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A B S T R A C T

We propose a model of multispecies populations surviving on distributed resources. System dynamics

are investigated under changes in abiotic factors such as the climate, as parameterized through

environmental temperature. In particular, we introduce a feedback between species abundances and

resources via abiotic factors. This model is apparently the first of its kind to include a feedback

mechanism coupling climate and population dynamics. Moreover, we take into account self-limitation

effects. The model explains the coexistence of many species, yet also displays the possibility of

catastrophic bifurcations, where all species become extinct under the influence of abiotic factors. We

show that as these factors change there are different regimes of ecosystem behavior, including a possibly

chaotic regime when abiotic influences are sufficiently strong.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Models of ecosystems form an important class of dynamical
systems generating complex dynamics, bifurcations and strange
attractors (Ulanowicz and Kemp, 1979). However, modeling these
large systems is made difficult by rapid, large scale biological
evolution and gaps in observations to use for comparison. Also,
there is uncertainty in how to set up reliable experiments on such
ecosystems.

Recent observations have shown that climate change may be a
leading factor influencing ecosystem behavior (Walther, 2010).
Large multispecies marine ecosystems are sensitive indicators of
climate change (Doney et al., 2012; Kedra et al., 2015). As a key part
of the global ecosystem, they influence climate feedback processes
and possible tipping points (Selkoe et al., 2015). A well studied
example is the ocean ecosystem, where phytoplankton are the
main resource for many species. Phytoplankton populations play
an important role in the dynamics of the climate system through
the oceanic carbon cycle – by removing about half of all carbon
dioxide from the atmosphere during photosynthesis (Field et al.,
1998). Previous studies (Arhonditsis and Brett, 2004; Travers et al.,
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2007) have shown that phytoplankton communities respond to
climate warming through changes in diversity and productivity.
However, it was recently determined (Toseland et al., 2013) that
changing the climate temperature directly impacts the chemical
cycles in plankton, affecting the system as much as nutrients and
light.

We consider here a model of a large ecosystem where many
species share few resources. It extends the model of phytoplankton
species competition in Huisman and Weissing (1999), by taking
into account that the resources depend on environmental factors,
in particular, climate, as well as self-limitation and competition
effects. Our aim is to explore the connections among complexity of
the temporal behavior, biodiversity, and the structure of the
climate–ecosystem interaction.

Note that competition may occur as a result of the following
mechanism (Roy and Chattopadhyay, 2007). There are a number of
species of phytoplankton which have the ability to produce some
toxic or inhibitory compounds. These toxic materials compensate
for the competitive disadvantages among phytoplankton species
which leads to self-limitation effects. Moreover, resource levels
may depend on the environment via temperature or greenhouse
gas concentration.

Many mathematical models (Hofbauer and Sigmund, 1988;
Takeuchi, 1996; Zeeman, 1995) show that only a single species can
survive in an ecosystem for certain fixed parameters. Biologically,
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this is the competitive exclusion principle. In the framework of the
phytoplankton model, it is known as the so-called plankton paradox

studied in many interesting works (Hutchinson, 1961; Tilman,
1977; Huisman and Weissing, 1999; Irigoien et al., 2004; Ryabov
et al., 2015). In particular, it is sometimes observed in nature that
numerous species can coexist while depending on the same
resource, even though competition tends to exclude species. In
fact, in contrast to the exclusion principle, we observe here the
coexistence of many plankton species sharing the same niche and
resources. Numerical simulations (Hutchinson, 1961; Tilman,
1977; Huisman and Weissing, 1999) have shown that in such
systems chaos and unpredictable behavior occur. In Hsu et al.
(1977) and Smith (1981) it was shown that temporal variability of
the nutrient supply can lead to coexistence of species.

The environment may alter the distribution and abundance of
the species in a population. Such effects have been studied in terms
of internal processes within the population, like competition for
resources and conditions for chemical reactions. However, current
models have not been linked to feedback with the environment.
Feedback between a population and the environment can occur as
a result of changes in abiotic factors such as temperature, nutrient
concentrations, and light intensity.

The main results of this paper show that the population
dynamics depends sharply on feedback with the environment.
For simplicity, hereinafter we refer to this as climate–ecosystem

feedback. If the abiotic factor is temperature T, for example, then
it is natural to talk about the feedback between an ecosystem
and the climate system, which can be parameterized as a
function of a rate of change of the resource supply with respect
to temperature. If that feedback is negative – where species
abundance decreases resources – then an ecosystem can support
a number of species and the dynamics is relatively simple (non-
chaotic and non-periodic). If the feedback is positive – where
species abundance increases resources – then for a sufficiently
large feedback level there are possible mass extinctions which
occur suddenly, and moreover, there are possible chaotic or
periodic dynamics.

The paper is organized as follows. In the next section we
formulate the standard model of species coexistence and the
extended model, which takes into account climatic factors.
Further, in Section 3 we prove a general assertion on the
existence of an attractor for this model. In Section 4 it is shown
that for large turnover rates D the system admits an asymptotic
solution and, under additional assumptions, can be reduced to
the Lotka–Volterra model (Vakulenko, 2013; Kozlov and
Vakulenko, 2013). This model is well studied (Hofbauer and
Sigmund, 1988; Takeuchi, 1996; Zeeman, 1995; Van den
Driessche and Zeeman, 1998) and known results allow us to
describe the influence of climate and climate warming in large
ecosystems (see Section 5). In Section 6, for the case of a single
resource, we show that the global attractor consists of equilibria
and derive an equation for the species abundances. This
investigation is aimed at describing the influence of climate
on biodiversity.

2. Models of large ecosystems

2.1. Standard model

Consider the following model of an ecosystem with N species,
which extends the model of resource competition in Huisman and
Weissing (1999):

dxi

dt
¼ xi �ri þ fiðvÞ�

XN

j¼1

g ij xj

0
@

1
A; 1�i�N; (1)
dv

dt
¼ DðS�vÞ�

XN

j¼1

cj xj fjðvÞ; (2)

where

fjðvÞ ¼
ajv

Kj þ v
; aj;Kj >0; (3)

is the specific growth rate of species j as a function of the
availability v of the resource (also known as Michaelis–Menten’s
function), xi are species abundances, ri are the species moralities, D

is the resource turnover rate, S is the supply concentration of the
resource, and DS can be interpreted as the supply rate. The
dynamics of the species depend on the availability of the resource,
which in turn depends on the rate of resource supply and the
amount of resource used by the species.

The coefficient cj is the content of the resource in the ith species.
The constants cj define how different species share resources. Note
that if all cj = 0 then the equation for v becomes trivial and vðtÞ! S

for large times t, i.e., the resource equals the resource supply. We
consider this system in the non-negative cone: x2RN

þ, v>0, where
RN
þ ¼ fx : xj�0; 8 jg. The coefficients ai are specific growth rates

and the Ki are self-saturation constants.
We assume that the gii > 0. The terms giixi define self-regulation

of species populations that restricts their abundances. In the case
gij > 0 with i 6¼ j these terms describe competition between
species. These effects can appear as a result of an ability to
produce some toxic or inhibitory compounds (Roy and Chatto-
padhyay, 2007). However, we admit the possibility of mutualistic
interactions, in which case gij < 0. Assumptions on gij are
formulated below, at the beginning of Section 3.

For the case of M resources, we have the more complicated
equations

dxi

dt
¼ xi �ri þ fiðvÞ�

XN

k¼1

g ik xk

 !
; 1�i�N; (4)

dvj

dt
¼ DjðSj�vjÞ�

XN

k¼1

cjk xk fkðvÞ; 1�j�M; (5)

where v ¼ ðv1; v2; . . .; vMÞ, and the fjðvÞ are smooth functions. We
consider general fj satisfying the conditions

fjðvÞ 2C1; 0�fjðvÞ�Cþ; (6)

where C+ > 0 is a positive constant, and

fkðvÞ ¼ 0; 8 k; v2@RM
þ ; (7)

where @RM
þ denotes the boundary of the cone RM

þ ¼ fv : vj�0; 8 jg.
Condition (6), in particular, means that C+ forms a uniform upper
bound for the fjðvÞ. We assume that cjk > 0. This model is widely
used for primary producers like phytoplankton, and can also be
applied to describe competition for terrestrial plants (Tilman,
1977).

When gij = 0 for all i, j this system is equivalent to those in works
where the plankton paradox is studied (Huisman and Weissing,
1999). The choice gii = gi > 0 and gij = 0 for i 6¼ j allows us to take
into account self-limitation effects, which is important in these
systems, as shown by Roy and Chattopadhyay (2007).

Below we use the notation f+ = max{f, 0}. We define the scalar
product in RN together with the corresponding norm by

hf ; giC ¼
XN

j¼1

Cjf jgj; jjf jj2C ¼ hf ; f iC : (8)

This scalar product is defined for N-component vectors and
depends on non-negative coefficients Cj > 0, j = 1, . . ., N.



I. Sudakov et al. / Ecological Complexity 32 (2017) 209–216 211
2.2. Extended standard model with climate influence

We extend the system (4) and (5) to describe potential effects
connected with an influence of the climate. In fact, temperature
has a significant effect on the maximum growth rate of
phytoplankton (Richardson et al., 2000), and can be considered
as a crucial factor in population dynamics.

For one and two species (N = 1, 2), a model of climate influence
was proposed in Sekerci and Petrovskii (2015). We consider the
case of arbitrary N. In certain aspects, however, our model is
simpler than in Sekerci and Petrovskii (2015). In particular, we do
not account for zooplankton and, therefore, do not take into
account possible predator-prey interactions in an explicit form.

Let us assume that the resource supplies Sk can depend on the
environmental parameters, for example, temperature T: Sk = Sk(T).
In turn, T may depend on species abundances, for example, via
albedo (Chapin et al., 2002). We assume, for simplicity, that this
effect is linear:

T ¼ T þDT; DT ¼
XN

k¼1

mkjxj; (9)

where mik are coefficients and T is a reference temperature
corresponding to the albedo of the ecosystem environment, such as
the upper ocean, without the ecosystem influence. If the
temperature variations DT induced by the species are small, we
have

Sk ¼ SkðTÞ þDSk þ OðDT2Þ; DSk ¼
XN

k¼1

bkjðTÞxj;

k ¼ 1; . . .;M;

(10)

where bkj ¼
dSkðTÞ

dT
mkj. If all bkj > 0 we are dealing with purely

positive feedback (then species abundance increases resources),
and if all bkj < 0 one has purely negative feedback.

There is, however, an interesting case where some of the
coefficients bkj are positive numbers and others are negative
(mixed feedback). For mixed feedback a cumulative effect of the
climate–ecosystem feedback on the resource supplies may be
small since the different terms in DSk may cancel each other. On
other hand, when the signs of the bjk alternate, but these
coefficients are sufficiently large, there may be complicated
large time behavior. We discuss this problem in more detail in
Section 5.

There are also possible alternative physical mechanisms
leading to relations like (10). An important resource for
phytoplankton is oxygen (Sekerci and Petrovskii, 2015). The
production of oxygen is proportional to the phytoplankton
concentration and depends on temperature T.

Finally, the extended model takes the form

dxi

dt
¼ xi �ri þ fiðvÞ�

XN

j¼1

g ij xj

0
@

1
A; 1�i�N; (11)

dvj

dt
¼ DjðSjðxÞ�vjÞ�

XN

k¼1

cjk xk fkðvÞ; 1�j�M; (12)

where

SkðxÞ ¼ Sk þ
XN

k¼1

bkjxj; k ¼ 1; . . .;M: (13)

This model is an approximation of the model with temperature
dependent S only up to the terms of order DT2.

In the next section we show that under some assumptions this
model is well posed.
3. General properties of the model

Let us first describe some sufficient conditions which guarantee
that systems (1), (2), (4), (5), (11) and (12) are dissipative and have
an attractor, and recall some basic notions. Since there are
variations in the definition of attractor, for correctness, we follow
(Hofbauer and Schreiber, 2010).

Let us consider the Cauchy problem defined by Eqs. (11) and
(12) and positive initial data in (16) below. The solution zðt; z0Þ ¼
ðxðtÞ; vðtÞÞtr with initial data z0 ¼ ðxð0Þ; vð0ÞÞtr (where the tr

superscript denotes transpose) is unique and is defined for all
t � 0 (see Lemma 1). We then obtain the map St : z0! z(t, z0)
defining a global semiflow St, t � 0 in a cone C ¼ RNþM

þ , which
serves as a phase space.

Given an interval I � R+ and a set K � C, let K(I) = {u 2 C : u = z(t,
z0), t 2 I, z0 2 K}. We denote K(t) = K([t, t]). A set K is invariant if
K(t) = K for all t, and forward invariant if K(t) � K for all t > 0. The
omega limit set v(K) is the intersection of all K([t, +1)) over all
t � 0. Given a forward invariant set K a subset B of K is an attractor
for the semiflow St restricted to K provided there exists an open
neighborhood U � K of B such that v(U) = B.

The stable set Ws(K) of a compact invariant set K is defined by

WsðKÞ ¼ fz2C : vðzÞ 6¼ ; and vðzÞ�Kg:

In other words, the stable set of K consists of points where
trajectories enter inside the set K, and stay in K for large times t.

The semiflow is dissipative if there exists an attractor B such
that Ws(B) = C. In other words, for dissipative semiflows the
attractor is a minimal invariant set, which attracts all points. If the
attractor consists of a single isolated point, then this point is stable
in the standard Lyapunov sense.

Define the matrix G with the entries gij to satisfy one of the
following conditions:

Assumption 1A. The matrix G with the entries gij has a positive
dominant diagonal:

g ii�
X

j¼1;...;N;j 6¼ i

jg ijj ¼ ki >0 1�i�N: (14)
Assumption 1B. The matrix G has non-negative entries

g ij�0; g ii >0; 1�i; j�N: (15)

Assumption 1A means that species self-regulation is stronger
than species interaction, while assumption 1B implies that all
species in our ecosystem compete. Let us show that the solutions to
(11) and (12) exist, and that they are non-negative and bounded.

Lemma 1. Assume the functions fj satisfy (6). Let us consider for Eqs.

(11) and (12) the Cauchy problem with positive initial data for x and

positive initial resources

xið0Þ>0; vjð0Þ>0; 8 i2f1; . . .;Ng; 8 j2f1; . . .;Mg: (16)

Then, if either assumption 1A or 1B holds, solutions of this Cauchy

problem exist for all t � 0, are positive and bounded for large times t,

that is,

0< xiðtÞ<XðtÞ ¼ X0 þ jX0�maxixið0Þjexpð�ktÞ; t>0; (17)

where X0 is a positive constant, k = gX0, and

0< vjðtÞ< vjð0Þexpð�DjtÞ þmaxs2 ½0;t�VjðsÞ; (18)
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where

VjðtÞ ¼ Sj þ bjXðtÞ; bj ¼
XN

i¼1

ðbjiÞþ:

Proof. For a proof, see the Appendix.

Due to boundness of solutions for large t we then obtain the
following corollary.

Theorem 1. Under the conditions of the previous lemma, system (11)
and (12) defines a global semiflow in the cone RNþM

þ . This semiflow is

dissipative and has a compact attractor.

4. Asymptotic approach

Our next step is to find asymptotic solutions of the system
in (11) and (12), where the Sk are defined by (10). We consider
the case of large Dj� 1. Note that a reduction to a Lotka–
Volterra system described below also holds for bounded D and
large resource supplies Sk� 1. To simplify the statement,
we assume that Dj = D for all j. Let us make the change of
variables

vk ¼ SkðxÞ�ṽk; t ¼ Dt: (19)

System (11) and (12) then takes the form

dxi

dt
¼ exi �ri þ fiðSðxÞ�ṽÞ�

XN

j¼1

g ij xj

0
@

1
A; (20)

dṽj

dt
¼ �ṽj�eUjðx; ṽÞ; (21)

where ṽ ¼ ðṽ1; . . .; ṽMÞ, e = D�1� 1 and

Ujðx; vÞ ¼
XN

k¼1

cjkfkðSðxÞ�ṽÞ

þ
XN

k¼1

bjkðfkðSðxÞ�ṽÞ�rk�
X

kl

gklxlÞ: (22)

For small e Eqs. (20) and (21) form a typical system with slow
variables xj and fast variables ṽ. We can find an asymptotic solution
of (21), which has the form

ṽj ¼ eUjðx;0Þ þ Oðe2Þ: (23)

Finally, for the species abundances xi we obtain

dxi

dt
¼ xi fiðSðxÞÞ�ri�

XN

j¼1

g ijxj

0
@

1
Aþ OðeÞ: (24)

5. Qualitative analysis of large time behavior

If the coefficients blj are small, i.e., the feedback between the
resource supply and the climate is weak, then the system (24) can
be simplified by the Taylor expansion

fiðSðxÞÞ ¼ fiðSÞ þ
X

l¼1;...;M

X
j¼1;...;N

@fi

@Sl
ðSÞbljxj þ 	 	 	 :

Removing terms quadratic in xi, Eq. (24) reduces to the Lotka–
Volterra system

dxi

dt
¼ xi Ri�

XN

j¼1

Aijxj

0
@

1
A: (25)
where

Ri ¼ fiðSÞ�ri; Aij ¼ g ij�
XM
l¼1

ailblj; (26)

and

ail ¼
@fi

@Sl
ðSÞ: (27)

The Lotka–Volterra systems are very well studied (see, for
example, Hofbauer and Sigmund, 1988; Takeuchi, 1996) and we
can use these results to help understand how climate warming can
affect ecosystems. We assume that 1B holds and consider the two
limiting cases, the ‘‘weak climate’’ (WC) regime and the ‘‘strong
climate’’ (SC) regime. The WC case corresponds to weak climate
influence, where the ecosystem–climate interaction via the
coefficients bik is much weaker than the competition effects
associated with the coefficients gij. This means that all the |bik|� g,
where g = ||G|| is a characteristic magnitude of the entries gij.

In the SC case (regime of strong climate influence; coefficients
determining climate feedback are stronger than the coefficients
that define species interaction), we assume that |bik|� g.

In the WC case, system (25) is close to so-called competitive
systems, which are well studied (Hirsch, 1985; Smith, 1981; Smith
and Thieme, 1991; Zeeman, 1995; Van den Driessche and Zeeman,
1998). Under some conditions (Hirsch, 1985; Hofbauer and
Sigmund, 1988; Van den Driessche and Zeeman, 1998) these
systems exhibit no stable periodic or chaotic regimes: almost all
trajectories converge to equilibria, which will be investigated in
Section 6 for the case of a single resource.

Consider the SC case. We set gij = 0 for all i, j. Then Eq. (25)
represent a Lotka–Volterra system of a special structure. An
analysis (Hofbauer and Sigmund, 1988) shows that, for general Ri,
no more than M species can coexist – an expression of the
competitive exclusion principle. Mathematically this means that if
N > M then for some i either the corresponding xi(t)! 0 or
xi(t)! +1 as t! +1, i.e., the system is not permanent (Hofbauer
and Sigmund, 1988). However, if the condition

Ri ¼
XM
k¼1

aikuk; 8 i ¼ 1; . . .;N (28)

for some uk is fulfilled, then it is possible that all N species can
coexist. In this case system (25) can be studied by an idea proposed
by Volterra (1931). We introduce new variables qj, named the
qualities of life in Volterra (1931), where j = 1, . . ., M. Then Eq. (25)
reduces to a system involving only the variables qj (Kozlov and
Vakulenko, 2013):

dqj

dt
¼ GjðqÞ; (29)

GjðqÞ ¼ �ui þ
XN

i¼1

bjiCiexp �
XM
j¼1

aijqj

0
@

1
A; (30)

where the Ci are arbitrary positive constants. The species
abundances xi can be expressed via qj by

xi ¼ Ciexp �
XM
j¼1

aijqj

0
@

1
A; i ¼ 1; . . .;N:

Note that Ci = xi(0) and therefore the vector field G(q) depends on
initial data and the species number N. So, system (29) completely
determines dynamics of xi.

The main results on system (29) can be outlined as follows (see
Kozlov and Vakulenko, 2013 for more details). Let V be a compact
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connected domain in RM with a smooth boundary, F(q) be a
compact C1 smooth field on V, and e > 0 be a real number. Then
there exist a number N and coefficients aij > 0, Ci > 0 and bil such
that the corresponding field G approximates F in the domain V in
C1-norm with accuracy e. This approximation result implies that
system (29) with M variables qj can generate all structurally stable
dynamics in dimension M. In particular, due to the Theorem on
Persistence of hyperbolic sets (Ruelle, 1989), system (29) can
exhibit all (up to topological orbital equivalences) hyperbolic
dynamics, including periodic and chaotic, including for example,
the Smale horseshoe, Anosov flows, etc.

Under condition (28) we find that the time behavior of solutions
of system (25) depends sharply on M. Assume that aik > 0. Note
that this assumption looks natural since it means that fi increases
as a resource supply Si increases.

If M = 1 it is possible that all N species survive in an equilibrium
state, and N may be large. Although periodic and chaotic
trajectories are impossible, we can observe multistability (coexis-
tence of many equilibria).

For M = 2 and bik of different signs, system (25) can have time
periodic solutions and for M > 2 this system can produce time
chaotic solutions (we can then obtain all possible hyperbolic
invariant sets of dimension �M). If all bik < 0 or all bik > 0 we have
no complex behavior for the trajectories and they are convergent.
Therefore, the most interesting situation arises in the biodiversity
case when bik have different signs. Finally, we conclude that in the
SC regime there are possible chaotic phenomena and periodic
oscillations if there exist at least three resources vj.

In the next subsection we will study the case M = 2 and we will
see that in this case Andronov-Hopf bifurcations are possible.

5.1. Bifurcations, complexity and biodiversity

If there exists a positive climate–ecosystem feedback, and
bik > 0, then time periodic (for M > 1) or even chaotic (for M > 2)
behavior, as well as complicated bifurcations, can occur.

We consider two cases: M = 1 (a single resource) and M = 2, and
investigate the existence of different bifurcations, in particular, the
Andronov-Hopf bifurcations. If M = 1 there are possible saddle-
node, pitchfork, and transcritical bifurcations, but the Andronov-
Hopf does not occur. The main climate effect in the case M = 1 is a
destruction of the ecosystem under climate forcing that can be
described as follows. Let us consider a population consisting of N

species with random parameters, and denote q = q1, G = G1. We can
assume, for example, that the parameters ai and Ki in (3) and b1i in
(10) are normally distributed random variables. The equilibria are
defined by roots of equation u = G(q).

Let us consider system (29) for M = 2. Let (Q1, Q2) be a steady
state for this system, and we define a 2 
 2 matrix M with entries

Mlj ¼
@Gl

@qj

ðQ1;Q2Þ:

We introduce vectors b(l) = col(bl1, bl2, . . ., blN) and

EaðQÞð jÞ ¼ colða1jexpð�a11Q1�a12Q2Þ; . . .; aNjexpð�aN1Q1�aN2Q2ÞÞ:

Then we obtain

Mkl ¼ hbðkÞ; EaðQÞðlÞiC ; l; k2f1;2g:

An Andronov-Hopf bifurcation occurs if the trace TrM of the matrix
M changes its sign as the bifurcation parameter b goes through a
critical value bc and if the determinant detM of M is positive at this
critical value. Using the notation in (8) we obtain

DetM ¼ M11M22�M12M21; (31)

TrM ¼ hbð1Þ; EaðQÞð1ÞiC þ hb
ð2Þ
; EaðQÞð2ÞiC : (32)

These relations allow us to see connections between bifurca-
tions, feedback, and diversity. First let us observe that components
of the vectors Ea(Q)j are always positive. Note that if the climate
influence is absent, then all the components of bl are negative, and
it is clear that TrM does not change its sign. Thus in this case the
Andronov-Hopf bifurcations are absent. The same fact holds if all
the climate–ecosystem feedbacks are negative. For purely positive
or mixed feedbacks these bifurcations are possible under
additional conditions. In order to find a biological meaning of
these conditions, we define flj(C) as the angles between the vectors
b(l) and Ea(Q)(j). We then have

fljðCÞ ¼ hb
ðlÞ
; EaðQÞð jÞiC jjb

ðlÞjj�1
C jjEaðQÞð jÞjj�1

C :

Then the condition DetM > 0 reduces to

f11ðCÞf22ðCÞ>f12ðCÞf21ðCÞ: (33)

The condition TrM = 0 implies that f11(C) and f22(C) have opposite
signs. Then (33) means that f12(C) and f21(C) also have opposite
signs. If all the species affect the climate in a similar manner (the
coefficients bkj have the same signs) then all the quantities flj have
the same sign. Therefore, Andronov-Hopf bifurcations are impos-
sible in this case.

We conclude that not only feedback positivity but also
biodiversity and a complex ecosystem structure support compli-
cated time periodic behavior. Moreover, all bifurcation conditions
depend on the initial data C. From a biological point of view, this
means that bifurcation effects have a ‘‘memory’’, i.e., they depend
on the choice of initial data.

6. Equilibria

The aim of this section is to show that the cases of negative (NF)
and positive (PF) feedback between climate and ecosystem are
markedly different. In the NF case, positive equilibria with many
species can exist. In the PF case, such equilibria vanish for some
critical feedback level; this can be interpreted as a mass extinction.
We compute this critical level.

On the attractor structure, one can say more for the particular
case of system (11) and (12), where we have a single resource,
M = 1. We use Eqs. (1) and (2), where Ki = K and thus fi ¼ aifðvÞ,
where fðvÞ ¼ v=ðK þ vÞ. Let us set ri = ri/ai. These quantities are
important characteristics of species. The species with smaller ri

have a greater chance to survive. Moreover, using an analogue of
(13) for the case a single resource M = 1, we assume that S depends
on x as follows:

SðxÞ ¼ Sþ
XN

k¼1

bkxk;

where bk are the coefficients.

6.1. Equation for equilibrium resource value

Moreover, for simplicity, let us set

g ij ¼ g idij; g i >0: (34)

In this case numerical simulations show that all trajectories tend to
equilibria. As was pointed out by V. Kozlov, using the theory of
decreasing operators and an assumption that fiðvÞ increases in the
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Fig. 1. The graph shows the dependence of the biodiversity NB on the magnitude of

positive feedback bF, in the case of N = 50 and N = 100. We see that the biodiversity

increases as bF grows, but beyond a critical value of the climate–ecosystem feedback

bF, all the species become extinct.

I. Sudakov et al. / Ecological Complexity 32 (2017) 209–216214
resource v and D� 1, one can prove this fact by analytic methods
(a detailed analysis of this question will appear in future work,
since the proof is quite involved). The resting points ðx; vÞ of
systems (1) and (2) can be found as follows.

Setting dxi/dt = 0 in (1), we obtain xi ¼ aig�1
i ðfðvÞ�riÞþ. This

gives the following nonlinear equation for v:

DðS�vÞ ¼ GðvÞ; (35)

where

GðvÞ ¼
XN

j¼1

ajg
-1
j ðcjajfðvÞ-bjÞðfðvÞ-rjÞþ: (36)

We have obtained a complicated equation with non-smooth
nonlinearities. An important characteristic of the solutions v is
NBðvÞ, the number of positive xjðvÞ involved in the sum in the right
hand side of (36). The number NB can be interpreted as
biodiversity.

Note that, for any N, in the NF case a solution v with v2 ð0; SÞ
always exists under the following condition:

fðSÞ>r0 ¼minjrj: (37)

Indeed, observe that DðS�vÞ is a decreasing function of v, while GðvÞ
is increasing. The solution v is given by an intersection of the curve
GðvÞ and the right line DðS�vÞ, which exists if (37) holds.

Moreover, the same geometrical argument shows that the
resource v is an increasing function of bj. Therefore, in the case of
negative feedback the biodiversity NB is larger (if a solution v>0
exists). However, for negative bj that are too large, the positive
solution v does not exist.

Consider a large ecosystem with random parameters rj. We
suppose that N� 1 and rj are selected randomly according to a
distribution with probability density function j(r), which is
positive on some open interval Ir = (R0, R1).

Assertion 1. Consider the case of negative feedback (bj � 0). If

fðSÞ>R0; (38)

then for any N there exists a positive solution vðNÞ of Eq. (35) with
biodiversity NBðvÞ such that NB!1 as N!1.

Proof. The existence of solutions is obvious from geometrical
arguments (see remarks on the monotonicity of DðS�vÞ and GðvÞ
above). To show that NB is large for N� 1, we observe that for any
fixed R0 and R1 such that R0 < R1, the interval (R0, R1) contains Nc

points rj, with Nc! +1 as N! +1. For large N we seek a solution
of (35) in the form v ¼ S�w, where 0<w�1. Since (38) holds,
such a solution exists. The number Nb approximately equals the
number Nc for R1�fðSÞ, and the assertion is proved.

In the PF case this assertion, in general, does not hold. Using the
arguments from the proof, we note that all species die if the
following relation holds:

R0

XN

j¼1

a2
j g
�1
j cj <

XN

j¼1

bjajg
�1
j : (39)

This relation shows that mass extinction inevitably arises if the
bj > 0 are sufficiently large.

Results on a numerical solution of Eq. (35) are discussed below.
They confirm that mass extinctions are possible as the feedback
magnitude increases.
6.2. Numerical results

In the general case Eq. (35) for equilibria can be resolved
numerically for N = 50. We choose the coefficients in Eq. (35) as
follows. The positive coefficients ai are random numbers subject to
log-normal distributions. This means that ln(ai) are distributed
normally, lnai 2 N(Ea, sa), where Ea is the mean and sa is the
deviation. The same distribution is taken for ci, with the
parameters Ec and sc.

We assume that the Ri and bi are distributed normally, namely,
Ri 2 N(R0, sR) and bi = bFbi, where bi 2 N(b0, sb), and bF is the
magnitude of the feedback level. The other parameters were taken
as follows: D ¼ 1;K ¼ 2; S ¼ 10;Ea ¼ 1; sa ¼ 0:1; Eb ¼ 1; sb ¼
0:3;R0 ¼ 0:7; SR ¼ 0:05 and gi = 1.

The results are shown by Fig. 1. Comparison of the two plots
shows that when the number of species increases, so does the
likelihood of a sharp drop in species number as the climate changes
and feedback processes grow stronger. These findings are
consistent with analytical results. Biodiversity grows with the
feedback parameter bF, until at some critical level we observe a
mass extinction.

7. Conclusions

In this paper, a consumer-resource model for a system of many
coexisting species is proposed. It is a generalization of the well
known model in Huisman and Weissing (1999), takes into account
species self-regulation and a dependence on the environment, and
is the first model of an ecosystem with many species and feedback
which couples climate and population dynamics. Such conceptual
models describe a simple and easily understandable mechanism
for resource competition. For the case of fixed parameters, a
general assertion on attractor existence for this model is proved.
One of the sufficient conditions for the existence of an attractor is
that species self-regulation is stronger than species competition.

Climate–ecosystem feedbacks are an important problem in
terms of uncertainty in predictions and modeling future climate
change. The proposed model allows us not only to investigate
climate–ecosystem feedbacks for large ecosystems, but also to
show that coexistence of many species feeding on a few resources
is possible. In the case of positive feedback in the ecosystem–
climate interaction, the numerical results show a possibility of
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catastrophic bifurcations, when all (or almost all) species become
extinct under the impact of climate warming. The ecosystem
biodiversity increases with the magnitude of positive feedback bF,
but at some critical level of feedback, a mass extinction occurs. For
negative climate–ecosystem feedback we observe smaller biomass
and biodiversity values, but we do not observe catastrophes. Note
that in the contemporary world, human impact on the climate
system can possibly lead to positive feedback in the above context.

To investigate more complicated situations, where complex
dynamics may be possible, we have considered the case of just a
few resources. We find asymptotic solutions for the case of a large
resource turnover. This allows us to reduce this system to the
Lotka–Volterra model, which is well studied. The existence of two
sharply different regimes of ecosystem behavior is proven: the
weak climate regime (WC), and the strong climate regime (SC).
This behavior depends on a parameter that determines the
intensity of ecosystem-climate interactions. Note that this
analytical result is consistent with experimental data (Crampton
et al., 2016), where it is shown that two distinct regimes of
extinction dynamic are present in the major marine plankton
group. Results in (Crampton et al., 2016) suggest that the
dominant, primary controls on extinction were abiotic (environ-
mental), which corresponds to the SC case.

If the ecosystem – climate interaction involves terms of
different signs, then there are possible Andronov-Hopf bifurca-
tions, time periodic behavior for the case of two resources, and
chaotic behavior for more than three resources. We conclude that
not only feedback positivity, but also biodiversity and a complex
ecosystem structure (when different species affect climate
differently creating positive and negative feedback ecosystem–
climate loops) support complicated temporal dynamics of the
ecosystem.

For the case of a single resource the ecosystem equilibria can be
described implicitly. We find these equilibria by a nonlinear
equation for the equilibrium resource level. We show that, due to
self-limitation effects, the system can support equilibria with a
number of species sharing the same single resource.
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Appendix

We state here the proof of Lemma 1. The proof proceeds in the

following steps.

Step 1. Positivity of the xi follows from the fact that the ith right

hand side of system (4) is proportional to xi, thus, xi(t) = xi(0) exp(-

ji(t)), where ji is a function.
Step 2. Let us prove that vjðtÞ>0. Assume that this fact is violated.

Then there exists an index j0 and a time t0 > 0 such that

vj0 ðt0Þ ¼ 0;
dvj0

dt
�0; vjðt0Þ�0; 8 j: (40)

Condition (7) entails the term
PN

k¼1cjk xk fkðvÞ equaling zero.
Then we substitute these inequalities into the j0th Eq. (12) and
obtain a contradiction.

Step 3. Let us prove estimate (17). First let us suppose that

assumption 1B is satisfied. Let E(t) = max{x1(t), . . ., xN(t)}. Let us

estimate dE/dt for large E. Let i0(t) be an index such that EðtÞ ¼ xi0
ðtÞ.

According to (6) thefi are uniformly bounded by C+. Therefore within

any open interval Ii0
, where i0 is fixed, one has

dE

dt
�ERi0 ; Ri0�Cþ�gEðtÞ; (41)

where g = minigii > 0 due to assumption (14) on G.

In the case 1A we note that

XN

j¼1

g i0jxj�g iiE�
X
j 6¼ i0

jg i0jjxj�kE;

and we have an inequality analogous to (41):

dE

dt
�ERi0 ; Ri0�Cþ�kEðtÞ: (42)

Note that the sequence of intervals Ii0
is not bounded and these

intervals cover all R+ since, according to the Lemma, the solutions

exist for all t > 0.

Inequality (41) implies that E(t) � X(t), where X(t) is the solution to

the Cauchy problem

dX

dt
¼ XðCþ�g0XÞ; Xð0Þ ¼maxixið0Þ; (43)

where g0 equals g in the case 1B and k in the case 1A. Let X0 = C+/
g0. If X(0) < X0, then Eq. (43) shows that X(t) � X0 for all t and
(17) follows. If X(0) > X0, then Eq. (43) shows that X(t) > X0 for
all t. By the change of variables X̃ ¼ X�X0 we obtain that X̃>0
and thus

dX̃

dt
¼ �g0ðX0 þ X̃ÞX̃��g0X0X̃;

which implies X̃ðtÞ�X̃ð0Þexpð�g0X0tÞ, and we obtain (17).

Step 4. Having (17), we can prove (18). Indeed, using the non-

negativity of the cjk and fk, one obtains

dvj

dt
�DjðSjðxðtÞÞ�vjÞ:

Therefore,

vjðtÞ ¼ expð�DjtÞðvjð0Þ þ
Z t

0
SjðxðsÞÞexpðDjsÞdsÞ

which yields

vjðtÞ�expð�DjtÞvjð0Þ þmaxs2 ½0;t�SjðxðsÞÞ:

Here SjðxðtÞÞ�Sj þ bjXðtÞ. These two last inequalities imply
vjðtÞ�VjðtÞ, which completes the proof.
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