x x z z t13 33 3 3

τ∂ = ∂ + ∂ + ∂( )c v v s (14)t xz
u

z x x z t55 5

α α∂ = − ∂ − ∂ − ∂ + ∂ + ∂( )p M v M v M q q s (15)t x x z z x x z z t f1 3

ρ ρ τ τ∂ + ∂ = ∂ + ∂v q (16)t x t x x xx z xzf

ρ ρ τ τ∂ + ∂ = ∂ + ∂v q (17)t z t z x xz z zzf

and the Darcyʼs laws which are the inverse Fourier transform of the following equation

 ηϕ ρ ω ω
ρ
ϕ

ω ρ ω− ˜ = ˜ + − ˜ = − ˜ + − ˜−K q T qp i iv v( ) i ( ) ( ) , (18)s s
1

f
f D

f

where ˜ ˜ ˜q pv, ,s are Fourier transforms of q, v and p, respectively. The Fourier transform we
use here is
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 ∫ω ω
π

= =∼ ω
∞

f f f t t[ ]( ) ( ):
1

2
( )e d .t

0

i

The real part of −K 1 corresponds to the dissipation term and the imaginary part to the inertial
term in the time domain where the drag force is expressed as a time-convolution term, [6, 47].
The complete form of any component of ωK ( ) for all ω is very difficult to compute for a
given porous medium such as cancellous bone, whose pore geometry is complicated, see
figure 1. Hereafter, we consider isotropic K and hence replace K with K. It is pointed out in
[43] that when α ω( ) and ωK ( ) are extended to the complex ω-plane, they are analytic in the
upper half plane because of causality and have the symmetry property α ω α ω− =( ) ( ) and

ω ω− =K K( ) ( ), where the bar means complex conjugation. It is remarkable that in [7] ωK ( )
is derived rigorously for all pore space geometries as a Stieltjes integral with distribution

ΘG ( ) that is non-decreasing, right-continuous, Θ =G ( ) 0 for Θ ⩽ 0 and Θ =G ( ) 1 for
Θ Θ⩾ 1 (i.e., a probability distribution) such that

∫ν
ω Θ Θ

ωΘ
Θ=

−
=

∑

∑
Θ Θ∞ ⩽

=
∞⎜ ⎟⎛

⎝
⎞
⎠

F
K

G
G

b

b
( )

d ( )

1 i
, with ( ) . (19)

n

n n0

2

1
2

n

The derivation is based on identifying the exact functional form of K(s) in terms of the
solution to the Laplace transformed equations of (6) with the parameter ω= −s i .

Figure 1. Cancellous bone.
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3.3. Stieltjes functions and multipoint Padé approximation

The reconstruction scheme proposed in this paper is based on the properties of N-point
approximation for Stieltjes functions. Two different but related definitions of Stieltjes func-
tions are widely used in the literature, we adopt the following definition in this paper.

Definition 3.1. A Stieltjes function f(z) for z on the extended complex plane has the
following form

∫ μ=
−

f z
t

z t
( )

d ( )
, (20)

a

b

where a, b are extended real numbers and μ t( ) is a bounded, non-decreasing real function.

A multipoint Padé approximation of a function f is a rational function interpolating f at
various points, not necessarily distinct. The following theorem (theorem 1 on page 26 of [34])
is the foundation of the reconstruction algorithm proposed in this paper and hence we state
it here.

Theorem 3.1. [34]. Suppose f is a Stieltjes function of the form in (20). Let −P z( )n 1 and
Qn(z) be polynomials of degree at most −n 1 and n, respectively, satisfying the relations
( + + =k k k n21 2 3 )

− = − ⋯ − − − ⋯ − −

− =

−

−
− −−

⎪
⎪

⎧
⎨
⎩

( )f z Q z P z A z z x z x z z z z z z z z

f z Q z P z B z z

( ) ( ) ( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ,

n n k k k

n n
n k

1 1 1 1

1
1

1 2 2

3

where A(z), B(z) are analytic in ⧹ a b[ , ], B(z) bounded at ∞, … ∈ ⧹x x a b, , [ , ]k1 1 ,
 … ∈ ⧹z z, , k1 2 . Then ∫ β= −−P z Q z t z t( ) ( ) d ( ) ( )n n a

b
1 for some bounded, non-

decreasing function β t( ).

Here − = −n n z P z Q z[ 1 ] ( ): ( ) ( )f n n1 is referred to as the n2 -point Padé approximant for f
and is unique [34]. It has nice convergent properties in ⧹ a b[ , ] as long as the interpolating
points are of the types specified in the theorem above. The significance of theorem 3.1 is that
when the complex-valued interpolating points appear in conjugate pairs, the approximant of a
Stieltjes function can be expressed as

∑− =
−=

n n z
r

z p
[ 1 ] ( ) (21)f

k

n
k

k1

with >r 0k and ∈p a b( , )k for = …k n1, , . It will be made clear later in the paper that this
property can be used for generating efficient quadrature rules for dealing with the memory
term in the dynamic Darcyʼs law (18) in time domain.

4. Reconstruction of dynamic permeability

Our experience with dehomogenization indicates that ωK ( ) can be reconstructed with a very
good accuracy from partial data by exploring its mathematical structure as a Stieltjes function,
[21, 65, 66]. Define a new variable s and a new function P(s)
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∫ ∫ω
ν

Θ Θ
Θ

λ Θ
Θ

= − = =
+

=
+

Θ Θ
⎜ ⎟⎛
⎝

⎞
⎠s P s

F
K s

G

s s
: i , ( ) : (i )

d ( )

1
:

d ( )

1
(22)

0 0

1 1

∫ξ ξ
ν

Θ Θ
ξ Θ

= − = − = − =
−

Θ
⎜ ⎟⎛
⎝

⎞
⎠s R s

F
K s sP s

G
: 1 , ( ) : (i ) ( )

d ( )
. (23)

0

1

We summarize the definitions of auxiliary variables and auxiliary functions in table 1.
It is clear that ξR ( ) in (23) is a Stieltjes function with. Due to the IRF of P(s) in (22), it is

known that its Padé approximants have accuracy-through-order property [8], and all the poles
of the Padé approximants are simple with positive residue in Θ−∞ −[ , 1 ]1 on the complex s-
plane [52]. Most importantly, the Multipoint Padé approximants (or rational interpolants) with
interpolation knots =s{ }k k

N
1 with either >s 0k or conjugate complex numbers appearing in

pairs has interlacing simple zeros and simple poles locating in the regions where P(s) is not
analytic [61]. Suppose we have values of ωK ( )j for different non-zero frequencies

ω ω ω… ∈, , , M1 2 . This means the values of ξR ( ) for  ξ ω= − ∈ ⧹i( )k k , = …k M1, ,
are known. To generate the complex conjugated interpolating points at ξk , we note that (23)
implies

Table 1. Auxiliary variables and functions for dynamic permeability ωK ( ).

ω ω= −s : i ξ = −:
s

1

ωK ( ) =
ν

P s K s( ) : ( ) (i )F ξ = −R sP s( ) : ( )

Table 2. Parameters used in numerical simulations.

ϕ α∞ K0 (m )2 ν η ρ= f Λ (m) F C2 C1

0.67 1.08 × −7 10 9 × − −

−
30 10 kg (m s)

1060 kg m

3 1

3

10−5 α ϕ∞
ν

FK0

Λ
C FK4 2 0

2

Table 3. Moments of λd D from data of ω ∈ [1, 51] Hz.

Exact M = 10 M = 8 M = 6 M = 4

′M 9 7 5 3

μ0 0.3986866 e−3 0.3986865 e−3 0.3986831 e−3 0.3985660 e−3 0.3951767 e−3
μ1 0.3602968 e−4 0.3602966 e−4 0.3602864 e−4 0.3598232 e−4 0.3469776 e−4

μ2 0.4869721 e−5 0.4869696 e−5 0.4868684 e−5 0.4837053 e−5 0.4286249 e−5

μ3 0.7310984 e−6 0.7310788 e−6 0.7304975 e−6 0.7173481 e−6 0.5624193 e−6

μ4 0.1152294. e−6 0.1152184. e−6 0.1149672 e−6 0.1107076 e−6 0.7486713 e−7

μ5 0.1867826 e−7 0.1867329 e−7 0.1858360 e−7 0.1740639 e−7 0.1000334 e−7

μ6 0.3083493 e−8 0.3081572 e−8 0.3053660 e−8 0.2761889 e−8 0.1337903 e−8

μ7 0.5156154 e−9 0.5149587 e−9 0.5071242 e−9 0.4402349 e−9 0.1789848 e−9

μ8 0.8704482 e−10 0.8684085 e−10 0.8481019 e−10 0.7033276 e−10 0.2394621 e−10

μ9 0.1480291 e−10 0.1474427 e−10 0.1424991 e−10 0.1124946 e−10 0.3203798 e−11
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∫ ∫ξ θ θ
ξ θ

θ θ
ξ θ

ξ=
−

=
−

=
Θ Θ

( )R
G G

R
d ( ) d ( )

( )
0 0

1 1

because θ θ ∈G, ( ) . Hence the data of K at M different frequencies indeed provide M2
data points for the reconstruction of R through this symmetry. The M2 -point Padé
approximants are formulated as follows.

∫ξ Θ Θ
ξ Θ

ξ
ξ ξ

ξ ξ
=

−
≈ − =

+ + ⋯ +

+ + ⋯ +
= …

Θ −
−

( )R
G

M M
a a a

b b

j M

d ( )
[ 1 ] ( ) :

1
.

1, , 2 (24)

j
j

R
j M j

M

j M j
M0

0 1 1
1

1

1

We know that the constant term in the denominator can be normalized to 1 and the
unknowns … …−a a b b, , , , ,M M0 1 1 can be assumed real-valued because of (21). Further-
more, the moments of dG can be computed from partial fraction decomposition of it when
lower frequency data points are used. Note that the first-moment of dG is equal to νFK0 and
hence the formation factor α ϕ= ∞F : can be recovered from the numerically estimated
moments if K0 and ν are known. That is, the tortuosity α∞ can be recovered from data of

ωK ( ) at low frequencies if the porosity ϕ is known. In terms of the partial fraction
decomposition of ξ−M M[ 1 ] ( )R

∑ξ
ξ

Θ− =
−

> < <
=

M M
r

p
r p[ 1 ] ( ) , 0, 0 (25)R

j

M
j

j
j j

1

1

the approximation of dynamic permeability K can be expressed as

∑ω ν
ω

≈
−=

K
F

r

p
( )

1 i
. (26)

j

M
j

k1

Therefore, the permeability in time domain can be approximated as

 ∑ν=−

=

−⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟K t

F

r

p
[ ]( ) e . (27)

j

M
j

j

t
p1

1

j

4.1. Formulation and algorithm

For better conditioning of the inversion scheme, the reconstruction is based on (38), rather
than ξR ( ).

Suppose we have values of ω = =K K is P s( ) ( ) ( )j j j for different non-zero real-valued
frequencies ω ω ω…, , , M1 2 , then we can generate anotherM-interpolation points by using the
symmetry of (19) for ω ∈

ν
ω ω ω

ν
= − = − = = = …⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( ) ( )F

P s K K K
F

P s j M( ) ( ) ( ), 1, , 2 .j j j j j

Because of (25) and (26), we can approximate P(s) as

∫ Θ Θ
Θ

=
+

≈ − =
+ + ⋯ +

+ + ⋯ +
= …

Θ −
−

P s
dG

s
M M s

a a s a s

b s b s

j M

( )
( )

1
[ 1 ] ( ) :

1
,

1, 2, , 2 (28)

j
j

P
j M j

M

j M j
M0

0 1 1
1

1

1
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and the moments of dG can be computed from partial fraction decomposition of the
approximant when lower frequency data are used. We know that the constant term in the
denominator can be normalized to 1 because all the poles are simple and located
in Θ−∞ −( , 1 )1 .

Given the data s P s( , ( ))j j , ≠s 0j , = …j M1, , , let =+s sj M j, =+P s P s( ) ( )j M j and
=P P s: ( )m m , = …m M1, , 2 , then (28) leads to the linear system of =x dA ,

=

⋯ − − − ⋯ −
⋯ − − − ⋯ −

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ − − − ⋯ −

−

−

−

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
A

s s s P s P s P s P s

s s s P s P s P s P s

s s s P s P s P s P s

1

1

1

M M

M M

M M M
M

M M M M M M M M
M

1 1
2

1
1

1 1 1 1
2

1 1
3

1 1

2 2
2

2
1

2 2 2 2
2

2 2
3

2 2

2 2
2

2
1

2 2 2 2
2

2 2
3

2 2

= +A i A ,r i

= … …−( )x a a a b b b, , , , , , , ,M M0 1 1 1 2

= ⋯( )d P P P , (29)M
t

1 2 2

where Ar and Ai are the real part and imaginary part of A, respectively. Since multipoint Padé
approximants of P(s) constructed in this way have real-valued simple poles pj with positive
residues rj, = …j N1, , , we have

∑− =
+ + ⋯ +

+ + ⋯ +
=

−
−

−

=

M M s
a a s a s

b s b s

r

s p
[ 1 ] ( ):

1
P

M
M

M
M

j

M
j

j

0 1 1
1

1 1

and ∈x M2 . Noting that we have M2 real-valued unknowns and M2 complex-valued data
for the linear system with complex coefficients, there are M4 equations with real-valued
coefficients for the M2 real-valued unknowns. Rather than solving the formal equations of

=x dA as in [65, 66] in least-square sense, which requires forming A Ar
t

r and A Ai
t

i, we solve
this system of equations as an overdetermined least square problem by the following
algorithm

Theoretically, all the poles in Step 4 should be in the range specified there. Numerically,
the ill-posed nature of the inverse problem leads to poles outside the range. Suppose ′M poles
are retained after discarding the spurious poles, ′ ⩽M M , we reindex them and the
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corresponding residues to | =
′p r{( , )}j j j

M
1. The function P(s) is then approximated by

∑ ∑≈ =
−

=
−

+ −=

′

=

′

( )
P s P s

r

s p

r p

s p
( ) ( ) :

1 1
(31)M

j

M
j

j j

M
j j

j

est
1 1

and the moments μk, = …k 0, 1, 2, by

∑μ ≈ − +

=

′

+( )
r

p
( 1) . (32)k

k

j

M
j

j

k
1

1
1

In terms of the poles and residues in (31), the time-domain permeability can be approximated
by the relaxation kernel for ⩾t 0

 ∑ν≈ > <−

=

′
⎜ ⎟
⎛
⎝

⎞
⎠K t

F
r r p{ }( ) e , 0, 0.

j

M

j
p t

j j
1

1

j

Before testing the idea on the JKD permeability, we have to verify that it is consistent with the
general theory presented in [7].

4.2. IRF for JKD permeability

Since the JKD permeability in (5) was derived by a completely different approach from that in
[7], we need to show KD indeed assumes a representation of the form in (19). To see this,
consider the auxiliary functions defined in table 1 for KD,

ξ
ξ ξ ν Λ

=
− −

= > = >
( )

R
C

C C
C

FK
C

C FK
( ) : , : 0, :

4
0, (33)D 2

1 2

2
0

1
2 0

2

and

ν ν
= =

+ +
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠P s

F
K s

F K

C s C s
( ) : (i )

1
.D 0

1 2

For RD to assume the IRF, a specific branch of the square-root function has to be chosen so
ξR ( )D has all the properties implied by the integral representation. The following branch for

the square root function is chosen such that the branch cut of RD is contained in C[0, ]1 , [1]

ξ = θ θ+R r r( ) ( ) e , (34)( )D
1 2

1 2 i 21 2

where θr( , )1 1 and θr( , )2 2 are the local polar coordinates at the branch points ξ = 0 and
ξ = C1

ξ ξ θ θ π= − = ⩽ <θ θr C re , e , 0 , 2 . (35)1
i

1 2
i

1 2
1 2

With the chosen branch, the singular points of ξR ( )D consist of the branch cut C[0, ]1 and a
simple pole at ξp, which is

ξ =
+ +

>
C C C

C
4

2
. (36)p

1 1
2

2
2

1

See figure 2.
We would like to remark that

1. ξ−R ( )D is analytic outside ξ[0, ]p

2. ξ−R ( )D maps the upper half plane to upper half plane with this choice of branch.
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3. There exists κ > 0 such that κ| | <yR iy( )D for all >y 0 because | | →yR iy K( )D
0 as

 ∋ → ∞+ y and | | →yR iy( ) 0D as  ∋ →+ y 0.

By a general representation theorem in function theory [2], these three properties imply
there exists a non-decreasing function λ u( )D of bounded variation on ξ[0, ]p such that

∫ξ λ
ξ

ξ ξ=
−

∈ ⧹
ξ ⎡⎣ ⎤⎦R

u

u
( )

d ( )
for 0, . (37)p

D

0

D
p

Transforming (37) back to ωK (i )D , we see that KD indeed can be represented as an IRF with
positive measure λd D

∫ν
ω λ

ω
=

−

ξF
K

u

u
( )

d ( )

1 i
. (38)D

0

D
p

Moreover, the IRF in (23) gives additional information in the sense that it characterizes
λ ud ( )D as u G ud ( ) with dG being a probability measure. To verify this, we compute λd D

explicitly as follows.
Since a function of bounded variation can only have jump discontinuities and is dif-

ferentiable almost everywhere, λ u( )D must be continuous in the support of λ u( )D that cor-
responds to the branch cut of RD. Using the Stieltjes inversion formula on page 224 of [2], the
density of λd D in C[0, ]1 is

ψ ξ λ ξ
π

ξ
ξ ξ

π ξ ξ
= = − + =

−

+ −→ + ⎡⎣ ⎤⎦
( )

( )u
R iy

C C

C C
( ) :

d

d
( )

1
lim Im ( ) . (39)

y 0

2 1

2
2

1

The pole of RD at ξ ξ= p corresponds to a Dirac measure of λd at ξp, whose strength r can be
computed from the following relation

∫ξ ψ
ξ ξ ξ

=
−

+
−

R
u u

u

r
( )

( )dC

p

D

0

1

∫ξ ψ
ξ

ξ ξ ξ ξ ξ

ξ ξ

ξ

= −
−

− = −

=
−

−

ξ ξ ξ ξ→ →

⎡
⎣⎢

⎤
⎦⎥ ( ) ( )

( )

r R
u u

u
R

C C

C

lim ( )
( )d

lim ( )

2

2
(40)

C

p p

p p

p

D

0

D

2 1

1

p p

1

i.e.

λ χ ψ δ= + ξu u u u rd ( ) ( ) ( )d ,D
p

where χ is the characteristic function of the interval C[0, ]1 , du the Lebesgue measure and δ
the Dirac measure. The following relation can be checked analytically

∫ ∫λ ψ
ξ

= + =
+

+
+ + +

=

ξ

( )

u

u
u

u

u
u

r C

C C

C

C C C C C

d ( )
d

( )
d

4

4

4 4
1

. (41)

C

p0

D

0

1

1
2

2
2

2
2

1
2

2
2

1 1
2

2
2

p 1

Our results of the JKD permeability IRF are summarized in the following theorem.
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Theorem 4.1. The JKD permeability in (5) can be represented as

∫ω ν
ω

=
−

ξ
K

F

u G u

u
( )

d ( )

1 i
,D

0

p

where the probability measure dG is

χ ψ
ξ

δ= + ξ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G u u

u

u
u

r
d ( ) ( )

( )
d ,

p
p

with ξp, ψ and r defined in (36), (39) and (40), respectively.

4.3. Numerical results for KD ωð Þ

We use the JKD permeability function given in (5) to demonstrate the idea.

∫ λ=
+ +

=
+

ξ
P s

C

C s C s

u

su
( )

1

d ( )

1
(42)D 2

2 1 0

D
p

implies a specific branch of the square-root function has to be chosen so PD has all the
properties implied by the integral representation such as

• It maps >sIm ( ) 0 to <P sIm ( ( )) 0.
• Its singularities are contained in Θ−∞ −( , 1 )1 for some Θ > 01 .

We chose the branch with

π θ π+ = − − = = + − ⩽ <θ
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟C s C s

C
r r C s1

1
e , 1 and1 1

1

i
1

and

+ = θC s r1 e1
i 2

with branch cut at −∞ − C( , 1 )1 . With this choice of branch, it can be verified that

1. P s( )D is analytic outside ∪ ξ−∞ − − + = −C C C C( , ] {( 4 ) 2 ( 1 )}
C p
1

1 1
2

2
2

2
2

1
.

2. P s( )D maps the upper half plane to lower half plane.

The exact values of the moments of λd D can be computed by differentiating (42) near
s = 0 and equating the coefficients on both sides.

∫μ λ= = −
!

ξ
u u

P

k
: d ( ) ( 1)

(0)
. (43)k

k k
k

0

D
( )

p

The JKD–Biot parameters of cancellous bone taken from literature [24, 32, 41]:
ϕ α= = = ×∞

−K0.67, 1.08, 7 100
9 m2, ν η ρ= = × − −

−f
30 10 kg (m s)

1060 kg m

3 1

3 , Λ = −10 5 m,
α ϕ= ∞F . This corresponds to = = × −C C0.17994, 3.98687 101 2

4, − = −C(1 ) 5.557261

and ξ− = −(1 ) 5.55724p .
We first demonstrate the results in lower frequency range, when the reconstruction of

moments is of interest. For ω between 1 Hz and 51 Hz, let =M 4, 6, 8, 10. For each fixed M,
the frequency range [1, 51] are equally divided into −M 1 intervals with sample frequency
taken at ω = 10 , ω δω ω= + … =1 , , 51M2 with δω = −M50 ( 1). The corresponding
moments computed from (32), together with the exact moments are listed in table 3. The plot
of these moments estimated with various values of M is in figure 3.
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Figure 4 shows the max. relative error of estimating P(s) with PM
est in (31), where the

maximum is taken among 1000 equally spaced sample points. The maximum relative error
∞E is defined as follows.

=
−

ω ω
∞

∈ − −⎡⎣ ⎤⎦( )E P
P s P s

P s
: max

( ) ( )

( )
.M

s

M

est
i , i

est

min max

The second example is in the range from 0.75 MHz to 4MHz, which is the spectrum
range of the incident ultrasound wave used in [32] for studying cancellous bones. ∞E P( )est

M

with respect to the exact P, which is PD is shown in figure 4. From data in this high frequency
range, the moments are not well-approximated. However, it is interesting to note that the sum
of residuals ∑ =

′ rj
M

j1 , which serves as approximation to ∫ λ
ξ

u ud ( )
0

p are close to 1, as pre-
dicted by theorem 4.1.

Examples 3 and 4 are taken from the spectral content of the incident waves used in [47]
for seismic wave modeling, where the memory term is handled by the shifted fractional
derivative approach. In example 3, the frequency range is from 0 to 4 kHz while the range
from 4 kHz to 180 kHz is considered in example 4. Due to the wide spreading of the fre-
quency range, the reconstruction is not as efficient as the previous two cases. However, we
note that a common feature in these two cases is that the increase in ∞E is due to the error in
the frequency from ωmin to ω δω+min , i.e. between the first and the second sample points in
the multipoint Padé approximation. Improvement can be achieved by modifying the location
of sample points. For example, in figure 5, the curve marked by red crosses is from equally
spaced sample points for M = 10, ω = 40min Hz, ω = 4000max Hz and δω = 440 Hz, from
which the value at ω = 0 can be approximated with relative error 1e−3; excluding the first
interval, the maximum relative error drops from 6.25e−2 to 1.43e−4.

Noting that the relative error peaks around δω 10 from the minimum frequency, we use 9
equally spaced sample points in the frequency range, which corresponds to δω = 500, and an
extra sample point at ω δω+ 10min . The relative error from the modified approach is
marked by blue triangles in figure 5. As indicated by (M) in figures 6 and 7, this modification
brings down ∞E (PM

est). The curve marked by (R) is from equally spaced sample points.

5. Reconstruction of dynamic tortuosity

In the simulation of high-frequency wave propagation in poroelastic media, the time domain
Darcyʼs laws that come from inverse Fourier transform of (18) are part of the first-order
formulation of balance law. To deal with the memory term, in [19] a phenomenological
approach using generalized Zener kernels was proposed, yet not implemented, with relaxation
times obtained by curve fitting. In this section, we show that the analytical structure of
tortuosity T in frequency domain can be utilized to calculate the parameters needed in the
dissipation kernels from a finite data set of ωT ( )j , = …j M1, , .

5.1. IRF for dynamic tortuosity T ωð Þ

We first note that (3) implies

ω ηϕ
ρ ν ξ

α
ξ

= − = − ∞
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟T

F

R R
( )

1

( ) ( )
. (44)

f

To derive the IRF, we embed ξR ( ) into a larger class  .
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Figure 2. Branch cut and pole of RD on the complex ξ-plane.

Figure 3. Relative error of μ λ μ λ…(d ), , (d )1
D

9
D approximated from M data points.

Figure 4. ∞E (PMest) for ω ∈ [1, 51] Hz and ω ∈ [0.75, 4] MHz.
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Definition 5.1. [9] A function ∞ → ∞g: (0, ) [0, ) is in  if it can be represented as follows

∫ζ σ
ζ

ζ= +
+

>
∞

g a
t

t
( )

d ( )
, 0

0

with constant ⩾a 0 and a positive measure σd on ∞[0, ).

Let ζ ξ= −: and ζ ξ= −g R( ) : ( ), which is well-defined for all ζ > 0 because all the
singularities of ξR ( ) are confined in ξ Θ∈ [0, ]1 . Hence ζ ∈g ( ) with a = 0 and σ λ=d d . It

Figure 5. Comparison of relative error of P10est for different spacings of sample points.
The red curve with crosses is from equally spaced sample points. The blue curve with
triangles is from the modified approach.

Figure 6. ∞E (PMest) for ω ∈ [0, 4] kHz. (R): equally spaced (M): modified.
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is known [9] that ζ ζ ∈g(1 ( )) if ζ ∈g ( ) , therefore

∫α
ζ ζ

α
ξ ξ

σ
ξ

σ ζ= = +
− +

⩾ >∞ ∞ ∞

g R
a

t

t
a

( ) ( )

d ( )
for some 0and positive measure d , 0.

0

Since every function in  can be analytically extended to the cut complex plane and ξR ( ) is
analytic in  Θ⧹[0, ]1 , the expression above is valid in  Θ⧹[0, ]1 and we conclude from (44)
that the tortuosity function ωT ( ) has the following IRF:

Theorem 5.1. The dynamic tortuosity ωT ( ) has the following IRF for ω such that
 Θ− ∈ ⧹

ω
[0, ]i

1

∫ω
ω

σ
ω

= +
−

Θ
⎜ ⎟⎛
⎝

⎞
⎠T a

t

t
( )

i d ( )

1 i
(45)

0

1

for some constant ⩾a 0 and positive measure σd .

According to (3), ωT ( ) has a pole at ω = 0 with strength ηϕ ρ Ki f 0, hence the a in (45) is

ηϕ
ρ

α
= = ∞a

K C
.

f 0 2

Furthermore, ω α→ ∞T ( ) as ω → ∞, so σd has a Dirac mass at t = 0 with strength α∞. It is
also interesting to note that (45) implies

μ σ ν ϕ μ λ ϕ
μ λ

μ λ
α

μ λ
μ λ= = = ∞

K F

F
(d ) (d )

(d )
(d )

(d )
(d ), (46)0

2

0
2 1

0
2 1

0
2 1

which can be easily seen by taking the limit ω ω−ω→ T alim ( ) (i )0 .
Suppose we have the data of ξR ( )j , ξ ω= −: ij j, = …j M1, , at different non-zero

frequencies ω ∈j , which can come from measurements of ωK ( )j or ωT ( )j . To reconstruct
ωT ( ), we first recognize that

Figure 7. ∞E (PMest) for ω ∈ [4, 180] kHz. (R): equally spaced (M): modified.
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ξ
α

ξ ξ
ω ω= − = +∞h a

R
a T( ) :

( )
i ( )

is a Stieltjes function with the symmetry ξ ξ− =h h( ) ( ) for ξ ω= −i and ω ∈ , i.e.
measurement at M different non-zero frequencies provide M2 data. Similar with section 4,
we can use these M2 data points to reconstruct ξh ( ) by using multipoint Padé approximates

∫ξ σ Θ
ξ Θ

ξ
ξ ξ

ξ ξ
=

−
≈ − =

+ + ⋯ +

+ + ⋯ +
= …

Θ −
−

( ) ( )h M M
a a a

b b

j M

d ( )
[ 1 ] :

1
,

1, 2, , 2 (47)

j
j

h j
j M j

M

j M j
M0

0 1 1
1

1

1

Once the ξ−M M[ 1 ] ( )h is known, its partial fraction decomposition can be numerically
obtained

∑ξ
ξ

Θ− =
−

> < <
=

M M
r

p
r p[ 1 ] ( ) , 0, 0 (48)h

j

M
j

j
j j

1

1

and the dynamic tortuosity T can be approximated in terms of residues rj and poles pj,
= …j M1, ,

∑ω
ω ω

≈
−

+
− +=

T
a r p

p
( )

i i 1
. (49)

j

M
j j

j1

Therefore, the tortuosity in time domain can be approximated as

 ∑δ= + ⩾−

=

−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T t a t

r

p
t[ ]( ) ( ) e , 0 (50)

j

M
j

j

t
p1

1

j

with pj and rj defined in (48).

5.2. Formulation and algorithm for T ωð Þ

Given the permeability data P s( )j , ω= −s : ij j, = …j M1, , at different non-zero frequencies
ω ∈j , we compute the data points for D(s) defined as

∫ω
ω

α σ Θ
Θ

= − = − =
+

Θ∞D s T
a

sP s

a

s s
( ) : ( )

i

( )

d ( )

1
. (51)

0

1

Note that

∫ σ Θ= < ∞
Θ

→
D slim ( ) d ( ) .

s 0 0

1

Using symmetry, there are M2 data points for reconstructing D(s) by multipoint Padé
approximates

∫ σ Θ
Θ

=
+

≈ − =
+ + ⋯ +

+ + ⋯ +
= …

Θ −
−

D s
s

M M s
a a s a s

b s b s

j M

( )
d ( )

1
[ 1 ] ( ) :

1
,

1, 2, , 2 (52)

j
j

D
j M j

M

j M j
M0

0 1 1
1

1

1

The linear system of …a a, , M0 and …b b, , M1 to be solved has the same structure as that in
section 4.1 except P s( )j and Pj in (29) should be replaced with D s( )j and Dj, respectively.
The numerical scheme is identical to the 4-step process described in section 4.1.

Inverse Problems 30 (2014) 095002 M-J Y Ou

19



Once the −M M s[ 1 ] ( )D is known, its partial fraction decomposition can be numerically
obtained

∑
Θ

− =
−

> ∈ −∞ −
=

⎛
⎝⎜

⎞
⎠⎟M M s

r

s p
r p[ 1 ] ( ) , 0, ,

1
(53)D

j

M
j

j
j j

1 1

and the dynamic tortuosity T can be approximated in terms of the residues and poles of
−M M s[ 1 ] ( )D

∑ω
ω ω

≈
−

+
− −=

T
a r

p
( )

i i
.

j

M
j

j1

Therefore, the tortuosity in time domain can be expressed as

 ∑δ= +−

=

T t a t r[ ]( ) ( ) e , (54)
j

M

j
p t1

1

j

where >r 0j and <p 0j are defined in (53) and δ t( ) is the Dirac function.
We use the JKD tortuosity function to demonstrate the idea.

5.3. Numerical results for JKD tortuosity T D ωð Þ

The function corresponding to TD via (51) is

∫α
α

α σ Θ
Θ

= − = +
+ −

=
+
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∞( )
D s

sP s
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1 1 d ( )

1
. (55)D

D

D1

2 0

1

We use the values of parameters in table 2 for the simulations. For these parameters,
ηϕ ρ=a K( )f 0 =2.708 895e03.
Suppose ′M poles are retained after the algorithm, ′ ⩽M M , we reindex them and the

corresponding residues to | =
′p r{( , )}j j j

M
1. The function D(s) is then approximated by
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=
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+ −=

′

=

′

=

′

( )
D s D s

r

s p

r

s p

r p

s p
( ) ( ) :

1 1
(56)M
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1 1 1

and the moments μ σ(d )k
D , = …k 0, 1, 2, by

∑μ σ ≈ − +

=

′

+( )
r

p
(d ) ( 1) . (57)k

D k
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j

j
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1

1
1

In terms of the poles and residues in (56), the time domain tortuosity T can be approximated
as

 ∑ηϕ
ρ

δ≈ + > <−

=

′

T t
K

t r r p{ }( ) ( ) e , 0, 0.
j

M

j
p t

j j
1

f 0 1

j

We consider the same frequency ranges as in section 4.3. Table 4 shows the reconstructed
moments of σd D from data in the frequency range from 1 to 51 Hz with multipoint Padé
approximants of various order M; the plot is demonstrated in figure 8. The exact values of
moments are computed by first observing that DD has a removable singularity at s = 0 and its
Taylor expansion near s = 0 can be explicitly expressed as
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Differentiating the IRF in (55) with respect to s and compare both sides, we can express the
moments of σd D in terms of the Taylor coefficients of DD near s = 0

μ σ = − = …c k(d ) ( 1) , 0, 1, 2, . (58)k
D k

k

Due to the important roles played by the poles and residues in handling the memory
terms in Biot–JKD equations, we list =

′p r{ , }j j j
M

1 for M = 9 and M = 7 in table 5 with

Figure 8. Relative error of μ σ μ σ…(d ), , (d )D D
1 9 approximated from M data points.

Table 4. Moments of σd D constructed from data in [1, 51] Hz.

Exact M = 9 M = 7 M = 5 M = 3

′M 8 6 4 2

μ0 0.2448054 e3 0.2448050 e3 0.2447906 e3 0.2442974 e3 0.2313087 e3
μ1 0.1096426 e2 0.1096420 e2 0.1096153 e0 0.1088098 e2 0.9286772 e1
μ2 0.9864792 e0 0.9864178 e0 0.9844351 e0 0.9460585 e0 0.5683834 e0
μ3 0.1109447 e0 0.1109081 e0 0.1100577 e0 0.9890620 e−1 0.3758564 e−1
μ4 0.1397472 e−1 0.1395836 e−1 0.1367750 e−1 0.1108704 e−1 0.2511712 e−2
μ5 0.1886006 e−2 0.1879998 e−2 0.1801971 e−2 0.1278614 e−2 0.1680769 e−3
μ6 0.2666530 e−3 0.2647426 e−3 0.2455669 e−3 0.1491975 e−3 0.1124921 e−4
μ7 0.3898596 e−4 0.3844154 e−4 0.3413699 e−4 0.1749433 e−4 0.7529144 e−6
μ8 0.5846091 e−5 0.5703658 e−5 0.4801441 e−5 0.2055462 e−5 0.5039304 e−7
μ9 0.8941761 e−6 0.8593632 e−6 0.6800106 e−6 0.2417042 e−6 0.3372839 e−8
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= … ′j M1, , . The maximum relative error of DM
est is defined as

=
−

ω ω
∞

∈ − −⎡⎣ ⎤⎦( )E D
D s D

D s
: max

( )

( )
M

s

M

est
i , i

est

min max

and evaluated the same way as that of PMset in section 4.3. The maximum relative error for
frequency range [1, 51] Hz and [0.75, 4] MHz, [0, 4000] Hz and [4, 180] kHz are listed in
figures 9, 10 and 11, respectively.

6. Remarks on the relation between moments and various effective parameters

Using the IRFs, we can derive several relations between the moments of λd , σd and various
combinations of dynamic effective parameters. Recall that λd corresponds to the permeability
function and σd to the tortuosity function. Since the dynamic permeability and dynamic
tortuosity depend on both the frequency and the pore space geometry, the fact that the
integrands in the IRFs are only functions of frequency implies that all the geometrical
information must be encoded in the measures. The analyticity of both functions at s = 0
enable the calculation of moments in terms of the coefficients of Taylor expansions there. For
example, (22) implies

μ λ
ν

α
ϕν

= = ∞FK K
(d ) . (59)0

0 0

The relation between the permeability and the tortuosity leads to the following relation
between the moments of λd and σd

∑μ λ
μ λ

α
μ σ μ λ= ⩾

∞ + = −

p(d )
(d )

(d ) (d ), 1. (60)p
k j p

k j
0

1

Figure 9. ∞E (DM
est) for ω ∈ [1, 51] Hz and ω ∈ [0.75, 4] MHz .
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From (60), the infinite-frequency α∞ can be expressed in terms of moments

α
μ σ μ λ

μ λ
=∞

(d ) (d )

(d )
. (61)0 0

2

1

For the JKD permeability and tortuosity, the measure σd D satisfies

∫μ σ σ Θ α
α

ϕΛ
= = = +

Θ

→
∞

∞( ) D s
K

d d ( ) lim ( )
2

. (62)D D

s

D
0

0 0

0
2

2

1

Suppose we can reconstruct μ λ(d )0
D and μ σ(d )D

0 from low frequency data of perme-
ability ωK ( ) and that we know the porosity ϕ and pore fluid kinetic viscosity ν, then we can
recover α∞ from the fact that μ λ α ϕν= ∞K(d )0

D
0 because K0 can be obtained easily through

extrapolation of low frequency data. Once α∞ is known, (62) can be used to recover Λ, which
is a weighted pore volume-to-surface ratio that provides a measure of the dynamically con-
nected part of the pore region [7]. We note that (62) implies the following for the JKD model

Table 5. Poles and residues of −M M s[ 1 ] ( )DD constructed from data in [1, 51] Hz.

M = 9 M = 7

pj rj pj rj
j = 1 −1.706303 e3 6.240356 e4 −9.475742 e2 4.524730 e4
j = 2 −1.988249 e2 6.285370 e3 −1.183222 e2 4.649229 e3
j = 3 −7.810948 e1 2.285702 e3 −4.647002 e1 1.807574 e3
j = 4 −4.120607 e1 1.252540 e3 −2.284838 e1 1.018569 e3
j = 5 −2.398527 e1 8.133531 e1 −1.199244 e1 5.693354 e2
j = 6 −1.450089 e1 5.338794 e1 −6.992178 e0 1.873584 e2
j = 7 −9.133035 e0 2.945426 e1 — —

j = 8 −6.391875 e0 8.937405 e0 — —

Figure 10. ∞E (DM
est) for ω ∈ [0, 4] kHz. (R): equally spaced (M): modified.
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−
=

−
∞

∞

∞
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )( ) ( ) ( )

K K2

d

2
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D
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2

0
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D

0
2 D

Formulas (59), (61) and (63) show exactly how microstructural information affects the
effective parameters α∞ and Λ through moments.

7. Conclusion

In this paper, we derived the IRF for dynamic tortuosity ωT ( ) in general form; we show that
ωT ( ) can be written as the sum of a function with a simple pole at 0 and a Stieltjes function.

Utilizing the analytic structure of this IRF and the IRF of permeability ωK ( ) derived in [7], an
algorithm based on multipoint Padé approximation of Stieltjes functions is proposed for
constructing ωK ( ) and ωT ( ) from the values of permeability at district frequencies. Taking
into account the symmetry of Stieltjes functions, onlyM different frequencies, instead of M2 ,
are needed for constructing the −M M[ 1 ] approximant. It is demonstrated that the moments
of both the measures in the IRFs of ωK ( ) and ωT ( ) can be estimated to high accuracy from
low frequency data. The capability of this algorithm for recovering the moments can be
utilized to compute the inf-tortuosity α∞ through (59) using the low-frequency permeability
data, if the viscosity of pore fluid ν is known because K0 can be approximated very well
from P s( )M

est .
Furthermore, if the JKD model is used, the microstructure-dependent parameter Λ can be

recovered by the formula in (63). It is interesting to note that the empirical formula for Λ
suggested by JKD [54] is Λ α ϕ≈ ∞K2 ( 4)0 . Comparing this with (63), which is exact, this
empirical formula corresponds to the assumption that μ λ μ λ =(d ) (d )1

D
0
2 D 5

4
, which is not

always true and obviously not satisfied by the moments calculated in this paper.
We have also shown that the JKD permeability ωK ( )D can indeed be represented by a

probability measure in its IRF, as is predicted by the general result in [7].

Figure 11. ∞E (DM
est) for ω ∈ [4, 180] kHz. (R): equally spaced (M): modified.
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The results of numerical experiments conducted on the frequency ranges taken from the
literature in biomechanics for bone [59] and seismology [47] are presented. For the bandwidth
spreading less than two orders of magnitude, the proposed algorithm with equally spacing
interpolating points achieve approximates with high accuracy. From the last two numerical
examples, we see that the approximation is of good accuracy away from the first interval; the
max. relative error can be greatly improved by adding one sample point close to the lowest
frequency to the equally spaced points. This implies that the location of sample points play an
important role in the approximation and will be the topic of future investigation. Another way
to handle wide frequency range can be to divide it into shorter intervals and do local
approximation. The advantage of our reconstruction scheme is two-fold. First of all, it pro-
vides high accuracy interpolation of the permeability/tortuosity data without assuming any-
thing beyond the fact that they are related to Stieltjes functions and hence is more general than
the JKD model, which assumes specific forms of the dynamic tortuosity functions. Secondly,
the time domain representation such as (54) provides an efficient way for numerically
handling the memory terms that appears in the time domain numerical simulation for wave
propagation in poroelastic materials.
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