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SEA  ICE  covers 7 - 10% of earth's ocean surface
boundary between ocean and atmosphere

indicator and agent of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  
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polar ice caps critical to global climate 
 in reflecting incoming solar radiation
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              absorb
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the summer Arctic sea ice pack is melting

1979 - 2000
    average

National Snow and Ice Data Center



September 2012   --   3.4 million square kilometers
September 1980   --   7.8 million square kilometers

NORWAY

GREENLAND

ALASKA

SIBERIA

Change in Arctic Sea Ice Extent

Perovich
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2012

ice-albedo
feedback



Stroeve et al., GRL, 2007
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Arctic sea ice decline  -  faster than predicted by climate models

IPCC AR4 
  Models

Perovich



represent sea ice more rigorously in climate models

challenge

incorporate key processes

fundamental problem -- linkage of scales

sub-grid scale processes



brine inclusions polycrystals
mm cm

brine channels
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pancake ice
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sea ice displays multiscale structure over 10 orders of magnitude
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1. Fluid �ow through sea ice  -  percolation
     
    
2. Electromagnetic monitoring of sea ice
 

3. Fractal geometry of Arctic melt ponds    

What is this talk about?

Using the mathematics of composite materials and statistical physics to study 
  sea ice structures and processes ... to improve projections of climate change.

homogenzation for larger scale structures

homogenzation for composite materials

tour through random matrices describing sea ice structures



thin silver �lm Arctic melt ponds

optical properties

(Davis, McKenzie, McPhedran, 1991)

microns kilometers

composite geometry -- area fraction of phases, connectedness, necks

(Perovich, 2005)

0.4 microns



sea  ice  microphysics

�uid transport



- drainage of brine and melt water 

- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

linkage of scales
2

- Antarctic surface �ooding 
   and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 



Darcy’s Law
pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity

example of homogenization

mathematics for analyzing e�ective behavior of heterogeneous systems

 e.g. transport properties of composites - electrical conductivity, thermal conductivity, etc.



σ σ σ1 2

HOMOGENIZATION
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

     e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable



Why is the rule of �ves true?



p = 1/3 p = 2/3

impermeable permeable

percolation theory
mathematical theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability p
closed with probability 1-p

�rst appearance of in�nite cluster

bond

“tipping point” for connectivity



correlation length

(p) ~ξ |          | − ν

(characteristic scale of connectedness)

p − pc

order parameters in percolation theory

10 ppc

ξ

10 ppc

e�ective conductivity
 or �uid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

(1 < t < 2,  Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992)

geometry transport



R

R

m

p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



-15 C,  = 0.033° -3 C,  = 0.143° -6 C,  = 0.075°

8 x 8 x 2  mm

brine connectivity (over cm scale)

X-ray tomography confirms percolation threshold
3-D images
pores and throats

3-D graph 
nodes and edges

analyze graph connectivity as function of temperature and sample size

φφ φ

use �nite size scaling techniques to con�rm rule of �ves

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009

order parameter data from a natural material 



The key connectivity functions of percolation theory have been computed 
      extensively for many lattice models, but NOT for natural materials.

We have calculated them for sea ice single crystals 
 and estimated anisotropic percolation thresholds.

Pringle,  Miner,  Eicken,  Golden,   JGR (Oceans)  2009
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k ( ) = k 2
0

 k   = 3 x 100
-8

m2

lattice and continuum percolation theories yield: 
 critical
exponent

exponent is UNIVERSAL lattice value                  

critical path analysis -- developed for electronic hopping
conduction -- yields scaling factor  k 0

sedimentary rocks like sandstones also exhibit universality

t

~~t 2.0

φ φ − 0.05(               )
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x  =  log(     )

y = log k

theory :

statistical best fit:

y = 2 x - 7.5

y = 2.07 x - 7.45

φ − 0.05



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )



ocean swells propagating through a vast �eld of pancake ice 

HOMOGENIZATION: long wave sees an e�ective medium, not individual �oes



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/

complex s-plane

0 1



Stieltjes integral representation

complex s-plane

0 1

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

/

separation of geometry         from parameters

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase



inverse bounds and 
recovery of brine porosity

forward and inverse bounds for sea ice
forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data

Im(ε  )*

Re(ε  )*

T = -14  C
φ = 0.015
q = 0.97

r
ri

b

q = r  / r   

0 < q < 1

b i

3 3.5

0.5

0
Golden 1995, 1997

polycrystalline bounds
two-scale homogenization
Gully, Lin, Cherkaev, Golden, 2014
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin



Quasi-static limit of Maxwell’s equations

Mathematical Formulation of the e�ective parameter problem 
for polycrystalline media

Uniaxial polycrystalline media

Random rotation matrix

A direct analog of the proof given by Golden and Papanicolaou for two-component composites 
yields an integral representaion for the  e�ective permittivity tensor       involving a spectral measure 
of a random matrix

D ε

ε
ε ε ε

D

ε

ε
ε

*



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2014



Spectral analysis of multiscale sea ice structures

homogenization for brine inclusions, melt ponds, and sea ice pack

how to upscale information on “microstructure” 

numerical computation of spectral measure  µ



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  Γχ  becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of Γχ
     with (length)    =   α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

2
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Spectral Measures for Sea Ice Structures:  Brine Inclusions
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spectral measures for the Arctic sea ice pack

area under curve = φ = open water fraction
spectral gap closes as ocean phase becomes connected

µ
µ

                   spectral measures provide a path toward rigorously incorporating 
“composite microstructure” into calculations of e�ective behavior on larger scales
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N. B. Murphy, K. M. Golden 2014

eigenvalue statistics for transport tend toward the UNIVERSAL 
Wigner-Dyson distribution as the “conducting” phase becomes 
connected over large scales

random matrix characterization of connectedness transition  --  discretization of  χΓχ 

Unfolded Eigenvalue Spacing Distribution

uncorrelated                        “level repulsion”
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Phase Transition
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Spectra
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Transitions in Eigenvalue Correlations

Eigenvalue Spacing Distribution Eigenvalue Spacing Distribution
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Spectral computations for Arctic sea ice pack
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Spectral measures for uniaxial polycrystalline media
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spectral data for isotropic 2-D polycrystalline materials

Murphy, Cherkaev, Golden

spectral measurespectral density

eigenvalue spacings long range correlations
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(a) young healthy trabecular bone (b) old osteoporotic trabecular bone

bone volume fraction = 0.54
porosity = 0.46

bone volume fraction = 0.24
porosity = 0.76
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!

reconstruction of spectral 
  measures from complex 
         permittivity data

using regularized 
inversion scheme

+

EM monitoring 
of osteoporosis

    loss of bone 
    connectivity



0 0.2 0.4 0.6 0.8 1
0
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µ(λ)

young bone

old bone

       reconstruction of spectral measures 
from simulated complex permittivity data

Golden, Murphy, Cherkaev,  J. Biomech.  2011

regularized inversion scheme



Masters, 1989

advection enhanced di�usion

e�ective di�usivity

tracers, buoys di�using in ocean eddies
  di�usion of pollutants in atmosphere
        salt and heat transport in ocean

homogenize

e�ective di�usivity

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

Stieltjes integral for         with spectral measure
Avellaneda and Majda, PRL 89, CMP 91 Murphy, Zhu, Golden 2014

analytic function
of Peclet number



Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

= Peclet number
/

composites advection di�usion

Golden and Papanicolaou, CMP 1983

computations of spectral measures and 
e�ective di�usivity for model �ows          

rigorous bounds and computations 
on convection enhanced thermal 
conductivity of sea ice

xy

0

00
0

0

stream function streamlines

antisymmetric vector potential
e�ective di�usivities

1
20
40

80
60

0        2        4        6         8      10

100

1
20
40

80
60

0        2        4        6         8      10

100

 

 

 

 

SimulationSimulation

Murphy, Zhu, Golden 2014

Wang, Liu, Zhu, Golden 2014



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK

Arctic and Antarctic �eld experiments



measuring 
�uid permeability 
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Gully, Lubbers, Sampson, Tison 2014
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SIPEX II
Percolation Theory

SIPEX II  vertical permeability data

data above threshold

    higher threshold in granular ice predicted with 
percolation theory by Golden, et al. (Science, 1998)

not con�rmed experimentally until SIPEX I (2007) and SIPEX II (2012)

same universal
critical exponent
as lattice models
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Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2014

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

cross-borehole
  tomography

cross-borehole tomography - electrical classi�cation of sea ice layers 



Frey

melt ponds on the surface of Arctic sea ice



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



S. Lovejoy, Science, 1982 

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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simple pond transitional pond complex pond

data from 
5269 Arctic
melt ponds

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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transition in the fractal dimension
complexity grows with length scale

compute “derivative” of area - perimeter data



                    small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation



4 August 2005, Healy–Oden Trans Arctic Expedition (HOTRAX)

map melt pond con�gurations onto resistor networks
              compute horizontal �uid permeability

Barjatia, Song, Tasdizen, Golden  2014



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              (Isichenko, Rev. Mod. Phys., 1992)

(Brady Bowen and Ken Golden, 2013)



simple stochastic growth model of melt pond evolution

Rebecca Nickerson (West HS, Salt Lake City) and Ken Golden 

a square is more likely to melt 
if its neighbors have melted

log(A)
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“melt ponds” are clusters of magnetic spins that align with the applied �eld

Ma, Sudakov, Golden 2014
(Thekkedath, Alali, Strong, Golden)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice         (spin down)

water     (spin up)

pond coveragemagnetization
(M + 1)

2
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Minimize an Ising Hamiltonian  
random magnetic �eld represents the initial ice topography
interaction term represents horizontal heat transfer
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Minimize an Ising Hamiltonian  
random magnetic �eld represents the initial ice topography
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Conclusions

1. Summer Arctic sea ice is melting rapidly.

2. Fluid �ow through sea ice mediates many processes of importance to 
     understanding climate change and the response of polar ecosystems.

3. Mathematics of composite materials, statistical physics and dynamical 
     systems help us understand sea ice,  and suggest rigorous frameworks 
     for representing sea ice in climate models .

4. Random matrices arise naturally and frequently in sea ice studies. 

5. This research will help to improve projections of climate change 
     and the fate of Earth’s sea ice packs and their ecosystems.
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