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SEA  ICE  covers 7 - 10% of earth's ocean surface
boundary between ocean and atmosphere

indicator and agent of climate change 

mediates exchange of heat, gases, momentum 



NASA

NASA

polar ice caps critical to global climate 
 in reflecting incoming solar radiation
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average September sea ice extent

the summer Arctic sea ice pack is melting

1979 - 2000
     average



13  September  2012

21  September  1979



sea ice may appear to be a 
barren, impermeable cap ...
   

 



micro - brine channel (SEM)

                      sea ice is a 
    porous composite

D. Cole

brine channels (cm) 

brine inclusions in sea ice (mm)

R. Obbard

pure ice with brine, air, and salt inclusions

horizontal section vertical section



- drainage of brine and melt water 
- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo nutrient �ux for algal communities 

C. Haas

C. KrembsACE CRC

�uid �ow through the porous microstructure of sea ice 
governs key processes in polar climate and ecosystems: 

K. Golden

linkage of scales
2



1. Fluid �ow through sea ice - percolation, �ow in porous media     
    
2. Arctic and Antarctic experiments on �uid and electrical transport

3. Fractal structure - �oe and melt pond con�gurations

4. Multiscale Homogenization - spectral upscaling, random matrices    

What is this talk about? (+ preview of afternoon lecture)

Using the mathematics of composite materials and statistical physics to study 
  sea ice structures and processes ... to improve projections of climate change.

critical behavior          linkage of scales

.... and to suggest a path forward for more rigorously 
and e�ciently representing sea ice in climate models.      
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September 2007

Intergovernmental Panel on Climate Change (IPCC) 2007 projections

Boé, Hall, Qu  2009

observed decline in summer Arctic sea ice 
         outpacing global climate models 



sea  ice  microphysics

�uid transport



Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity

example of homogenization
mathematics for analyzing effective behavior of heterogeneous systems  



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable



D. Perovich

Malmgren (1927)salinity
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evolution of salinity pro�lesAntarctic surface �ooding 
  and snow-ice formation

R. Massom

Antarctic snow-to-ice conversion from passive microwave imagery

22%
September
snow-ice
estimates

T. Maksym and T. Markus, 2008

26%28%

27%

rule of �ves constrains:

convection - enhanced 
thermal conductivity

Lytle and Ackley, 1996
Trodahl, et. al., 2000, 2001
Wang, Zhu, Golden, 2012

currently assumed constant in climate models



   theoretical models explaining the 
rule of �ves and �uid �ow properties



p = 1/3 p = 2/3

impermeable permeable

percolation theory
mathematical theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability p
closed with probability 1-p

�rst appearance of in�nite cluster

bond

“tipping point” for connectivity



10 pp

1

infinite cluster densitycorrelation length

8P (p)(p) ~ ~ξ |          | p − pc
− ν β

characteristic scale 
 of connectedness

p − pc

   probability the origin
belongs to infinte cluster

(          )
c

8P

order parameters in percolation theory

10 ppc

ξ

10 ppc

effective conductivity
 or fluid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

(1 < t < 2,  Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992)

geometry transport
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 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



T =  8  C5.7 %

X-ray computed tomography of brine inclusions in sea ice

brine volume fraction °
Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

~ 1 cm across



-15 C,  = 0.033° -3 C,  = 0.143° -6 C,  = 0.075°

8 x 8 x 2  mm

brine connectivity (over cm scale)

X-ray tomography confirms percolation threshold
3-D images
pores and throats

3-D graph 
nodes and edges

analyze graph connectivity as function of temperature and sample size

φφ φ

use �nite size scaling techniques to con�rm rule of �ves

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009

order parameter data from a natural material 
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melt ponds on the surface of Arctic sea ice



                    small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation



multiscale homogenization



Remote sensing of sea ice

Recover sea ice 
properties from 
electromagnetic 
(EM) data

 INVERSE
PROBLEM



NASA’s Ice, Cloud and Land 
Elevation Satellite (ICESat)

The Worbot - a low frequency EM induction
instrument for measuring sea ice thickness

The key parameter in modeling the response of sea ice to an EM field is its

                            complex permittivity or dielectric constant 
 
                      which depends strongly on the brine microstructure

ε∗

e.g.,  interpretation of EM thickness data depends on knowledge of  ε    ∗



ocean swells propagating through a vast �eld of pancake ice 

HOMOGENIZATION: long wave sees an e�ective medium, not individual �oes



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

ε ε

ε

1 2

∗

inhomogeneous
          medium

homogeneous
        medium



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )



Stieltjes integral representation
complex s-plane

0 1

spectral measure of
self adjoint operator
mass = 

= indicator function
   of medium 1

higher moments depend 
on n-point correlations

,

GEOMETRY        from  
medium parameters in

representation separates

/
,
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Recovery of inclusion separations in strongly heterogeneous composites
                                       from e�ective property measurements

Chris Orum, Elena Cherkaev, Ken Golden,  Proc. Roy. Soc. A, 2012

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity

reduced spectral inversion -- construct algebraic curves which bound admissible
                                                                   region in (p,q)-space, q = separation parameter <1

matrix particle composites  (O. Bruno, 1991)

rigorous inverse bound
         on spectral gap
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two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden 2013



Spectral analysis of multiscale sea ice structures

homogenization for brine inclusions, melt ponds, and sea ice pack

N. B. Murphy, C. Hohenegger, C. S. Sampson, B. Alali, K. Ste�en, D. K. Perovich, H. Eicken, and K. M. Golden 2012

how to upscale information on “microstructure” 
         into e�ective behavior for larger scales

numerical computation of spectral measure  µ



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  Γχ  becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of Γχ
     with (length)    =   α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

2
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Murphy and Golden, J. Math. Phys. (2012)

The Spectral Measures for Random Resistor Networks
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Spectral Measures for Sea Ice Structures:  Brine Inclusions
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spectral measures for the Arctic sea ice pack

area under curve = φ = open water fraction
spectral gap closes as ocean phase becomes connected

µ
µ

                   spectral measures provide a path toward rigorously incorporating 
“composite microstructure” into calculations of e�ective behavior on larger scales
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!
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       reconstruction of spectral measures 
from simulated complex permittivity data

Golden, Murphy, Cherkaev,  J. Biomech.  2011

regularized inversion scheme



Random Matrix Theory Characterization of Phase Transitions

RMT has since been used to characterize: phase transitions in disordered 
mesoscopic conductors, quantum chaos, neural networks,  random graphs, etc.

The elements of a random matrix are determined by a probability law.

Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Random Diagonal Projection Matrix Non-Random Projection Matrix

Real Symmetric Random Matrix}

In composites, connectedness transitions can be characterized by transitions 
in the short and long range correlations of eigenvalues of the matrix               .



The eigenvectors may be integrated out, and the probability distribution is 
exactly that of the canonical ensemble of 2-D positive charges on a line!

In order to observe the universal �uctuations of eigenvalues about 
the mean density, they are unfolded to have unit mean spacing.

The mean eigenvalue density     depends on the form of     , although, 
the �uctuations about the mean density are universal. 

Logarithmic Repulsion 
of Eigenvalues

Con�ning
Potential

Energy 
Hamiltonian
of Eigenvalues



Phase Transitions in Random Matrix Theory

When                         for               , highly correlated Wigner-Dyson (WD)
eigenvalue statistics give rise to the phenomenon of level repulsion:

(The Wigner Surmise)

Wigner-Dyson Eigenvalue Statistics Poissonian Eigenvalue Statistics

Phase transitions are modeled by allowing the potential      to vary as a 
function of a disorder parameter    .

When                                  for                , the eigenvalues are weakly correlated,
giving rise to Poissonian eigenvalue statistics.

Strong Con�nement Weak Con�nement



Phase Transition

Poisson
Spectra

Picket
Fence

    WD
Spectra

Completely
 Correlated

    Highly
Correlated

Uncorrelated
Less Correlated

Less Level Repulsion

Transitions in Eigenvalue Correlations

Eigenvalue Spacing Distribution Eigenvalue Spacing Distribution
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2-d Random Resistor Network

3-d Random Resistor Network

N. B. Murphy, K. M. Golden 2013

Unfolded Eigenvalue Spacing Distribution
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Masters, 1989

pollutants

enhanced heat and salt transport

enhanced sea ice thermal conductivity    



Stieltjes integral for         with spectral measure Avellaneda and Majda, PRL 89, CMP 91

homogenize

= Peclet number

spectral measure of 

antisymmetric
vector potential

/

spectral measure of 

composites

advection di�usion equation with a velocity �eld



eigenvalues of the matrix eigenvalues of the matrix
with real eigenvectors with complex eigenvectors

Real Symmetric Random Matrix Hermitian Random Matrix

composites advection di�usion

Spectral Calculation of E�ective Parameters

The projective nature of and leads to an e�cient way of calculating the 
spectral measures, which is also numerically stable and reduces roundo� error.
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Conclusions

1. Sea ice exhibits composite structure on many length scales.

2. Fluid �ow through sea ice mediates many processes of importance to 
     understanding climate change and the response of polar ecosystems.

3. Mathematical models of composite materials and statistical physics 
     help unravel the complexities of sea ice structure and processes.

4. Homogenization theory and upscaling methods can provide a rigorous 
     path to representing large scale e�ective behavior in coarse models. 

5. Random matrix theory can help characterize transitions important 
      for climate science and composite materials. 
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