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SEA ICE covers ~12% of Earth's ocean surface

e boundary between ocean and atmosphere

e mediates exchange of heat, gases, momentum
e global ocean circulation

e hostsrich ecosystem
e indicator of climate change



polar ice caps critical to global climate
in reflecting incoming solar radiation

white snow and ice
reflect

dark water and land
absorb

reflected sunlight
albedo Ol =

incident sunlight



ice extent (million square km)

the summer Arctic sea ice pack is melting
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Arctic sea ice extent September 15, 2020
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recent losses
in comparison to
the United States

Perovich




thicker multiyear ice being replaced by thinner first year ice

Winter 2004 Winter 2008
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ice extent (million square km)

Predicting what may come next
requires lots of math modeling.
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Basics of climate modeling
and planetary warming

Earthrise December 24, 1968 William Anders NASA



The components of Earth’s Climate System

Cryosphere:
polar ice-caps
sea-ice
permafrost
seasonal snow cover
mountain glaciers

Geosphere:
(ETals

Hydrosphere:
oceans
lakes

rivers
Biosphere:

ecosystems

Atmosphere:
air




LY Evidence of a Changing Climate

Intergovernmental Panel on Climate Change (IPCC):
Warming is “unequivocal”
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Global mean surface temp

Global mean sea level

Northern Hemisphere snow
cover (March-April)

Dots: yearly average
Curve: decadal average
Blue: uncertainty interval
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Mean Global Temperature over the past 2000 years
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Earth’s energy balance

Ein E out
incoming shortwave radiation outgoing longwave radiation
sunlight heat

if £,,; > E;, planetcools

if £, < E,;, planetwarms



albedo of Earth’s surface

average albedo ~ 0.3

Marshall and Plumb 2008



Energy Balance Model

dl’
C =L, — FEo
dt t

T C = heat capacity

. . = energy needed to
rate of change with time of raise temperature

mean global temperature by one Kelvin



Basics of global warming date back to the 1800’s

1. Jean Baptiste Joseph Fourier (1768-1830), French
mathematician and natural philosopher, did
groundbreaking work in mathematics and the theory
of heat. He was the first to propose that the Earth's
atmosphere acts to raise the planet's temperature.

“As a dam built across a river causes a local deepening

of the stream, so our atmosphere, thrown as a barrier

across the terrestrial rays, produces a local heightening
of the temperature at the Earth’s surface.”

HEAT EQUATION . here t heat .
FOURIER SERIES atmosphere traps heat escaping

from Earth - acts like a greenhouse

Fourier, 1827



2. 1861 John Tyndall discovers in his laboratory that certain gases - water vapor and CO2
are opaque to heat rays. He understood that such gases high in the air help keep
our planet warm by interfering with escaping radiation.

3. 1896 Svante Arrhenius (1903 Nobel Prize in Chemistry) proposed:
relationship between atmospheric CO2 concentrations and temperature;

global warming may result from fossil fuel combustion (burning coal).

He and Thomas Chamberlin calculated that human activities could

warm the earth by adding carbon dioxide to the atmosphere.

In a nutshell:

Scientific basis of CO2 greenhouse effect was given by Tyndall (1861); while the
first extensive calculations of its magnitude were made by Arrhenius (1896).



CO2 Concentration (ppm)

Laesco,reing A1 4 71 ppm

Carbon dioxide concentratlon at Mauna Loa Observatory
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CO Concentration (ppm)

Lasco,reing A1 4 71 ppm

Ice—core data before 1958. Mauna Loa data after 1958
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CO2 Concentration (ppm)
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Global Climate Models

climate fueled by the nonuniform spatial
distribution of incoming solar radiation.

Stute et al., PNAS 2001

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
{Height or Pressure) |~

Climate models are systems of
, - - partial differential equations (PDE)
Physical Processes in a Model . .
i derived from the basic laws of
physics, chemistry, and fluid motion.

ATMOSPHERE

P T 1

They describe the state of the ocean, land, ice
atmosphere, biosphere, and their interactions.

The equations are solved on 3-dimensional grids
of the air-ice-ocean-land system (with horizontal
grid size ~ 100 km), using very powerful computers.

key challenge:

incorporating sub - grid scale processes

linking scales

Randall et al., 2002



Human influence dominant

Global Mean Temperature Change
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* We cannot explain observed warming without including effects
of anthropogenic greenhouse gas emissions

* Observed temperature curve reproduced reasonably well only
when taking into consideration all forcing factors



Why is sea level rising?

(melting sea ice does not directly impact rising sea level)
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Sea level change
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As Earth’s climate warms, why does sea level rise?

. Recent Sea Level Rise 130
23 Annual Tide Gauge Records —_
= Three Year Average 125 g
= Satellite Altimetry ) . |20 o
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e melting land ice: Antarctica, Greenland, mountain glaciers
(if all melted : 70 m or ~230 ft of sea level rise)

e thermal expansion of warming ocean

British

accounts for about 25% of rise in last half of 20th century, rate ~ tripled in 21st century o
sies

® continental rebound

rise of land masses that were depressed by the huge weight of ice sheets

The interaction of warm waters with the periphery of the large ice sheets represents
one of the most significant possibilities for abrupt change in the climate sysytem.

no coupling yet of ice sheets and ocean in climate models - no feedback effects
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tipping points in the mainstream

Increasing emphasis in recent years on idea of climate tipping points,
with September Arctic sea ice cover receiving much of the attention.

The

MaLcoLM

GLADWELL

NATIONAL FBESTSHLLER

ETROCTETION BY

TIPPING POINT

How Little®QThings Can
Make a BigoDifference

NEWS FEATURE

SPECIAL REPORT GLOBAL WARMING

BE
WORRIED.

HOW IT THREATENS YOUR HEALTH

HOW CHINA & INDIA CAN HELP
SAVE THE WORLD—OR DESTROY IT

THE CLIMATE CRUSADERS

Melting of the Greenland ice sheet

Melting of the West Antarctic ice sheet

Permafrost and tundra loss, leading to the release of methane
Formation of Atlantic deep water near the Arcticocean  eee

Lenton, et al., PNAS 2008



opposite “pole” from GCM’s
active area of mathematical research on sea ice:

Has Arctic sea ice loss passed through a “tipping point”?

an irreversible downward slide to ice-free Arctic summers, driven by ice-albedo feedback

Eisenman, Wettlaufer, PNAS 2009 : analyze a single nonlinear differential
equation for the energy in the upper ocean

look for “bifurcations” in solutions

- unlikely in current loss of summer ice
- more likely in further loss of winter ice

Abbot, Silber, Pierrehumbert, JGR 2011 : bifurcations when include clouds and ice loss

low order (toy) model of Arctic climate change

Lorenz butterfly dynamical systems



Arctic sea ice decline:
faster than predicted by climate models

Stroeve et al., GRL, 2007

September ice extent Stroeve et al., GRL, 2012
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challenge:

Represent sea ice more realistically in
climate models to improve projections.

Howdopatternsof  Account for key processes
dark and light evolve?
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&% e.g. meltpond evolution

Including PONDS in simulations LOWERS
predicted sea ice volume over time by 40%.

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

... and other sub-grid scale structures and processes.

linkage of scales



Sea lce is a Multiscale Composite Material

microscale
brine inclusions polycrystals

A W ; P D. Cole K. Golden
Weeks & Assur 1969 H. Eicken - R A ey
Golden et al. GRL 2007 Gully et al. Proc. Roy. Soc. A 2015
millimeters centimeters
mesoscale macroscale
Arctic melt ponds Antarctic pressure ridges sea ice floes sea ice pack

K. Frey K. Golden J. Weller NASA

meters kilometers



HOMOGENIZATION for Composite Materials

FORWARD
G, G, ’/\ G " effective
N\ L conductivity
"o,
: 0 Q‘ ... 0 .. ' ... ' 0 homogeneous
- WOaeh .0. y| LINKING medium of
0: 0 ..0 ' i ' 0 ‘.0... SCALES conductivity
00 00 g 0 ©
MICROSCALE U MACROSCALE
INVERSE

Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

MODELING
SEA ICE

microscale

v

mesoscale

v

macroscale



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

Inputs, Ingredients

COMPOSITE MATERIALS

electrical engineering,
stealth technology O

MODELING
SEA ICE

porous media,
oil extraction

— )
microscale

statistical mechanics —_—
of ferromagnets

mesoscale

Anderson localization, —> macroscale

semiconductor physics

random matrix theory

differential equations



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

Inputs, Ingredients Outputs, Impacts

COMPOSITE MATERIALS
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stealth technology ~

CLIMATE MODELING

sea ice physics

— & biology
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polycrystals
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microscale
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Anderson localization, —3— macroscale = advection diffusion
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differential equations \ polar microbial ecology



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

Inputs, Ingredients Outputs, Impacts

COMPOSITE MATERIALS

electrical engineering,
stealth technology ~

CLIMATE MODELING

sea ice physics

— & biology

composites,
polycrystals

MODELING
SEA ICE

porous media,
oil extraction >

statistical mechanics —_—
of ferromagnets

Anderson localization, —F
semiconductor physics

microscale

mesoscale — remote sensing

macroscale . advection diffusion

~-. biomedical imaging,

random matrix theory biomaterials, EPS

differential equations \ polar microbial ecology

Physics of sea ice drives advances in many areas of science and engineering.



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

Inputs, Ingredients Outputs, Impacts

COMPOSITE MATERIALS

electrical engineering,
stealth technology ~

CLIMATE MODELING

sea ice physics

— & biology

porous media, composites,

— Hinyi—>
oil extraction 5 p O , n t o polycrystals
statistical mechanics (o magnets , remote sensing
of ferromagnets 6 radar absorbers
Anderson localization, —F human bone P~ advection diffusion

rat brains

MODELING
SEA ICE

semiconductor physics . biomedical imaging,

biomaterials, EPS

random matrix theory

differential equations \ polar microbial ecology

Physics of sea ice drives advances in many areas of science and engineering.



How do scales
interact in the
sea ice system?

km
scale
melt
ponds

mm
scale
brine
inclusions

NASA

/ Linking Scales

Linking ? Scales

basin scale -

grid scale
albedo

N

Perovich

meter

scale

snow
topography



sea ice formation










sea ice dynamics
plate tectonics on a fast time scale




leads

heat flows directly from ocean to atmosphere



sea ice microphysics

fluid transport



sea ice may appear to be a
barren, impermeable cap ...



100 microns R. Obbard

brine inclusions in sea ice (mm) micro - brine channel (SEM)

brine channels (cm)

seaiceisa
porous composite

pure ice with brine, air, and salt inclusions

horizontal section vertical section



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

C.Haas

K. Golden

Antarctic surface flooding

September - evolution of salinity profiles
show-ice

estimates - ocean-ice-air exchanges of heat, CO,

0 25 50 75 100
percent snow ice

T. Maksym and T. Markus, 2008



sea ice ecosystem

sea ice algae
support life in the polar oceans



brine volume fraction and connectivity increase with temperature

T=-15°C, $=0.033 T=-6°C, $=0.075 T=-3°C, $=0.143

T=-8°C, ¢$=0.057 T=-4°C, ¢=0.113

X-ray tomography for brine in sea ice Golden et al., Geophysical Research Letters, 2007



Critical behavior of fluid transport in sea ice

impermeable  permeable

“"1 off ! on °
Arctic fielddata | o
vertical fluid : 2x10" | ° “on - off” switch
ility k : .
permeability k (m )mow : for fluid flow
5 og -
0 L——ooqpoda—oy | l |
0.05 0.10 0.15 0.20 0.25
* brine volume fraction ¢
0,

critical brine volume fraction ¢, ~ 5% <€ T, = -5°C, § = 5 ppt

Golden, Ackley, Lytle Science 1998

R U L E 0 F F IV E S Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009



nutrient replenishment
controlled by ice permeability

biological activity turns on
or off according to
rule of fives

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

sea ice algal
communities

D. Thomas 2004

critical behavior of microbial activity

—

/

Convection-fueled algae bloom
Ice Station Weddell



percolation theory

probabilistic theory of connectedness

impermeable permeable
[ ] -
— | . \open
- I_I__ | cluster ——>
B _
1 |
p=1/3 p=2/3

open with probability p
closed with probability 1-p

percolation threshold
p.=1/2 for d=2

smallest p for which there is an infinite open cluster



Continuum percolation model for stealthy materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data on ice production and algal growth

dc = 5%  Golden, Ackley, Lytle, Science, 1998

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

sea ice compressed radar absorbing
powder composite

seaice is radar absorbing



Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton’, Miner, Pringle, Zhu, Geophysical Research Letters 2007

percolation theory

Geophysical for fluid permeability
Research 2 N critical
Letters k(d)) - kO ( (I) o 005 ) exponent
Volume 34 Number 16 t

merican Geophysical Union '8
sy ko =3x10" mw’

from critical path analysis
in hopping conduction

hierarchical model
rock physics

network model

rigorous bounds

X-ray tomography for

microscale | rdy | :
brine inclusions
governs
confirms rule of fives
mesoscale
processes Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009
melt pond
evolution

A unified approach to understanding permeability in sea ice » Solving the rg\@l:;ry of .9 ' e theo rieS ag ree CIOSEIy

booming sand dunes = Entering into the “greenhouse century’: A case study fr'um"B'wit_iBrI;hd'

. with field data




Sea ice algae secrete extracellular polymeric substances (EPS)

affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?

[1}]

Krembs

-15°C
IJ
stained EPS )‘_
, (¥

\

T 005F

® 2D random pipe model with bimodal distribution of pipe radii

® Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden
Multiscale Modeling and Simulation, 2018

RANDOM
PIPE
MODEL

\
/

Zhu, Jabini, Golden,
Eicken, Morris
Ann. Glac. 2006



measuring
fluid permeability
of Antarctic seaice

SIPEX 2007



tracers flowing through inverted sea ice blocks



Arctic and Antarctic field experiments

develop electromagnetic methods
of monitoring fluid transport and
microstructural transitions

extensive measurements of fluid and
electrical transport properties of sea ice:

2007
2010
2011
2012
2012
2013
2014

Antarctic SIPEX

Antarctic McMurdo Sound
Arctic Barrow AK
Arctic Barrow AK
Antarctic SIPEXII

Arctic Barrow AK
Arctic Chukchi Sea



mesoscale



fractals

self-similar structure
non-integer dimension




the sea ice pack is a fractal

ing self-similar structure on many scales

display

N

tant

ion impor

floe size distribut

)

INg
bigger floes easier to break, smaller floes easier to melt

(melt

ICS

(fracture), thermodynam

ICS

dynam

A

]

o

=y \
vy B 4
,i wa Y
' ; RO o4
¢ , ¥



Self-similarity of sea ice floes

Weddell Sea, Antarctica
2006

Takenobu Toyota




melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



fractal curves in the plane

they wiggle so much that their dimension is >1

simple curves Koch snowflake space filling curves

Peano curve

Brownian
motion

D=1 D=1.26 D=2






30th Congressional District, Texas, 1991-1996




clouds exhibit fractal behavior from 1 to 1000 km

use perimeter-area data to find that
cloud and rain boundaries are fractals

D = 1.35

S. Lovejoy, Science, 1982

simple shapes

A=L°

P=4L=4VA

P~VA

for fractals with
dimension D

PvA

D=1.52..



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
c
o
2 2]
c _
@
k=
o
©
i)
)
s 1
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10° 10" 10° 10 100 10
Area (m?)
n ‘gv

~30m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



Saddle Points, Morse Theory and the Fractal Geometry of Melt Ponds
Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2021

As ponds coalesce at saddle points, fractal dimension proxy
isoperimetric quotient P?/4rA jumps, driving the transition.

topography



Saddle Points, Morse Theory and the Fractal Geometry of Melt Ponds
Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2021

snow '
topography

| Ryleigh Moore
o Department of Mathematics
University of Utah

Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAIC)

MOSAIC School aboard the icebreaker RV Akademik Federov

20 grad students from around the world
(3 from U.S., 1 mathematician)




Ising Model for a Ferromagnet

. spin down  white
urie pomt

critical temperature
applied :—HE S; —JE S;Si
magnetic T H ! J

field <1,7>

nearest nelghbor Ising Hamiltonian
, 1

ML H) = Jim & <Zsj>

j

effective magnetization



Ising Model for a Ferromagnet

\ ) fﬂ W o +1 spinup blue
T "7 1 -1 spindown  wahite

Curie point
applied :—HE S; —JE ;S i
i T H ‘ J

critical temperature
magnetic
field <1,7>

nearest neighbor Ising Hamiltonian

islandsof  Pr . .*
like spins . g . 1
N B vrm= g Ly

E...'-.i'._l-.': e j

o effective magnetization

energy is lowered when nearby spins align
with each other, forming magnetic domains

rnagnetic domains  eit ponds (Perovich) magneticdomains  melt ponds (Perovich)
in cobalt in cobalt-iron-boron



Ising model for ferromagnets —3> Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys., 2019

al al 4 1 water (spinup) random magnetic field
H = — zZ:H@ s; —J <ZZ;> Si8; S = { * 1 ice  (spindow) represents snow topography
magnetization M pond area fraction > _ (M+1) only nearest neighbor
~ albedo 2 patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized
by Glauber spin flip dynamics, system “flows” toward metastable equilibria.

Order from Disorder



Ising model for ferromagnets —3> Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys., 2019

ZH S; —J Z SiS;

<%,7>

4 1 water (spinup) random magnetic field
- §o represents snow topography

ice (spin down)

magnetization M pond area fraction > _ (M+1) only nearest neighbor
~ albedo 2 patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized
by Glauber spin flip dynamics, system “flows” toward metastable equilibria.

Order from Disorder
. .r.- ?

*-w:w

pond size
distribution exponent

observed
(Q( Yz Ml MY e ¥ N4 Observed -1.5
" A L € sy, AV . s (Perovich, et al. 2002)
i v ] model -1.58
ﬁ;‘ TPReE AAR S 1010 10710° 10
,..J_' S i et A (m?) -
Ising melt pond Scientific American
EOS, PhysicsWorld, ...

model photo (perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data



. Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

WINDOWS

Perovich

Have we crossed into a
new ecological regime?

The frequency and extent of sub-ice
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, lams, Schroeder,
Flocco, Feltham, Science Advances 2017

no bloom bloom The effect of melt pond geometry on the distribution
of solar energy under first year sea ice
massive under-ice algal bloom Horvat, Flocco, Rees Jones, Roach, Golden

Geophys. Res. Lett. 2019

Arrigo et al., Science 2012
(2015 AMS MRCQ)



macroscale



Marginal |Ce Zone ® biologically active region

|V||Z ® intense ocean-sea ice-atmosphere interactions

@ region of significant wave-ice interactions

transitional region between
dense interior pack (¢ > 80%)
sparse outer fringes (c < 15%)

MiZ WIDTH How to objectively

fundgmental Igngth scale of. measure the “width”
ecological and climate dynamics .
of this complex,

Strong, Climate Dynamics 2012 : 9
non-convexregion:

Strong and Rigor, GRL 2013



Objective method for measuring MIZ width
motivated by medical imaging and diagnostics

Strong, Climate Dynamics 2012 39% widening
Strong and Rigor, GRL 2013 1979 -2012

streamlines of a solution

" o . to Laplace’s equation
average” lengths of streamlines /

4x107°

%1072

%1073

%1073

crossection of the
Arctic Marginal Ice Zone cerebral cortex of a rodent brain

analysis of different MIZ WIDTH definitions

Strong, Foster, Cherkaev, Eisenman, Golden
J. Atmos. Oceanic Tech. 2017

Strong and Golden
Society for Industrial and Applied Mathematics News, April 2017



Filling the polar data gap with hole in satellite coverage
partial differential equations of sea ice concentration field

previously assumed
ice covered

Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007

0 0.5 1 0 0.5 1 0 0.5 1

Ay=0 fill with harmonic function satisfying
satellite BC’s plus stochastic term

, NOAA/NSIDC Sea Ice Concentration CDR
Strong and Golden, Remote Sensing 2016 .
Strong and Golden, SIAM News 2017 product update will use our PDE method.




Who cares if
Arctic sea ice
disappears?
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Use of sea ice as a platform
« Walrus life cycle tied to sea-ice cycle
* Ice floes as diving platforms for feeding over shallow shelf

Photo: Marc Webber, US Fish & Wildlife Service BMCM Tim Su”ivgfg




* The Arctic
holds 25% of
the world’s
undiscovered oll
& gas reserves

e« Sea ice is both
a hazard and a

supporting
feature for
hydrocarbon
exploration &
production

oil companies care about Arctic sea ice loss




changes in precipitation and
temperature patterns, storm tracks, ...

® One climate model projects reduced
precipitation in American West
(Sewall & Sloan, 2005)
Utah - greatest snow on Earth?

NS LT T e Analysis of 2007 ice minimum suggests
above normal snow deposition in

Orsolinietal., 2011 . L.
NW North America (Orsolini et al., 2011)

e (Colder weather in SE Asia, possibly
in Eastern US (Hondo et al., 2009)



Conclusions

1. Seaice is a fascinating multiscale composite with structure
similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the
theory of composites and other areas of science and engineering.

3. Homogenization and statistical physics help link scales in sea ice
and composites; provide rigorous methods for finding effective
behavior; advance sea ice representations in climate models.

4. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.



University of Utah Sea Ice Modeling Group (2017-2021)

Senior Personnel: Ken Golden, Distinguished Professor of Mathematics
Elena Cherkaev, Professor of Mathematics
Court Strong, Associate Professor of Atmospheric Sciences
Ben Murphy, Adjunct Assistant Professor of Mathematics

Postdoctoral Researchers: Noa Kraitzman (now at ANU), Jody Reimer

Graduate Students: Kyle Steffen (now at UT Austin with Clint Dawson)
Christian Sampson (now at UNC Chapel Hill with Chris Jones)
Huy Dinh (now a sea ice MURI Postdoc at NYU/Courant)
Rebecca Hardenbrook
David Morison (Physics Department)
Ryleigh Moore
Delaney Mosier
Daniel Hallman

Undergraduate Students: Kenzie McLean, Jacqueline Cinella Rich,
Dane Gollero, Samir Suthar, Anna Hyde,
Kitsel Lusted, Ruby Bowers, Kimball Johnston,
Jerry Zhang, Nash Ward, David Gluckman

High School Students: Jeremiah Chapman, Titus Quah, Dylan Webb

Sea Ice Ecology Group Postdoc Jody Reimer, Grad Student Julie Sherman,
Undergraduates Kayla Stewart, Nicole Forrester



HANK YOU

Australian Government

Department of the Environment y :
P and Water Resources ANTARCTIC CLIMATE ’ Antarctica New Zealand
& ECOSYSTEMS

Australian Antarctic Division COOPERATIVE RESEARCH CENTRE

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999



Sydney Morning Herald
23 July, 1998

2:45 am July 22,1998

“Please don’t be alarmed but we

have an uncontrolled fire in the
engine room ...."

about 10 minutes later ...

“Please don’t be alarmed but

we're lowering the lifeboats ...."

14
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Special Issue on the
Mathematics of Planet Earth

Read about the application of mathematics and computational
science to issues concerning invasive populations, Arctic sea ice,
insect flight, and more in this Planet Earth special issue!
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Figure 3. Comparison of real Arctic melt ponds with metastable equilibria in our melt
pond Ising model. 3a. Ising model simulation. 3b. Real melt pond photo. Figure 3a cour-
tesy of Yiping Ma, 3b courtesy of Donald Perovich.

Vast labyrinthine ponds on the surface of melting Arctic sea ice are key play-
ers in the polar climate system and upper ocean ecology. Researchers have
adapted the Ising model, which was originally developed to understand mag-
netic materials, to study the geometry of meltwater’s distribution over the sea
ice surface. In an article on page 5, Kenneth Golden, Yiping Ma, Courtenay
Strong, and Ivan Sudakov explore model predictions.

Controlling Invasive
Populations in Rivers

By Yu Jin and Suzanne Lenhart

low regimes can change significant-

ly over time and space and strongly
impact all levels of river biodiversity, from
the individual to the ecosystem. Invasive
species in rivers—such as bighead and
silver carp, as well as quagga and zebra
mussels—continue to cause damage.
Management of these species may include
targeted adjustment of flow rates in rivers,
based on recent research that examines the
effects of river morphology and water flow
on rivers’ ecological statuses. While many
previous methodologies rely on habitat suit-
ability models or oversimplification of the
hydrodynamics, few studies have focused
on the integration of ecological dynamics
into water flow assessments.

Earlier work yielded a hybrid modeling
approach that directly links river hydrology
with stream population models [3]. The
hybrid model’s hydrodynamic component
is based on the water depth in a gradu-
ally varying river structure. The model
derives the steady advective flow from this
structure and relates it to flow features like
water discharge, depth, velocity, cross-

sectional area, bottom roughness, bottom
slope, and gravitational acceleration. This
approach facilitates both theoretical under-
standing and the generation of quantitative
predictions, thus providing a way for scien-
tists to analyze the effects of river fluctua-
tions on population processes.

When a population spreads longitudinally
in a one-dimensional (1D) river with spatial
heterogeneities in habitat and temporal fluc-
tuations in discharge, the resulting hydrody-
namic population model is

N

N,=—A(x,1) At

+

(M

See Invasive Populations on page 4
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Modeling Resource Demands and Constraints
for COVID-19 Intervention Strategies

By Erin C.S. Acquesta, Walt Beyeler,
Pat Finley, Katherine Klise, Monear
Makvandi, and Emma Stanislawski

As the world desperately attempts to
control the spread of COVID-19, the
need for a model that accounts for realistic
trade-offs between time, resources, and cor-
responding epidemiological implications is
apparent. Some early mathematical models
of the outbreak compared trade-offs for
non-pharmaceutical interventions [3], while
others derived the necessary level of test
coverage for case-based interventions [4]
and demonstrated the value of prioritized
testing for close contacts [7].

Isolated analyses provide valuable
insights, but real-world intervention strate-
gies are interconnected. Contact tracing is the
lynchpin of infection control [6] and forms
the basis of prioritized testing. Therefore,
quantifying the effectiveness of contact trac-
ing is crucial to understanding the real-life
implications of disease control strategies.

Contact Tracing Demands

Contact tracers are skilled, culturally
competent interviewers who apply their
knowledge of disease and risk factors when
notifying people who have come into con-
tact with COVID-19-infected individuals.
They also continue to monitor the situation
after case investigations [1].

Case investigation consists of four steps:
1. Identify and notify cases
2. Interview cases
3. Locate and notify contacts
4. Monitor contacts.

Most health departments are implement-
ing case investigation, contact identifica-
tion, and quarantine to disrupt COVID-
19 transmission. The timeliness of contact
tracing is constrained by the length of the
infectious period, the turn-around time for
testing and result reporting, and the abil-
ity to successfully reach and interview
patients and their contacts. The European
Centre for Disease Prevention and Control
approximates that contact tracers spend one
to two hours conducting an interview [2].
Estimates regarding the timelines of other
steps are limited to subject matter expert
elicitation and can vary based on cases’
access to phone service or willingness to
participate in interviews.

Bounded Exponential

The fundamental structure of our model
follows traditional susceptible-exposed-
infected-recovered (SEIR) compartmental
modeling [5]. We add an asymptomatic
population A, a hospitalized population H,
and disease-related deaths D, as well as
corresponding quarantine states. We define
the states {S,E,A,[,H,R D} _,
our compartments, such that ¢=0 and z_l

= .

Quarantine States

Figure 1. Disease state diagram for the compartmental infectious disease model. Figure

courtesy of the authors.

correspond to unquarantined and quaran-
tined respectively. Rather than focus on the
dynamics that are associated with the state
transition diagram in Figure 1, we introduce
a formulation for the real-time demands
on contact tracers’ time as a function of
infection prevalence, while also respecting
constraints on resources.

When the work that is required to inves-
tigate new cases and monitor existing con-
tacts exceeds available resources, a backlog
develops. To simulate this backlog, we
introduce a new compartment C' for track-
ing the dynamic states of cases:

dC =[flow, ] —[flow,].

Flow into the backlog compartment, repre-
sented by [flow, |, reflects case identifica-
tion that is associated with the following
transitions in the model:

— The rate of random testing:

0.,(DA, ()= A (1) and g, (),(1) — I,(0)

- Testlng trlggered by contact tracing:
0,04, <t>ﬂA o), qu< >1 <t>~fl< )
and q,, (t)E,(t) —{A(1)

— The populatlon that was missed by
the non-pharmaceutical interventions that
require hospitalization: 7, (t)1,(t) — H(t).

Here, qr*(t) defines the time-dependent
rate of random testing, ¢,.(t) signifies the
time-dependent rate of testing that is trig-
gered by contact tracing, and T, is the
inverse of the expected amount of time for
which an infected individual is symptomatic
before hospitalization. These terms collec-
tively provide the simulated number of
newly-identified positive COVID-19 cases.
However, we also need the average number
of contacts per case. We thus define func-
tion K(x,T,,¢,_) that depends on the aver-
age number of contacts a day (x), the aver-
age number of days for which an individual
is infectious before going into isolation
(T,), and the likelihood that the individual

See COVID-19 Intervention on page 3



