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A self-similar model for sedimentary rocks with
application to the dielectric constant of fused glass beads

P. N. Sen+, C. Scala+, and M. H. Coheni

ABSTRACT

We develop a theory for dielectric response of water-
saturated rocks based on a realistic model of the pore space.
The absence of a percolation threshold manifest in Archie’s
law. porecasts, electron-micrographs, and general theories
of formation of detrital sedimentary rocks indicates that the
pore spaces within such rocks remain interconnected to very
low values of the porosity &. In the simplest geometric
model for which the conducting paths remain inter-
connected, each grain is envisioned to be coated with water.
The dielectric constant of the assembly of water-coated
grains is obtained by a self-consistent effective medium
theory. In the dec limit, this gives Maxwell's relation for
conductivity o of the rock o = 20,¢/(3 ~ &), where
o, is the conductivity of water. In order to inciude the local
environmental effects around a grain, a scll-similar model
is generated by envisioning that each rock grain itself 13
coated with a skin made of other coated spheres; the coating
at each leve! consists of other coated spheres. The self-
consistent complex dielectric constant €* is given in this
model in terms of that of water £} and of rock £%. by
[ter — e*j/iet ~ ex)]ler/e*]'® = & for spherical
particies. This gives, in the dc limit, o = 0,43
For ponspherical particles. the cxponent m in Archie’s
law o = &7 is greater than 3/2 for the plate-like grains
or cylinders with axis perpendicular to the external field
and smalfer than 3/2 for plates er cylindrical particles with
axis parallel to the external field. Artificial rocks with a
wide range of porosities were made from glass beads. We
present data on the glass bead rocks for dc conductivity and
the dielectric constant at 1.1 GHz. The data follow the con-
ductivity and the dielectric responses given by the self-
similar model. The present theory fails to explain the salinity
dependence of e* at lower frequencies.

INTRODUCTION

We study here the dielectric and conducting properties of water-
saturated rocks. The real and imaginary parts of the dielectric
constant £ and &" and the de conductivity o appear in Maxwell's
equations orly as a combination, in the form of an effective di-

electric constant £*(w) = € (w) + i[e"(w) + o/egw] Hore w
is the circular frequency and &g is the permittivity of free space.
The real and imaginary parts of £% are related by the Kramers-
Kromig relationship {Landuu and Lifshitz. 1960), We compute
£* as a function of frequency from the de to GHz range based on
a simple realistic mede] of pore space, i.c.. the same geometric
mode] and theory is used to predict both the de conductivity o and
the high-frequency dielectric constant £’ (w) of the rock.

In the next scction, we review the shortcomings of the existing
models and theories, leading 10 a realistic model for pore geometry.
In general (sce Ziman, 1979). the macroscopic properties of a
composite material, containing phases with very different physical
propertics. depend not only on the volume fractions of the con-
stituents. but arc extremely sensitive to the geometry and topelogy
of the boundary surfaces between the phases. The parameters of
typical boundary surfaces in & mixture are not related in any simple
way to the lowest order. point distribution functions for the con-
stituents, so that the mathematical problem of calculating the
overall properties of the system is very ill-posed (Ziman. 1979y,

Nevertheless, many rocks show some “mean’” behavior. For
example., most of the rocks obey Archie’s law {equation (1) below]
which relates mean conductivity to the mean porasity alone (with
some vague information about cementation contained in the ex-
ponent). This mean behavior has prompted us to seek out same
mean universal features in the rock such that its propertics can be
explored znalytically in some detail. In the section ~'Dielectric
response in a self-similar model.” we develop the theory of the
complex dielectric response of a rock bascd eon a simple. realistic
geometric model that guarantees the continuity of the warter-filled
pore space. We show that the exponent m in cquation (1) depends
upen grain shape.

In order to understand dielectric propertics of rocks better, we
have done experiments with fused glass beads. The beads provide
a clean system in which porosity. grain size. ctc.. can be con-
trolied. In the section *"Experimental results on fused ghass beads
and rocks.”” we present the measurements made in our laboratory
at the ¢ and 1.1 GHz. The agreement befween theory developed
with our data and the high-frequency data of Poley ot 3l t1978;
{for frequencies f > 0.5 GHz) is remarkably good. A limited
amount of data available on anisotropic grain agrees well with the
shape-dependence of m prediction here,

In many rocks, the real part of the diclectric constant increases
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by several orders of magnitude as the frequency is lowered from
the high megahertz range toward the de value (see for example,
Poley, 1978, and Keller, 1971}, The magnitude of £ incroases
generally with salinity of water. In the Discussion, we point out
deficiencies of the simple model presented here and a few possible
mechanisms that may explain the salinity, and also frequency
dependences and high values of €',

REVIEW OF CURRENT DATA AND MODELS

We review the conductivity and diclectric data and theories be-
hind them. We also review some geologic features of the pore
space. We review briefly the very general theories of conduction
in inhomogencous media known as percolation theories. On the
basis of these theories and other (geologic and electron micro-
graphic) evidence, we conclude that the pore space in sedimentary
rocks remains interconnected to very low values of porosity .

Many models, like complex refractive index (CRI) and Hanai-
Bruggeman formulas (see below) that are used to predict high-
frequency {megahertz to gigahertz range) dielectric constants, are

LIST OF SYMBOLS

a, b, ¢ = Axes cllipsoids
Av, = Volume of rock grains added 1o the mixture at
kth step.
Complex dielectric constant = &' + J{o/weg +
e
g' = Real part of the compiex dielectric constant
€,, = Real part of the dielectric constant of the solid
phase
ey, = Imaginary part of the water dielectric constant
arising from rotation of water molecules alone
£" = Imaginary part of the dielectric constant without
the conductivity terms o/ weg
gy = Permittivity of vacuum
£6 = Complex dielectric constant of the assumed ef-
fective medium
£y, = Complex dielectric constant at the Ath step
€5 .1 = Complex dielectric constant at the & + [th step
gd = Complex diglectric constant of water
e} = Complex dielectric constant of material 1
£3 = Complex dielectric constant of material 2
g; = Complex dielectric constant of material |
f = Frequency
Sfi = Volume fraction of the /th compoenent
& = Porosity
L = Depolarization factor
L. = Depolarization factor along u-axis for a field im-
pressed along g-axis
L, = Depolarization factor along b-axis for a field im-
pressed along b-axis
L. = Depolarization factor along ¢-axis for a field im-
pressed along c-axis
m = Exponent of ¢ in Archie's law
w o= 2af
o = Conductivity
o {w) = The frequency dependence of conductivity shown
explicitly
o, = dc conductivity of water
v = Volume of rock as a variable
V = Volume of water as a variable

¥

shown to be inadequatc. For example. in Hanai-Bruggeman
formula for ¢ < 0.5, there will be no de conductivity since the
dertvation assumes that the water phase 15 in the form of solated
spheres embedded ir a nonconducting rock host. Clearly, « correct
geometrical model must be the basis of caleulating both ¢ and
&' (w) and should work at both high and low frequencies.

Using the measured values of de electrical conductivity of a
large number of brine-saturated cores, taken from a wide variety
of sand formatiens, Archie (1942} found an empirical law

/0, = 1/F =g ¢™ (1

Here o, is the water copductivity, £ is the formation factor, & the
porosity, ard m the cementation index. Archie ook « = 1 in
his original study. He found m varied between 1.8 and 2 for con-
solidated sandstones and found m to be 1.3 for unconsclidated
sands packed in the laboratory. Since then. Archie’s law has
become an essential part of electric-log interpretation (Wyllie,
1963}, Numerous other studies (sec. for example. Wyllie and
Gregory, 1933; Winsauer et al. 1952: Jackson et ai. 1978, and
references therein) have reconfirmed that equation (1) holds re-
markably well for clay-free sedimentary rocks. with the value of «
near 1 and values of m anywhere between 1.3 and 4, depending
upon consolidation and other factors. Archic’s law has been found
to hold even for igneous rocks {Brace et al. 1968 Brace and
Orange. 1968a. b).

The clays, capable of ior exchange, havc complicated con-
duction mechanisms, and Archic’s law does not hold for clayey
rocks {Wyllie, 1963; Waxman and Smits, 1968). We shall not
consider clayey or shaly rocks here.

There is no satisfactory theoretical explanation of the origin of
Archie’s law (Madden, 1976); the power law behavior. the non-
zero conductivity to very low values of ¢, and why the exponent
in the power law is close to 2 are not understood. There arc two
main reasons; First, models such as a capillary tube modcl with
little resemblance to real rock structures have been used in the

. past. The gross difference in pore structures in differcnt rock types

reqliires that different geometric models must be used tor differ-
ent classes. The second reasen, which is closely related to the first.
1s that detatls of the rock geometry were not taken into account.
Even in the formulation of empirical laws, the details of the geo-
logic aature of the samples are generally ignored. Often, as we
shail see below, the data could be represented better by laws,
such as o0 = a,{d — & )" with a nonzero &, rather than as in
eguation (i}

In the following paragraphs we give a somewhat more claborate
description of specific models: (1} capillary tube models/network
models, (2) percolation theories. and (3) effective medium theorics
for g%,

The capillary tube model {Wyllie and Rose, 1950 Schopper,
1966; Brace et al. 1968) does not give Archie’s law from first
principles. It is generally argued that the capillary tube length {
with a sample of length L is given by 7 =TL, where T is
tortuosity equal to 7 = 1/d in order te reproduce Archie's law.
The phenomenological relation between T and & is not derived,
but is chesen ad hoc to fit Archie’s law. Furthermore. the branch-
ing nature of pore space is compietely neglected. In a more
sophisticated mode! of a network of interconnected tubes (Edmund-
son, 1978), the tube cross-scctions were adjusted to reproduce
equation (1). Greenberg and Brace (1969). Shankland and Waff
£1974), and Madden (1976) also applied retwork models to sedi-
mentary rocks, The branching nature in real pores in sedimentary
rocks is far more complex than the simple network model assumed.
Pore spaces in pore custs {Swanson. 1979) are connected, very



Dielectric Constant of Fused Glass Beads 783

irregularly and often look like iregularly connected thin sheets
rather than tubes. it is hard to see the relevance of any network
models. particularly those with a fixed coordination number. The
interconnection of pore spaces is further evident from examination
of electron micrographs. Although it is hard to draw conclusions
about three-dimensional {3-D) connectivity from a two-
dimensional (2-D} micrograph, a simple capillary model can be
ruled out.

Quite general and powerful theories, collectively known as
percolation theory, have been developed to describe the behavior
of a random network of mixtures (Kirkpatrick, 1973). Since we
shall draw apon the results of percolation theory, we mention a
few salient points.

If the resistors (bonds) are removed randomly from a network.
the conductivity of the network becomes zero when the fraction
P s of the remaining bonds falls below a critical value p . known
as the bond percolation threshold, If nodes. with all the resistors
attached to the node. are removed randomly. the threshold is
denoted by p... the site percolatien threshold. The value of py
{(j = 5 or b) depends upon the connectivity and dimensionality
of lattice. For example. for a simple cubic array p., = 0.23,
Pee = .31, Fhe conductance G of a random array is found to be
{Kirkpatrick, 1973)

G=Glp, —pylTij=sorb (2)

Here G, is the conductance of a bond. Kirkpatrick ¢1973} has
found by numerical simulation that m; = 1.3 for both boad and
site problems near the critical region {py; = p; = py + 0.2).
but m; = | for greater values of p;.

If the site percolation results are expressed in terms of fraction
of bonds remaining, rather than number of sites reaining, G is
found to be propartional to p%. Shankland and Waff (1974) claim
that o % o, & observed by Brace and Orange (1968a) in one set
of experiments is explained by the bond percolationand o % .67
observed by Brace and Orange in another set of experiments
(1968b) by site percolation. Furthermorc, Shankland and Waff
argue that p, = 0 because p, = 1/t (Kirkpatrick. 1973). where
¢ is the number of branches emanating from a site, and ¢ tends
to infinity.

The percolation theory of networks needs to be extended to the
continsum case befure it can be applied to the study of transport
properties of inhomogereous rocks. Siace the continyum case can
be penerated either from the bond or from the site percolation
problem, assigning of bond percolation in one case and site perco-
laston in another case does not appear convincing,

Generalization of percolation theory to the continuum case was
done by Webman et al (1976, 1977} and Straley (1978). The
macroscopic conduciivity shows scaling behavior

o=ac,ld— &) b > b, (33
and
o= {0 b < . i4)

The results of numerical simulation give &, = 0.145 = 0.005
and m = 1.4 * 0.05. for & close to &, For & > 0.4, o agrees
well with the effective medium approximation result & = {3/2)
o, ld ~ 1/3)

The value of ¢, in equation {4} depends upon the model of corre-
lation chosen, and &, = 0.15 is for 2 model with second-order
bond correlation. For nearest neighbor correlation only, ¢, =
0.17. and for the uncorrelated case, ¢, = 0.25 {Webman et al,
1975). Thus the absence of a percolation thresheld in Archie’s
law &, = (0 implies that the fluid phase remains essentially con-

tinuous to very low values of the porosity, and the pore spaces in
sedimentary rocks are strongly correlated.

Next consider the dielectric constant. In the literature, a large
number of different formulas exist for the effective dielectric re-
sponse £* of mixtures (Van Beek. 1967: Pascal. 1969) which are
often used without ascertaining in each case whether the sample
conforms to the geometry for which the formula holds. For
example. the effective-medium theory {Webman et al, 19773 has
a nonzero percelation threshold (33 percent? and should not be
applied to data on rocks which do not show any finite percolation
threshold.

For the 1.1-GHz electromagnetic propagation tool (EPT) of
Schlumberger (Calvert et al, 1977). the so-called complex refrac-
tive index (CRE) formula has been used to interpret the resualts
with seme success {Freedman et al. 1979). The derivation assumes
a model of paralle! layers with fayer thicknesses much greater than
a wavelength. so the total fransit time ¢ for a pulse moving per-
pendicular to the layers is the sum of transit times #; in sach layer.

I:Efimzfg\/;?}{'.
i {

Here /; is the thickness of each layer. €] is the complex dielectric
constant of the ith layer, and ¢ the velocity of light in free space.
This immediately gives for the effective dielectric constant

\/E: = 2 & Ve, .
where
b=1 /30,

is the volume fraction of the ith phase. The rocks clearly do not
have such a simple layered geometry in gencral. The typical dis-
tance {; over which the dielectric constant varies is of the order
of a pore or a grain size and is usually much smalier than the wave-

*length. Furthermore, a laycr geometry gives zero de conductivity.

since current moving perpendicularly will be blocked by a rock
layer.

Next. we review some geologic aspects of pore space. Sedi-
mentary rocks are variable mixtures of precipitates and material
worn or broken of other rocks. Nevertheless, sedimentary rocks
are commonly and crudely divided into two broad classes. the
detrital (also called clastic) and chemical. The former class arises
from a mechanical deposition and is characterized by individual
grains. The chemical rocks originate primarily from chemical
precipitation and generally tend to be more homogengous. Shales
and sandstones are primarily detrital, while limestones are pri-
marily chemical. These two types together account for over 95
percent of all sediments.

The interconnectedness of the pore spaces can be understood
from examining the formation processcs of the detrital sedimentary
racks. Two grains initially touch only at one point, leaving the
intergranular space connected. Compression or depositing of a
cementing mineral which reduces the pore space is self-limiting,
and the pore space remains connected. For example, when pressure
in the contact is high enough, the material moves out of the con-
tact area. The pressure is reduced below that reguired for melting,
and the process stops. The chemical deposition is also self-limiting
—as the pore becomes smalier due to sedimentation, the flow
decreases, and thereby sedimentation decreases. Although the
models above are oversimplified. they help us understand how
the percolation threshold could be zero.
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The geometrical models for carbonate rocks are very different
from those for deirital ones. For example. many samples of
carbonate rocks show intragranular porosity and isolated pockets
of pore spaces (Ham, 1962). The formation factor F = o,/0 of
such rocks would show a behavior F ~ (b — &)™, in contrast
1o Archie’s law with &, = 0. However, conduction data on rocks
for which the pore spaces become disconnecied below a percola-
tion threshold are scarce,

Winsauer ct al (1952) found that their dats adhered to o =
&l ~ 006115, but abandoned this relationship and proposed
what is known as the Humble formuia: o = 1.61 0,6%% By
adjusting several parameters, Perez-Rosales (1976) casts Max-
well's  formula  jgiven by equation  (15) Dbelow! o=
7,2 /i3 = d)intotheformo = o,(d — & )/[M — {1 — M)
& — &1, and found &, varies from .02 to 0.1 and M = 1.64.
ForM = |.5and &, = 0. his formula is identical to equation (15).
However, the basis for the analysis of Perez-Rosales is not clear.
In one case the low & data of Wyllie and Gregory (1953). which
show zero percolation threshold (. = 0) in the original form, are
reploited to exhibit a2 nonzero d)c He also considered the data of
Winsauer ¢t al and found o = o, (b — &.1/(1.75 — 0.85 &),

Although the value of ¢ used by Perez-Rosales agrees with Win-
sader’s value, this exponent of unity differs from 1,48 used by
Winsauer et al for the same data.

Brace and Orange (1968b} found that rhyolite tuff (porosity of
40 percent) has much of its porosity in the form of round holes
enclosed in voleanic glass. For this rock the conductivity is about
a factor of ten less than that predicted by a simple Archie’s law
equation ¢ = b2

it is useful to measure formution factors of a suite of rocks in
the laboratory to confirm the existence of a percolation threshold.
Measurements on artificial rocks, mimicking carbonate rocks,
will also be helpful. In general, it is casy to preparc samples ex-
hibiting a percolation threshold (Abeles et al, 1975}, but the re-
quirement that the sample geometry correspond to that of real
rocks must be imposed in these cases.

The discussion above illustrates the second difficulty we men-

tioned in understanding Archie's faw: The cmpirical relations
usuallty lump together data belonging to ditferent classes of rocks.
Archie (1942) noted that the exponent m in equation {1) varied
with consolidation. There is much information contained in the
prefactor ¢ and the expenent m. This information is generally ig-
rored even in empirical studies. Although partial lists {Keller and
Frischknecht, 1966; Parkhomenko, 1967) relate (@, m) in equation
(1) to a few geologic features of the rocks, more comprehensive
studies should be undertaken.
" In summary. Archie’s law (1) holds empirically for a iarge
range of detrital sedimentary rocks with the constant a near
unity and with varying values of m. Theoretical treatments which
purport to derive Archie’s law pay inzdequate atiention to the
geometry of the pore spaces, particularly to the implication that
the pore space is connected,

DIELECTRIC RESPONSE IN A SELF-SIMILAR MODEL

We deliberately set out to make a modet where the pore space
is connected down w extremely low values of porosity. and we
abandon tube models, network models, and percolation models.

Since we compute the diclectric constant in this model using
the multiple scattering techniques currently in vogue ip solid state
physics, we digress here to recall a few salient results of these
techniques.

It is often possible 1o divide physical behavior of a random
system into two parts: an average property plus the fluctuations

from it. In the solid state physics of a disordered system, the exact
field is computed in terms of & multiple scattering theory in whick
fluctuations from the average medium are treated as perturbation.
Thus, i we divide the rock intc a large number of ceils (for
simplicity, we consider spherical ceils here. although the result
is generalized to other shapes in the Appendix) with a locally
homogeneous dielectric constant £, the electric field is com-
puted as a sum of incident field propagating in an assumed homo-
geneous medivm ep plus the felds scattered by Ructuations
g = &7. The multiple scattering formalism is exact. However,
except for a few special cases. useful results are obtained only
after making some approXimation such as an approximation of
statistical independence. This is known as single-site approxima-
tion. In this appreximation, each particle or unit {an atom, or a
locally homogeneous chunk of material) is subjected to a local
field E'™ which has beer averaged over the configuration of all
other particles, except the {th particle. Next, the macroscopic
polarization is computed in terms of polarizability and the local
fields. From the macroscopic polarization, one can cempule the
effective dielectric constant of the system (see Webman et al,
1977, for example).

oo (1 o2 S SR zﬁm)

e; + 26() +"?0

-1

(5)

In equation (3), f; is the voiume fraction of the ith phase.

Nonself-consistent calculation: £ = &,

For a two-componcnt system. when a small concentration x of
material &5 is embedded as isolated spheres in £7. it is reasonable
to choose €5 = e} in equation (5) to give

* * * g

€ ™ Ejy £g9 ™ E) (6}
=X .

* 4 26} 93 + 2¢}

The approximation (6) has been derived in different contexts by

. Maxwell (1873, Dover ed.. 1954), Maxwell-Garnett {1904},

Wagner (1914), and Bottcher (1952) as a generalized Clausius-
Mossotti-Lorentz-Lorenz relation. In solid state physics. equation
{6) is known as the average r-matrix approximation (ATA}.

Self-consistent calculation: £f = £*

We make a self-consistent approximation by setting &g =
e* in equation (5). The effective medium approximation of ¢*
gives

2 [ g — g* } -0 ;
fl 4+ 2% M. {7
Approximation (7) is known as the coherent potential approxima-
tion (CPA). Clearly, CPA treats all the components symmetrically,
whereas ATA selects one as a host. It is not possible 1o describe
here all the advantages of CPA over ATA without making techni-
cal remarks: The corrections {0 £* bevond CPA are fourth order
in the transition matrix. whereas for ATA, the next order correc-
tion is second order in the scattering matrix. In practice, CPA has
always agreed better with experiment than ATA {sce discussions
in Elliott et al, 1974; Ziman, 1979).

We now proceed directly to calculate the dielectric constant for
our model. Summarizing the arguments given in the section.
**Review of current data ard models.”” the absence of a percelation
threshold manifest in Archie’s law, the electron micrographs. the
pore casts, and the known sedimentation and diagenetic processes
imply that the pore space remains connected in the first order of
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FiG. |. Schematic diagram for the self-similur model of rock. Each
unit in the rock 18 a grain coated with other coated spheres. The
actual sizes are irrelevant and. therefore. all grain may have same
or different sizes.

approximation, with the grains touching each other only at or on
small, isolated regions of contact. Therefore, except at points
which we approximate to be of measure zero, the grains are
essentially coated with water. If we assemble the entire rock from
rock grains of arbitrary size, coated with water, the continuity of
the conduction path is guaranteed.

The polarizability o; of a sphere f of dielectric constant % uni-
formly coated with another material of diclectric constant ¢
has been calculated by Van de Hulst (1975, p. 74).

o led = Dled 4 ed) + Mi{2el + Dien — ed)
Coed 4 2Med +Ed) 4 miled - Died - oef)
Here b, is the radius of the matrix sphere with its coating R, is

the inner radius and M; = {R;/b;)° is the volume fraction of the

inner sphere, and &f = g, + il + io,/wey.  Equa
tion (8) implies that the coated sphere itself has a diglectric

constant

o L 2l [+ 2e * 2ylef = i) |
8 L - Gz/b? :

(8)

oy

gX + 2eF — miled — e¥)
(9}

The above results hold in the electroquasistatic limit Jklb; <€ 1,
where k; = m\/;f/c is the wave vector of the field in the
effective medium and in the components,

Using equation (7)., the sclf-comsistent dielectric constant of
the rock made up of coated spheres is given by

£F - E*m

Here f, is the volume fraction of the ith coated sphere in the
assermnbly, i.c.. volume of the fth sphere divided by the teta!
volume of the rock. In general, f; and w, are unrelated.

The simplest case arises if we assume that v, = 1 — & 15 the
same for all the spheres Then, equations (10y and (11) gnne

* ¥ - Moo kg T
v - t;g[ X+ 2el 4 201 - e t;“._!V]

R

eX + 2% — {1 — diMgt ~ X)) 4
or
[ - * * ¥
E £k ek - gk
— L B R (12
g% + 2ef £f + 2k

Physically. equations ¢11) and {12) imply that the diclectric
constant of the rock assembly is that of a coated sphere €*
ex¥ Thus, a coated sphere. embedded in the effective medium
representing the rock, does not scatter the electromagnetic wave.
since both have the same dielectric constants. Although equation
() is the same in form as equation (12) for =] = gf,
eh = g% and x = 1 — &, the two equations are completely
different in content, Equations (11) and (12) are derived as a sclf-
consistent formula for coated spheres, and the question of which
material is host and which one is impurity simply does not arise.
In other words, for equations {11} and (12} the form is determined
entirely by model geometry, To iltustrute the difference, consider
small &. Taking water as the impurity. equation (6) gives

r 4 2ek + Xdief - ek

g = ok [ - . {13
er + 2k — el - ef) -

which is similar to eguation (113 with ¢} and £, and & and
{1 ~ &) interehanged. Assume that the matrix is nonconducting,
and solving for Im e* with g, = ¢, = 0 in eguation (13) gives

T = ol + 28/ (1 — b (14
= 0. for o, =0

On the other hand, equation (12} gives
o= u,[2é6/03 ~ b)) (15

Therefore, for & << 0.3, equation (6} or {14) imphes that the rock
would be insulating, whereus equation {12) or {15) finds it to be
conducting.

Since equation (7) is only an ATA for uncoated spheres. but
equation (12) is a CPA, the latter gives a far superior formula in
this case where the geometry is explicitly taken into account. This
has already been pointed out by Smith (1977). The analog of
equation (12} for metallic spheres coated with ceramics, the so-
cailed cermets, has been widely used,

Formala (15) gives o = ¢™ with m = | for smali &. The
empirical evidence for an exponeut m greater than unity is over-
whelming, both from laboratory and field data. Accordirgly, we
must regard the model of a sphere coated with a spherweal sheli
of water of fixed proportions as overly simple.

The single-site or mean-ficld approximation such as CPA fails
to take into account variety of lecal environments of each type
of rack grain. The systematic way around this problem is to con-
sider bigger and bigger clusters, where a grain is not only sur-
rounded by water but also surrounded by other rock grains. In
practice this problem is extremely difficult numerically and hus
been solved onty for 4 few special cases, We procced here by o
very simple intuitive method of incorporating the clustering
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effects in a single-site effective medium theory. Assume that the
spheres are coated with a skin made of coated spheres. the coating
at each level consisting of other coated spheres. First assume that
we add a few grains of rock of any size to water. (We emphasize
again as long as the inequality &, wiVel |/ < I holds. the
size of the particles is irrefevant.) Then use this mixture to coat
some new grains, and so on. At each step we add a small amount
of gramn, and we determine the dielectric constant self-consistently
It ¢; is the dielectric constant of the mixture 4t a geven step &
and we use this to coat additional grains of a small total volume
Avg. of rock, ther using equation (12), we find the self-consistent
dielectric constant E:; 1 of the mixture is given by
Ehiq — B} Avy €y - er

pivre (16)
N “"1 - fi

exoq T 2y
Here ¥ and v are the total volume of water and rock. respectively.

at that step. For an infinitesimal increment dy, equation t16) gives

de* dv el ¥
e (7
Ie* V4 v gk b 2e¥

Here £* is the dielectric constat of the mixture that is used to
coat the additional grains of (total) volume dv. The volume frac-
tion of the rock matrix is given by

N

o . {18)
Vi

Differentiating equation (18) gives

dy
d¥ = (1 ~ ) . {19}
v 4y
Using equation {19} in equation {17) gives
de® d¥ el - e®
= - {20}
3e* I -~ W e% + 27

Integrating equation (20} from ¥ = 0w ¥ = 1 — ¢ with the
boundary condition that £* = gf for ¥ = 0 gives
¢ 13

SRIELNE Ty 21)

\E' - Eﬁ.' Vg #

3% 3%

The dielectric constant of the effective medium £* 15 obtained
by solving equation (21) for (given} %, X, and &. Apart from
taking the focal environment effects more correctiy. this methoed
has another good feature. Each time, only an infinitesimal amount
of perturbation is added to the parent matertal. The self-consistent
approximation CPA {used here at each step) gives a very good
resuit when the concentration of perturbation tends to zero (Ziman
1979; Elliott et al, 1974}, Secondly, the geometrical model has a
self-similarity often seen in rocks, i.e., the rock appears to be the
same at any magnification. The geometrical configuration at the
final stage is schematically shown in Figure |, This geometry
bears a close resemblance to the multiple scale picture of net-
works employed by Madden (1976).

Equation (21} is identical to the Hanai-Bruggeman formula in
form. but it is quite differcnt in content. Harai (1968} and Brugge-
man {1935} start with the nonself-consistent result [cquation {6}]
and aflow the impurity concentration to grow. For & < 0.5, for
example, they start with rock as host, and with intinitesimal
amount of water cmbedded. as iselared spheres. in it. In the next
stage, they add more water, as isolated spheres, und use the pre-
vious mixture as a host. and so on, using equation (6) at cach
stage. Although this has an advantage of introducing an infinitesi-
mal perturbation at each stage. it produces (at cach stage) a non-

conducting rock. In other words. Hanai-Bruggeman gives the di-
clectric constant in terms of the diclectric constants of the host
and of the impurity and the impurity concentration, For & < (1.5,
Hanai-Bruggeman gives. instead of equation (21). a formula like
equation (21} with 5 und ¢} interchanged and & replaced by
I — &, and hence u zero de conductivity. Qur formula (21) bears
a similar relation to the Hanai-Bruggeman as the CPA formula
(151 bears to the ATA fornwla (14 In the present case. the
form of equation {21) is fixed by the geometry . and no confusion
arises between host and smpurity.

The limiting vases of eyuation (21) are quie instructive, As
the frequency w tends to Zero, £* = ¢ + /¢" + { o/wey tends
w anfinkty as J o/ we,. Separating the imaginary part, when
¢" = 0, onc finds

o = o, & £22}

The de limit given by equation (22} holds for frequencies for
which inequalitics . 2 ¢gwle, ~ rpland o » equle’ — £,
hold. In this limit. keeping up to first-urder terms in e, — e}/
£gw0T,, and separating imaginary parts gives equation (22}, and
the real part gives

1]

e+ 032 (e~ e, (23)

,,,
1l
[ )

This result obtains the correct limit of ' = g, for & = |, but
disagrees at very small &. where the inequality o ¥ wegle’ —
£,,) no longer holds. According to equation (22), 0 = o, &%
goes to zero as & goes to zero. From cquation (21). we find di-
rectly that €’ = ¢, 0 = O for b = 0.

Equation (23} shows an Archie type behavior. Singe ¢, and
€, are usually known, equatien (23) can be used to obtain the
water-filled porosity without knowing the water conductivity o ..
It 1 usually difficult to measure o, in g borchole.

In the Appendix. we show that the exponent can be different
from 3/2 for different shapes. Madden also finds m = 1.3 for
the w = O case by an argument similar to that of Hanai-Bruggeman
(Muadden. 1978).

In the high-frequency lmit {w — *), assuming g, and £,
independent of frequency. cquation (21) gives

o o t3
(iwgﬁ:)(f—‘m—) = &, {24)
and

Ze, + e defe’ — el
a =T, = o Z (25)

(2e,, + ep)ei e, = g,

For the case where £, <€ ;.. #', equations (24) and (25) com-
bing to give

¢ = gy (26)
and
o= b, (27

Thus for the practical cases where ¢, < g,.{(e,, and ¢, are fre-
guency independent). a comparison between de result given by
equations (22) and {23) and the high-frequency resufts given by
equations {26) and (27) implies that the variation of ¢’ and @
with frequency is not great (see Figure 9). In the next section. we
show that there is experimentat evidence to the contrary.

In the next section. the results obtained here are applied 10
measurements we have made on fused glass beads usnd to data in
the literature,
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EXPERIMENTAL RESULTS ON FUSED GLASS BEADS
AND ROCKS

We now compare with theory the dielectric constant on artificial
rocks made of fused glass beads at 1.1 GHz and conductivity at
120 Hz that we measure in our laboratory. As will be scen, the
agreement with theory developed in the last section is cxcellent.
We also compare our theory with published data, and point out
difficulties and limitations of the present theory. Under certain
circumstances (for low salinities and for high frequency at high
salinity), the agreement between experimental data in literature
and theory is also excellent.

Sample preparation

Glass beads in the size range of 210 and 250 pm were ob-
tained from Analabs, North Haven, Connecticut. For the work

reported here, bead size was restricted to this single cut, but mea-
surements on unfused beads at 1.1 GHz were made on sizes from
297 to 88 pwm. No influence of size over this range was noted.

The artificial rocks were prepared by fusion at 710°C in 20-cm
long carbor or Atomergic Chemetals vitreous carbon molds in a
Lindburg crucible furnace under nitrogen atmosphere. The lower
porosities were ohtained by lengthening the fusion time at 710°C.
This was followed by a carefully controfled anpealing and cooling
schedule to prevent stress cracking. No cracks were observed on
SEM or optical examination. Rod lengths were trimmed to size.
with a diamond saw, using methanol as a coolant, carefuily redried
at 110°C, and stored over silica gel.

Sample porosities and the grain and bulk densities were deter-
mined by & bueyancy technique, following vacuum impregnation
with the desired solution.

Fvs
{000 T ;
BEAD SIZE = 210-250 um
100F -
m=1.50
F
THEQRY
. DATA

10 o

} 1 L

Q.00 .0l 0.1 1.0

¢

F1G. 2. Conductivity of fused glass beads as « function of porosity showingo = a,, &7 2 behavior, The size of grains in the self-similar model
can all be the same {as here) or all different. Hanai-Bruggeman formula would give o = O for & < 0.5,
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FiG. 3, Block diagram of cavily system used to measure dielectric response at 1.1 GHz.

Low-frequency conductivity

Low-frequency {120 Hz) in-phase conductivity measurements
with artificial rocks saturated in 10.1. 1.0, and 0.10 {}-m Na(l
solutions were made in a two-electrode cell with a Hewlett-
Packard 4261A LCR meter. Spring tensioned silver electrodes
contacted the sample through soft porous silver Selas filtration
membranes (0.45 pwm pore size). Capacitance was o low to
measure. Internal salinities were changed by diffusion at 85°C for
morc than 16 hours in baths with volumes at least 10 farger than

22.5

the pore volume. This process was repeated until the desired in-
variant solution resistivity was attained,

The agreement between the theoretical low-frequency result
given by equation (22} and the experimental results shown in
Figure 2 is excellent. The values of porosity go as low as 2 percent,
and we do not find any percolation threshold.

High-frequency £*

1.1 GHz measurements were made in a TM{(010) cavity system

© Hp0(€¥ = 79.8 + i4.5)
20} *

METHANOL = 30 T i94)

D METHANOL (€

*
@ DRY {EAIR =

= 6.4)

1
17.5F

*
(€5 ass

(Error bars are smaller than the
circles or boxes.)

12.5
*x
u VU
x E
10 [}
75 1.5
50 410
e
2.5 “0.5
S P-4 st 1
OO 0.1 0.2 0.4 ©

i -
C}’)"" 0.3

Fici. 4. Real part £' and imaginary part £ + 0 /weg of the diclectric constant € * for fuscd glass beads at 1.1 GHz as a function of porosity
and saturated with distilled water. methanol. and air, respectively (measured by us). The lines are theoretical predictions. The dielectric con-
stant of pure water ard methanol at 1.1 GHz are {(79.8 + /4.5) and (30 + i9.4), respectively. The value of e, for glass is 6.4,
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FIG. 5. Imaginary past " + o /weq and real part &' of the diclectric constant £ * for fused glass beads at 1.1 GHz as a function of porosity.
saturated with saline water (measured by us), The lines are theoretical predictions. The dielectric constants of water at various NaCl con-
centrations are (70,21 + 7153.6) for 0.11 Q-m, {78.05 + i20.83} for 0.97 {2-m. and (78.59 + 5.9 for 9.6 {}-m solutions. The rcal purt
of &' computed from our model is practically indistinguishable between 9.6 and 0.97 (0-m solution.

(Rau and Bizer, 1976). The block diagram is shown in Figure 3.
A sample of known volume is introduced into the high @ resonant
cavity, and dielectric constants ' and €” + o /weg arc measured
by determining the shift in cavity frequency and decrease in quality
factor. System accuracy was checked with pure liquids of known
dielectric. Accuracy of Re g* and Im ¥ with samples with
> 100 is better than 1 percent. Samples with lower 0,
30 < @ < 100, have estimated aceuracies of 10 percent. Mea-
sured values of Re e* and Im e* for the samples filled with air,
distilled water, and methanol have an accuracy of | percent and
those filled with NaCl, 10 percent.

For the measurement at |.{ GHz and a bead size 0.01 cm,
[k} < 0.1 cm™!, so|k|b < 1 holds. The real part £’ and imaginary
parts " + o/ weg of the dielectric constant £ * are plotted against
porosity in Figure 4 for distilled water and methanol. The agree-
ment of theory with experiment is exccllent. The imaginary part
g’ + o/weqy and real part &’ as functions of porosity are shown
in Figure 5 for saline water. The agreement is again good. For
dry glass beads. ¢” remains zero. However, for wet glass beads,
£" extrapolates to a very small but nonzero value as a function of
porosity at zero porosity: it may be duc to interfacial pheromena
taking place in the interface of glass and solution. For cxample.
salinization of the glass surfacc by water could cause ap increase
in surface conductance and ion concentration. A test with cyclo-
hexane, a less polar, ionizable fiquid than water, gave lower &”

values., These additional surface mechanisms lie outside the scope
of the present investigation and have to be treated separately (see
the next section),

Application 1o real rocks

Next we consider application to data of the theory available in
iiterature. Equation (22} is onc of the well-known forms of
Archie’s law. Archie found for clean unconsolidated sandstones
a = g,0™ m= 1.3, which is not far from 1.5 as predicted
above. Wyllie and Gregory (1953) found that adherence o o =
&, b ® was good for spherical glass beads with 6.25 > & > 0,10,
and that o decreases for shapes different from spheres.

Jackson et al (1978) did systematic experiments with uncom-
pacted sands, both natural and artificial. They found that adherence
to Archie’s law o = o,6™ is good. and that the exponent m
depends upon the shape of the particle, increasing as the particles
become less spherical, varying from about 1.2 for spheres to 1.9
for platey shell fragments. They find little dependence of m on
the size or size distribution. For a suite of 8 marine sands (with
sphericity 0.8}, they find m = 1.5, varying from 1.4 t0 1.38. For
artificial glass beads (spheres}, they find m = }.2; for rounded
sand commercial sand (sphericity 1.83), m = 1.4; and shaley sand
{sphericity 0.78) m = 1.52; and for shell fragments (sphericity
0.5), m = 1.85. These observations are in gualitative agreement
with the results obtained in the Appendix where we show mr > 3/2
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for platey materiais. For the case when @, is nonzero. the de form
of equation (21} gives [(or, — @)/ lo, =~ @ 1] (0 /o)? = &,
which a number of experimentalists, including Hanai (1968),
Pearce ¢t al (1973), and Wobschall (1977}, found to agree with
experiments quite well.

There are a large number of experimental data on £* of rocks.
Often such details as poresity and salinity of the water are missing,
and a direct comparison is ruled out. For present purposes, we
consider the data obtained by Poley et al (1978). Their results may
be incorrect, becausc of the electrode polarization effects at lower
frequencies, but at high frequencies the electrode polarization
effects are small. For illustration, we compare data from their
Figures 13a and 13b for sandstones, Figure 16b for caleite, and
Figure 18 for sandstones. If the values of Im e* = £” + o/we,
are much greater than Re &%, then the limiting equations (22} and
€23y hold. As & matter of fact, these limiting forms hoid even if

Im e* fails to be much greater than Re €*. as noted below equa-
tions (26) and {27). In other words, since equation (21) shows
little frequency dependence. we can use its low-frequency value
over 4 wide frequency range for all practical purposes (Figure 9).
At 1.2 GHz, we have to include the dielectric loss £, of waler.
and the cemplete form of cquation (22) becomes

Ime* = (o, /weg + en) &5 E (28}

Note that Poley et al (1978) wrote ¢* = £’ + ie", and therefore
they included the conduction losses in their ¢”. In Figures 6and 7.
dashed lines represent equation (28}, The agreement is good at
low values of salinity but poor at higher values of salinity. Similar
agreement is obtained for data given in Figures 16c, 13b. 13¢_ and
Figure 14 of Poley ¢t al {1978).

In Figure 8 we reproduce as plotted points the values of £ at
500 MHz observed by Poley et 4l along with a curve representing
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FIG. 6. Variation of the Im e* = o/wey + £ as a function of porosity and salinity. The experimental points are from Poley et al (19783,
at f = 200 and 1200 MHz for sandstones. The dashed lines are theoretical ones given by equation (28}, Hanai-Bruggeman formula gives

Ime* = 0 for b < 0.5.
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the theoretical results obtained from the self-similar model jequa-
tion{2 ] using e, = 4.6(quartzvalueyande, = 80,0, = 0.029
0~ Y.m ! estimated from Figure 3 of Poley, for fresh water.
The excellent agreement with theory and cxperiment may be
somewhat misleading, since the agreement at Jower frequencies
{and at higher salinities) is rather poor {sec the next section).

DISCUSSION

The model described here is a first step in treating the geometry
of interconnected pore space correctly. Several important aspects
of the pore geometry have been neglected, and there are experi-
menta! resalts that show the need to treat these aspects more care-
fulty. We will briefly discuss these aspects here.

As mentioned in the Introduction, the macroscopic propertics
of the rock depend upon the detailed geometry and topology of
the boundary surface between the rock and water. A theory like
the onc developed here which involves average porosity alone
cannot be sufficiently correct, For example. in Figure 4 of Poley
ct al {1978), we find that e’ for two samples with porasities of
12.7 and 12.9 percent, respectively, are drastically different. yet
the £ at about 10 MHz for two samples with porosities as far apart
as 12.9 and 24.6 percent is the same.

Next, consider the variation of ¢ * over a large-frequency range.
We showed by the low-frequency limit given by equation (24)
and the high-frequency limit given by (26) that &' did not vary
much over the frequency range, In Figure 9 we plotted € and o
computed by equation (21) for fused glass beads. The value of
g’ dues not show much change over the great frequency range
we have used here. (The high-frequency result in Figure 9 is for
iifustrative purposcs, so we have neglected ¢, for clarity. due to
water around ! GHz. for this plot onfyv.} At frequency near 108 Hz.
theoretical results show a resonance effect, This can be under-
stood by rewriting equation (7) as a Debye type formula, For
spheres of glass dispersed in water. the resonance frequency from
equation {6} is given by

18 x 1083 - dia,
2el 4 el (1 = dles - En)

Thus for fused plass beads of porosity & = 0.09. o, = 4.55
0 'm! and e, = 80. £, = 4.67, this gives f= 1.2 % 107
Hz. The vestiges of this persist somewhat even in self-similar
models. Note that f varics as & . but the changes in £ " observed by
Poley et al {1978} are much too jarge to be explained by the values
predicted by the self-similar model.

9
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FiG. 9 Variation of €, Im £* as a function of £ = /2. The lines arc obtained by using equation (21).
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There are two obvious aspects that we have neglected here that
contribute to these high values of £°. One is some detailed aspect
of geometry (textural), and the other is electrochemical effects
at the rock-water interface. We briefly discuss these below.

First, consider textural features. The effect of grain contact was
neglected, The patches of surfaces where the grains touch will
not comtribute to depolarization. Thus, we have overestimated
the depolarization effects. The effect of touching is similar to.
and in some cascs is a consequence of. the effect of different
shapes. Shape effects are discussed in the Appendix.

"In the madel, all the pore spaces were assumed to be inter-
connected, Thus the effects of dead-end pore spaces are not
accounted for properly. A dead-end pore space is somewhat 150~
Jated from the main conducting paths. like a dangling branch
connected only by one of its two cnds te a network. Since electric
current is blocked by the wall of the dead end. no current can
flow. This can be modeled by a local field in a connected branch.
canceling the macroscopic field. Such local fields may give rise
1o the large diclectric constant, since the effect of diclectric con-
stani is to reduce the applied ficld.

The dead ends will sot contribute to the conductivity. but cun
give rise to a high value of ' at low frequency. Asa crude model
for the dead end. we assume that a fow isolated spheres of water
coated with quurtz are embedded in the rock. A preliminary
estimate shows that the magnitude of the rise in &’ ir this model
could explain the measured data. The detailed results will be pub-
lished elsewhere. The difference in number of dead ends may be
responsible for differences in € {w) for two samples of similar
porosity, as mentioned above.

Next consider the interfacial electrochemical doubte layer at
the rock-water interface. This has a big effect on SP. induced
polarization, and resistivity measurements {Keller, i971). The
clays shew particularly high surface activity. and small amounts
of ¢lay can change £ (w) drastically from that predicted by equa-
tion (2§) at low frequencies. Hoyer and Rumble (1976) found a
correlation between clay content and dielectric constant in the
10 Hz~1 kHz range.

As long as the criterion |k <€ 1 s met, ie.. the wavelength of
the radiation is much greater than a typical distance over which
¢’ und ¢ fAuctuate in the material. it can be shown that the di-
electric response of the inhomogencous medium is scale imvariant
{Cohen. 1979). Thus. without interface effects. at long wave-
lengths the diclectric measurements cannot be used to estimate
size. Meador and Cox (1975} claimed that they found an exponent-c
{for ¢ = 1/2, the complex refractive index formula is obtained)
that depends upon size. Although their formula is ad hoc. un
empirical refation between size and diclectric constant would im-
pty surface cffects.

It is interesting to note that the cffective medium approxima-
tion predicts that rcal part of diclectric constant Re e* = i/ Vo,
near percotation threshold. Although it may be tempting to use
this result to explain high values of dielectric constants at low
values of frequency w, it would be wrong to apply this result for
values of porosity significantly greater than zero. since the percela-
tion threshold for rocks appears to be zero.

Next consider the case when the water saturation is not 100
percent and hydrocarbons are present. For water-wet rocks, we
expect that the analysis given in the text applies with (slight)
modification of &2 to a mixture of &% and hydrocarbons. In this
casc. oil blobs can be treated essentially in the same manner as
the water-coated rock grains were treated, and we expect no
percolation threshold as w — 0, o = @, (S, &)™, where 5,
denotes the volume fraction of the pore space occupied by con-

ducting water. In the oil-wet rocks. on the other hand. below a
critical value §,. the water phase will be broken up into un-
connected regimes, and we expect a nonzero percolation threshotd
Spes iii-ﬂncr = g,(5,.b — 5,.&7. This is a highly intercsting

three-phase mixture problem, where the percelation threshold
depends upon the concentration of onc of the phases itself. We
are currently investigating this situation.
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Postscript. — After this manuscript was finished, K. Mendelsson
pointed cut that an equation similar to equation (21} was obtained
for magnetic systems by A. K. Veinberg (1867, Sovict Phys.
Doklady, v. 11, p. 593) by yet another method. Veinberg does
not consider coated spheres. He considers self-consistent effective
medium theory. His treatment amounts to computing &3 of a mix-
ture of rock and water, then adding an infinitesimat amount of
rock and recomputing €7 . | using a fraction of the previous mix-
ture and the newly added rock as two componcents, and so on. step
by step. Simce an effective medium theory in gencral shows a
percolation threshold at a given stage, it is not clear why the
Veinberg model does not predict a percolation threshold in the
final step. if one starts from the rock end and builds up water con-
centration step by step. However. we expect the water phase to
remain interconnected if we start to displace water step by step.
This may not be a serious difficulty. since in acteal geologic pro-
cesses in general the rock phase gradually builds up by displacing
the water phase. It is also interesting to note that at low concen-
tration. Clausius-Mossotti or ATA gives the same result as the
effective medium theory or CPA {(see Elliott et al, 1974). There-
fore. Veinberg's approach of adding infinitesimal amounts of
grain in steps and applying effective medium theory at cach step
yields the same result as the Hanai-Bruggeman approach. The
fatter approach consists of adding infinitesimal amount of grain
but applying Clausius-Mossotti theory at each step.
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APPENDIX
THE EFFECT OF SHAPE ON EXPONENT
Equation (1 1) is easily generalized for a water-costed ellipsoid,
following Stratton (1941,
R4 (g - S~ b+ bL)
ef + d)L\‘“':’fa - E:T‘;

n =z | | a-n
if one wssumes that the anisotropy of the €% of the formation 1y
not different from the grains. The shape of the coated grain is
taken o be the same as that of the roek grain. In equation (A-1),
L, denotes the depolarizing factor associated with the principal
r-axis wlong which the field i impressed. L, depends upon the
aspect ratio of the grain. For cllipseids with axes a. b, ¢, the
depolarization factor along a-axis is given by {sce Stratton, 1941,
for example)
! ’ 2 b 2 23112
L, = :abc' defis + @)ty + gV s + B7Ms 4+ B A
- 4
(A2}
For practical caleulutions, the following approximations ure often
useful (sce Van Beek, 1967) for o 2 b = ¢ (prolate spheroid)

L= [Imd2a/b) — VHBfal Ly = Lo= — {1 — L}

1o | —

for « € b = ¢ (cblate spheroid}
i
Lo— Ly =L, == =L,

and for spheres
L,=Ly=1L.=1/3.

Any eleutric ficld can be decomposed into three components
paratlel to the three axes of an arbitrarily oriented ellipsoid. and
hence it 1s casy to consider arbitrary orientations of the cllipsoids.
But for present purposes it is sufficient to consider a random array
of cllipsoids of the same shape. arbitrary size. but fixed orientation
with their principal axes parallel to cach other. In other words,
we take a fixed. scalar L for the entire assembly, and compute 4
specitic component of the dielectric tensor. The cffect of averaging
ever onicntations hus been considered by Mendelson und Cohen
(1979}, For spheres, setting L = 1/3 in equation {A-1) imme-
diately gives back eguation t11). From now on we drop the suffix
v, For flat disks with their faces paralic] to the impressed field or
for needles with their axes paralicl to the Beld. L iy zero and equa-
tion (A~ 1} gives

¥ = (1 — dlek + bt (A=3)

Equation {A~3) is identical to the exact result for dielectric con-
stant of a medium made of layers of rock and water {with thick-
nesses smaller than the wavelength). for the case in which the
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field is parallel to the interface. Simitarly for disks with field im-
pressed normal to the face L = I, and equation (A-1) gives

e = {1 — /el + /el (A=

Equation (A—4) is identical 1o the exact dielectric constant of the

layered medium with the field perpendicular to the interface.
Next. to show how the exponent m depends upon L. we rewrite

equation (A--1) in the form of cquation (12)

£ B

e (] — ) . (A5}
Le* + (1= Lies Lem + 41 = Lieg

g% - E:'

A self-similar model can be generated. just as in the text. We
find. following the steps outlined in the text. that the dielectric
constan? £ * for the self-similar model is given by

e — e¥y ek
(LM"—)(—'L) = b. (A-6)
e —ef te*
For spheres L = 1/3 this gives equation {21).
Next consider the de limit. for which equation (A-06) gives
o= g,b0 R {A-T)

For spheres L = 1/3, this gives o = g, b%% For L— 1.
o = {) {(since & < 1} and for L = 0. ncedles with axes parallel
to the field. ¢ = o, &. For cylinders with their axcs perpendicular
to the field L = 1/2. cquation (A-6) gives

o= oeb? (A-8)

This is clearly an unrecalistic model for the microgeometry of the
rock. and it may be mislcading to infer anything from this result.
The correct procedure is clearly to average over different values
of L {c.g.. Mendelson and Cohen, 1979).

For sampies contzining platey materials. o can be small. For
gxample, for L = 0.9, ¢ = o, &, This is in qualitative agree-
ment with observations of Jackson ct al (1978). The plates
effectively block the conducting path. We note for completeness
the generalization of cquation (15}, for spheroidal rock grains
{impurity) distributed in the water host, gives Fricke's (1924)
formula

v
v+l -
where v = (1 = L}/L 2 for spheres.

Returning now to cguation {A- ). the boundary value problem
solved to obtain it is modified when the anisotropy of the dielectric
constant of the formation is included. Equations (A—1). (A-5}.
and (A—6) result with L redefined 10 include implicitly the anisot-
ropy of £*, as has been shown by Mendelson and Cohes (1979,

but our results remain quantitatively correct for the three cases
L = { {needles), L = 1/3 (spheres). and L = 1 (plates).

U= 0, {A-D



