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Modeling Sea Ice

1 Introduction

Overview. Over the past two decades, Arc-
tic sea ice has experienced precipitous declines
in extent and thickness, ushering in a new nar-
rative for the polar marine environment. This
loss of sea ice is perhaps one of the most visible
large scale changes on Earth’s surface connected
to planetary warming, with significant implica-
tions for the Arctic region and beyond. The
response of Antarctic sea ice to climate change
has been more complicated and less well under-
stood. Advancing our ability to analyze, model,
and predict the behavior of sea ice is critical to
improving projections of climate change and the
response of polar ecosystems, and in meeting the
challenges of increased human activities in the
Arctic. Over the past decade or so, research on
modeling sea ice and its role in Earth’s climate
system has blossomed, with fundamental contri-
butions from many areas of applied and compu-
tational mathematics.

Here we report on significant recent advances
in sea ice modeling. We give a fast-paced account
of a broad range of mathematical ideas, and key
theoretical issues in the physics of sea ice, on
scales from millimeters to thousands of kilome-
ters. Modeling sea ice − a complex multiscale
medium, presents formidable challenges. The
mathematics discussed here, while developed for
sea ice, often has broader applicability and pro-
vides insights into the analysis and modeling of
other multiscale materials and systems.

Earth’s sea ice packs in a changing cli-
mate. The sea ice covers of the polar oceans are
a critical component of the global climate system.
They are vast in areal extent, covering millions
of square kilometers, but are only a thin veneer
of ice a couple of meters thick. Sea ice serves as
both an indicator of change and as an amplifier of
change. Consider the Arctic sea ice cover. The
amplification of global warming long predicted
by models has come to pass. Observations show
that the Arctic is warming at twice the rate of the
rest of the planet. Satellite observations from the

past four decades show decreasing ice extent in
every month of the year, with the greatest losses
occurring in September, at the end of the melt
season. Indeed, there has been interest in pre-
dictions of when we might first see substantially
ice-free summers. The sea ice cover has also un-
dergone a fundamental shift from older, thicker,
more resilient perennial ice to primarily younger,
thinner, less resilient seasonal ice. This is clear
evidence of a warming climate.

Sea ice can also act as an amplifier of climate
change through ice-albedo feedback. Snow cov-
ered sea ice is an excellent reflector of sunlight.
As the ice retreats, it uncovers the highly absorb-
ing ocean. More solar radiation is then absorbed,
resulting in more loss of ice and more absorbed
sunlight creating a positive feedback loop. The
end result is less sea ice and more planetary heat-
ing. Sea ice loss also influences the exchange of
heat and moisture between the atmosphere and
ocean, further impacting the climate.

As we look toward the Southern Ocean and
the Antarctic sea ice pack, we find a different
geographical context within which to consider a
more complex response to planetary warming.
The Arctic is comprised of an ocean encircled by
warming landmasses with declining spring and
summer snow covers and reduced albedo. The
Antarctic is a continent surrounded by ocean, ge-
ographically isolated from the rest of the world
but connected through atmospheric and oceanic
pathways. With sea ice growth unconstrained by
surrounding continents, we see high variability in
year to year ice extent, with strong influence from
changes in wind and current patterns.

Much of the Arctic sea ice pack still per-
sists during summer. However, relatively little
Antarctic sea ice, which forms at lower, warmer
latitudes and is thinner, survives the melt season.
While Arctic sea ice has seen sustained declines,
Antarctic sea ice experienced over three decades
of gradual increases in yearly extent, peaking in
2014, yet with some regions still registering no-
table declines. This period was followed by an
overall decline so precipitous that three years
later a record low for average coverage during
the 40 year satellite era was reached [S72]. Nev-
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Figure 1: Multiscale structure of sea ice. From left to right: X-ray tomography of
sub−millimeter scale brine inclusions (Eicken, Golden, et al.); centimeter scale polycrystalline struc-
ture of sea ice (Langhorne, Golden); centimeter to meter scale pieces of newly forming Arctic sea ice
(Perovich); meter to kilometer scale melt ponds on the surface of summer Arctic sea ice (Perovich);
the Arctic sea ice pack can be viewed from space as a two phase granular composite (NASA). For
perspective, rough image sizes from left to right are 1 cm, 5 cm, 5 m, 100 m, 100 km.

ertheless, the long-term trend is nearly flat. In
short, the planetary warming signal has come
through loud and clear in the Arctic, but has so
far been more difficult to discern in the response
of Antarctic sea ice [S89].

From microscale to macroscale. Viewed on
almost any length scale, sea ice displays compos-
ite structure (Fig. 1). By holding a small piece
of sea ice, careful inspection reveals the brine
and air inclusion microstructure on the millime-
ter scale as well as the centimeter scale polycrys-
talline microstructure. Snow on top of sea ice is a
highly variable granular material with grains on
the millimeter to centimeter scale. From a heli-
copter the ice pack can be viewed as a composite
of ice floes in a sea water host, with the frozen
“inclusions” ranging in size from centimeters to
tens of kilometers. Systems of leads or openings
in the ice are fracture patterns that can extend
hundreds of kilometers. In late spring the Arc-
tic sea ice surface is a composite of ice and small
ponds which grow and coalesce to form kilometer
scale, connected labyrinths of melt water.

In modeling and predicting the behavior of the
polar sea ice covers, one must keep in mind the
overall scale of the system under study. In win-
ter, the maximum areal extent of sea ice in the
Arctic is about 15 million km2, and about 18 mil-
lion km2 in the Antarctic, or roughly 4000 km in
linear extent. With grid spacings in large scale
models on the order of kilometers, or more likely,
tens of kilometers, it is not realistic to account for
every brine inclusion, crystal grain, or floe in the

model. The scales of interest for climate stud-
ies are far greater than these “microstructural”
scales. Nevertheless, these features play an out-
sized role in sea ice dynamic and thermodynamic
behavior. One of the fundamental challenges in
modeling sea ice – and a central theme in what
follows – is how to rigorously account for the im-
pact of the microscale on macroscsale behavior.

Most of the modeling ideas and techniques in
the following apply to sea ice around both poles.
However, there are certain topics that are tradi-
tionally more relevant to either the Arctic or the
Antarctic. For example, melt ponds are gener-
ally not observed on Antarctic sea ice. Grainy
polycrystalline microstructures, often associated
with growth under more turbulent conditions or
the formation of “snow-ice” on top of flooded sea
ice, have typically been of more interest in stud-
ies of Antarctic sea ice. Likewise, studies involv-
ing wave-ice interactions and pancake ice, which
forms in wavy conditions, have been more fo-
cused in the Southern Ocean. However with Arc-
tic sea ice receding, wave activity has increased,
along with similar types of studies in the Arctic.

The paper is organized as follows. We be-
gin with an introduction to the basic physics
of sea ice – its dynamics and thermodynamics
– that has historically served as the foundation
for early modeling efforts, and still serves in this
role today. Then we roughly follow the out-
line suggested in Fig. 1, where we move up in
scale, starting from the material properties of
sea ice and how they depend on the brine and
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polycrystalline microstructures. We then con-
sider mesoscale processes such as the formation
of leads and ridges, the evolution of melt ponds
and floe sizes, and wave-ice interactions. Finally
we look at the macroscale – the rheology of the
sea ice pack, large scale numerical sea ice models
which are key components of global climate mod-
els, the assimilation of data into these models,
and low order approximations of large scale sea
ice behavior. Along the way we will touch upon a
number of areas of mathematics and theoretical
physics, including homogenization of partial dif-
ferential equations, theory of porous media, me-
chanics of materials, numerical analysis, percola-
tion theory, stochastic processes, complex anal-
ysis, statistical mechanics, dynamical systems,
and even random matrix theory.

2 Sea ice dynamics and

thermodynamics

Physical processes acting on sea ice can be di-
vided into two categories: thermodynamic pro-
cesses, which involve the transfer of heat or ra-
diation, and dynamic processes, which move and
deform the ice. Regions of the sea ice cover of-
ten include mixtures of open water, thin first-
year ice, thicker multiyear ice, and thick ridges
formed from ice floes breaking or colliding under
convergent forcing.

A fundamental goal in sea ice modeling is to
predict the evolution of the ice thickness distri-
bution (ITD) in time and space [18], [S112]. The
ITD is influenced by horizontal transport, ridg-
ing and other mechanical processes, and thick-
ness changes due to thermodynamic growth and
melting. An essential aspect of sea ice thermo-
dynamics is the variation of growth and melting
rates for different ice thicknesses. Because heat
conduction is proportional to the vertical tem-
perature gradient, thin ice grows and melts more
quickly than thicker ice, and is more likely to
undergo mechanical deformation.

The ice thickness distribution g(h,x, t) gives
the probability g(h)dh of finding ice in the thick-
ness range (h, h + dh) at a given time t and lo-
cation x ∈ R2, or the area fraction covered by

ice of this thickness, with
∫∞
0
g(h,x, t)dh = 1.

The ITD equation is fundamental to any sea ice
model, because it integrates all of the physical
processes that affect ice volume:

∂g

∂t
= −∇ · (gu) + Ψ− ∂

∂h
(fg) + L, (1)

with u the horizontal ice velocity, ∇ = ( ∂
∂x
, ∂
∂y

),
f the rate of thermodynamic ice growth, Ψ a
mechanical redistribution function, and L repre-
senting lateral melting. The four terms on the
right describe: (1) horizontal transport in x, (2)
transport of mass of g in h due to ridging and
other mechanical processes, (3) transport of mass
of g due to thermodynamic growth and melting,
and (4) replacing ice with open water by lateral
melt. Solving the horizontal transport and ridg-
ing equations requires u.

Although the ITD g(h) is a function of a con-
tinuous variable h, in practice only a few thick-
ness categories are tracked, typically between 5
and 20, with more categories assigned to thin-
ner ice to better resolve growth rates. Thermo-
dynamic transport of the mass of g(h) needs the
ice growth rate f in each thickness category. The
ITD equation is being generalized to include dis-
tributions of thickness and floe size. In a signif-
icant recent advance, the ITD was treated as a
Fokker-Planck equation for the probability den-
sity of a thickness diffusion process ht, with Ψ
similar to a Boltzmann collision term [S103].

Dynamics. In order to simulate ice motion u,
sea ice models generally include equations for
the momentum, a constitutive law that describes
the material properties of the ice, transport, and
mechanical deformation. These equations strive
to represent the basic properties of ice motion:
as a rigid material it resists convergent forcing,
but it tends to be highly fractured and therefore
diverges easily. If convergent forcing is strong
enough, the ice will break and form ridges and
keels, often referred to as “ridging.” The de-
formation or rates of strain, which are spatial
derivatives of the velocity components, control
the amount of ridging and fracture, which in turn
determines the amount of open water that is ex-
posed to the atmosphere.
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The force balance per unit area in the ice pack
is given by a two dimensional momentum equa-
tion, obtained by integrating the three dimen-
sional equation with respect to the thickness of
the ice in the vertical direction:

m
∂u

∂t
= ∇·σ+τ a+τw−Cmk×u−mg∇H, (2)

where m is the combined mass of ice and snow
per unit area and τ a and τw are wind and ocean
forces, respectively. The internal stress σ is
given by a constitutive equation describing sea
ice strength and rheology. The last two terms
represent Coriolis effects and sea surface slope
H, where here g is gravitational acceleration.

Ice area fraction, volume, energy, and snow
volume and energy are advected horizontally. In
addition, coupled to Eq. (2) are equations gov-
erning the transport of tracers such as melt water
and biogeochemical inclusions.

Thermodynamics. Thermodynamic compo-
nents of sea ice models treat the ice as a slab
with energy fluxes at both surfaces,

q
dh

dt
= Fs + Fl + FL↓ + FL↑ + (1− α)I0Fsw, (3)

where q is the energy per unit volume required
to melt the top surface material (either snow or
ice), h is thickness, Fs is the sensible heat flux, Fl
is the latent heat flux, FL↓ is the incoming long-
wave flux, FL↑ is the outgoing longwave flux, Fsw
is the incoming shortwave flux, α is the short-
wave albedo, and I0 is the fraction of absorbed
shortwave flux that penetrates into the ice. A
similar relation holds at the bottom of the ice.
The heat equation in the vertical direction for
the interior temperature Ti inside the ice is

ρici
∂Ti
∂t

=
∂

∂z

(
ki
∂Ti
∂z

)
− ∂

∂z
[Ipen(z)], (4)

where ρi is sea ice density, ci its specific heat, ki
its (effective) thermal conductivity, Ipen is the
flux of solar radiation penetrating to depth z
(downward positive). Heat capacity and conduc-
tivity depend on both salinity and temperature.

Some thermodynamic models treat sea ice as
a mushy layer [S122,S24], a mixture of brine and

ice, with enthalpy (or temperature) and salinity
as prognostic variables. The enthalpy q is related
to the temperature T and brine volume φ by

q = φqbr + (1− φ)qi

= φρwcwT + (1− φ)(ρiciT − ρiL0), (5)

where qbr is brine enthalpy, qi is ice enthalpy, ρi
and ci are density and heat capacity of ice, ρw
and cw are density and heat capacity of brine
and L0 is the latent heat of melting pure ice.

Many processes affect sea ice thermodynam-
ics, including interactions of long- and short-wave
radiation with ice surface characteristics (snow,
bare ice, melt water) and interior layers, turbu-
lent fluxes (evaporation, latent and sensible heat
fluxes, wind stress), heat fluxes and stresses from
the ocean, and algal growth, which can darken
the ice, decreasing the albedo.

3 Sea ice as a material

As sea ice grows from the freezing of sea water
at -1.8 ◦C and a typical salinity of 35 parts per
thousand (ppt), brine is entrained in the ice. The
volume fraction of brine in sea ice depends on the
ice temperature and salinity, as well as the age
and initial growth rate of the ice. The presence of
this brine is a distinctive feature of sea ice. The
amount and distribution of the brine affects all
aspects of sea ice including its electromagnetic,
mechanical, and thermal properties [S116,S74].

The influence of the brine phase on the bulk
material properties of sea ice depends strongly
on temperature. In particular, in sea ice colder
than say, -15 ◦C, the brine microstructure typ-
ically occupies less than 2% volume fraction,
and is segregated into sub-millimeter scale in-
clusions or pores which are largely disconnected
and well separated, with diminished overall in-
fluence. However, as the temperature warms to-
ward around -5 ◦C and above, long range order
develops as the inclusions coalesce to form cen-
timeter to meter scale connected structures, or
brine channels, through which fluid can flow.

The conditions under which sea ice forms de-
termine its crystallographic structure. The cen-
timeter scale crystals are columnar in shape for
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ice grown under quiescent conditions, and more
granular when grown in wavy or turbulent seas,
which affects the material properties of sea ice.

Remote sensing and sea ice properties. One
reason the material properties of sea ice are so
important and why there is significant interest in
understanding and modeling them, particularly
sea ice electromagnetic properties, is that they
largely determine what is “seen” by remote sens-
ing platforms focused on the sea ice pack. Obser-
vations from satellite-based remote sensing pro-
vide large-scale information on the spatial vari-
ability and temporal evolution of the polar sea ice
covers. The relationships between the observed
electromagnetic signatures and the physical state
of the ice provide large scale information on ice
conditions. At the heart of these relationships is
the mathematics and physics of electromagnetic
wave interactions with a complex multiscale com-
posite material that has rough surfaces and sig-
nificant internal variability [S33].

There is an array of satellite instrumentation
including passive microwave, radar, visible and
near-infrared, thermal infrared sensors, high res-
olution photography and radar and lidar altime-
ters. The electromagnetic signatures are con-
verted by algorithms into information on sea ice
concentration and extent, ice age, ice motion, ice
surface conditions and ice thickness [S52]. Un-
derlying these algorithms are various electromag-
netic inverse problems and inverse scattering the-
ories [S32]. The resulting data sets are a critical
contribution to observing and understanding the
changing polar sea ice cover.

Homogenization refers broadly to a circle of
ideas in applied mathematics and the physics and
engineering of materials, where the goal is to find
the effective, bulk, or homogenized properties of
a composite or inhomogeneous medium. Sea ice
is a polycrystalline composite of pure ice with
brine, air and solid salt inclusions. We first con-
sider homogenization for two phase composites
and then for polycrystalline media.

We briefly describe the analytic continuation
method (ACM) in homogenization theory. This
approach was originally developed to study the

effective properties of two phase composite mate-
rials, such as electrical and thermal conductivity,
complex permittivity, magnetic permeability, dif-
fusivity, and elasticity, which can all be similarly
formulated [S9,S62,S29,S63]. The method has
been used to obtain forward bounds on the ho-
mogenized coefficients given partial information
on the microstructure, such as the volume frac-
tions of the constituents, and extended to mul-
tiphase media using techniques of several com-
plex variables [S30,S28]. This approach has also
been successful in addressing the inverse homoge-
nization problem of obtaining information on the
microstructural parameters from bulk property
measurements [S58,S16,S13,S63].

Motivated by sea ice remote sensing and the
physics of electromagnetic waves interacting with
sea ice, there were numerous developments in
the 1990s in the ACM and its application to sea
ice [6]. Most of this work was focused on the
brine microstructure. More recently, again moti-
vated by sea ice processes, there have been sev-
eral advances in extending the ACM to larger
scale problems. These include homogenization
for polycrystalline materials [8], advection diffu-
sion processes involving incompressible velocity
fields [S4,S66], such as thermal transport through
sea ice enhanced by brine convection [S51], and
ocean surface wave propagation through the sea
ice pack treated as a two phase composite of ice
floes and sea water [S84].

To describe the ACM and the principal fea-
tures that carry over to other systems, we for-
mulate the method in the electromagnetic case
for the complex permittivity, although equivalent
formulations could be given for the other proper-
ties mentioned above. We consider a two phase
locally isotropic composite, ε(x) = ε1χ1(x) +
ε2χ2(x), where εj is the complex permittivity of
brine or ice, for j = 1, 2, respectively, and χj is
the characteristic function equaling 1 for medium
j at x, and 0 otherwise, with χ2 = 1 − χ1.
The local parameter ε(x) is a stationary random
field with Ω the set of realizations of the random
medium and underlying probability measure P
compatible with stationarity [S29], [6].

When the wavelength is much larger than the
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microstructural scale, the problem can be for-
mulated with the quasistatic Maxwell equations,
∇×E = 0,∇ ·D = 0, where E(x) and D(x) are
stationary electric and displacement fields with
D(x) = ε(x)E(x). We assume 〈E〉 = ek, where
〈·〉 denotes ensemble averaging over Ω or spatial
averaging over all of Rd, and ek is a unit vector
in the kth direction. The effective complex per-
mittivity tensor ε∗ is defined by 〈D〉 = ε∗〈E〉.
Let ε∗ = ε∗kk = 〈εE · ek〉. Due to homogeneity,
ε∗(aε1, aε2) = aε∗(ε1, ε2), ε

∗ depends on h = ε1/ε2
and we define m(h) = ε∗/ε2, which is a Herglotz
function that maps the upper half h−plane to the
upper half m−plane, and is analytic off (−∞, 0].
The key is to obtain the resolvent representation

E = s(sI + Γχ1)
−1ek. (6)

Here Γ = ∇(−∆−1)∇· is a projection from
L2(Ω, P ) onto the Hilbert space of curl-free ran-
dom fields, and ∆−1 is convolution with the free
space Green’s function for the Laplacian ∆ = ∇2.

Consider F (s) = 1−m(h), s = 1/(1−h), which
is analytic off [0, 1] in the s-plane. Then (6) yields
a Stieltjes integral representation for ε∗,

F (s) =

∫ 1

0

dµ(z)

s− z
, (7)

where µ(dz) = 〈χ1Q(dz)ek ·ek〉 is a positive spec-
tral measure on [0, 1] and Q(dz) is the (unique)
projection valued measure associated with the
bounded, self-adjoint operator Γχ1.

Equation (7) is based on the spectral theorem
for the resolvent of Γχ1. This representation
separates the component parameters in s from
the geometrical information in µ. The geome-
try enters via the moments µn =

∫ 1

0
zndµ(z) =

〈χ1[(Γχ1)
nek] · ek〉, n = 0, 1, 2, . . .. The mass µ0

is 〈χ1ek · ek〉 = 〈χ1〉 = φ, where φ is the brine
volume fraction. The (n + 1)–point correlation
function of the medium determines µn.

The integral representation (7) yields forward
bounds on the effective parameters of composites,
given partial information on the microgeometry
via the µn [S63], and on ε∗ for sea ice in partic-
ular [6]. The integral representation can also be
used to obtain inverse bounds, allowing one to

use data about the electromagnetic response of a
composite, for example, to bound its structural
parameters, such as the volume fraction of each
of the components [S58,S16,S13,S63,S38,S69].

Computing the spectral measure µ directly for
a composite microstructure involves discretizing
an image of the composite into a square lattice
filled with 1’s and 0’s corresponding to the two
phases, as in Figure 2. Then Γχ1, which de-
pends on the geometry via χ1, becomes a matrix.
The spectral measure may be calculated from the
eigenvalues and eigenvectors [S65].

10 pp
c

*

p = 1/3 p = 2/3

(a) (b) (c)

Figure 2: The two dimensional square lattice be-
low its percolation threshold of pc = 1/2 in (a)
and above it in (b). A schematic graph of the
effective conductivity is shown in (c).

Percolation. The connectivity of the brine
phase in sea ice is a principal determinant of
its electromagnetic and fluid transport proper-
ties. For example, fluid convection in sea ice,
which can occur when the brine phase is suffi-
ciently connected to form channels, plays an im-
portant role in thermal transport in sea ice as
well as in nutrient replenishment processes for
microbial communities living inside the brine in-
clusions. On larger scales, the connectivity of
melt ponds on the surface of Arctic sea ice helps
determine drainage patterns which can impact
sea ice albedo. In ocean surface wave propa-
gation through the two phase composite of ice
floes in a sea water host, the connectivity of the
water phase significantly influences the homoge-
nized mechanical properties and wave propaga-
tion characteristics of the ice pack.

The percolation model has been widely used to
formulate and address questions involving con-
nectivity in complex systems such as porous me-
dia and composite materials [6]. In its simplest
form, one considers the d−dimensional integer
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lattice Zd, and the square or cubic network of
bonds joining nearest neighbor lattice sites. We
assign to each bond a conductivity σ0 > 0 with
probability p, meaning it is open (black), or a
conductivity 0 with probability 1−p, meaning it
is closed. Two examples of bond configurations
are shown in Fig. 2, with p = 1/3 in (a) and
p = 2/3 in (b). Groups of connected open bonds
are called open clusters. In this model there is
a critical probability pc, 0 < pc < 1, called the
percolation threshold, which is the smallest p for
which an infinite open cluster exists. For the two
dimensional bond lattice pc = 1/2.

The effective conductivity σ∗(p) of the lattice,
or random resistor network (RRN) defined via
Kirchoff’s laws, vanishes for p < pc as shown in
Fig. 2 (c), since there are no conducting path-
ways. For p > pc, σ

∗(p) > 0, and near pc,
σ∗(p) ∼ σ0(p− pc)t, p → p+c , where t is the con-
ductivity critical exponent, with 1 ≤ t ≤ 2 in
d = 2, 3, and numerical values t ≈ 1.3 in d = 2
and t ≈ 2.0 in d = 3. Now consider a ran-
dom pipe network with effective fluid permeabil-
ity Π(p) and critical behavior Π(p) ∼ Π0(p−pc)e,
where Π0 depends on pipe radius and e is the per-
meability exponent, with e = t for lattices. Both
t and e are believed to be universal − depend-
ing only on dimension and not on the lattice.
Continuum models, like the Swiss cheese model,
can exhibit non–universal behavior with expo-
nents different from the lattice case and e 6= t.

Columnar sea ice, which forms under quies-
cent conditions, has a percolation threshold of
φc ≈ 5% brine volume fraction. For a typical
bulk salinity of 5 ppt, this corresponds to a crit-
ical temperature of Tc ≈ −5◦C, known as the
rule of fives [7]. In modeling brine geometry to
predict the low value of φc, we observe an ex-
cluded volume effect : the inclusions lie on the
boundaries of pure ice platelets, not randomly
distributed throughout their host. Sea ice is sim-
ilar to compressed powders of polymer spheres
with smaller conducting particles in the inter-
stices, used in radar absorbing, stealthy aircraft
coatings. Connectivity of the conducting phase
in compressed powders can be achieved with low
volume fractions of the particles. A continuum

theory of compressed powders adapted to sea ice
predicts the 5% threshold – the on–off switch for
fluid flow in sea ice [7]. Brine inclusion sizes are
lognormally distributed, so that lattice theory
holds. Universal critical exponents e = t = 2
give predictions for Π(φ) and σ∗(φ) that agree
closely with measurements [S34].

The spectral measure µ depends on the mi-
crostructure of the composite, and phase con-
nectedness in particular. For the RRN with
the microgeometry determined by independent
weighted coin flips, Γχ1 becomes a matrix with
random coefficients via χ1, which equals 1 on
open bonds. The statistics of the eigenvalues
and eigenvectors of Γχ1 for discretizations of sea
ice structures and the RRN were studied. It
was found that as long range order and con-
nectivity develop with p −→ p−c , the spectral
and localization statistics undergo a percolation-
driven Anderson transition [S64]. This behav-
ior directly parallels the quantum theory of the
metal/insulator transition and other localization
phenomena in wave physics [S37], and connects
sea ice modeling to random matrix theory [S21].
The eigenvalue spacing distribution, for example,
transitions from an uncorrelated Poissonian to a
repulsive, universal Wigner–Dyson distribution
for the Gaussian Orthogonal Ensemble [S64].

Polycrystalline structure. Sea ice is a poly-
crystalline composite – a conglomeration of cen-
timeter scale individual crystals, whose structure
depends on how the ice was grown [S116,S74].
For congelation ice frozen under calm conditions,
the crystals are vertically elongated columns, and
each crystal itself is a composite of pure ice
platelets separating “layers” of brine inclusions.
The orientation of each crystal is determined by
the direction that the c−axis points, which is
perpendicular to the platelets. Horizontal thin
sections of columnar sea ice viewed under cross-
polarized light are shown in Figs. 1 and 3. Shown
on the right in Fig. 3 is a thin section of granular
ice, likely grown under turbulent conditions, or
perhaps formed as snow-ice from flooding of the
surface snow layer and subsequent freezing.

The c−axes of columnar ice typically lie within
the horizontal plane, yet are randomly oriented
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Figure 3: Cross-polarized images of columnar sea
ice from the Ross Sea on the left (Langhorne,
Golden), and granular ice from the Belling-
shausen Sea on the right (Tison).

within the plane, unless there is a prevalent ocean
current direction during growth. In this case the
c−axes tend to align with the current [S117,S54],
as shown in Fig. 3. The orientations of the
crystals in granular ice tend to be statistically
isotropic, as shown on the right in Fig. 3, where
different colors indicate different crystal orienta-
tions. The columnar ice on the left, on the other
hand, has c−axes that are closely correlated.
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Figure 4: Polycrystalline bounds [8] on the com-
plex permittivity of sea ice (left) together with
measurements [S2]. Comparison of a polycrys-
talline bound (blue) with the two component
bounds (right) shows a dramatic improvement
over the classical results as the new bounds in-
clude additional information about single crystal
orientations (notice different scales on the axes.)

The polycrystalline structure of sea ice can im-
pact its electromagnetic and mechanical prop-
erties, as well as how fluids and nutrients flow
through the ice. Recent work, for example,
shows that granular ice has a higher percolation
threshold for fluid flow than columnar ice, with
φc ≈ 10%, which has implications for model-
ing microbial communities and physical processes

[S35]. Determining ice type using remote sensing
techniques is thus of particular interest. Early
studies show that aligned columnar ice gives dif-
ferent radar returns and observed permittivities,
depending on the electric field polarization, af-
fecting measurements of ice thickness [S31].

In extending the analytic continuation ap-
proach beyond two phase composites, a Stielt-
jes integral representation and bounds were ob-
tained for ε∗ of polycrystalline composites in gen-
eral, and sea ice in particular, considered as a
three-dimensional, transversely isotropic or uni-
axial polycrystalline composite material [8]. The
forward bounds on the components of ε∗ use in-
formation about the complex permittivity tensor
ε of the individual crystals and the mean crys-
tal orientation. In Fig. 4 (left) they are in good
agreement with measurements [S2]. and (right)
they are compared with the classic two compo-
nent bounds. The inverse bounds [S16], [8] for
the mean orientation are obtained from measure-
ments of ε∗, and lay the groundwork for deter-
mining ice type using remote sensing techniques.

The mathematical framework for analysis of
the electromagnetic transport properties of ran-
dom, uniaxial polycrystalline media [8] is ana-
loguous to that for two phase random media. In a
polycrystalline material, crystals of varying size,
shape, and orientation have the same complex
permittivity tensor ε with different values along
different crystal axes. Crystal orientation is given
by a rotation matrix B.

For transversely isotropic or uniaxial polycrys-
talline media, the permittivity along one of the
crystal axes has the value ε1, while the permit-
tivities along all the other crystal axes have the
value ε2, so that ε = diag(ε1, ε2, ε2). The local
permittivity tensor of such media is given by

ε(x, ω) = BT (x, ω) εB(x, ω), (8)

where B(x, ω) is a random rotation matrix. The
effective complex permittivity tensor ε∗ is defined
as above, and has components ε∗jk = ej · ε∗ek =

〈ej ·B−1εBE〉, where 〈E〉 = ek. Introducing h =
ε1/ε2, s = 1/(1 − h), and matrices C = e1(e1)

T

and R = BTCB, we can write components of a
tensor function Fjk(s) as Fjk(s) = 1 − ε∗jk/ε2 =
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〈s−1ej ·RE〉. In analogy with the two component
case, we derive the resolvent representation

E = s(sI + ΓR)−1ek, (9)

which leads to an integral representation for
Fjk(s) similar to (7) where the positive-definite
measure {µjk} is the spectral measure of the self-
adjoint operator ΓR = ∇(−∆)−1∇ ·R.

The inverse bounds estimate the mean crys-
tal orientation from ε∗ data, and show a signif-
icant difference in the reconstructed mean ori-
entations for columnar and granular ice. This
provides a foundation for distinguishing ice
types using electromagnetic measurements. The
Stieljtes integral representation can be general-
ized to elastic [S48,S71] and viscoelastic compos-
ites [S10,S15,S70], and to viscoelastic polycrys-
talline materials [S14].

The polycrystalline structure of sea ice also
strongly influences its rheological behavior. Al-
though there can be significant variations de-
pending on the age and depth of the ice, at micro-
scopic scales, sea ice floes can be considered to be
made of solid polycrystalline ice with brine inclu-
sions embedded in the hexagonal closed packed
(HCP) ice grains. The dominant structure at
this scale consists of columnar grains that exhibit
a pronounced texture with c−axes of the HCP
single crystals in the horizontal plane and with
random orientations in this plane. As the HCP
ice crystals exhibit highly anisotropic viscoplas-
tic behavior, with ‘easy’ glide on basal planes and
‘hard’ slip on non-basal systems, this specific tex-
ture strongly influences the macroscopic response
at these length scales. Similarly, the elongated
intra-grain brine inclusions also strongly affect
the rheological response of sea ice.

In [2] and [S76,S92] a homogenization model
has been developed that accounts for the vis-
coplastic anisotropy of the crystal grains in sea
ice, the average shape, volume fraction φ, and
orientation of the brine inclusions, as well as the
crystallographic texture and average grain shape
and orientation. One crucial finding from these
models is that the viscoplastic response of intact
sea ice exhibits a nonlinear dilatational response,
which is due to the accommodation of overall

volumetric strain by concomitant changes in the
porosity. In addition, the hydrostatic nonlinear
viscosity of sea ice depends strongly on the poros-
ity and average pore shape – tending to decrease
with increasing porosity and aspect ratio.

Mushy layer theory and brine channels. As
thinner first-year ice becomes more prevalent in
the Arctic Ocean, replacing thicker, fresher, mul-
tiyear ice, we are led to consider sea ice with
higher porosity and greater susceptibility to in-
terstitial fluid flow. We then focus on brine trans-
port over the scale of the ice thickness (i.e. from
centimeter to meter scales) which is effectively
characterized using continuum models of flow
in reactive porous media [S47]. The resulting
fluid dynamics drives convective brine rejection
during winter ice growth, which controls surface
buoyancy fluxes across the polar oceans. Such
flows also provide chemical and nutrient trans-
port for biogeochemical systems [S111]. Because
the porous sea ice is reactive, salt transport in-
duces porosity variations that impact material
properties, such as the permeability variations
that impact formation of surface melt ponds
[S75]. These dynamics are also of intrinsic math-
ematical interest, featuring free-boundary evolu-
tion, nonlinear dynamics and pattern formation
in a multiscale continuum system that undergoes
a transient evolution through the relevant dy-
namical phase space. We refer the reader to [20]
and [S47,S123] for further details and references.

A widely applied continuum modeling ap-
proach treats sea ice as a mushy layer : a two-
phase, two-component reactive porous material
[S122,S24]. We consider phase-weighted dynam-
ics over representative volume elements contain-
ing many ice crystals and liquid brine pores, with
porosity φ, temperature T and phase-weighted
salinity S = Slφ + Ss(1 − φ) for liquid salinity
Sl and solid salinity Ss ≈ 0. The pore scale
microstructure is assumed to adjust sufficiently
rapidly to maintain local thermodynamic equilib-
rium, with local phase changes modifying the liq-
uid salinity so that the mixture lies at the freez-
ing temperature T = Tf (Sl). Conservation of
energy, salt, momentum and mass result in the
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following system of coupled PDEs,

ρcp
∂T

∂t
+ρlclu ·∇T = ∇·(k∗∇T )−ρsL

∂φ

∂t
(10)

∂

∂t
[Slφ] + u · ∇Sl = ∇ · (D∗∇Sl) (11)

∂

∂t
[ρlφ+ ρs(1− φ)] +∇ · (ρlu) = 0 (12)

ν

Π
u = −∇p+ ρg, (13)

where ρcp is the homogenized heat capacity (at
constant pressure), ρlcl is the heat capacity of
the liquid, k∗ is the effective thermal conductiv-
ity, ρs and ρl the solid and liquid densities, L the
latent heat, D∗(φ) the homogenized salt diffusiv-
ity, ν the dynamic viscosity and g gravitational
acceleration. The momentum equation (13) uses
Darcy’s law for flow in a porous medium, where
the averaged velocity field u depends on the
fluid permeability Π(φ), the pressure gradient,
and buoyancy forces depending on fluid density
ρ ≈ ρl (1− βSl) with haline coefficient β.

For u = 0, (10) – (11) can be used with ap-
propriate boundary conditions to solve a Stefan
problem for a diffusively growing ice layer with
vertical variation of the porosity φ. However, for
natural sea ice growth an unstable density gradi-
ent arises in the pore fluid, and a convective in-
stability can break the horizontal symmetry giv-
ing rise to brine channels [S122]. The convective
cells are modified by a flow-focusing feedback,
where downwelling brine dissolves the ice matrix,
increasing porosity and permeability. The non-
linear development focuses downflow into narrow
high porosity brine channels that eventually be-
come solid free, with wider regions of upwelling
and lower porosity in between [S122]. The re-
sulting brine channels evolve in space and time
as the ice grows, as shown in experiments re-
viewed in [20], and in numerical solutions of the
nonlinear system (10) – (13) illustrated in Fig.
5. The question then arises as to what controls
the wavelength of this pattern, and the resulting
brine channel spacing.

Linear stability analyses predict convective on-
set when the mushy-layer Rayleigh number R =
ρlgβ∆SΠ0h/κν exceeds a critical value [S122],

which occurs for large enough mushy-layer thick-
ness h. Here ∆S is a characteristic salinity differ-
ence, Π0 a representative permeability value and
κ the thermal diffusivity. Weakly nonlinear anal-
yses elucidate the pattern formation, and poten-
tial for oscillatory modes of instability [S1,S122].
However, the channel spacing coarsens over time,

f

1

Figure 5: Evolution of a convecting mushy layer
with porosity φ and dimensionless liquid-region
salinity S1 = (Sl − So)/(SE − So) where So is
ocean salinity and SE eutectic salinity. Simula-
tions use the enthalpy method in [15] for sea ice
growth in a 2-D Hele-Shaw cell of depth H.

and fully developed brine channels are solid free,
which represents a significant departure from the
background state. This requires a different ap-
proach that accounts for the nonlinearity. One
such approach uses enthalpy method simulations,
where the narrow brine channel widths promote
the effectiveness of Adaptive Mesh Refinement
[15]. Asymptotic models have also been devel-
oped to describe brine channel flow [S87], ex-
ploiting the slenderness of channel width a ver-
sus the mushy-layer thickness (a/h � 1). The
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asymptotically reduced channel description has
been coupled to numerical models of the remain-
ing mush [S120] and used in semi-analytic models
[S79].

For steady growth with a periodic array of
channels with imposed wavelength λ, the salt
fluxes from the mushy layer vary with the channel
spacing. The competition between neighboring
channels results in a saddle-node bifurcation with
flow shutting down as λ is decreased [S79,S118]
This is consistent with experiments of mushy-
layer growth with lateral confinement [S126]. For
unrestricted growth in wider domains, it has been
posed [S118] that the emergent wavelength in
this nonlinear dissipative system evolves to op-
timize the salt flux (and corresponding flux of
potential energy). This predicts that the chan-
nel spacing scales proportionally to the depth of
convective cells, and yields a solute flux consis-
tent with transient ice growth in lab experiments
[S119]. More detailed tests of the transient evo-
lution are awaited, but this approach has mo-
tivated parameterizations of fluid transport for
brine fluxes and biogeochemical systems [S123].

4 Mesoscale processes
Formation of leads and ridges. The Arctic
Ocean is surrounded by land and each fall sea wa-
ter freezes up to the land boundaries and fills the
Arctic basin with ice that lasts through the win-
ter. Near-shore ice melts in the spring and sum-
mer but (currently) ice remains in the high Arctic
year round. Motion of the ice is driven primar-
ily by wind and ocean currents, with wind being
the dominant force. As ice forms from frozen sea
water, it insulates the relatively warmer ocean (-
2◦C) from the colder atmosphere (-20◦C). When
the atmosphere is cold, water initially freezes
rapidly, but as the insulating layer of ice grows,
the freezing rate slows, as a basic Stefan model
shows. At thermodynamic equilibrium, the ice
would be about 1.5 m thick; however ice motion
and deformation alter ice thickness. Leads are ar-
eas of open water formed when currents or winds
pull or shear ice apart, and in winter form long,
narrow openings, meters to hundreds of meters
wide that can stretch hundreds of kilometers or

more in length [S22]. Leads occupy 1-2% of the
ice area but account for 70% of the ocean-air heat
flux [S56]. (Heat flux through ice is 2-5 Wm−2

compared with 300-500 Wm−2 through leads.)
Leads are of fundamental importance to Earth’s
heat budget, ice production, and navigation.

Figure 6: Left: Ridged Antarctic sea ice. Right:
A wide lead in Antarctic sea ice. (Golden)

Within a lead, rapid refreezing of the open wa-
ter creates thin ice. The crushing of the thinner
lead ice during convergent or shear flow, piles
blocks of ice onto the surface to form ridge sails
or forces the blocks under the surface to form
ridge keels. These prominent features of the Arc-
tic ice pack can reach roughly 30 m high. It is
estimated that half of the total Arctic ice volume
is in ridged ice [S112]. Bonds formed between the
ice blocks due to freezing, and refreezing of the
part under the water surface, turn sea ice ridges
into robust ice features. Ridge formation is a
mechanism that increases the volume of ice per
unit area. Both leads and pressure ridges are
usually narrow, long, localized features, often re-
ferred to as linear kinematic features [S53].

Ridges have variable properties and shapes
[S102,S97] which change throughout the season
[S55], but data has been difficult to obtain. Data
on block dimensions, keel and sail width and
area, mechanical properties, and internal struc-
ture such as degree of consolidation or porosity -
and the relationships between these properties -
are lacking. To fill the gaps, individual ridge for-
mation has been studied analytically using beam
theory [S73,S19], numerically using DEM, in ice
tank tests [S109], and through remote sensing via
satellites and upward-looking sonar mounted on
submarines.

A realistic representation of leads and ridges
in sea ice models could drastically increase the
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fidelity in large-scale general circulation models.
The opening and closing of open water areas in
leads affects ice production and ice mass balance,
vertical heat fluxes between the ocean and atmo-
sphere, and upper ocean salinity since brine is re-
jected as sea water freezes. Leads have an albedo
significantly lower than sea ice and thus increase
the local absorption of solar energy. Ridge sails
and keels change the atmosphere-ice and the ice-
ocean drag forces. Modeling corresponding ef-
fective drag coefficients involves complex homog-
enization problems. Ridges appear not only in
high Arctic regions, but also in areas where hu-
man activities are more prevalent. On the floe
scale, leads are areas where land and ice dwelling
animals feed, and where sea life or submarines
can surface. The design of off-shore structures
and ice-going vessels needs to account for possi-
ble loads imparted by ridging ice.

Floe size distribution. Viewed from a heli-
copter or satellite, the sea ice cover is a composite
material - a mosaic of individual pieces, known as
floes. Each individual floe may be identified with
two geometric parameters: its thickness and its
“size,” where size is a metric related to its hori-
zontal extent. Whereas ice thicknesses vary from
centimeters to meters, floe sizes vary from pan-
cakes centimeters across to swaths of connected
ice in winter, reaching over hundreds of kilome-
ters, on the scale of the entire Arctic basin.

Figure 7: Segmentation of a video image via
thresholding gives floe boundaries (red) in the
Antarctic marginal ice zone (T. Toyota, [S104]).

The significance of the shape and scale of sea
ice floes was recognized in a modeling context in
[S83], where a variety of different approaches to
compiling statistical information about floe sizes
was described. The “mean caliper diameter” 2rC
was defined as the average distance between two
parallel lines that touch a floe’s boundary but
do not intersect it. Though floes have irregular
shapes, the relation A = πr2C , where A is floe
area, was found to be accurate within 10%, and
therefore recent modeling efforts define a floe’s
size through the effective radius of an equivalent-
area circular disc [10], r ≡

√
A/π.

Consider an area A containing N floes with
areas Ai and radii ri. An area-based floe size
distribution (FSD) f(r) is defined analogously to
the ice thickness distribution g(h) as

f(r)dr =
1

A
∑
i∈Ri

Ai, (14)

where Ri = {i : ri ∈ [r, r + dr)}. The FSD is
therefore an area-weighted probability distribu-
tion function of floe size defined at any scale.

The FSD encodes information about the num-
ber of floes per unit area at each size N(r) =
f(r)/πr2, and the perimeter of floes per unit area
at each size P (r) = 2f(r)/r. Upon visual in-
spection, ice pack geometry exhibits self-similar
scale-invariant behavior. In [S83] and nearly all
subsequent observational studies, power law be-
havior for these distributions was adopted, such
as N(r) ∝ r−α, for r ∈ [r0,∞). The power-law
exponent α is directly analogous to a fractal di-
mension under the assumption that some scale-
invariant process generates the FSD, for exam-
ple sequential fragmentation [S104]. Note, how-
ever, that observed power law coefficients can be
produced by many different scale-dependent pro-
cesses [S45], and the analogy is not necessarily
appropriate in all cases. Constraints on α are
imposed by physical constraints: finite floe area
and finite or infinite floe perimeter.

The “power law hypothesis” has been sup-
ported in some observational studies, with dif-
ferent α observed in different size regimes
[S106,S104], though the general validity of this
hypothesis has seldom been tested. Studies of
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f(r) without straight lines in log-log space are
often interpreted as “double power law distribu-
tions” [S106]. The first Arctic-wide assessment of
the FSD using satellite altimetry showed limited
support for power-law tail behavior [S44]. Recent
meta-analyses of FSD observations [S39,S94] also
reveal a wide range of reported values of α
( ∼ between 0 and 4) and a lack of consistent
scale-invariant behavior. Still, there is clear util-
ity in parametric descriptions of the FSD.

Viewing the sea ice pack as a granular com-
posite material, floe size is analogous to grain
size in traditional continuum mechanics [S107].
Sea ice models that use a continuum viscous-
plastic rheology inherit a latent sub-grid scale
floe size distribution [9], [S105]. A critical in-
fluence on the FSD is coupling to ocean sur-
face waves. Waves directly alter the FSD, but
can then also indirectly influence ice thickness or
concentration, with fractured floes melting more
rapidly than larger ones. In 2009 an expedition
left a region of compact multi-year ice before a
storm [S3]. Returning 3 days later, the ice was
heavily fragmented, and had mostly melted. The
impact of floe size on melting has been codi-
fied [S125,S46,S80,S6], finding that wave-induced
fracture changes synoptic sea ice patterns by in-
creasing susceptibility to melting.

Most theoretical works have posited models for
power-law FSD behavior [S23,S104,S121,S124].
In analogy to the fragmentation of brittle me-
dia, power law distributions were hypothesized
using a “renormalization group” method [S104].
The fragmentation process assumes a floe of
perimeter P fractures into m equally-sized floes
of perimeter P/m with probability p. The se-
quential application of this process yields closed
form expressions for the number-size distribution
and exponent α, which require 0 < α < 2. How-
ever in many observational studies, α does not
lie within that range [S39,S94,S44]. Such scale-
invariant fragmentation may exist in the interior
Arctic, where sea ice is brittle, solid, and strongly
constrained by geometry - but in marginal seas
and in summer, sea ice is closer to free drift and it
fragments either because of thermal processes or
waves. A meta-analysis [S39] explored whether

the wide range of observed FSDs was better fit
by a Pareto distribution,

N(x) ∼ x−1−αec(1−α)/x (15)

where x = r/r is floe size scaled by the mean
observed size r, and c and α are unknown. Such
a functional form is the solution to a discrete-
time Langevin equation, with a prediction for α
[S39] as the representation of the dual processes
of floe breakup and growth.

A prognostic theory of FSD evolution built
from floe-floe interactions was developed in [10].
The FSD f evolves in time according to a partial
differential equation with stochastic terms,

Df

Dt
= LT + LM + LW , (16)

where LT includes thermodynamic effects, like
floe melting, growth, and welding; LM includes
mechanical effects such as rafting and ridge for-
mation; LW includes wave-ice interactions. Each
pair of individual processes and their relationship
to observations was evaluated in [S46]. Observed
multiscale distributions are produced as an emer-
gent feature [S80], implemented in climate mod-
els, and compare favorably to floe statistics from
altimetry in the marginal ice zone [S44].

Because modern large scale climate models
can’t resolve floes, further refinements in coupled
model grids may necessitate new approaches to
simulating sea ice. One is hybrid continuum-
discrete-element models that parameterize the
FSD where floes are small relative to the grid
scale, and resolve floes when they are large.

Surface wave propagation through the sea
ice pack. Ocean surface waves carry huge stores
of energy across the ocean, and can propagate
hundreds of kilometers into the sea ice pack.
They create a highly dynamic region known as
the marginal ice zone (MIZ), in which they break
up large floes into smaller floes, and promote for-
mation of pancake ice. Thus, waves influence
f(r) in the MIZ, giving it dynamic and thermo-
dynamic properties distinct from the inner pack.

With sea ice weakening and retreating in re-
sponse to rising temperatures, new regions of
the ocean surface are opening for wave genera-
tion [S101], waves are propagating farther into
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the pack, the ice is becoming more suscepti-
ble to wave impacts [S3], and waves are reach-
ing Antarctic ice shelves with potentially catas-
trophic consequences [S57]. This is driving inte-
gration of wave–ice processes into the next gener-
ation of global sea ice models. Accurate predic-
tions of wave propagation through the ice pack
are essential to empower predictions of the extent
and properties of the MIZ, where the primary
quantity of interest is the attenuation coefficient
γ(ω), which is the rate of exponential decay of
wave energy with distance travelled through the
MIZ, and depends on wave frequency ω as well
as the properties of the ice cover. In general, γ
increases with increasing ω, so that short waves
are filtered out close to the ice edge, and longer
waves propagate farther into the pack.

The first standard approach to model wave
propagation through the ice pack is based on
multiple scattering theory, analogous to light
scattering in the sky. It is used in the regime
where wavelengths are comparable to floe sizes.
The scattering model was initially developed in
the 1970s and 80s, alongside pioneering Arc-
tic field experiments [S113]. A wave is scat-
tered by each floe it encounters, due to the
impedance mismatch between open water and
ice covered water, with floes modeled as floating
elastic plates, so they flex in response to waves.
The scattered wave field interacts with surround-
ing floes, which re-scatter it, and so on, to cre-
ate a multiple scattering wave field, which, under
some simplifying assumptions, can be written as

η = ηinc +
∑
p,m

bm,p Hm(k rp) eimθp , (17)

where η is the ocean surface elevation, ηinc is
the incident wave elevation, p ∈ F is the set of
floes, Hm is the first-kind Hankel function of or-
der m ∈ Z, k(ω) is the open-water wave number,
(rp, θp) is the polar coordinate of a point on the
ocean surface from floe p, bm,p are the scattered-
wave amplitudes to be calculated, and harmonic
time dependence is implicitly assumed. Each in-
dividual floe has to be resolved in the model,
making direct computations extremely expensive
over the hundreds of kilometers that waves prop-
agate, and extracting the attenuation coefficient

from (17) is challenging. The original model was
2D (one depth dimension and one propagation
dimension), and used crude approximations for
scattering by an individual floe and multiple scat-
tering by many floes.

Mathematicians have given considerable atten-
tion to the scattering model since the 1990s, de-
veloping new methods for efficient computation
of attenuation rates. Some 30–40 years after the
model was initially proposed, we are at the point
where efficient techniques are available to solve
the scattering problem for an elastic floe of ar-
bitrary shape in three dimensions [S59,S7], and
solve the 3D multiple scattering problem for a full
sea of floes. The work in [14] is a milestone in
this field. It was the first to predict propagation
of directional wave spectra into an ice pack con-
sisting of 10,000 floes with a realistic FSD. The
final breakthrough was development of a slab-
clustering method, where the ice cover is divided
into computationally manageable groups (slabs),
and a recursive algorithm combines the groups.

The second standard approach is to model the
ice pack as a continuum with effective properties,
based on homogenization theory for composite
media, including an effective viscous dissipation.
It is valid in the long-wavelength regime, where
wavelengths are much greater than floe sizes—for
example, in pancake ice conditions. The contin-
uum model leads to a dispersion relation in wave
number κ and frequency ω,

(1 +Q(κ, ω)) g κ = ω2 (18)

in which Q encodes the effective properties, and
from which the attenuation rate is extracted as
γ = 2 Im(κ). An early model of this type [S115]
treated the ice pack as a viscous fluid floating on
the ocean surface. The full dispersion relation is
derived in [S50] along with asymptotics for the
wave number in certain limits.

Over the past decade, there has been a resur-
gence in continuum models, motivated by sub-
stantially improved measurements of waves in
the MIZ [S60,S100], which have predominantly
been in the long-wavelength regime. A viscous–
elastic continuum model [S114], which extends
the viscous layer models, has received consid-
erable attention. Effective parameters in these
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models have generally been fitted to experimen-
tal data, with varying success [S61]. However, in
[S84] a resolvent for the strain field like Eq. (6)
was used to obtain a Stieltjes integral and bounds
for the effective complex viscoelasticity of a two
phase composite of ice floes and sea water. Given
the viscoelasticities of the constituents, the floe
area fraction and geometry, the theory predicts
effective behavior that agrees with observations.

Laboratory experiments have revealed nonlin-
ear processes that affect propagation character-
istics [S8]. Most attention has been on overwash
phenomena, where waves break over the surface
of floes, generating turbulent bores that propa-
gate across the floe [S67]. A hyperbolic PDE sys-
tem for floe overwash has been proposed, using
linear theory for water around the floe, and the
nonlinear shallow water equations for the over-
wash [S91], which gives excellent agreement with
laboratory experiments. See [S93] for a recent
review of progress in wave–ice interactions.

Melt ponds on Arctic sea ice. A distinctive,
significant feature of the summer Arctic sea ice
cover is the extensive ponding, as shown in Fig-
ure 8. The water produced by melting snow and
ice collects on the surface forming melt ponds.
Ponds play a critical role in the evolution of the
sea ice cover. As surface reservoirs for freshwa-
ter, they can affect the thermohaline stratifica-
tion of the upper ocean. The greatest impact of
melt ponds is on the albedo of the sea ice cover.
Melt ponds are darker than bare ice, with albe-
dos that can range from 0.1 to 0.4 compared to
0.6 to 0.9 for bare and snow-covered ice. The
spatial coverage and albedo of ponds are highly
variable in space and time. The area covered by
ponds follows a seasonal cycle and also fluctu-
ates from day to day. Melt ponds are the most
intractable component of determining the sum-
mer albedo of Arctic sea ice. To understand the
evolution of summer ice albedo, you must under-
stand the evolution of melt ponds.

The first model of melt ponds derived from
physical principles was introduced in [S99]. This
was a one-dimensional model that treated the
sea ice as a mushy layer [S24] with or without
a snow cover, subject to a surface energy bal-

Figure 8: Melting Arctic sea ice (Perovich).

ance and ocean boundary conditions. The energy
balance equation in the sea ice takes the form of
nonlinear reactive diffusion equations in heat and
salinity with a body source term of absorbed ra-
diation. As the internal liquid fraction changes,
latent heat is released/absorbed and the brine
salinity alters. Radiation fluxes are calculated to
account for reflection, absorption, and scattering.
Surface melting generates a pond on top of the
ice, which reduces the albedo. Vertical drainage
of meltwater into the ocean is calculated using
Darcy’s law for flow in a porous medium.

While the melt pond model in [S99] describes
the vertical evolution of melt ponds, the quan-
tity of greater general interest to climate mod-
ellers is the melt pond area fraction, since this
largely determines the albedo of the sea ice sur-
face. A cellular automata model was introduced
in [S88] that split a sea ice floe into a checker-
board, with each cell of the grid comprising a
column of snow, ice, and melt pond of varying
heights. The one-dimensional model in [S99] was
applied in each cell, with melt water moving to
adjacent cells by flowing downhill at a rate cal-
culated from Darcy’s law. The model simulates
pond evolution, both vertically and horizontally,
over various types of sea ice surfaces, with results
in agreement with observations.

The above models helped provide a physical
understanding and predictive capability for melt
pond evolution on the scale of individual ponds
and sea ice floes, however they were (and are)
too complex to be directly incorporated into cli-
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mate models. To this aim, parameterizations of
melt ponds were developed in [S25,S26] which
have subsequently been incorporated into climate
sea ice models. Climate models do not represent
the topography of the sea ice surface, which is
a significant limitation for modeling melt ponds
since their evolution is to a large extent deter-
mined by meltwater flowing downhill. Climate
sea ice models do, however, contain a sea ice
thickness distribution function g(h,x, t). At each
time step, the melt water in a grid cell is calcu-
lated and ‘poured’ over the ice surface, with g(h)
serving as an adequate proxy for surface height.
The water covers the lowest ice first and then
higher/thicker categories. This procedure deter-
mines the area fraction of the melt ponds and
their depth on each ice thickness category.

The surface meltwater distribution model was
combined with models accounting for flushing of
meltwater through the ice (as in [S99]), conser-
vative advection of meltwater between grid cells,
and run-off of meltwater through cracks, to cre-
ate the melt pond parameterization [S25,S26].
Despite its simplicity, atmosphere-forced simula-
tions of sea ice using this parameterization pro-
duce pond fractions in accordance with observa-
tions, and demonstrate how important it is to
account for melt ponds in long term sea ice pre-
dictions [5]. The impact of melt ponds on sea ice
mass balance is significant and mostly driven by
their impact on surface albedo. Moreover, it was
found that knowing pond area fraction enables
skilful predictions of the summer minimum sea
ice extent up to 3 months in advance [16].

In another line of inquiry, melt pond geometry
has recently been investigated. It was found from
area-perimeter data that (see the photos in Figs.
8 and 9) as the ponds grow and coalesce, they
display a transition in fractal geometry, evolving
from simple shapes into complex, self-similar re-
gions whose boundaries behave like space-filling
curves [S42]. The fractal dimension of the bound-
ary curves transitions from 1 to about 2 around a
critical area of 100 m2. These findings constrain
the geometry of melt pond evolution, provide a
check on numerical simulations, and help quan-
tify the mechanisms of pond growth impacted by

the area-perimeter relationship, such as lateral
heat transfer.

Figure 9: Ising model simulation on the left; melt
pond photo on the right (Perovich).

Continuum percolation models of melt pond
evolution that display the observed fractal tran-
sition have been developed. In the random sur-
face model [S11], a melt pond boundary is the
intersection of a surface representing the snow
topography with a horizontal plane representing
the water level. As the plane rises the ponds
grow and coalesce. Snow topography data are
used to generate random Fourier surfaces with
realistic ponds, and a framework to analyze how
pond geometry depends on topography. In the
void model [S77], disks of varying size which rep-
resent ice are placed randomly on the plane, with
the voids between them representing the ponds.
Data on pond sizes and correlations are incorpo-
rated into the model, yielding observed behavior.

Finally, the Ising model, originally developed
100 years ago to explain ferromagnetism has been
adapted to predict melt pond geometry [12],
[S36]. We envision a square lattice of surface
patches or pixels of melt water or ice that in-
teract only with their nearest neighbors. The
lattice spacing, as determined by snow topogra-
phy data, is the only measured parameter input
into the model. Minimization of the melt pond
Ising Hamiltonian via Glauber spin flip dynamics
drives the system from an initially random state
toward realistic pond configurations (see Fig. 9),
which are local energy minima, or metastable
states. The model captures the essential mech-
anism of pattern formation of melt ponds, with
predictions that agree very closely with observed
pond size scaling and fractal transition.
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5 Large scale sea ice models
Sea ice rheology. A given sea ice floe may be
a relatively uniform ice sheet, as might be typi-
cal for relatively young ice, but is more often a
refrozen patchwork of smaller pieces formed at
various times which has undergone in-plane and
out-of-plane failure. In-plane failure results in
cracks, along which ice floes grind in lateral mo-
tion. Out-of-plane failure results first in break
up of the ice into blocks under bending failure,
followed by the pile up of blocks into the air
and ocean to form pressure ridges and keels, re-
spectively. Given this spatial and temporal het-
erogeneity, formulation of an effective relation-
ship between the sea ice stress tensor σij and the
large-scale deformation of the ice cover, i.e. the
sea ice rheology, is a challenging problem that
remains an active research topic.

While early models of sea ice rheology made
assumptions such as treating sea ice as a viscous
fluid, the study of rheology was transformed dur-
ing the Arctic Ice Dynamics Joint Experiment
(AIDJEX) of the 1970s, which led to the AID-
JEX sea ice model [S18]. The chief advance of the
AIDJEX model – rheologically – was to treat sea
ice as an elastic-plastic material. The strongest
argument for a plastic model is that local events
such as ridging and lead formation occur sporad-
ically and irreversibly, as though a critical stress
state in the ice had been reached.

The case for an elastic (sub-critical) response
can be argued physically in a dense pack, where
thick floes are wedged together so that as sub-
yield stresses are applied there can be only elas-
tic deformations. In [9], the plastic approach was
adopted but the elastic sub-yield behavior was re-
placed with viscous behavior, which avoids track-
ing an evolving unload configuration from which
to measure strain. Hibler’s version of this rheol-
ogy, the Viscous-Plastic (VP) rheology, continues
to be in widespread use today.

In [S18] and [9], and most subsequent large
scale modeling efforts, sea ice is considered to be
isotropic. While sea ice can exhibit rheological
anisotropy in the horizontal plane under various
conditions, the assumption of isotropy, on av-
erage, over sufficiently large scales was deemed

reasonable [9]. In recent years this assump-
tion has been questioned with observations of
large scale oriented lead patterns in Arctic sea
ice and associated anisotropic models [4]. How-
ever, isotropy was and remains a useful simpli-
fying feature for modeling. Under this assump-
tion, the plastic yield surface reduces to a yield
curve in the plane of the principal stresses σ1
and σ2 or, equivalently, through the stress in-
variants σI ≡ 1

2
(σ1 +σ2) = negative pressure and

σII ≡ 1
2
(−σ1+σ2) = maximum shear stress. The

yield criterion is written as

F (σI , σII ; scalars) = 0, (19)

where F is the yield function, defining a family
of yield curves in the (σI , σII)−plane as the scalar
properties of the ice vary. For isotropic materials,
F is symmetric about σII = 0.

When the stress state lies on the yield curve,
irreversible plastic deformation occurs. The yield
potential is identified with the plastic potential
and an associated normal flow law is adopted,

ε̇pk = λ
∂F

∂σk
|F=0 , k = I, II, (20)

where ε̇pk is the plastic strain rate and λ is a posi-
tive scalar which is determined as part of the so-
lution of the equations. This flow rule has been
used in almost all models of sea ice dynamics. It
has been successfully applied to granular mate-
rials such as soils, and gives satisfactory perfor-
mance (within the limits of experimental error
and parameter tuning) in sea ice simulations.

The viscous and rigid/plastic behavior can be
represented using a nonlinearly viscous (or vis-
coplastic) model for an isotropic material,

σij = 2ηε̇ij + [ζ − η]ε̇kkδij − Pδij/2, (21)

where P is a pressure term, characteristic of
the ice strength. The functions ζ(ε̇ij;P ) and
η(ε̇ij;P ) (traditionally referred to as bulk and
shear viscosities in fluid dynamics) depend upon
the strain rate (symmetric part of the velocity
deformation tensor) ε̇ij and P so as to ensure
that for typical strain rates the normal plastic
flow law applies and the stress state lies on the
yield curve. The shape of the yield curve is cho-
sen to agree with the expected behavior of sea
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ice – that it should be weak in tension, strong in
shear and strongest in compression.

For almost 30 years since the VP rheology was
introduced, work has focused on constraining the
shape of the yield curve or creating numerically
efficient algorithms for practical use. Most no-
table is the Elastic-Viscous-Plastic (EVP) rheol-
ogy [11], which introduced an artificial elasticity
that permits explicit numerical methods to be
employed. The EVP rheology is used in many
climate models today.

Work on constraining the shape of the yield
curve and flow rule has followed two main ap-
proaches: homogenization or scale invariance.
The homogenization approach attempts to calcu-
late what would be the rheology of a homogenous
material with the same aggregate properties as
the unresolved (sub-grid scale, ≈ 50km× 50km)
region of heterogenous ice types and open wa-
ter [S82]. Scale invariance asserts that the ma-
terial rheology measured in the lab is fundamen-
tally the same as the rheology of a grid-scale re-
gion and is of a Mohr-Coulombic character, e.g.
[S107]. More details may be found in [4].

Aside from the huge theoretical convenience of
the assumption of isotropy, the most compelling
argument cited in its favor is that on length scales
of 100 km and greater, the distribution of leads
appears to be nearly isotropic so that a mean-
field rheology is isotropic. However, increasing
evidence has shown that lead orientation, at least
in the central pack, has a marked bimodality
with the leads defining diamond-shaped floe ag-
gregates, e.g. [S41,S86,S17]. While a number
of approaches have been taken to simulate or pa-
rameterize the impact of the observed anisotropy
of leads on sea ice rheology, there are currently
three main strands of modeling, as follows.

The Elastic Decohesive model introduced to
sea ice in [S85] explicitly simulates the formation
of a crack or lead. The Elastic Brittle rheology,
e.g. [S20], assumes an elastic sub-failure response
and a Coulombic failure criterion, with a new
scalar damage parameter. When a grid cell fails,
the elastic modulus is reduced, leading to local
strain softening. Because of the long-range inter-
actions within the elastic medium, local drops in

the elastic modulus redistribute stress that can in
turn induce damage. By this process, avalanches
of damage events can occur, simulating the prop-
agation of leads. The Elastic Anisotropic Plas-
tic rheology also introduces a damage parameter,
the anisotropic structure tensor, that gives the
orientation of existing cracks within an element,
and the mean stress is calculated as a function
of crack orientation. In its most recent formula-
tion [S108], the cracks are assumed to delineate
diamond shaped floes/floe aggregates, motivated
from observations.

As numerical resolution in sea ice models has
increased, and as better observations of sea ice
thickness and deformation become available from
satellite imagery, e.g. CryoSat-2 and IceSat-2,
interest in fine scale simulation, e.g. ≈ 10 km, of
sea ice deformation has increased. This is help-
ing motivate further work on developing realistic,
and verifiable, models of sea ice rheology.

Large scale numerical models. Most large-
scale sea ice physical processes are reasonably
well understood and represented in numerical cli-
mate models. For example, the first detailed
thermodynamic description appeared almost 50
years ago [13]. Likewise, a relatively simple ap-
proach for sea ice dynamics is 40 years old [9].
They were too computationally expensive to be
incorporated in numerical models at the time,
but have now been implemented in most GCMs.
These thermodynamic and dynamic models cap-
ture the first-order behavior of sea ice in the cli-
mate system. Model development now follows
two paths, both addressing higher-order effects:
(1) more precise descriptions of key processes and
characteristics such as microstructure evolution,
anisotropy, and rheology, and (2) model exten-
sions for “Earth system” simulations, e.g. by in-
cluding biological and chemical species.

Modern sea ice models still use one-
dimensional thermodynamic parameterizations,
because the thermodynamic processes are still
primarily vertical in nature. Most early sea ice
models neglected thickness variations within a
grid cell, but many models now include ice thick-
ness distributions. As mentioned above, a floe
size distribution is now being added to large-scale
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sea ice models, driven by thermodynamic growth
and melting along with wave interactions.

In addition to the basic equations presented
above for momentum, internal stress, and ther-
modynamics, numerical sea ice models also in-
clude detailed representations of radiative bal-
ance, surface characteristics and evolution (snow,
snow-ice, melt ponds, albedo), ice strength, hor-
izontal transport and ridging. Some models now
incorporate detailed descriptions of key players
in the sea ice ecosystem, such as algae. These
models must also interact with the other com-
ponents of the Earth system, namely the atmo-
sphere, ocean and their ecosystems. These inter-
actions are often tightly coupled. For instance,
downwelling longwave radiation from clouds is
a primary driver of sea ice surface temperature,
which in turn determines upwelling longwave ra-
diation, heating the overlying atmosphere and
changing the cloud cover. Sea ice model devel-
opment is best performed in a coupled modeling
environment that includes such feedbacks.

Wind stress is arguably the primary forcing
mechanism for the ice motion, although the ice-
ocean stress, Coriolis force, and slope of the
ocean surface are also important. Coupling be-
tween sea ice models and atmospheric models or
data generally employs a quadratic form for the
wind stress and for the ice-ocean stress term at
the bottom of the ice. For ridging, modern mod-
els use an energy based description of mechanical
redistribution that converts thinner ice to thicker
ice under convergence and shear.

Sea ice albedo is critical for the global heat
balance, and can be an effective “tuning knob”
to produce a realistic simulation of sea ice ex-
tent. Simple, easily tunable albedo parameter-
izations specify four albedo values: cold snow;
warm, melting snow; cold, bare ice; and warm,
melting ice, while others use more complex for-
mulations that take into account the ice and snow
thickness, spectral band, and other parameters.
Solar radiation may be distributed within the ice
column assuming exponential decay (Beer’s Law)
or via multiple-scattering radiative transfer, in
which absorptive effects of melt ponds and inclu-
sions such as dust and algae can be simulated.

Sea ice is quite heterogeneous, mostly because
of its salt content. In many coupled models, a
fixed value of sea ice salinity is used at the ice-
ocean interface, but internally the value can vary
in time, or the model assumes a variable salinity
profile that is constant in time. Newer thermo-
dynamic approaches treat sea ice as a “mushy”
layer of brine and ice [S24], parameterizing its
desalination as it first grows and then transitions
from first year to multiyear ice. Prognostic rep-
resentation of sea ice salinity and microstructure
is critical for detailed sea ice ecosystem models,
which depend on the permeability of the ice to
allow flushing of the brine network by seawater,
which carries nutrients into the ice and in turn
seeds algal blooms in the ocean.

Melt water collects in depressions on the sur-
face of the ice and can drain through brine chan-
nels when the ice becomes warm and permeable.
By cleaning the ice of salt, nutrients, and other
inclusions, this flushing mechanism can affect the
albedo, conductivity, and biogeochemical pro-
cesses and thereby play a role in climate change.
The simplest pond scheme doesn’t track melt wa-
ter, but rather decreases ice surface albedo under
warm, melting conditions. As discussed above,
other methods track pond area and volume for
each ice thickness category, to capture the radia-
tive effect of melt ponds. More advanced pond
schemes that simulate their hydrological influ-
ence, such as the delay of internal ice cooling as
ponds refreeze in the fall, are under development.

Data assimilation. Sea ice models have de-
veloped to a degree that key features of the sea
ice cover such as leads, ridges and melt ponds,
can be registered in the model output. As this
model capacity evolves, we can hope to be able
to predict with some accuracy where and when
such features may occur. Nevertheless, the best
numerical models may go astray after even pos-
sibly short periods of time. This model drift is
mitigated by the incorporation of data from ob-
servations into the modeling process. This is typ-
ically done in two ways: (1) update the state of
the system in model runs as observational data
becomes available, and (2) learn parameter val-
ues from observational data. The first is known
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as state estimation and is carried out in real time,
while the second process, called parameter esti-
mation, is often achieved offline with the use of
high resolution or more detailed models; both fit
under the banner of Data Assimilation (DA) [1].

There are three main perspectives on DA, each
having historical origin in one of: optimization,
statistics, or control theory. The variational
method balances observational data and model
output through optimizing an appropriate cost
function. In its time-dependent form, known as
4D Var, it is the basis of most schemes used in
weather forecasting today. Nevertheless, most
recent developments in DA methods have em-
ployed a statistical (Bayesian), a control theo-
retic (Kalman Filter based) approach, or a mix-
ture of both. The key in these approaches is
generating an ensemble of possible realizations of
the process by considering slightly different ini-
tial conditions, parameters or both. This ensem-
ble of outputs is then used as a basis for a covari-
ance in the Kalman Filter approach, or a prior
probability distribution in a Bayesian method.
Sea ice presents a number of interesting math-
ematical challenges to DA, with more complex
models than those of the atmosphere and ocean
because they account for ice material properties.
The available data are both more varied and less
direct. Synthetic-aperture radar data could po-
tentially increase a model’s fidelity to the loca-
tion of features such as ridges and ponds.

Next generation models, such as neXtSIM
[S78] and MPM-Ice [S98] have two novel fea-
tures: they use rheologies not present in models
currently incorporated into larger climate mod-
els, and more complicated computational solvers
that include a Lagrangian aspect which affords a
better accounting for the ice movement and the
formation of localized features, and, at least in
the case of neXtSIM, adaptive remeshing. Re-
cent progress has been made on the development
of a scheme tailored to adaptive remeshing [S5].
For any computational scheme, the formation of
ridges and leads poses a challenge as current DA
technology can break down in the presence of
sharp transitions in space or time.

6 Low order models
While large scale numerical sea ice models have
increased in complexity over time as more phys-
ical processes are accounted for, an alternative
approach to studying sea ice and climate takes
another path. This approach considers relatively
simple mathematical models of key phenomena
based on low order dynamical systems and dif-
ferential equations, that capture essential physics
and provide insight into complex behavior, yet
are more tractable than large numerical models.

Ice-albedo feedback. We consider a simple
picture of the influence of the ice-albedo feed-
back, which can give rise to instability, and ap-
proximate the mean surface temperature T of
the Arctic region using a balance between in-
coming and outgoing energy fluxes, illustrated
in Fig. 10a. Energy balance can be written as
c dT
dt

= Ein − Eout, where c is the effective heat
capacity [S49]. Then

c
dT

dt
= (1− α)S +H − ε σ T 4, (22)

where S = 180 W/m2 is the annual mean inci-
dent solar radiation in the Arctic region; α(T )
is the albedo, modeled to have high reflectivity
(0.6) for cold temperatures T ≤ −10◦C and a
lower value (0.3) for warmer temperatures T ≥
10◦C, with linear interpolation in between; and
H = 90 W/m2 is the heat which enters the Arc-
tic through poleward heat transport in the at-
mosphere. The Earth emits electromagnetic ra-
diation to space with a radiant flux given by the
Stefan-Boltzmann law, ε σ T 4, with σ the Stefan-
Boltzmann constant. Due to the greenhouse at-
mosphere of the Earth, the effective emissivity is
ε = 0.61. Ein and Eout in Eq. (22) are plotted
in Fig. 10b, showing three possible steady-state
solutions. One has a cold ice-covered Arctic, an-
other has a warm ice-free Arctic. These two sta-
ble solutions are separated by an unstable one.

An increase in atmospheric greenhouse gas
concentrations can be represented in this frame-
work by reducing the effective emissivity ε. Vary-
ing this causes the red line in Fig. 10b to be
scaled vertically, leading to two saddle-node bi-
furcations which are shown in Fig. 10c.
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Figure 10: Simple model of how the ice-albedo feedback affects Arctic climate. (a) The main energy
fluxes in the Arctic. (b) Ein (yellow) and Eout (red) in the energy balance as a function of T . Where
both curves meet represent stable and unstable fixed points, which are indicated by filled and open
circles, respectively. (c) Bifurcation diagram for the temperature as a function of the effective
emissivity ε. Increasing concentrations of atmospheric greenhouse gases cause a reduction in ε.

Variations of this simple idea have deep roots
in climate science, going back more than a cen-
tury [19], [S68,S49], and there has been renewed
interest in recent years due to the rapid Arctic
sea ice retreat. However, a range of factors com-
plicate the picture. First, there are spatial vari-
ations in the climate system, and the heat trans-
port (H) into the Arctic depends interactively
on the spatial gradient in temperature. Energy
balance models (EBMs) were developed a half
century ago [S12,S90] to explore such questions.
They represent the annual zonal-mean surface
temperature as a function of latitude under so-
lar forcing, the ice-albedo feedback, and horizon-
tal atmospheric heat transport via surface tem-
perature diffusion. These models have multiple
steady states, similar to Fig. 10c (see [S68]).

Second, seasonal variations can be represented
by varying S in Eq. (22) over the course of the
year. In this case the thermodynamics of sea ice
growth and melt become relevant. Recent work
used bifurcation theory to show that in a sea-
sonally varying model that includes an idealized
representation of the ice-albedo feedback, an un-
stable solution bracketed by saddle-node bifurca-
tions occurs, similar to Fig. 10c [3].

Recently, the effect of including both spatial
variations and the seasonal cycle was explored us-
ing an idealized model that simulates the surface
temperature and thickness of sea ice as a func-
tion of latitude and time [19]. The strength of the
seasonal cycle and the horizontal heat transport
are varied, and both factors have strong stabi-
lizing effects. Including both causes the ice to

always be stable in climates with the ice edge in
midlatitudes or farther poleward, removing the
bifurcations and instabilities previously encoun-
tered. Hence for Arctic sea ice covers resembling
modern conditions and future sea ice reductions,
this study found that no bifurcation should be
expected to occur due to the ice-albedo feedback.

Sea ice concentration field. Low order models
can provide idealized sea ice concentration fields
ψ useful in data analysis applications. For a re-
gion G, the simplest model is perhaps Laplace’s
equation, ∆ψ = 0, using observations on ∂G
as Dirichlet boundary conditions. The ideal-
ized ψ solves a steady-state heat equation, so is
smoother than the actual field subjected to dy-
namic and thermodynamic forcing.

a. b. c.

Figure 11: (a) Laplace equation solution in the
MIZ for 29 August 2010 [S95]. (b,c) Filling the
polar data gap with an idealized concentration
field for 20 June 2013 [17].

As an example application, ψ provides an ide-
alized sea ice concentration field within the MIZ,
which is the transition region between dense po-
lar pack ice and the open ocean at lower lat-
itudes (Figure 11a). The width of this highly
dynamic zone is a fundamental length scale for
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polar physical and biological processes, and has
increased 39% in the Arctic melt season over the
past several decades [S96,S95]. The MIZ is in
general not geodesically convex, but its width
can be objectively defined as the arclength of
streamlines through ψ (black curves, Figure 11a).
This arclength-based width is objective, unique
at each point, and invariant with respect to ro-
tation, translation, and coordinate system.

The idealized field ψ has also been applied
to fill in regions where satellite observations are
missing or systematically unavailable, such as the
polar data gap (Fig. 11b). The fill is written

f(θ, φ) = ψ(θ, φ) + w(θ, φ), (23)

where θ is longitude and φ is latitude, and w is
a stochastic term providing realistic spatial het-
erogeneity (Fig. 11c). Boundary conditions for ψ
are sea ice concentrations observed on the bound-
ary of the region being filled. The statistical
properties of w are determined from variations
in the actual ψ around the missing data region.

Conclusions and future challenges. The sea
ice covers of the polar oceans are in transition
and transitions provide challenges to modeling.
A few decades ago the Arctic Ocean was pre-
dominantly ice covered throughout the summer.
At present it is partially ice covered with large
year to year variability in the amount, and the
location, of summer ice. Model projections in-
dicate that a few decades from now the Arctic
Ocean will likely be predominantly ice free in
summer. The receding ice cover has generated
increased human activity that requires improve-
ments in forecasts and modeling capabilities.

The complex multiscale nature of the sea ice
system presents fundamental challenges in ap-
plied mathematics and computation. Homog-
enization theory and techniques of statistical
physics for computing macroscopic behavior have
been central to advancing mathematical model-
ing of sea ice. Given the stochastic nature of the
sea ice system, sea ice models are often cast in
a probabilistic framework, which also provides a
robust set of tools to assimilate the vast amounts
of data available from air- and space-borne plat-
forms, as well as large polar expeditions such as

MOSAiC. Methods of dynamical systems and bi-
furcation theory have been successful in framing
and analyzing qualitative questions about tran-
sitional behavior and pattern formation. Finally,
substantial effort over the past 50 years has gone
into, and continues to go into, developing large
scale numerical models that can predict sea ice
behavior well into the future. Further develop-
ment of the components of global climate mod-
els will need advances in high performance com-
puting and learning from data, numerical tech-
niques for solving large systems of coupled PDE,
and mathematical methods to account for the mi-
croscale in macroscale behavior.
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[77] P. Popović, B. B. Cael, M. Silber, and D. S. Abbot. Simple rules govern the patterns of
Arctic sea ice melt ponds. Phys. Rev. Lett., 120(14):148701, 2018.
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