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ABSTRACT

Recently D. Bergman introduced a method for obtaining bounds on
the effective dielectric constant of a two-cowmponent medium. This
method exploits the properties of the effective parameter as an
analytic function of the ratio of the component parameters. We give a
mathematical formulation of the method and extend it to multicomponent
media using techniques of several complex variables. The extension is

used to rederive known real bounds and to obtain new complex bounds for

multicomponent media.
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1. Introduction

Due to the difficulty of calculating the effective parameter
(e.g., dielectric constant, magnetic permeability, or electrical or
thermal conductivity) of a heterogeneous medium, there has been much
interest in obtaining bounds on these parameters. Wiener il] gave
optimal bounds on the effective parameter of a multicomponent material
with fixed volume fractions and vreal component parameters. For
isotropic materials, Hashin and Shtrikman [2] improved Wiener's bounds
using variational principles. Recently Bergman [3-10] introduced a
method for obtaining bounds on complex effective parameters which does
not rely on variational principles. Instead it exploits the properties
of the effective parameter as an analytic function of the component
parameters. The method of Bergman has been elaborated upon in detail
and applied to several problems by Milton [l1-16]. A mathematical
formulation of it was given by Golden and Papanicolaou in [171.
However, the method has been restricted to two-component materials,
where the effective parameter is a function of a single complex
variable, the ratio of the component parameters. In this thesis the
method is extended to multicomponent media for the first time. In
particular, we obtain the analog for several complex variables of the
single variable integral representation for the effective parameter
given in [17]. The extended representation formula is used to rederive
the Wiener and Hashin-Shtrikman bounds for multicomponent media with
real parameters aand to obtain new comﬁlex versions of them. This 1is
facilitated by introducing a new fractional linear transformation of

the effective parameter which diagonalizes to second order the
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perturbation expansion of the effective parameter about a homogeneous
medium. In addition, the method for two—compounent media is reviewed in
detail. In the review we give an Iinfinite sequence of optimal bounds
which include more and more Information about the material, by using
successlive fractional linear transformations of the effective parameter.

Tn {17] the integral representation dinvolves a complex kernel,
which contains the component parameter information, and a positive
measure, which contalns the mixture geometry information. For three-
component materials the effective parameter is an analytic function of
two complex variables. When one of these wvarilables 1s fixed as a
multiple of the other the effective parameter is an analytic function
of a single variable. Bergman [3,9] has applied the analytic method
for a single variable 1o this case to obtain the classical
Hashin-Shtrikman bounds for real component parameters. However, this
approach makes the above mentioned measure depend upon the component
parameters as well as the geometry of the composite. The problem in
giving a direct extenslon of the analytic continuation method to
multicomponent media has been to find a representation for the
effective parameter which iIndeed separates the component parameters
from the geometiry. We have done this by exploiting the analyticity
properties of the effective parameter
as a function of several complex varlables.

The multicomponent representation formula is significant for the
following reason. Like the two—component case, the effective parameter
can be expanded about a homogeneous medium where the component
parameters are equal. The information in this perturbation expansion

can then be used along with the representation formula to continue the
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effective parameter beyond nearly homogeneous materials to its full
domain of analyticity.
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2. Formulation of the Multicomponent Problem

We assume that the medium under study is an  N-component
microscopically isotropic dielectric {or conducting) material., Our
formulation of the effective parameter problem is the same ag in [17]
and [18].

Let (Q,c%j?) be a probability space and let Eij(x,m) be striectly
stationary random fields on x & rd, we 0, i, = 1,2,°+=,4d. The
Eij(x,m) represent the dielectric constant at x € 8d for the
realization ® € I of the medium. Strict stationarity means here that
the joint distribution of Eij(xi’m)’ Sij(XZ’m)’ sas aij(xﬂ,m) for any
X1,X9,""% 5%, € g is the same as that of aij(xl+h, o), sij(xz+h, w),
oo, Eij(xn+h’ w) for any h € rd. In particular, we assume the
existence of a translation group Ty X e;Rd, which is one to one on &
and preserves P. With each striectly stationary random field f(x,») we

associate a measurable function f(w) via
£(T_w) = £(x,w) . (2.1)

By stationarity we focus attention at x = 0, so that f(w) = £(0,w).
Let Ek(x,m) and Dk(x,w) be two stationary random vector filelds

satisfying

k d k ,
Di(x,w) = Jz_ Sij(x,&)) Ej(xsw) s 1 =1,**7,d, (2.2)

1

v o« DR(x,m) = O (2.3)
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v ox EX(x,0) = 0 (2.4)
[ plaw) BR(x0) = e, (2.5)
Q

where ey is a unit vector in the kN direction for some k = 1,2,°¢+, d.
For an oscillating electric field the dielectric constant 1is complex,
with the real part corresponding to the polarizability of the medium
and the imaginary part corresponding to its conductivity. We assume
that the wavelength of the field is much larger than the scale of the
inhomogeneities so that (2.4) may still be assumed to hold.

. \ : *
The effective dielectric constant £;) may now be defined

* .
efx =/ P(@) Df@) , i = 1,eev,d. (2.6)
9]
Note that definition {2.6) is an ensemble average in an infinite
stationary medium. In [17] we showed that this definition coincides

with the more standard one involving a volume average.
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3. Existence and Uniqueness of the Electric Field.

The analysis is the same as in [17]. The group of transformations

T, acting on & induces a group of operators on the Hilbert space of

complex valued functions H = Lz(ﬂ,gfy}P) with iunner product

(f,g) = P(dw) f(w) glw) » £,g eHl. (3.1)
£

The operators TX on B are given by

(T,£) @) = £(t ), x €r%, (3.2)

and form a unitary group since T_ is measure preserving. This group

has closed, densely defined infinitesimal generators in each direction
&

¥

of Ed,

i g xt , 1= 1,2,000,d, (3.3)

The differentiation is defined in the sense of convergence in H for
elements of gi?ii, the gomain of Li' We are of course interested in
fields contained in gf? = ¢£§<,

The problem (2.2) - %;}5) may now be formulated as follows. Let

J@£ be the Hilbert space

JZ%H = {fi(w) €EH, i = 1,2,o22,4d ]Lifj = Ljfi weakly

and | P(dw) fi(w) = O}. (3.4)
)
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Now the problem becomes to find G?On) ¢ % such that

d
[ P(aw) z

Jrant oo +spame) - o s

for all fi = 3%ﬁ . When the form associated with (3.3) is coercive,

this problem has a unique solution by the Lax-Milgram lemma. Clearly

Ef ) = ¢ + GX(w)
(3.6)

d
D%(m) =j§1 Eij(w) E?(w)

is the unique solution of (2.2) - (2.5) via (Z2.1).
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4, Analyticity of the Effective Parameter

We focus our attention on N-component media of the form
Sij(m) =€({"3)53‘_j (4.1

where € (W) takes N complex values and may be written as

=4

1

e@) =T ey x; ). (4.2)
1=1
The indicator function xz(m) of medium 2 equals one for all
realizations ®w & § which have medium £ at x = 0 and equals zero
otherwise.

Since (2.2) — (2.6) are linear in € (), the effective parameter

depends only on the ratios

™

hy = —, i =1,2,%**,n, (4.3)

where n = N—-1l. We write

*
£ n
g (hy,e e hy) = -;éi = é?(&a) (L) hpeg) +xn@)] Bf@).  (4.4)

From (4.4) it is clear that my, has the same domain of analyticity in

T as does E?(m). The form associated with (3.5) is coercive when

rhere is an o« > 0 such that

n d d
| (fz?(dw)(jf;lhjxj X I [c51%] >« g{P(d”)i’il'Gki‘z' (4.5)




Setting
d .
[Pasms . |65|?
Q Ji=1
Ay = s 351’2)"°:N3 (‘4-6)
] d  y2
[eqaw) T |65
S'z 1=1
N
with 0 € Aj < 1 and 'EE kj = | transforms (4.53) to
}:
g h.A A 0 4.7
A s > N -

Consequently there exists a unique solution to {(3.3) whenever the

convex hull of {l,hy,hy,*** h,} does not contain the origin in T.
Furthermore, we show that when (4.7) is true, E?Qﬂ) is analytic in

hy,***,h,. We need only show that G%(w) is analytic in hy,hg,"*® ,hy.

Using (4.1) we can rewrite {3.5) as

fP(cim)[‘El ha 4 +x)z:c;"?§,z—fpcaﬂ)(§ haxs + X £ (4.8)
a 3=1 J*3 L A a j=1 3 N ko *

for all T € Z#. The functional on the right is analytic in hy,hyp,
*e*,h,, so that the functional involving G% on the left is also.

Clearly then the functional

[ p(aw)z cfg; , ¥y e KF, (4.9)
Q i

is also analytic in hy,hg,***,h,. This means that G? is weakly
analytic as a member of jéﬁ . Since G% is a member of a Hilbert space

(a Fréchet space would work), G? is strongly analytic in thy,***,h,
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where the analyticity 1s defined in the topology of )Z;g. Thus, we

have that my, is analytic in the following region of €1,

,p%¥J= {(hy,*** ,h ): the convex hull of {l,hy,*** ,h,} (4.10)

in T does not contain the origin in C}.

In view of (3.5) and (4.1) we can write E;k in the form

d :

*

el = JZP(cKn)jE:l e @) ES@EIw) - (4.11)
This symmetric formula can be verified by substituting E% = 5ij + G%

and then using (3.5) to obtain (2.6) under (4.1). Now let in = {Im hy
>0} x {Imhy >0} x., . . x{Imhy, >0}. From the above condition
for analyticity we have that m,, (hy,***,h;) is analytic in ut,  From
(4.11) we see that the diagonals my, map ﬁn into Im myy > O with the

property that

mkk(h;_,hz,-.. ’hﬂ) = mkk(hz,hz’--. ,hn) . (4.12)

We will exploit these properties of m, to obtain a representation

formula for the effective parameter analogous to that given in [17].
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5. The Operator Representation for the Effective Parameter

For simplicity we will mnow restrict the discussion to three-
component materials with parameters hy and hy. The generalization to
more components will be clear. Before we derive the previously
mentioned representation formula, it is useful to analyze the analogue
for three—component materials of the spectral argument given in [171.

We interpret the standard differential operators in Ed in terms of

the infinitesimal generators in (3.3),

A —Ecli LZ K(5 1)
i=1 1 :
V = (Li’ Lz, sao Ld)- (5-2)
Now let
T =9 (=) ly., (5.3)
and in coordinates
Py = Li(—ﬂ)“lLk. (5.4)

The operators [, are well defined and bounded in L262;??,P) and have

norm less than or equal to one, as in the usual case Li = a/axi.

It is convenient to introduce the function

1 1
Fig(s1,82) = 84x = mip(hy,hp) = é?(d‘”)(g?xl + E";_'XZ) El; (5.5)
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with the wvariables

17T %2 TR (5.6)

Understood to hold in the weak form (3.5), the divergence equation

(2.3) may be written formally as

oo,

Ly [(hyxy + hoxo +'X3)E§§ = 0. (5.7)

i=]1

Using the operator I equation (5.7) can be solved for the electric

field

1 1 -1
£ = (I + 2. o .
@) = (1 + =Txy + = Tx) e, (5.8)

1

where I is the identity operator. Substitution into (5.5) yields

1 1
...-..-Xi‘i'—--){z
%1 52

ek] . ey, (5.9

Fi(s1,8) = éPcdw) [I - >
+ e —
S}_ Xl +52 X2

where the ratio in (5.9) is understood as in (5.8). If we let 32 = {Im
sy > 0} x {Im sy > 0}, then the diagonals Fr(sy,87) map 02 into Im
(-F ) > 0.

For the two-component case, which is obtained from (5.9) in the
limit s9 + =, the representation formula given in [17] can be obtained
through spectral analysis of le. In the three—component case the

operators FXl and Ix9 do not commute. For this reason the spectral




-1 3
argument used to obtain the integral formula in f17] does nmnot

imnediately extend to three components.
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6. Bounds for Two-~Component Media

A. The Integral Representation

h- P — S F - 6 m h 6 1
L4 i ¥ ]'k jk ]'],_(( )‘ ( - )

The considerations of section 4 tell us that for two-component media
m;y (h) is analytic off (~ «,0], the negative real axis including =zero.
Equivalently, F;,(s) 1is analytic off {0,11. In [17] we proved that

there exist finite Borel measures ﬁik(dz) defined on 0« z < 1 such

that the diagonals M, (dz) are positive and

. ) 1 Hyp(dz) 2 e
ik(s) "‘{}—é——_-_—?“ » 1,k = 1,2, »d (6.2)

for all complex s outside [0,1].

The first proof we gave depends on the operator representation
X1
Fips) = é P(dw) Eg‘?fryq'ek} *ey. {(6.3)

In the Hilbert space

o= 5 @) e 2@, F,2)) (6.4)

under the inner product




_15_.
d ——m
<Fag> =] (@) x )T F1@E W) (6.5)
o 2

the operator Fxl is self adjoint and has norm less than or equal to

one., An application of the spectral theorem yields the family of

projections Q(dz) associated with I'x, so that (6.3) may be written as

L <q(dz)ey,eq>
Fi(s) =] =

. (6.6)

8 + 2

Using the fact that Fy;(s) is analytic off [0,1] and then renaming

0(dz) gives (6.2) with

My(dz) = éP(dw)xlﬁn} Q(dz)e," g
= <Q(d2)ek,ei>. (6.7)
The second proof exploits the fact that - Fkk(s) has positive

imaginary part when Im s > O and is analytic at s =, In particular,

there ig a constant M such that

‘SFkk(T!—l S)l £ M, s > 0. (6.8)
Then a general representation theorem in function theory [19}, combined
with the £fact that Fkk(s) is analytic off [0,1] gives (6.2) for the

diagonals i = k.

B. The Perturbation Expansion and its Analytic Continuation

For ]S[ > 1 we can expand (6.3) about a homogeneous medium (5 = =

or h = 1),
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XXy x;ﬂ‘x;)z

X1
Fik(S) = fP(dm)[(—'S—‘- 5 + 3 - "')Ek]‘ei. {(6.9)
& s s
Doing the same to (6.2) gives
Lo Ay @) |
Frels) = 2 v 20 4 15 b eae (6.10)
2 3
s 8 8
where
1
(n)
ulk =f 2" llik(dz). (6011)
0
Equating (6.9) to (6.10) gives
(n)
by = (D7 £?<dw){xlﬁ‘><z)“ek] ey, (6.12)
When 1 = %k the moments of the positive measures are determined by

{b.12)., Since positive finite measures on compact sets are uniquely
determined by their moments, for i =k (6.2) provides the analytic
continuation of (6.9) to the full complex s-plane excluding [0,1].
When L # k, ik s a signed measure of mass 0.

Now focus attention on one diagonal coefficient mkk(h) and c¢call it

m(h) with

1
F(s) = 1 - m(h) = J ‘;(fzi, s & [0,1]. (6.13)
0
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From (6.12) we see that

(9
W= py, (6.14)
. . ) (1)
where p; 1is the volume fraction of medium 1. For u we have
¢
b= = [P X @) T D @) (6.15)
&

To evaluate the integral in (6.15), note that rkk is bounded on

L2 ,cF ,P). Then

-1 3

3
Akk"g}zg(_ﬁ) ﬁ;’

ko= 1,2,°%%,d (6.16)

is bounded on chmd), so that it 1is bounded on square integrable
stationary random fields.

We may write (6.15) in the form

u (D)

32 -1
- fP(dw)x;(x,w)w——f ()" X (x0) - pp)
Q Bxk

[}

| G ) R(y) dy (6.17)
pd

where Gy, (y) is the kernel of the singular integral operator Ay and

R{y) is the correlation function
R(y) = [ P(dw) x1(xdy,0)(1(x0) = p1)de (6.18)
]

For statistically isotropic media R(y) depends only on lyf, s0 that
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(1Y _Rr(0) PiP2
vl =2 - , (6.19)

where py = 1 - py is the volume fraction of medium Z.

The higher moments u(n), n > 2 depend on (nt+l)=-point correlation
functions and cannot be calculated in general. However for
statistically isotropie materials, the following relationships among

the moments are implied by

m(h)m(i/h) > 1, (6.20)

which holds for d > 3 and h# l. In dimension d = 2 the inequality
becomes an equality. Xeller [20] first proved the result in d = 2 and
Shulgasser [21] proved (6.20). In [22] the relationship is proved in
full generality in a simple manner.

In terms of F{s), (6.20) becomes

F{s)F(l-s) > F(s) + F(l~s). {6.21)

Let

== (6.22)
Expanding both expressions in (6.22}) about s = ;.gives

2
F = 1 [+ - 12

m 0 (S - 1/2) (S — 1/2)2 * “')B(dZ) (6.23)
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1 2
Q = -1 I (l _(z - 1/2) + (z - 1/2)
(s -~ 1/2) 0 (s = 1/2) (s - 1/2)?
Now we have
2 2 2
F+Q= %2 + o4 + 26 4 oo

(s -~ 1/2)2 (s - /)% (s - 1/2)®

bo Dy b6

-§- .{,—o.o
(s - 1/D2 (s = 1/D% (s - 1/2)°

where
o -1
apy; = L (ﬁ] [ijn.R “(k): nz 0

n/z H/Z"“l

by=(-1) a2+ 2 2D aagq , 0> 2 even, ap=0.

/2 k=1

The interchange dinequality (6.20) then imposes

constraints on the moments

bn > 2a, , n? 2 even.

- ...) u(dz).

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

following

(6.29)

In dimension d = 2 the inequality becomes an equality, which for n = 2

gives
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)
1 O
u( ) = Eﬁ?’ (1 - u( )) (6.30)

which is just (6,19). For n = 3,

(2) o (1) 0 1
p(3) - H (3 ~ zu( )) - ET?"'(E - y( ) y( )). (6.31)

Here the interchange equality determines the odd moments of ¥ in terms
of the lower order even moments.
In the case of wmicroscopically disotropic yet macroscopically

anisotropic materials, the Keller equality for d = 2 [22] becomes

m () mpp() = 1, (6.32)
where
by
I = myp(h) =Fyy(s) = / méjfr;;-
0
(6.33)
L yos(dz)
L= myp(h) = Fppls) = [ —m
0

Equation (6.32) can be written as

Analogous to (6.23) and (6.24),
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1

T _11;25 é(i G i;g) (oo ;;2)2 +oeee ) ugy(dz) (6.35)
-1 " - 1/2 - 1/2
o2 = ey | U G=p) G T ) Mlee) s (6436)
0

so that

0) (0 (ry 1 (® (1y 1 (O
ugl)—ﬁzz) il T3 Wil T2 Ta¥a
Fil + FZZ = (s = 1/72)

(s - 1/2)?
(2) (1) L () (2) (1) L (0
wyp mHyp tgphyp T Gy Mgy Fpugy)
+ + ese (6.37)
(s - 1/2)3

and

0) (0 (0 (1) 1 (O (0) (1) | (D)
'ﬂiiﬁgz) Wyp (gp =g Mgp’) mMpy (g T by )
F1iFo2 = + + oee
(s - 1/2)% (s - 1/2)3

Due to (6.14) and the equality of (6.37) and (6.38) we have to third

order

(0 (0

Wiy SH22 =P {6.39)
(1) (L

Hiy T Heo = PP (6.40)

(2) (2) (1) (B
Hpp "My T Pplugy T My ) (6.41)

(6.38)
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C. Incorporation of Constraints on the Measure

As in (6.13) we focus on a diagonal coefficient in a

macroscopically isotropic medium with

1
F(s) = 1 - a(ny = [ 28920 s g qo,10. (6.42)
s — Z
0

The measure M belongs to the set M of positive finite Borel measures on
[0,1]. For s fixed outside [0,1], F is a linear mapping from M into G.
Let

© ) l (n)
M(N) = M i yore Wy = fuog leznu(dz) = 1 ,n=0,+v+ N}, (6.43)

0
. 0 (D 00 . .

provided that U sH s2% %, form a positive definite sequence {23]
so that they can represent the moments of a measure. If the first N

(0) (1)
moments U WM ,"',U(N) of ¥ are known via (6.9), then F for fixed s
is a linear mapping of M(N) into L. 1In the weak* topology over the
continuous functions on [0,1], M(N) is a compact comvex subset of M.

(0)

The image AM) = A '°',§(N)) of M(N) under F is a compact convex
subset of E. Thus one way of characteriziag A(¥) is to characterize
the extreme points of M(N).

(0)

The extreme points of M(u Yy are the one-point measures

(0) £4)
i Gy(dz) where U > 0and 0< v € 1. The extreme points of M(N) are

the (N+1) - point measures [24]

ay 84, (42) (6.44)

where

i3
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N+1

@20, Kzj<ess<ay<l, 2 apzp = () =0,1,000 N (6.45)
k=1

To determine the extreme points of A(¥) it suffices to consider the

values of

F(s) = I (6.46)

as the o, and z, vary according to (6.43). We mention that this
rational form for F in (6.46) was essentially the starting point of the
analyses given by Bergman and Milton. Their assumption was valid in
the above sense.

A convenient way to carry out the determination of the boundary of

0
A(¥) is to use fractional linear transformations of F(s). If u( ) = ay
(1) )
and U = a, are known, i.e., if the first two terms of the E—pOWer
series for F are known,
a1 &2
?‘(s) L R S I (6,47)
s 2
s
then
1 1
F == 6.4
1(8) ajy sF(s ( 8

ig a function of type (6.42) with its é. power series known only to

first order
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ay/af
FE(S) a

v, (6,49)

The transformation (6.48) can be iterated to reduce a function known to
ath order to a function known to first order. This first order
function is then easily extremized. We ghall use this procedure in the
next two sections to obtain bounds on e*, Bergman [e.g., 9] was the
First to use a variant of this idea to obtain bounds on g™ up to second
order. G. Baker [25] has previously studied the nth oréﬁr
transformations in the context of Padé approximants to Stieltjes
series. G. Milton [11] uses another method to obtain nth order b;unds
on €% which are eguivalent to those obtained from wvariational
principles, and are essentially the same as Baker's bounds [37].

We now verify that F; in (6.48) has a representation like {6.42).
Clearly F,; maps the upper half plane U into the lower half plane L if
and only if the functon sF maps U into L. Now =F{(s) 1is positive

0y 1 (@
}_l 5 u ,II

definite so that its representing moment sequence M ,

is positive definite. Since

() (2)
gF = u(o) + ¥ + B
s

+ oo (6.50)

=]

(L (@)

and ¥ s H , *** is a positive definite sequence with representing
measure zu{dz), sF maps U into L. Furthermore, F| is analytic of £ [0,1]

cince sF does not vanish off [0,1]1. TIn addition, F; is analytic at s =
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w with Fj() = 0. Thus there is a positive Borel measure M} on [0,11
such that
1
Ul(dz)
Fi(s) = [ e o (6.51)
S

Before we obtain the bounds on e¥ we mention two properties of F
and its measurs M. For the special case of ‘rational F as in (6.46),
the zeroes and poles of F interlace. Let El, 9,0 ,E N4+l be the zeroes
of 1 - F. Consideration of éf renders them between O and 1 in the

s—plane., Then

) (6.52)

so that

T
2 -
Ly p 7 )
0<a,= - ,p o= 1,2,000 N+, (6.53)
Lz, - Zk)
ktp P
This implies that
0 < ZpNp] € Exsp € °* < Eqp€ 2y S £1 ¢ 1. (6.54)

We examine the condition given by Bergman [3] as

F(1y< 1. (6.55)
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By s = 1 we mean €4 = 0 with €3 fixed off (-=, 0). For u as in (6.44)
the meaning of (6.55) is clear. The 2, are not allowed to equal 1, and

both the &y and zy are constrained by

N+
L < 1. (6.56)
k

By the Krein-Milman theorem any measute in M can be expressed as a
weak* 1limit of convex combinations of one-point masses. Thus for the
effective parameter problem we must restrict out attention to measures
in M that are weak* limits of discrete measures obeying (6.56).

Clearly for such measures U,

1
[rldz) o, (6.57)
0

1=z
Using the Dominated Convergence theorem we can now compute F{l}. Since

s} .
_g i |
B uiio 2 S =y (6.58)

I n 1
lin [ I 2P u(dz)=/ %ﬁﬁ . (6.59)
meo 0 1=0 0 z
Thus
F(ly = 3 p(@), (6.60)
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D, Real Bounds

We assume that s > 1 is fixed with 0 < £ { €9, 1f

*
volume fractions py and pp are known then F = 1 = g_.is known to first
2
order
1
F(s) = 1?.+ s (6.61)
(0 ) .
so that u = py. Evaluating (6.42) with a point measure of mass Pj
gives
P1
F(s) = = 0< z< ps. (6.62)
To minimize (6.73) z is set to O,
P
F(s) » ,E%_ ] (6.63)
In terms of E*, (6.63) is the upper Wiener bound
%
£ < plﬁl + Pzﬁz; (6.64)
To obtain the lower bound on e* we consider the function
£1
E(s) = 1 -~ _ . (6.65)
*
£
€2
Bergman [9] has made use of E(s) and the other dual functions I - —

only the

€
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€ * : . . . s *
and 1 - Em-associated with ¥ in obtaining real and complex bounds on €

1
to second order. Milton [11] has used a similar idea in the derivation
of his nth order real and complex bounds, and has pointed out to the

author that all of his bounds can be obtained through analysis of only

F and E. Clearly E(s) has an integral representation like that of F(s),

; d
R(s) = | W42 (6.66)
0
In addition
_ 1-sF(s)
E(s) ST (6.67)

and in the sense of the previous section,

E(l) £ 1. (6.68)
To first order,
P
E(s) = 1§_+ sas (6.69)

Eyaluating (6.66) with a point measure of mass py gives
. P2
E(S) “-g:—é—, Og z £ pi- (6-70)

Minimizing gives
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E(s) 2 — (6.71)

Combining (6.71) with (6.64) gives the Wiener bounds,

< e¥< pey + poege (6.72)

These bounds are optimal. The upper bound can be attained by a
composite of slabs of the two materials € and €9 of volume fractions
Py and py aligned parallel to the applied field. The lower bound is
attained by the slab geometry arranged perpenéiculag to the field.

I1f the material is further assumed to be statistically isotropic
then the Wiener bounds can be improved. In this case F is known ¢to

second order

P1P2
S L (6,73)

P
F(s) = L 4
5 ds2

Applying the transformation (6.48)

1 1

F = -
1(s) Bl STEY (6.74)
gives to first order
P2
Fi(s) = +oeee (6.75)

Pi1ds
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Evaluating (6.51) with a point measure of mass pp/(pd) yields

pp/(p1d) a-1
i) R < < L. 6.76
1(8) = e, 0 < 2 < I (6.76)
The minimum of (6.76) is
po/(pyd)
Fi(s) 2 mg__ui__ . (6.77)
)
In terms of F(s),
P
F(8) > i, (6.78)
s =~ po/d
and in terms of £* (6.78) is the upper Hashin-Shtrikman bound,
P
e* ¢ sz+w_.i_.‘_.._ . (6.79)
1 P2
“17%2 2
To obtain the lower bound on e*, note that to second order
p pipgfd—1)
E(s) m_.é?_+_,.1“.2___,__.+--- ) (6.80)

d82

Now let
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1 1
E =__. - 5.81)
1(s8) 75 Y {
so that to first order
pi(d-1)
El(s) = 4+ oeee (6,82)
Pods

Since El(é) has the representation

1 Vl(dz)
Bi(s) =) ——> (6.83)
0

we let V| be a point measure of mass pl(d—l)/(pzd),

py(d=1)/(pad) .
Ei(s) = — , 0 z % T {6.84)
Minimizing,
py(d-1)
Eq(8) » o : (6.85)
Pods
or
P2
E(58) ® e (6.86)
pi(d-1)
S EE

Combining (6.86) for e* and (6.79) gives the Hashin-Shtrikman bounds




A

P2 * P1 '
£7 + e & £ & £ + , €1 % E g, (6.87)
i 2 1 2
1 P1 1 +P2
o€ dsl £1-€9 dEz

Like the Wiener bounds, these bounds are optimal. The upper bound
is attained when the composite consists of densely packed spheres of
all sizes composed of material 1 coated with material 2 in the
appropriate volume fraction. The lower bound is attained by switching
the roles of materials 1 and 2.

It is interesting to note that the bound on F induced by the
transformation F; is equivalent to H8ider's inequality, and similarly

for B. We can write (6.78) as

(0

H
F(s) » ) . (6.88)
5 — U Ju

With

F(s) =“S 4+ B + X + PR (6.89)
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For third order and higher, the bound can be written term by term as

1) k 0) k-1 k
(u( )) < (u( )) u( ) , k> 2 (6.91)
which is equivalent to H8lder's inequality
[ zuae) < ([ uiaz))®(J 2% uaz) . (6.92)
0 0 0

To demonstrate iteration of the transformations Fl and Ey we

derive third order bounds on s*. Assume
a ay a
Fls) = ok b o2 4 2 4 ees (6.93)
s s 8
and
i }
F T v = * 4
18 = =~ 5 TG (6.94)
To second order,
az as a% 1
Fl(s) - PR S ”_J L ese (6.95)
a%s a% a% 52

Now let




S lym

a1
Fy(s) = om = —zr—r (6.96)
2 a, s Fi(s)
so that to first order
aya
Fo(s) = ap(mmm = 1)+ oo (6.97)
32 8
Since Fy has the representation
1 up(dz)
Foa(s) = J (6.98)
§ - 2
0
we can minimize ¥y by letting Uy be a point measure at z = 0 of mass
aa
a (=2 -1},
Y2
a3
2143
a( - 1)
a2
Fo(s) 2 . (6.99)
In terms of F, (6.99) is
a1
F(s) 2 , (6.100)
s — 8
a aa
ST
8.2 a%

%
and in terms of £,




a
e* < e, + 1 ) (6.101)
1 ag/ay
£ —€ a
172 9 ajs
€ 2'*'(—5; “é-g) (egey)

Note that (6.,101) with ay; = py and ap = pipp/d is a better bound than
. az as
(6.78) since (Eu.- E"J < 0, which is just the Schwartz inequality.
2
The lower bound is obtained from transforming

b b b
E(s) = b 4 2 4 2 4 ees (6.102)
8 SZ 83
first by
1 1
K o ™ . .
1(s) 5y SRS (6.103)
As in (6.96), let
b{ 1
E R o— )
with
1 Uz(dZ)
EZ(S) = f _— (6.105)
0 s z

and



bybj 1
Ey(s) = bl(......i._ S A (6.106)
b
Minimizing (6.105) gives
byb3 1
Eqg(s) bl(,;f_- )< - (6.107)
2

The lower bound corresponding to (6,101} 1is

*

e > 1
1+ b,
£ (6.108)
1 1 + bZ/bl
1 b b i1
1.1 S (2 3y = - )
€2 El 1 1 bz €1 £

in [11] Milton points out that these hounds and the higher order
bounds obtained from more iterations of ¥, and B are optimal. They
are not necessarily attained, though, within the class of statistically
isotropic materials, because in general these bounds violate the
interchange inequalirty (6.20).

The higher order bounds may be described as follows. Assume

ay an a
F(S)m_é*"‘in'"i+‘.. o ke . (6.109)

Following the iteration  procedure outlined  above, the  last

transformation to be used will be
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1 1
Fa-1€8) = 55 SFTE) (6.110)
Ho-2
with
Ly, (dz)
_ 1
F.(s) = g e (6.111)

The bound is obtained by letting W _, be a point measure at the origin

(0)

of mass ¥, _, ,

(0

i3 -
n-1 (6.112)

Fo-1(s) 2

where the My can be computed from the a; as the iteration proceeds.

There is a large literature within the theory of Padé approximants

0)

which covers the determination of such quantities as W, {25, 26, 27].

In terms of ¥, (6.112) is a continued fraction

Fls) > N (6.113)
E.m, _ s
L) s s
H (©) s
) 0) 2
Hay S SN—
s ()
oy T Mee
T

. *
This lower bound on F gives an upper bound on €”., The lower bound on
e* arises from applying the same considerations to E(s), known to nth

order.

E. Complex Bounds
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Now fix s € € with Ims # 0. We first give bounds assuming no

information about the mixture geometiry. Since

1
F(s) = [ U2 (6.114)
0 5 A

the extremal values of F are attained when U is a point measure of mass

< 1 concentrated in [0,1),

F(s)=§%,{)<aél,0<z<l. (6.115)

Since F(1) < 1, the allowed region in the F-plane is the image of the

triange in (0 ,z)-space defined by

a +z< 1, 0<€ac 1, 0z <1 (6.116)

under the mapping (6.115). This region is bounded by a circular arc

parameterized by

o

C@) = sy

0<as< 1, (6.117)

and a line segment parameterized by

L(a)x%., 0< a< 1. (6.118)

These bounds are optimal. Any point on the line segment can be

attained by the slab composite aligned parallel to the field with Py =
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o . Any point on the arc can be attained by the slab composite aligned
perpendicular to the field with py =a. The two vertices are attained
when the composite consists of only material 1 or of only material 2.
Assuming knowledge of the volume fractions py and pp = 1 -~ py we
generate a region contained inside that above. The allowed values of ¥

lie inside the circle parameterized by
Pl
Ci(2) = o, =@ € 2 €@, (6.119)
s-z

On the other hand, the allowed values of E 1lie inside the circle

parameterized by

ﬁl(y) =, —® £y < @, (6.120)

In the 8*-plane the intersection of these two regions is bounded by two
circular arcs. These arcs correspond to 0< z < Py in (6.119) and 0 <
y € pp in (6.120). As Bergman [9] and Milton [!12] show, these bounds
are optimal. Points on the arc of C; are attained by composites of
spheroidal cores of material 1 in the volume fraction py; coated with
confocal shells of material 2 in the volume fraction py. The spheroids
are uniformly aligned with the polar axis parallel to the field and all
have the same aspect ratios. In a given sample there are all sizes of
spheroids. The arc of Cy is traced out as the aspect ratio varles.

The C; arc is attained by switching the roles of materials 1| and 2 and

then allowing the aspect ratio to vary. The vertex CE(O) is attained

when the spheroids have degenerated to cylindrical "cigars" parallel to
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the field with ¥ = p,/s (slab parallel) and EE(O) ig attained when the
spherolds degenerate o "infinite" pancakes perpendicular to the field
with E = py/s (slab perpendicular). Note that these vertices lie on
the arcs from the previous =zeroth order bounds. This optimal
spheroidal geometry is a generalization of the Hashin=Shtrikman coated
sphere geometry.

By further assuming statistical isotropy, F is known to second
order as in (6.73). Then Fy in (6.74) is known to first order. Since
Fl has the representation {6.51) its allowed values lie inside the

circle parameterized by

Cy(z) = , ~® sz ® (6.121)

Alternatively the allowed values of E; in (6.83) lie inside the circle

parameterized by

. p1(d-1)/(pyd)
oty = B, , ~® <y < o, (6,122)

Since F is fractional linear in F; and E is fractional linear in Eq,

the circles C, and Cy are transformed to circles in the F~ and E-

planes, parameterized by

F )—pl(s_z) < z<w® 23
g(z) = g{g:;:gg7§? s Z s (6.123)
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pals = vy}

A ey = vz B

- gy & o, (6.124)

In the E*—plane the dintersection of these two circular regions 1is
bounded by twe circular arcs. These arcs correspoad to 0< z < (d-1)/d
in {(6.123) and 0 < vy < é.in (6.124), The vertices of the region,
F(z=0) = py/(s - pp/d) and E(y=0) = po/(s - py(d-1)/d) are attained by
the Hashin~Shtrikman geometries (spheres of material |1 and volume
fraction p; coated with material 2 and vice versa) and lie on the arcs
of the first order bounds.

Except for the vertices, the above bounds are not optimal because
in general they violate the interchange inequality (6.20). In two
dimensions where the dinequality becomes an equality, Milton [16] has
improved the above bounds. In {10] Bergman gives a treatment of
Milton s bounds and extends them to higher dimensions. For two

dimensions Bergman writes the Keller interchange eguality as

A(s) + A{t) =0 , L = l—g (6.1252
or
A(s) _ A(t)
Tt oI (6.126)
7

where
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) _pZ/d 1

A B . -
(s) 5T O] (6.127)

It then follows that A{(s)/(s ~ é) is an even fupction of s - é“ which

leads to the definition of the new positive definite function

D(q) = A(S)l , 9 = (s - é«)z . (6.128)
ST

Extremization of D subject to F(l) € 1 shows that the allowed values of

F lie either inside or outside the circle parameterized by

1
pr(s = =)
B(z) = , —® < z< o (6.129)
(s ~ Ny - Loy - poz
Vi P2 Pi

If F = 1ig allowed then the admissible region is outside the <circle
and conversely. A similar analysis is applied to E(s) and the

resulting circle is

1
?2(5 - -2-)

B(y) = , —m<y<w (6.130)

(s - é—)(s ”ép]_) - Py

The region obtained in the intersection is bounded by the two circular
arcs 0 < 2z < pofhpy in (6.129) and 0 € y < py/épg in (6.130), The
vertices are the same as before but now the ares as well are optimal.

The arc of B{z) in (6.129) is attained by doubly-coated spheres: a core
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of £,, coated by a spherical shell of €1, coated again by a shell of
€5, The arc of %(y) in (6.130) is attained by interchanging materials
1 and 2 in the doubly-coated sphere geometry.

We now describe the ath  order complex bounds (neglecting the

interchange inequality). Assuming as in the real case that aj,e**,a,

are known, then F__;(s) is the last transformation to be wused in the

iteration procedure. Since

iln..l(dz)

1
Fo.1(s) =] e (6.131)
0

the allowed values of F,_; lie inside the circle parameterized by

. (6.132)

Now F 1is fractional linear in F ., so that this circle is transformed

into a circle in the ¥F-plane,

Fz(s} = 1 , =@ <z < w0 (6.133)
s _ s
{M s _ s
H ,(0) :
1 -
£0))]
5 sl
- "Fpe1
n—a

Analysis of En—l gives a similar circle in the E-plane. The

intersection of the two induced circular regions in the ¢ *-plane is
bounded by two circular arcs. The arc coming from {(6.133) 4is traced

out as z varies between 0 and a, where a is determined by the condition
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that F(l) € 1, just as in the first and second order bounds; similarly
for E. The resulting bounds form a seguence of nmnested iens-
shaped regions, where the vertices of the nth order bound lie on the
arcs of the bound of order n-1l. Again these bounds are not optimal for
isotropic materials because of violation of the interchange inequality.
Baker [25, 26] derives a similar set of bounds, differing only in that
we bound the dual function E(s) in addition to the original function
F(s), so that our bounds on F(s) are tighter than his. As n+ «, the
bounds converge to a point in the complex plane. Physically, this
means that 1if one knows all the correlation functions of the material

then the effective parameter is completely characterized,
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7. The Polydisc Representation Formula

A, Derivation gg_the Formula

In section 4 we showed that m(hl,hz) ; 52 + {Im(m) > O}. As
counterparts of m in U2 we consider analytic functions in the
conformally equivalent polydisc DZ = {[cl! < 1} % {‘52] < 1} with
positive real part there. We will derive the analogue of (6.13) for
guch functions.

Let f(Cl’Cz) be holomorphic with nonnegative real part in D2, We
first give a polydisc Schwartz formula which expresses f restricted to
D% = {ley| <R} x {[gg] <R}s R< 1, in terms of an Integral of its
real part over T% = {|w;] =R} x {jwp| = R}. Cauchy s Formula for

(t,,0) € Df is

Fl{wy,wy)

1 .2 1s%W2

EG1,09) = (e /] dwidsi . (7.1)

1:62) = ‘o1 2 CIEDW2T2) 15¥2
R
" 2 i8 . i85

Let §j = (R /rj)e J be the reflection of gj = rje J in the circle
{le] =R}, j = 1,2. From the one-variable Cauchy Formula one can see

that if £, or 5 or both are replaced by their reflections in the
integral in (7.1), then the integral vanishes. Therefore, £{(C,,59) may

be written as

1 y2 1 1 1 i
£ 1,69 = (g) T EGu0) * ) x ) dwydwy 5(7.2)
=2 1 2 ’ Wity WE"CTJ Wo L 9 wz—g’; 2
i

it,
for any combination of +'s and —-'s. With dwj = iRe 3dtj, we have




-

s im 22

i
U
[a?
b3
I

5 dt (7.3)
R +rj—2rchos(Bj—tj)

i2r.Rain(0 :-t3)
(1 v 1y N i3

= i1 + ) dt ;. (7.4)
W, . ® ] 2.2 T
NI B i R +rJ 2rchos(8J tj)
Then £(Z,,57) has the following equivalent forms
1 2 2u
£(1,02) = () 2 ey, £0) (1410 P ode dey (7.5)
00
1 2n 2n
£@ 1.0y = (5 JE(E1,e2)(140p)Pdt dty (7.6)
a0
1 25 2n
(@, 9) = [.ﬁ,} 2{)] £(ty,te)(1+iQ ) (1+iQy)dt dto (7.7)
0
) 2n 2w
£ 1,89 = () 2{) {Jf(cl,tz)PiPzdt}dtz (7.8)
where
P Im[H.], Hy = 303 -~ e (7.9)
i _Re[Hj}) Qj = ‘i]l{ j}s j _Wj-?;j QWj = he . .

With £ = u + iv, (7.8) gives
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22w

ul@,59) = (E;Jz é %U(ti,tz)Pledtldtz. (7.10)

Adding (7.5), (7.6} and (7.7) vields

2r 2n
1
W) = (gﬁ—)z{) [ [utey,t9)(Q1Po+QgP 1401 4Q) +
G
v(ty,ty)(P+Py+1-Q10Q9)] dtdty . (7.11)
Using

allows us to write

n Im
3fm[_2%_)2f [lu2p Py + 1(Qy+Qy) + HyHp) + iv(1+P1+P5) + EQQs) dtydty . (7.13)
o 0
From (7.7)
i 2n 2m ] 2n 2w -
(2?)2{) IO £Q;Qodtdty = (7"?)2{) fo[f - i(Q;+Qy)) dtydey - £, (7.14)

which gives

n 2w -
3f = (%—JZ{} {J[u(ﬁiﬁz + 2?}_?2 + 1) + V(i(P‘i"'?Z) - Ql - Qz)] dtidtz - f . (7.15)

In view of (7.10) this becomes
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! 2m 2w
2f = {QFJZ g %[u(ﬂlﬂz+l) + v(i(P1+P2) - Q1 -~ Qz)}dtldtz . {7.16)

Recalling the single variable Schwartz formula for a function £(g )

analytic in the unit disc

1 R it + g
wn e

F{r) = iv(0) + 2%.f —_
0

Re -

it id
u(Re dt, g =re , r <R <1 (7.17)

allows (7.16) to be written as

r Im
2f = (%.)ZI jOu(Hle - 1)dtdty + £ 1,0) + £(0,z2) ,  (7.18)
0

or eguivalently,

om o :
it it
£ 1,09) = 1v(0,0) + 5 () 2 {} {)(Hla?_ +Hp +Hy - 1) u(Re LRe  Ddtjdty . (7.19)

The representation in (7.19) can be verified by expanding £ in a

power series

I At}

n,m=0 nm

L]

[~ -] oo

o
Mg "L Ano 8T #2 BB FE Aggfed . (7220
n= m=1 n,m=1

which may be written as

£(2,0,) = £(0,0) + (£(z1,0) = £(0,0)) + (£(0,c9) - £(0,0))

+ (5@, Ty - £0T,0) - £(0, Ty) + £(0,0)). (7.21)




X

Observing the fact that for n, m 2 1,

m 2

1
28, £ G = (zan % % HyHy Re[ Ay wi wB] deyde; (7.22)

and applying the single varilable Schwartz formula (7.17) gives (7.19).
We wish to extend (7.19) to the entire polydisc DZ. Define Gg, an

increasing function of ty and to separately, by

1

t}. t]. tz 1 '
) dty deg. (7.23)

op(ty,ty) = {5%32 [ JuRe
0 0

¥
ity i
, Re

Since op(2r,2m) = u(0,0) for every R < 1, Helly's theorem allows us to

pass to the limit as R+ 1 and define

U{tl,tz) = 1im UR(tl’tZ) (7.24)
R 1

at all points of continuity of 0. We now have a formula for f(Cl,gz)

valid in DZ?,
£(Z1,0,) = iv(0,0) + é.fé(ﬁlﬁz + Hy + Hy — L (dty,dty) , (7.25)
T

where 4 is the positive Borel measure on T2 induced by g.
One should mnote that not all positive measures on T2 arise from
the boundary values of the positive real parts of holomorphic functions

t1

i it
in D2 12817, Indeed, for every R <1, u(Re , Re 2) has non—~zero

Fourier coefficients only in Z% U z%, where Z, = {0,1,2,***} and Z_ =

- Z,. This follows from observing that
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u = é—(f + ;) (7.26)

and on Tz, f has the form

it it g i(ntqy+mt
rrettlretty = F 4 PO 2, (7.27)
n,m=90

Si ()2 u(r e Reitz) dty d k* to u(dty,d R+
ince |5 ” ulRe s 1 dto converges wea owu 1»dtp) as
1, ¥ has non-zero Fourier coefficients only in Z% U g2

We have now proved necessity in the following

Theorem: For f£(Z;,75) to be holomorphic with nonnegative real part in

D2 it is necessary and sufficient that f may be represented as

ity + ito + ity N ity
1 e Ti e Lo e L e tCo
£(1,09) = 1v(0,0) + = [[ (= . + — + - - L (dt),dey)
- 1»dty
2 ltl lt2 ltl 1t2
T4 e " -fpe " -ty e " oL e T Tby
(7.28)

where U is a positive Borel measure on T2 satisfying

j£ ei(“tl +ome) u(dty,dty) = 0 unless (n,m) ez vz,  (7.29)
T
Sufficiency is proved by first noting that the integral in (7.28) gives
rise to a holomorphic funection in D2, This can be seen hy expanding
(7.28) ia vpowers of 7, andgcz, where |£q] < 1 and lc 5] < 1. Then the
power series generated by (7.28) converges uniformly on compact subsets
of D2, That the real part of (7.28) is positive follows from writing

(7.10) as
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Re[£(L1,29)] = ulg1,09) = jfz PPy u(dty,dty) (7.30)
T

where Py and Py are positive.

Representations of f(Cl,cz) equivalent to (7.28) have been glven
by Xorinyi and Pukdnzky in [29] and by Viadimirov and Drozhzhinov in

[30]. Xordnyi and Pukdnszky prove that f may be represented by
f(z 182) = iv(0,0) + f‘g(ZS(C 1:% 2,W1,W2) ~ 1) u{dty,dtsy) (7.31)
T

where U satisfies (7.29) and S is the SzBgo kernel

g = . 1 . (7.32)
a--Ha -3
1 2

A little algebra shows that
25 -1 = (Hy +Hy +Hy - 1), (7.33)
as it must.

8. Reproduction of the Boundary Values

We now verify that the kernel é(HIHZ + Hy + Hy - 1) reproduces the
"houndary values' of the function it represents. That is, we show that
as (Zi,zz) are sent radially to (%> Cz) = Tﬁ, the right hand side of

(7.19) converges to f(Ei, 22). To do this we use the single variable

results [31] that
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2

. 1 ~
lim "Z?r"f Pj u dtj = U(Cj) (7.34)
t.+R 0
J
1 2m ~
lm = [ Qudty = vEs) - v(0) (7.35)
rj*R 0

First letting ry + R in (7.19) yields

It

lim £(21,00) = 9(0,0) + fuC 1,00+ i(vE1,0) = v(0,0))

r1+R
21
1 l ~ ~
+ 7;3 JlPyu(z,t9) = Qv y,tp) - v(0,t7 ] (7.36)
0

+ 1[0y u@,te) + Po(3E ,ty) - v(0,£2))] dty.

Now letting rop + R as well yields

. ~ ~ 1
Lim  £(,09) = L E@1L,0) + £(0,52)) - 7 u(0,0)
TR

+ Hu@ 29 +u@,Eg) - a@1,0) +u(0,0) —u(0,Lp)  (7.37)

+ HVE T - vELO) VG L) - v(0,Z9))

Thus (7.19) reproduces the boundary values of £ on Té .

lim  £(C1,T9) = £(Zq,00)- (7.38)
ry,r*R

We conclude that if in some region of T2, ¢ has a density that is say,
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continuous, then taking radial limits of the real part of (7.28)

reproduces the values of the density in the region.

¢. Boundary Behavior where the Measure Vanishes

From (4.10) we have that when h; and hg are real, m(hy,hy) is
necessarily analytic only when both hy and hy are positive. It then
follows that the measure ¥ in (7.28) can have no mass on the subset E
of T2 which corresponds to &% in (hl,hz)nspace. In order to use (7.28)
for (€ 4,59) € E we should verify that as (£ 1,7) is sent radially to
E, the real part of (7.28) vanishes identically on E, and that (7.28)
gives rise to a purely imaginary analytic function on E. Note that in
Section B above we have already show; the first of these two

statements, but we will reprove it here.

An extension of f imto (D*)2 = {{cll > 1} % {[;2[ > 1} is given by

£t =TG- (7.39)

Let Ay denote £ in p? and A, denote f in (p¥)2.  Now (i%)z u(Reitl,
Reitz) dtdty converges weak” to u(dty,dty) as R~> 1. Thus as radial
limits are taken, A; and A) converge in the sense of distributions to
the same purely Imaginary limit. The edge of the wedge theorem [32]
then gives the existence of a function A holomorphie in a neighborhood
iyl, C g2 of E containing 2 U (0*)2 such that Algz = Ay and Al & 5 =
(D7)

Aq, Then A]E is a purely imaginary analytic function on E.

It is interesting to note that if n 1s allowed to have point

masses off E, then the above statements are not in general true.
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However, this 'mon-localization" which may occur in D%, = 2 2, is
prevented by the Fourier condition (7.29), as Rudin [33] points out.

We now find an expression for the purely imaginary AIE in the case

rhat ¥ has a continuous density m(tlstz)' Under this assumption we

write

1,1
£@1,T9) = 1v(0,0) + o{ ) 2 [[CHyHly + Hy + Hy = Dalty,tp)dedeye  (7.40)
T2

We assume for convenience that E = (7, 2r)yx (m, 2r)., The Hy and H,

integrals in (7.40) can be written as

2% 2n
N 11 11
£(Z1,09) = 1v(0,0) + [,ﬁ.) {}H}ml(tl)dti oy (‘2?”] {)HZmZ(tZ)dtZ

2w 2w
i
+2('2‘.ﬁ_]2 {) {)[Higz - }) m(tk,tz)dtldtz N (7.41)
where
! 2% i ai
ml(tl) = -zﬁnf m(tl,tz)citQ, mz(tz) = -z—ﬁ-f m(tl,tz)dtl. (7.42)
0 0
By (7.38) with R = 1 the imaginary part of (7.28) converges to Alg in

the radial limit. Then it suffices to analyze

. n . 2
v(T 16 2) = iv(0,0) + %(1%1-‘-] J.lei(tl)dtl + % (%—J]szz(tz)étz
0 0

28 2m
{1
+ ) fo {)(Pin + B0y meg,ep)dedeg. (743)

Since the first two integrals in (7.43) are single variable functions
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we may immediately set ry and ry to 1 in their kernels [31]. We focus

o1

18, 18, [ g 2 A
I(rle »Toe ) = (—2?) f j ?le m(tl,tz)dtidtz y (7.44)
o 0O

which can be written as

16 4 16 o 1 Pxinil no2m T
I(rle »Tge ) = [ﬁ—)z 1:{) {}Pinmdtidtz + fo J(‘)?lQZm dtldtz - {) -{JPIQZmdtldtZ] . (7.45)

Since P; behaves as 1| * 1 as a delta function concentrated at ty = 8},
where T < 91 & 2, the last two integrals in (7.45) may be set to zero

in the radial limit. WNow applying (7.34) for a continuous weight with

R = ] gives

. . . ; o

. i8 i8 if if 1

Tin  I(rpe Lrge 2 =T(e Yo 2) = [Q m@,tp)dey . (7.46)
ry,ry*rl 0

Thus we write

i8 i i8 i8
lim f(re i,rze 2) = f(e l,e 2) (7.47)
11'1,}:‘2‘*1

with

2%

6. 18
LMy 2 5v(0,0) +é(;ﬁ_)[ [ o{m ) + mley,8)) deg +
0

fle

o
Jag(my(ty) + m®q,ty))depl e (7.48)
0
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Since H; = iQ; and Hy = iQyp for (T1sL2) € TZ’

. . 2r 1ty i0 4
i94 i0 5 . ir 1
£(e’ “ye 7Y = 1v(0,0) +,Z(.2?] f _._-——————-{ml(tl) + m(t],89))dey +
2% ltz
I —-——————(D’lz(tz) + m® 1,t2)) dtz] (7.49)
E
Now m satisfies (7.29) and vanishes on E = (m,2r ) % {r,2m ). From
. . iei iez
the edge of the wedge argument £ in (7.49) is analytic in e and e
when (81,82)6 E. Consequently
iel 192 o ltl+ei@1
Be y =] &8 FC  m(rg,0p) dty , W <88 < (7.50)
0 eltl _ 8181
9, 19

ig analytic in e as well as e 1 yhen (61,82)55 E, and similarly for

1 and 2 reversed. Because m vanishes on E, m(ti,ez) vanishes when T <

ty < o1, In addition

2 itl iel

i +
el = &t mepary, W <o <m0
0 eitl — 1

i8
is analytic and purely imaginary in e 1, 7 < 91 L m, Whenw < ty <
i
2n,m (t]) is the real partofC(e Ly, Thus m;(t,) vanishes in ™ < £ <
21. The same holds for mz(tz).
In the general case where U is a positive measure vanishing on E

and satisfying (7.29), we have on £,
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k)
1
f{ J(’}Hl[ui(dti) +U92(dtl))

16, 10,
fle , e } = 1iv(0,0) +

T
+ I Hz[ﬂz(dtz) + Ug l(dtz))] .
G

(7.52)

The measures in (7.52) are obtained from the following radial weak ™

limits of u = Relf],

2n ity its
ul(dtl) = lim(fu(Re ,Re )dtz) dtl
R*1 O

[} d = 1i it R iez)dt
52( ty) = lim u(Re JRe L s
B+1

(7.53)

(7.54)

and similarly for W, and uez. The mass restrictions on U and uez

induced by the above considerations for M with continuous density have

been included in {7.52). Again, we have that

Be e ) =[Z U (dty) ;T <8y, <
0 eltl _ elel 2
i@z i0

is analytic in e as well as e l, and that

C(e 1) =f e. e_ U}(étl) s F (91 <
o 1ty i94
e - e
161

is analytic in e . Similarly for uel and UWo.

Let us develop (7.55) into a power series representation.

ity iei i@z
= e s L = e and Ly = e , We have

(7.553)

(7.56)
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B(C.l,c 2) =u(é3; + 2[31(5»;51 + H(GZ;C% 4+ ees ] (7.57)
where
() _f (L
n; = n
Wi = fo (;,—-1—) ug  (aty). (7.58)

i6 i
Now each U(gé is an analytic function of T, = e 2, so that it has a

power series

2

aén) 8y - 9*)j , 8%¢ (@ ,2r). (7.59)"
]

(n) -
H) Tilg

The agn) are the nt!' moments of "jth derivative" measures

a}in) =

o =

(%{)“ uez,j<dt1), (7.60)

where the 1imit in the derivatve

3jﬂg
2
= . . (7.61)
sl lg =%
2 2

318 2’3

. * . : .
holds in the weak sense. These "]th derivative" measures have the

following equivalent definitlon,

] it i8
by, ;(dep) = lin 222 (re Lre Hary] | (7.62)

v

%
Rl 2307 By =07,
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. ot s . *
where the limit is taken in the weak™ gsense.
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8. Bounds for Three—Component Media

A. The Perturbation Expansion and its Analytic Continuation

For l81§ > 1 and lszl > 1 we can expand (5.9) with i = k about a

homogeneous medium (s1 =8, =®),

x2  xifx1  xox2 xfxz +xFx1)

87 s% s% 8182

-*u ...)ek].ek.

X
F(sy,s9) = fP(dm)[.gi +
) 1

If only the volume fractions pj,pp and p3 = 1 - py = py are known then

¥ is known to first order

Py P2
F R .
(51,82) = 5=+ 5 * (8.2)

As in the two~component case, the second order terms can be calculated

by assuming statistical isotropy of the medium. Let

%j=émexir%xj s 1,3 = 1,2 (8.3)

Again we can write

ciy =] Gly) Ryg(dy (8.4)
gd

where Gy, (y) is the kernel of the singular integral operator Ay of

(6.16) and

Ryj(y) = é P(dw) x4 Gty 0 (x5 (x,0) = Pyl (8.5)

(8.1)
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Under the statistical isotropy assumption,

-R; : (0)
1
cqg = 3 , (8.6)
where
“P1P2 i# ]
R;5(0) = (8.7)

Pi~p3-2_ i = 3.

Thus to second order,

2
Py P2 ?1'9% po~pP7  ZP1P2
F(sy,89) = + + +
1

r— - + omre . (8-8)
S2 ds?  ds3  9S1%2

Consider f(él,gz) on Dz, the counterpart to F(sl,sz) on U2 = {Ims}
> 0} x {Im s, > 0}. The perturbation expansion (8.1) about sy = 59 =
corresponds to a Taylor expansion of f(ci,cz) about g | =gy = 1, which
is in the region of T2 where the measure vanishes. As could be
anticipated from the power series development of f in (7.52) through
(7.57), the way in which (7.28) provides the analvtic continuation of
(8.1) is not as simple as in the two—component case. Mapping (7.52)
with E the complement of [ (v,3r/2) x [0,21)) u ([0,2m) = (,3r/2)] to

2 gives
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1 1 1 + Z].Sl
K(sy,s9) = - Y + > Om.z..,l.__:-gi-»[ul(dzl) +“s2(dzi))
(8.9)
1 b1+ zgs)
+ E‘f —-—-———-(iiz(dzz) g (dzz)] s
o %2 T 82 1
where K(s],s9) = = F(sy,82) = if(g),6) and ¥ = v(0,0), Rename u;(dzj)

= Uz(de) +ﬁsl(d22) and ﬂz(dzl) = ui(dzl) +U52(d21) so that

1 1 1 + le}- 1 i+ 2282
K(sy,s9) = =Y + 5] = wo(dzy) + o o= (dz) . (8.10)
0 17 °1 o “2
Recall that Fle,@) = = K(»,») = 0. Then
1 ! 1 !
-y = E'f zq ¥g e (dz]) + §.j Zyg U1 e (d22) , (8.11)
Q Q
where
u = U
1= . w
L
(8.12)
Py =H
2 2gy = .
Since
1+ zy8, (1 + z%) zq(1 + z%)
=~ (zy + + + een ) (B413)
21781 $1 s .




e

we may write

1 1
1 i
K(Sl,sz) =.2.J;) Zl(ﬂzw(dzl) “ﬂz(dzl)) +-2-f022(151w(d22) “H}(de)}
i 2 1 2
1 1 %1 %1 1 1 %2 %2
- ,z_j[_s._ * oty +oee) vy(dzy) - 'Z"H"é"" ot +eee)v(dzy),  (8.14)
0 i Sl S]. O 2 52 Sz

il

where vV (1 + z%ﬁil and vy = (1 + z%)uz. Now expand My and Vi in

powers of 1/s9,

o iJ.]_ .
s ]
Uy =1 + I
S )
1 (8.15)
oo v .
V) =V, t+ I 1{3
j=1 ]
52
and similarly for U, and Vy, where the Wy ; and Vv 5 are the jth
s s ]
derivative measures analogous Lo (7.61). In terms of F = - ¥, (8.14)
becomes
(L N v(j“l) u(l) b v (3-1)
1e® (%2, 2 ® 1,j 1o
F(sy,89) [ (- L )
SIS £ N 3 ’
52 51
{(8.16)
v(j"—l) v(k-l)
@xN a
+E Z,k, 1,3 ]'
i,k=1 ik
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To second order,

(G v (8 +“({31 +u (9

1
F =
(s1,82) 7[ 59 51

(8.17)

B. The Representation of Certain Extremals

Let ¥ : y2 » {Im X > 0O } vanish at and be analytice in a
neighborhood of (*, =). Furthermore let K be such that its counterpart

on D2 arises from a sum of product measures of the form

dtz dtl

where M and U, are positive Borel measures on (w,3 /2), not to be
confused with those from the pravious section. The mass restriction on
Hy and ¥, glves the correct domain of analyticity for F = - K on Uz.
The reason why we are interested in functions arising from (8.18)
is as follows. For two-component media the bounds were obtained by
examining the images of extreme points of the positive measures with

fixed mass under the mapping (6.42). Let
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M_ = {positive Borel measures W on 72 satisfying (8.19)

the Fourier condition (7.29) and

[[ w(dty,dty) =a > O}
2
The simplest extreme points of M, have the form

dty * dty

= a 5t§ x &5 by = a 5t§ X el (8.20)
where 0 € tf,t; < 2r, The image of u? under (7.28) as tT varies
between 0 and 2r is a circle lying in {Re £ > 0}. The image of u;
under (7.28) as tg varies 1s a circle in {Re £ > 0} which either
contains or is contained by the U? circle. 1If ]CEI 4 l;zl then the u;
circle contains the u? circle. Now the full set of extreme points of
M, has not heen completely characterized [33,34,35]. However, we
conjecture that the image of M_ under (7.28) lies inside the larger of
the two circles from u? and y;. Using this ansatz in the next two
sections we will rederive classical real bounds for three-component
materials and obtain new complex bounds. In the appendix we will
discuss this conjecture for a discrete approximation of M. In
particular, we will show that for our discrete model of M;, the only
extreme points are discrete versions of the measures in (8.20).

We now find a formula for X(s;,sp) arising from (8.18).

Evaluating (7.28) with n as in (8,18) and vy = v(0,0) gives



—fh=
L, X2 L2 . 2 L
£(z 148 0) = iY +,Z[( f Hlyl(dtl)}(.fﬂ_f Hodty) +[ Hpj(dty) +,ﬁ.f Hodty — 1]
T 0 i 0

' 3 /2 1ZH 3w /2 1 2n
"r.z.[ ( '{r H2B2(dt2))(ﬁ-{)ﬂidtl] +1{ Hzllz(dtz) +.2?[—{}Hldt1 - 11. (8.21)

The function

1 ¥ te
b=u+iv = [ ——dt (8.22)
W, — [
o "1 1
is analytic on lcij ¢ 1lwithu =1and v =0 on ‘Cll =] and u =1 and

v=>0atg; = 0. The maximum modulus principle ylelds b = 1. Thus

3 /2 3r /2

LATRELY wy toy
I B o A e e L DA [ S luy(dey).  (8.23)
x Y1761 x Y2 "G

Letting K(sy,sp) = 1 f(£1,t9) with Ly~ (sj - i)/(sj + i) and Wy o= (zj

“i)/{zj + 1) gives

1 1+ Z181 1 1+ 2989
K(sy,89) = =Y +[ e (dz)) + [ e up(dzy) , (8.20)
0 %1781 o "2

where Ul(dzl) and Mo(dzy) are positive Borel measures on 10,117,

Further imposing that X(¢,»} = 0 forces

1 1
-y = ap(dz)) + [zguqldzy) (8.25)
0 0

which allows (8.24) to be written as



-
‘@ _}(1&{) }(HQ@

Absorbing (1 + z%) and (1 + z%) into ¥y and By without renaming gives

1 1

us{dz) va{dzay)

K(sy,85) =] LI [ (8.27)
o 21 ~ %1 g %27 82

We will let X represent various functions associated with F to derive

hounds.

C., Real Bounds
Since F g > {Im ¥ < 0} its counterpart in P? has a
representation tike (7.28). To find extremal values of F we look in

the class of measures (8.18) so that with K =-F in (8.27),

1

Ha(dzi) L ua(dzg)
F(sy,s9) = | 1ldzy ) o Falezs
0

. (8.28)

51721 g %2722

1f only the volume fractions P, P2 and pg are known then to first

order,

P P
F(S}.’Sz) =.‘é—1-+.—-%-+." . (8.29)
1 82

Bquating (8.29) to the 1/s) and 1/s, expansion of (8.28) forces

W= 5, = py (8.30)
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Letting ¥, = p1531 and Uy = P2632 as in (8.20) gives
Pl P2

T(s,,s N
A T

, 0< aj,ap < 1. (8.31)

In (8.31) we have set aj and ap strictly less than 1 because analogous
to (6.535), F(Sl,sz) must obey the condition F(1,1) < 1. "To minimize

F(sy,s5) for fixed sy, > 1 we set ay = ap =0,

D P
F(sy,80) 2 ot + 2 ) (8.32)
1222 51 55

which is equivalent to the upper Wiener bound
*
£ € plE'.l “+ szz + p3€3 (8.33)

To obtain the lower bound on e* we consider
%
H(ty,t9) = 1 —€3fe” = F(sq,89)/(F(s1,89) = 1), (8.34)

where t] = 1 - 8] and tg = 1 — s5. We could also use 1 - 62/8*. Since
H(il,tz)t {Im tq > 0} x {Im t9 > O} > {Im H < 0} its counterpart in D2
has a representation like (7.28), 1In addition, H(t,,ty) has the s;me
region of analyticity as F(s;,s87) so that to get extremal values of H

we restrict our attention to
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1 1

wildzy) wno{dzy)

Aty ep) = | e 4 [ 2 :, (8.35)
O tl""Zl O tz"Zz

where By and Hp are again positive Borel measures on {o,1]. To first

order H has the expansion

P p
H(E ], tp) =_t%+£_+--- : (8.36)

)

To minimize (8.35) we set ¥y = P15a1 and 4y = p2§32 with a; = ap = 0 so

that

P1 P2

H(tlstz) > _E_l, + 6 . (8.371)

Collecting our two bounds (8.33) and (8.37) gives the classical Wiener

bounds for three—component materials

*
€ g £ plf-:l + pzif.z + 9383. (8-38)

These bounds are optimal and are attained by the slab geometries of €4,
€, and € 3.
If the material is further assumed to be statistically isotropic

then F is known to second order as in (8.8),
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2 2
py P2 PP  P27P 2p1p
F(sy,89) = — + Pz PITRL P2 Emiﬂi +oese (8.39)
51 82 as?  ask  F1%2

Note that there arises in (8,39) a non-zero second order cross term ~
2pypy/dsysy so that (8,27) is not directly applicable. However,
consider the function
F(s1,89)
G(sy,sy) = I (8.40)

1
1l - _&- F(Si,Sz)

Now G(sl,sz) : U2 + {Im G < 0} and has the same domain of analyticity
as F(SL:SZ)’ so that it has a representation like (7.28) din DZ. To

second order G(s;,s;) has the expansion

P P P P
G(sl’sz) = _i.+ ﬁg +.mj§ + 2 + 0

FaE R . (8.41)

e,

5 8
1 2 dsl

2 858
dsj 122

The important point to note is that there is no second order cross—term

in (8.41) so that now the extremal values

letting K = — G in (8.27),
1
Ul(dzl)
G(Sl’sz) =‘é +

$1 7 21

Letting ¥,

= P1631 and ¥y = p26a2

of G can be obtained by
1
waldzo)
2, (8.42)
0 %2 7 22
gives
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P1 Pz
+

G(58+,89) = e
1-52) s)—a; Sp-aj

3 O < &1’82 < 1 (8-43)

where a; and ay have been set strictly less than 1 because F(L,1) < 1

jmplies that G(l,1) < d/(d-1). Comparison of (8.43) with {8,41) forces

a; = ap = 1/d, so that for fixed si,89 > 1,

P1 P2
G(Sl,sz) > i + T (8.44)
§q = o - .
177 27717
In terms of F(sy,s3),
F(s Yy 2 1 4
1,82 T 1 » (8. 5)
+ -
Pi N P2 d
which is equivalent to
*
e < ey 4+ 1 , (8.46)
1 e
P1 + P2 de 5
1 i 1 1
€, ~E * de £.-€ * Ge
1 73 3 2 3 3
the Hashin-Shtrikman upper bound with €< €Ep% €.
To obtain the lower bound we consider
~ *
F(qg,q3) =1 — ¢ ey, (8.47)

where
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1 1
qz T iy Q3 T et . (8-48)
€2 €3
1 -_Z 1 - _=
€1 €1

The function F(dp, q3) is the same type as F and has a second order

expansion

2 2
~ py P3 Pz~ P37 P3 T P3 2p1p9g
F( ) = 4+ -

42 943 dgq dqj 4293

Analogous to the treatment for the upper bound we consider

~ %(q sq:-})
Glap,a3) = : , (8.50)

T =~
- T F(qQ_JQB)

which takes {Im gy > 0} x {Im q3 ? 0} into {Im G < 0} so that it has a

representation like (7.28) in D2, To second order,

N pr P3P p
Saqe) - 22 P2 2 D e (8.51)
22937 " 97 1 7 5
2 3 dq5 daj 92493

To obtain extremal values of G we apply (8.27) with K = -G ,

1 1
“ u{dzy) uo(dzyp)
G(qa,q) = | Py 272, (8.52)
2093 - "

092~ 21 o937 %2
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Letting Wy = ?2631 and My = p36a3 gives

P 2
2 + 3 R {8.53)
4 —ay 93 - a2

G(QZ)qB) =

With €, < €9 < €3 we have 49, g3 € 0. Comparison of (8.53) with (8.51)

forces a; = ap = 1/d so that for q9,93 € 0,

- P2 P3
G(qq9,97) < - o (8.54)
92 -q 9377
d d

In terms of e* our two bhounds (8.54) and (8.46) become

1 % 1
£ + < € Eq + 8.53
U S T O (8.5%)
& asl 2&'5 de 5
3
Ik B

These inequalities are the classical Hashin-Shtrikman bounds for three-
component materials.,

The bounds in (8.55) are attainmable for certain volume fractions
[36]. The geometry that attalns them 1s a generalization of the
coated—spheres discussed for two-component media. The upper bound is
attained by a mixture of all different sized spheres of €4 and € each

coated with €14 in the correct volume fractiom. The lower bound is
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attained by the same mixture with El and 33 reversed. Now let gﬁ
*
denote the lower bound and €y denote the upper bound. Then Milton [36]
shows that the condition that must be satisfied for the above geonetry
. * ES * .

to attain €y is that €9 < €. Furthermore, €y € €5 must hold in ovder
that the lower bound be attained. This suggests that for certain
volume fractions the Hashin-Shtrikman Dbounds for three or more

components can be improved.

E., Complex Bounds

We first derive complex bounds on £* assuming no information about
the material aside from ) and sy, which both lie in the upper half
plane (or lower half plane)., Since T has a representation like that in
(7.28) in DZ, we obtain its extremal values by letting ¥ and My in

(8,27) be point masses so that

Gy )
F(s = + . 8.56
1:52) Sl—Zl 52_22 ( )

where

(11 ‘{"'0.2{ 1, 0‘.1,{12 > O s Og Z},Zz < 1 ,F(l,l) < 1- (8.57)

Part of the boundary of the allowed region im the F-plane can be
obtained by setting either @y = 0 or oy = 0. If ay = 0, then one of the
two following arcs lies on the boundary of the allowed regiomn. The

first is the line segment jolning the origin and 1/81 parameterized by
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a
Li(a;) = =, 0€ 6y < 1. (8.58)
1) = 5 1

The second is the circular arc joining O and EL.thained by setting
1
F(1,1) = 1 (with ay = 0), and is parameterized by

%]

Cl(ai) = , 0< ag € 1, (8.59)

51 ~ (1-0y)

Repeating this procedure for a; = 0 gives two arcs joining O and alm

S2
parameterized by
a2
Lz(O‘.z) £-S-E- N 0 < 3-2 < 1 (8.60)
@2
C . < < » .

One can apply the above argument to %(QZ,Q3) =1 - e*/el to obtain a
1ine segment and a circular arc, each of which join 1/sy and 1/sy. The
other segment and arc produced by %(qZ’QB) will be the same as one of
those pairs from F(Sz,sz)-

In the F-plane the allowed region may be described as follows.
Let Tp be the triangular region lying inside the three line segments
above with vertices 0, 1/51 and 1/52. Let T be the curved triangular
region lying inside the three circular arcs above with vertices 0,

l/sl, and 1/s9. Then the allowed region is the union of Ty and Tg.
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As Milton [pers. comm.] points out, these bounds have a simple
interpretation in the E*—plane and are easily shown to be optimal. Now

let T; be the triangular region bounded by the line segments

&12(a) =qagq f (lw)eo
Log{a) =aey + (l-a)e 4 (8.62)
LlS(a) =acy + (la)ky, O0<acx 1.

Let T, be the curved triangular region bounded by the circular arcs

_ o {(1-a)

Cipla) = 1/(E.I+ = ]
N o {(1-a)

Cyzla) = 1/(.é..§+ = ) (8.63)
_ a (1-a)

Each circular arc Cij(a) passes through €4, €5 and the origin. The
allowed region is again the union of T; and T, Fach segment and arc

is attainable. The line segment L.

3 is attained by a slab geometry

parallel to the field composed only of materials i1 and j in the volume
fractions o and 1 - o, The circular arc Cij is attained by the same
slab geometry but arranged perpendicular to the field.

If the volume fractions py,pp and pg are known as well as s; and

84, then ¥(sy,8p) is known to first order
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p 1Y
F(sl,sz) =.__l_+._3+-~- . (8,64)
S 52

We obtain extremal values of F(sl,sz) by letting M; = plﬁzl and Ug9 =

92522 in (8.27) with F = - K ,

p P2
F(S}_,Sz) = ! + . (8.65)
12y Sp7Z3

Now the allowed values of F = 1 - 8*/83 lie inside the region Rj
generated by (8.65) as both z; and 2z, vary in [««, =]}, The region Rj
can be constructed as follows. Tirst note that Pll(sl"zl) and
pz/(sz—zz) with — @ € 2zy,z9 € @ are both ec¢ircles im the lower half
plane that contain the origin and are thus tangeatial to the real axis.
To construct R3 one adds to each point pl/(slwz}) the circle

Pz/(Sz—Zg)s - ® £ z5 £ », The outside boundary of Rq is a circle

characterized by

arg [é%;g = arg(é%ﬁ? . (8.66)

with F as in (8.653), where "arg" denotes argument. From (8.686),

Pl - arg (émi%—-:z-] , (8.67)

arg (
(sl—zi)z (52—22)

or
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arg(s, - zy) = arg(sg ~ z3) .

With Sy = ay + ibl and 89 = a9 + ibz we have

tan ) = fan (.-----——-h—
4172, 427z
or
22 = ......_i. Z}. + (32 - bl J -

Thus the outside boundary C3(zl) of Ry is the image of the line

in (zl,zz)—space under (8.65) and can be paramaterized by

by
p1+P2‘T);:
Cy(zy) = rmmom— , =@ € zy € =,
3 51 21

Note that C3(zl) is a positive multiple of the circle pz/(sl—zl),

z1 £ e,

(8.68)

(8.69)

(8.70)

(8.70)

(8.71)

....cog

The above argument yielding a circular region can be applied to

each of the following six functions

1 -e¥ey , 1-ege’,
l—e*/ez . 1-—52/8*,

1“8*/81 , iﬂel/e*.

(8.72)
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We focus on H(tl,tz) =1 = 83/8*, ty = 1 =8y, tg = 1 - s9. It is the
gsame type of function as F(SE’SZ) so that its extremal values are

attained when

Pl Py
1721 t27zZg

where we have assumed the first order expansion (8.36). Now note that
from the geometrical construction of C;(z;}, in the F-plane it passes
through the imaginary axis at 0 and ~1(p{/by *+ pyp/by). Likewise, the
outer boundary of the region generated by (8.73) is a ecircle in the

upper half plane which passes through the imaginary axis at 0 and

1(pl/bl + pz/bz). Since

Yt
1§
[
|

(8.74)

Ff
e IR

in the F-plane these circles are identical, wup to parameterization.
Thus it suffices to consider only three functions 1 - E*/e3, 1 - s*/ez,
and 1 - E*/el.

From the following considerations we will eliminate one of these

functions. The variables of these functions are




R O S - (8.75)
Al SR 1 5T 73 =
1 - = 1 -2
€2 €2
e * 1 1
1 - ET(QQaQ3) » 92 % 5 s 93 7 &5 .
] - = 1 -2
£1 €1

For convenience assume that €4, €9 and € 3 are in the upper half plane
with arg € 4  arg €9 < arg €. Then both sy and s, are in ¥ and both
qo and qg3 are in L, while 1y & U but rp € L. Because the functions
we consider are defined on u? or Lz, we disregard the function 1 -
E*/Ez to obtain the crudest first order bounds. Better bounds can he
given by considering 1 - E*/Sz on the domain of analyticity given 1in
section 4, which is more general than U% or L2,

In the a*vplane the regions R and Ry induced by 1 - 8*/53 and 1 -
8*/81 become circular regions Rg and RT. In the {1 - s*/Ei)*plane the

circular boundary of Ry can be parameterized by

Im q9
Pa + p3 TE“E;
Cl(zl) = - 3 - £ zl £ o (8.76)
43 — 21

. * . . :
The complex first order bound in the € =-plane is the Intersection of

RT, R; and the zeroth order bouand (Ty U Tc) given above.

We discuss the optimality of the above bounds. Let us focus on 1
- S7!‘/ € 34 Recall that for an actual material, z; and 25 in {8.65) are

restricted by
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F(1,1) < 1, 0< 2z, z, < L, (8.77)

These conditions define a corner of the unit square in (z1,zp)-space.
This region A is bounded by the line segments (G,0) + (p3/(1ﬂp2),0) and
(0,0) + (0,p5/(l~py)) and the hyperbolic arc defined by pi/(l-zy) +
pzl(lwzz) =1, 0< zy,29 < 1. If the line (8.70) passes through (z},z3)
= (0,0) then at least one point on the circle CB(Zl) is attainable,
namely by the simplest slab geometry parallel to the field with F =
pp/sy + po/sy or e® = P1€] * P2y t P 3. In general this arithmetric
mean lies inside the two circular arcs Ci(z}) and C3(z1). If the line
(8.70) passes through the interior of the region A in (z,z9)-space
then the following geometry attains that section of Cq(zy) {G. Miltom,

PErS. comm. ]. Expression (8.65) can be written as

pieale —€4q) poEalEs = €17)
e* ey 18308 30, P23 L (8.78)
€3+ z(e] ~€3) €3tz ~€3)
which is equivalent to
P P
S*E(l_i_l 1..2”3*(1...1) 1
Z] Zg 2y by 2)
&1 3
p
(22) ! . (8.79)
12y 1=z 22
b -
82 83

This last expression is clearly the effective dielectric constant of a

composite consisting of slabs of three materials parallel to the field
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in the volume fractions (l- py/(l-zy) - po/{l-2z9)), (py/(l=z1)), and
(92/(1“32)). The first material is just €3. The second is a slab
composite perpendicular to the field composed of &, in the volume
fraction 1 — z; and €3 in the volume fraction z;. The third is a slab
composite perpendicular to the field composed of €, in the volume
fraction 1 — Z; and €3 in the volume fraction z9. The attained arc is
traced out as z; varies so that (zy,z9) stays in A according to (8.70).

Recall that the circle generated by H(ty,tp) =1 - 83/8* is the
same as that generated by F(SlsSE) =1 - E*/€3. We will now show that
a different part of the arc 63(21) can be attained by an actual
material. An analysis similar to the one applied to F(s;,sy) gives

that the arc C3(zl) in the H~plane can be parameterized by

P P2z
H(ty,ty) = b ¥ , (8.80)
L2l T ET T,
1721 2722
where analogous to (8.70) we have
by by
Zg = Zz + (1 —ap - {1~ ay)) (8.81)
bl bl

Now the admissible region analogous te A in (zy,zp)-space for H
certainly lies in the unit square. In terms of H, the condition F(1,1)
< 1 translates into H(0,0) € 0, which is automatically satisfied since
0 < zy,z9 % 1, However the condition that F(0,0) < © translates into
H(1,1) € 1, so that the admissible region in (zl,zz)*space for H is

identical to A. Thus when the line (8.81) passes through A, the section
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of C3(zl) that corresponds to the line segment in A is attainable by

the following geometry. Analogous to {(8,79) we have

g - 1 ., (8.82)
P P P
(1 11 P2y, Ly, P2
—zl Z, E.l l-zo
£, (l_zl)gl+zl€3 (i-z,) €, + 2,8

which 1is just the previous geometry rotated by 90 . The arc is traced
out as z; varies so that (z,zy) stays in A according to (8.81). Note
that the slab geometry corresponding to e = 1/(p1/sl + pzﬁiz + 93/a3)
or H(tl,tz) = Pl/ti + Pz/tz does not lie on the arc unless the line
(8.81) passes through the origin in (zy,z9)~space,

A similar analysis to that above can be given Lo show that part of
the arc of Cy(zy) can be attained by the same type of slab geometry but
with the host material being €. Since only parts of our bounds are
attainable one expects that the bounds can be improved.

Assuming further that the material 1is statistically dsotropic
allows knowledge of F to second order as in (8.39). The G

transformation then has the expansion

P p p p
G(sy,s9) = gi'+ “E.+ ! + 2 + 0 + o0, (8.83)

1 %2 ds? ds3 5282

The real Hashin-Shtrikman bounds were obtained by separately

extremizing
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1
Gi(sy) =) e (8.84)
g S17%1
and
1112({122)
Gy(sg) = [ e, , (8.85)
2822 g
0 2722
each known to second orvrder
P1 Pl P P2
Gl(sl) ERn e L L S GZ(SZ) =“_'2_+___+n-i . (8.86)
51 ds? 52 ds}
Then the extremal values of G were obtained by
G =G + Gy . {(8.87)

To incorporate the constraints (8.86) into G, and Gg, We can repeat the

transformation procedure developed for a single complex variable. Let

1 1
Jy= b o1 8.88
Lopy 51617 (8.89)

and similarly for Gy. Then to first order

+ e, {8.89)
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Since Jl(si) is a function of the type (8.84), its extremal values

7

occur when

TR (8.90)

(8.91)

174 ’

or

pylsy=zy)
S£(51-Zl“l/d)

G(sq) = , ~w <z < @, (8.92)

The last expression describes a circle in the Gl—plane, and similarly

for Gy(s5). The sum of these two circles

p1(sy—21) po(sg~zg)
G(s1,89) = 1A=17%1 + , m0 < z,zy € ® (8.93)

1 1
sy1(s;~z - HJ so(sg=z o™ EJ

encloses a region R; in the G-plane. As in the first order case above

we obtain the outer circular boundary of R, by setting

arg (;é%; =ars (28, (8.94)
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or

p1/d /d
arg ( . ) = arg ( P2 ). (8.95)

}. ;
s1(s1 ~ 2y ~ g)z sp(sp — 2z - é>2

This can be satisfied if
1 1
arg(sy) + 2 arg(sy -z - EJ = arg(sy) + 2 arg(sy -2y - EJ, (8.96)

or

b -1 b -1, b
z l) = tan (—uh—uuiummjg + é{tan {Eia - tan
2 72273 177177

-1, by

an { (). &9
2

Using the rule for the tangent of a sum gives after some manipulation

bz(cbl”al+l/d) + bazy

zZ — o l d +‘ 8.98
2" 82 / (by+caj-c/d)—ecz) ¢ )
where
_ 1 -1 bl -1 bz
¢ = tan ?.(tan (EIJ ~ tan (EEJ). (8.99)

To see that the bound given by assuming second order information
about Gl and G, is better than the Wiener bound given by F we note the

following. If G were known only to first order,




B T

P p
G(sy,s9) = Ll > (8.100)
8y 82

then the bound induced on F by

p p
G(sy,89) = o + — 2 (8.101)
121  8p7Z)

under (8.70) is the same as in (8.65). This is so because in the 1/G-
plane the circle of (8.101) becomes a horizontal line and the same

holds for (8.65) in the 1/F=-plane. Since

1
i 8.102
1 ( )

G o
M| —

the two lines are the same. Now G1 and G, are known to second order,
so that the bound induced by (8.86) is clearly Dbetter than that in
(8,100), and consequently better than (8.65) or (8.71).

To obtain the second order bound we first apply the above
considerations to E(qz,q:;) to obtain a region R"&; in the G-plane. Next

we consider H(ty,ty) =1 - 83/8*. To second order,

d-1 d-1 d=-1
Py P2 (Mé-') (?1'13%) {w—-)(Pz"?%] 2["5“) P1P2
H(t,tp) = e ¥ o + + - +e0s _{8,103)
L) t? t3 Lyt

Then the transformation




L(ty,tp) = o, (8.104)
d"l)H
d
has the second order expansion
d-1 da-1
P P2 (——~J?1 (_EMJPZ 0
L(tl,tz) T e T e + + + eee (8.105)
tp t2 t t4 tit2

Now the same analysis can be applied to L(t;,t;) as was applied to
G(sl,sz), yielding a region Ry in the L-plane. Fipally we consider
ﬁ(vz,V3)= 1 - el/e*, where vy = 1/(l-€q/e5) and vy = 1/(1=€1/e3). The
analogue of (8.104) with H replaced by B vields a region Ri in the -
plane. In the E*mplane we obtain four circular regions Ré, Rg, Ry, and

* . . .
Ri' The second order bound is the intersection of these four reglons

with the first order bound.

Note that when z; = 2z5 = 0 in (8.93) G attains the upper
Hashin~Shtrikman bound, which we have already mentioned is realizable,
at least for certain volume fractions., Only in the special case when
the curve defined by (8.98) runs through (zl,zz) = (0,0) does this
geometry lie on the bound (8.93). In general the arcs defined by the
above intersection violate the interchange inequality and are
consequently not realizable. Thus the second order bounds can be

improved.

The complex zeroth order, Wiener, and Hashin-Shtrikman bounds

above are illustrated in Figure 1.




Figure 1: a. Lyo(a) in {8.62)
b. Lys(a) in (8.62)
ce Cyzla) in (8.63)
ds Cg(zy) in (8.71)
e. Cj(zy) in (8.76)
f. ecircular boundary of Ré in (8.93) - (8.99)
g. circular boundary of Ré similar to (8.93) - (8.99)

A« B =Pif) *pEg FPF3

B, €% = 1/ (pyley + pofey + p3/eg)
c. % = €5 + 1/(1/A3 = 1/3c4) as in (8.55)
D. €* =€y + 1/(1/A; - 1/3 ) as in (8.55)

In Figure 1l the circular bounds of R: and R{ contain those of

R; and Rg and have been omitted.
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Appendix. Analytic Measures on a Discrete Torus

In section 8.B we conjecturad that extremal values of a function
with the representation (7.28) are attained when the measure M is the
product of a point mass with Lebesgue measure. As evidence for this
conjecture, we 1IOW prove that for a discrete model of Ma in (8.19), the
only extreme polnts are discrete versions of the measures in (8,20).
Tn the discrete setting then the conjecture is evidently true.

Let T§ be the N x N discrete torus {wj , 1€ j< N}x ﬁﬂk ,» 1€k
£ N}, where w = eiZE/N, and let %g be the Fourier space {n, —-(N-1)< n
< N-1} *x {m, ~(N-1)< m< N-1} associated with Tg. Further,let My be
the set of positive measures ¥ of mass 1 on T% such that their Fourier

transforms W have no support in the interiors of the second®and fourth

quadrants of %%. This condition may be written as

. N jn+km
u{n,m) =2 U(jak) & =0, m<90, (a.1)
j,k=1

where H(j,k) is the mass of U on the point (j,k) € T%. We now give a

complete characterization of MN'

Definition: A row measure concentrated on row k is defined by u{j,k) =
/N, for all 1.

Definition: A column measure concentrated on column 3 1is defined by
p(j,k) = 1/8 , for all k.

Theorem: MN is the convex hull of the row and column measures.

The proof of the theorem rests on the following
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Lemma: For Ue Mys ; is supported only on the axes of %%.

Proof: The lemma is proved by noting that if ﬁ is given in the interior
of one quadrant, then it is determined in the interiors of the others

through complex conjugation,

« ﬁ(n,m) = a(" n, —m . (A.2)

Ir is clear that if =0 at {(n,m), n > 0, m < 0, then % =0 at (~n,
-m) in the second quadrant, where (-n, -m) is the reflection of {(n,m)
through (0,0). However, we must note further that if 5 =0 at (a,m) ,
n» 0, m <0, then ﬁ =0 at (-n (mod N), =-m (mod N)) in the first
quadrant. In fact, (-n {(mod N), -m(mod N)) can be interpreted as the
reflection of (n,m) through the point (N/2,0). For example, if N = 5
and (a,m) = (3, -2), then (-n, —m) = (-3 ,2) = (2,2) (mod N), Thus ¥
vanishes in the interior of each of the four quadrants of %é,

Before we prové the theorem, we note that if (n,m) is 1in the
fourth quadrant, then (-n, -m) can further be interpreted as being in
the fourth quadrant as the reflection through (N/2, -N/2). For
example, if N =5 and (n,m) = (4, -2), then (-n,—m) = (-4,2) = (1, =3)
(mod N). Thus in the fourth quadrant, off the diagonal it suffices to

consider only those Fourier equatioms with n > ‘m|° On the diagonal it

—(N=-1)
2

and through ﬁ(N/Z, ~N/2) = 0 if N is even. The remaining equations are

] = 0if N is odd,

suffices to set ﬁ(l,—l) = 0 through G(N;i ,

independent. Let an be the wvector in ENXN representing the (n,m)

homogeneous Fourier equation in (A.1). Then

wj(n+n‘)+k(m+m’) -0 (A.3)
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= -nand m'= - m, so that the R _ are independent.

m

ints of My, ¥rom the lemma and the above

ymplex conjugation, ﬁNrﬁ {ﬁ(n,@), %(G,n), 1< n<«<

(A.4)
h00,1) =yl ty@? oy syt
u(0,2) = y5w2 + Y(,w[’ + Yfﬂz + y8w4 »
N
where yj,***,y4 are the column sums yj = kgl u(i,k) and Yuyl»
N - R
Y442:" % »Yypy ATE the TOW sums  Yyyo = Z_ u{j,k). Because p(1,0)

through Q(N/Z,O) for say, N even, all involve the same y variables with
just different powers of W, wWe can restrict our attention to a(l,O).
likewise in the second set we restrict attention to Q(O,l). We now
consider the compact convex subset of Ez, Ky = {(ﬁ(l,O), E(O,l))}.
Finding the extreme points of Ky serves to characterize the extreme
points of &N because of the above restriction. Because the mass of a

measure B & My is 1,

L=

Vil ook Y T b (8.5)

k

Thus by (A.4) 3(1,0) and ﬁ(O,l) each must lie in the convex hull Wy of

the N roots of unity, which is an N-sided polygon centered about the
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origin ia the plane. Clearly we can choose a measure in My so that
ﬁ(l,O) attains any complex number in Wy. Alternatively, we can choose
a measure in My so that ﬁ(O,l) attains any complex number in Wy.
Consequently, any extreme point of KN must have one of its entries
equal to a vertex of Wy. Equivalently, (z1,29) € Ky cannot be extreme
in Ky 1if both zy and zj are interior points of Wy.

We see then that an extreme point of My is chatracterized by vy = H
for some j oY Yygui & 1 for‘some k. In order to uniquely determine these

measures we study the diagonal Fourier constraints for say,N even

~ N
(0,0 =L uij,k) = 1
» j,k=l (3: )

- N 2 -1
B(,-1 = T et =0 (4.6)

pON/2), - /2)) =z§—; xg o N/2)E&-1) o g,

where % is the sum of those #(j,k) lying on the trajectory on Té of

slope 1 which passes through (j,k) = ®,1), 1< 2% < N, The mass

~ N
equation M (0,0) = 1 can be written as b

% = l. Then the system (A.6)
consists of 2(N/2) + 1 =N + 1 real equations in N unknowns with the

unique solution
X| = K9 =% = ¥y = 1/4. (A7)

Since an extreme point ¥ of My must have vy = L or wae = 1, ¥ must Dbe

concentrated on ome row or one column. Since there is only ocone
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trajectory of slope 1 passing through each point of a row or column
{(A.7) renders the mass of each point in the row or column on which u is
supported equal to 1/N. Thus the set of extreme points of My is

precisely egual to the set of row and column measures.
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