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Abstract

We analyse a generic bottom-up nutrient phytoplankton model to help understand the dynamics of seasonally recurring algae

blooms. The deterministic model displays a wide spectrum of dynamical behaviours, from simple cyclical blooms which trigger

annually, to irregular chaotic blooms in which both the time between outbreaks and their magnitudes are erratic. Unusually, despite

the persistent seasonal forcing, it is extremely difficult to generate blooms that are both annually recurring and also chaotic or

irregular (i.e. in amplitude) even though this characterizes many real time-series. Instead the model has a tendency to ‘skip’ with

outbreaks often being suppressed from 1 year to the next. This behaviour is studied in detail and we develop analytical expressions

to describe the model’s flow in phase space, yielding insights into the mechanism of the bloom recurrence. We also discuss how

modifications to the equations through the inclusion of appropriate functional forms can generate more realistic dynamics.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Aquatic ecologists have long been fascinated by the
non-equilibrium dynamics of explosive phytoplankton
blooms. Often such blooms are viewed as a signal of
impending eutrophication, indicating that ecosystem
balance is lost and that nutrients may have reached
unacceptably high levels, at least high enough to support
massive bloom formations. Sometimes, however, annual
phytoplankton blooms are more of a natural ecosystem
event than a cause for concern or danger to water
quality. In such circumstances, periodic algae blooms
are better viewed as an evolutionary successional
development of phytoplankton species that charac-
terizes their lifecycle and response to surrounding
ecological and environmental conditions. As some
phytoplankton species are toxic, their appearance in
large numbers has obvious dangerous implications.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Collectively referred to as Harmful Algae Blooms
(HAB’s), these events have the potential to damage or
kill higher organisms such as zooplankton, shellfish, and
fish as their toxins mobilize up through the foodchain,
sometimes leading to human poisoning via ingestion of
contaminated food sources. HAB’s have enormous
economic implications in terms of public health,
commercial fisheries and even tourism (Anderson
et al., 2000). Algae blooms are also responsible for the
spread of some epidemics. In Bangladesh, for example,
cholera outbreaks appear to originate from annual
bloom events in the Bay of Bengal (Colwell, 1996).
Given the importance of these many different and
distinctive types of phytoplankton blooms, our goal is to
develop modelling approaches for understanding their
underlying dynamics.
Many aquatic systems endure harsh seasonal changes,

as for example the changing physical stratification in
lakes and oceans, which have large impact on ecosystem
dynamics and often control bloom dynamics. Our goal
is to model the complex dynamics of seasonally
recurring algae blooms in a manner that realistically
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matches ecological data sets. In this respect, we do not
focus on single transient algae blooms which have
already been the subject of an extensive modelling
analysis in earlier papers (Huppert et al., 2002, 2004).
Fig. 1 displays time-series of different algal species from
different locations in lakes and oceans around the
world, for example, in Lake Kinneret (Fig. 1a), the
German Bight (Fig. 1b) and San Francisco Bay (Fig. 1c).
All time-series show recurring bloom events which are
triggered at roughly the same time each year (usually
Spring). Each bloom is characterized by a period of
rapid algae growth followed by a crash in population
numbers, after which there is a long quiescent period
where phytoplankton numbers remain minimal. Our
model will be used to describe and explain some of the
features seen in such time-series.
There are many factors which affect the initiation and

rapid multiplication of algal numbers. In this paper, we
focus on phytoplankton blooms that are mainly
controlled by nutrients rather than by higher tropic
levels (O’Brien, 1974; Ebenhoh, 1988; Evans, 1988;
Fig. 1. Time-series of phytoplankton from different lakes and oceans

around the world. (a) Annual Peridinium gatunense blooms in Lake

Kinneret, Israel (given in units of mg=m3Þ. Data courtesy of Utza

Pollingher and Tamar Zohary. (b) Annual Noctiluca scintillans blooms

in the German Bight. Adapted from Beltrami and Carroll (1994) (given

in units of cells/litre); data originated from Dr. G. Uhlig of the

Biological Research Station, Helgoland, Germany. (c) Annual blooms

in South San Francisco Bay, USA (chlorophyll a concentration in

units of mg=m3). Adapted from Cloern (1991).
DeAngelis, 1992; Stone and Berman, 1993; Franke
et al., 1999). Bottom-up control is important in many
cases. For example, there are many zooplankton species
that tend not to graze toxic red tide algae. Similarly,
other types of algae have spines, cellulose cell walls and/
or are large in size which protects the phytoplankton
from being grazed. The large Peridinium gatunense

diatom bloom in Lake Kinneret, for example, is rarely
if ever grazed by zooplankton. In such cases ‘‘top-
down’’ models are inadequate as a general description of
phytoplankton blooms. Yet most models to date rarely
use the required bottom-up formulation for these
systems. To help fill this gap, Huppert et al. (2002)
studied the simplest nutrient–phytoplankton (NP) mod-
el that succeeds in modelling algae blooms based on a
‘bottom-up’ approach. However, the generic NP-model
is unable to generate periodic cycles (see Appendix A),
and is thus unsuitable for modelling outbreaks that
recur seasonally. We extend the basic NP-model by
introducing periodic seasonal forcing which induces all
kinds of complex dynamics from limit-cycles to chaos.
This is in contrast to several studies of a particular class
of NP models (the classic Droop model), which fails to
generate complex dynamics (Pascual, 1994; Smith,
1997). Note, however, that it has recently been
theoretically demonstrated that chaotic dynamics are
possible in externally driven chemostats with additional
phytoplankton mortalilty (Blasius and Clodong, 2004).
Previously we have studied populations whose abun-

dances are highly erratic or chaotic but their period
length is remarkably constant—a behaviour we referred
to as UPCA (Uniform Phase evolution with Chaotic
Amplitudes; see Blasius et al., 1999). A glance at the
phytoplankton time-series of Fig. 1 shows that UPCA
might be an appropriate description for many recurring
algae blooms. (Another possibility is that the variability
may be explained by the addition of stochasticity,
something which we explore elsewhere (Barnea, Solow,
Stone manuscript).) However, most conventional eco-
logical models are unable to reproduce this behaviour.
Recently, we developed a 3 species food web model
which has the above characteristics (Blasius et al., 1999),
but the possibility of finding UPCA in forced models
has so far been neglected. Our own extensive simulation
studies have revealed that it is surprisingly difficult to
generate UPCA dynamics in forced NP models. In the
present paper we discuss what is to our knowledge, the
first two level seasonally forced model that is able to
generate UPCA dynamics.
2. A simple nutrient–phytoplankton model

The forced NP compartment model consists of two
variables, nutrients levels N, and phytoplankton bio-
mass P, connected through the following system of
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equations (Huppert et al., 2002):

_N ¼ a � bbðtÞNP � eN,

_P ¼ cbðtÞNP � dP. (1)

The model has initial conditions Nð0Þ ¼ N040 and
Pð0Þ ¼ P040. It is assumed that there is an external
source of nutrients flowing into the system at a constant
rate a. The Lotka–Volterra interaction term, NP, is used
for modelling the phytoplankton uptake of nutrients,
and implies that the probability of a phytoplankton
utilizing a nutrient is proportional to the product of
their relative abundances. The final uptake rate is
determined by the parameters b and c. In addition,
phytoplankton is removed from the water column
through mortality as determined by the parameter d.
This parameter also takes into account relatively
constant grazing or predation by higher tropic levels
such as zooplankton and fish. Finally, there is a small
nutrient loss parameter e which represents sinking of
nutrients from the epilimnion down to the hypolimnion
and therefore making these nutrients unavailable for
phytoplankton uptake (DeAngelis, 1992).
Seasonal environmental conditions such as water

temperature, salinity, light and thermocline depth are
often important to different degrees depending on the
system under investigation. In the above model, we
suppose that there is a seasonal modulation of phyto-
plankton growth so that some periods of the year have
environmental conditions more suitable for growth than
others. The modulation of phytoplankton growth b can
be represented as a periodic function bðtÞ ¼ bðt þ tÞ with
maxima at the optimal season (e.g. spring for many
phytoplankton blooms). Here, t is the period of forcing,
which in this work is taken to be annual. A convenient
and commonly applied scheme is that of sinusoidal
forcing

bðtÞ ¼ 1� d sinðotÞ. (2)

When the forcing is annual, and t is in units of years, then
o ¼ 2p. The parameter d (0odo1) controls the strength
of the forcing. Obviously if d ¼ 0, the model collapses to
an unforced system. Although Eq. (2) is a crude
simplification, it serves as a first approximation for
investigating how seasonal factors influence the model’s
dynamics. For some biological applications seasonal
changes might be better approximated by a step-function.
This is true in some lakes (e.g. Lake Kinneret) where the
seasonal climate dynamics and stratification patterns are
more reasonably approximated by a step-function con-
sisting of a ‘high season’ where conditions are optimal for
growth, and a ‘low season’ where growth is suppressed.
Mathematically this forcing could be represented as

bðtÞ ¼
bþ ¼ 1þ d; High season;

b� ¼ 1� d; Low season;

(
(3)
where again d (0odo1) controls the strength of the
seasonal forcing. Here b takes only two values, one that is
high (bþ) and the other low (b�). The time-scale is such
that there are two equally long seasons per time period
t ¼ 2p=o. Thus for annual forcing t ¼ 1 and o ¼ 2p.
We have found the dynamics produced by the NP

model (Eq. (1)) are very robust to a wide array of
periodic functions in that most of the model’s range of
dynamics can be reproduced independent of the
qualitative form of the forcing (i.e. assuming forcing
frequency and mean amplitude remain unchanged).
Both sinusoidal and step-function forcings are examined
in this paper, although we take advantage of the step-
function forcing for analytical calculations. For con-
venience only, from here on our notation is based on the
step-function formulation for b (Eq. (3)).
The model can be simplified if it is written in

dimensionless variables

N 0 ¼
c

d
N; P0 ¼

b

d
P; t0 ¼ dt,

I ¼
ac

d2
; q ¼

e

d
; o0 ¼

o
d
¼
2p
d
. (4)

Dropping the dashes the model becomes

_N ¼ I � b�NP � qN,

_P ¼ b�NP � P, (5)

where b� is given by Eq. (3). Nutrient uptake b and c

and the plankton loss rate d have effectively been scaled
out, leaving only the scaled nutrient inflow/outflow
parameters I and q. Thus, the forced model depends on
only four parameters I, q, o and d.
3. Analysis of the model

3.1. The ‘generic’ bloom event

An understanding of the mechanisms that lead to a
single bloom event is a prerequisite for embarking on an
analysis of the forced NP model, and we therefore first
review basic concepts (see Huppert et al., 2002 for full
details). In the case of small nutrient loss compared to
inflow, 2qoI , the unforced model (Eq. (5), d ¼ 0) has a
globally stable equilibrium given by

P� ¼ I � q; N� ¼ 1. (6)

A plot of the bloom’s evolution in the time-domain may
be seen in Fig. 2a, and it can be divided into three stages:
	
 stage i: linear nutrient ðNÞ build up;

	
 stage ii: phytoplankton bloom (rapid rise in P) and
subsequent depletion in nutrients ðNÞ;
	
 stage iii: bloom crash (rapid decline in P).
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Fig. 2. (a) Time-series plot of Eq. (5) with phytoplankton ðPÞ (solid

line), limiting nutrient ðNÞ (dotted line). Nutrients slowly build up

linearly until initiation of the bloom. Parameters are: I ¼ 0:075; q ¼ 0,

with initial conditions P0 ¼ 0:05; N0 ¼ 0:0005. For the purposes of

illustration, nutrient levels were rescaled and reduced by a factor of

three. (b) Phase-plane diagram of the phytoplankton bloom. The

arrows indicate the direction (always counterclockwise) that the

trajectory ‘flows’ in the phase plane. The different stages- i, ii, and iii

are indicated at the top of the graph. The nullclines are conceptually

important for understanding how the trajectory flows in the phase

plane. The N-nullcline (dN
dt

¼ 0) divides the phase plane in two with all

points above the nullcline characterized by dN
dt
40 and all points below

having dN
dt
o0. Similarly the P-nullcline (dP

dt
¼ 0) divides the phase plane

in two with all points to the left of the nullcline characterized by dP
dt
o0

and all points to the right having dP
dt
40. As such, the direction of flow

in the phase plane is defined by the coordinates of the trajectory and its

location relative to the two nullclines.
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A typical simulation run begins with initial conditions
ðN0;P0Þ in the lower left region of the phase plane
(Fig. 2b; see figure legend for explanation of phase-plane
dynamics). The trajectory rotates anticlockwise in phase
space as it spirals to equilibrium passing in turn through
each of the three stages. Because the initial conditions
ðN0;P0Þ are in the lower left region of the phase plane, at
first _Po0 and _N40; although not visible in this figure
the phytoplankton levels initially decline and there is a
slow constant nutrient build up due to the inflow I

(stage-i). The nutrient levels N continue to build up until
they reach the P-nullcline at which point the algae
bloom is triggered (stage-ii). As the trajectory crosses
into the lower right region ( _P40 and _N40) of the phase
plane, both nutrient and phytoplankton levels are on the
rise. Next, the trajectory crosses the N-nullcline and
moves into the upper right region ð _P40 and _No0Þ of
the phase plane; phytoplankton dramatically increases
while nutrients plummet as they fuel the bloom.
However, at some point nutrients can no longer support
further increase in P. This occurs when the trajectory
passes from the upper right region into the upper left
region, and crosses the P-nullcline ð _P ¼ 0Þ where the
bloom attains its maximum level Pmax. Now _Po0 and
_No0 so that both the phytoplankton and the nutrient
levels crash in the final phase (stage-iii) of the bloom.
The phytoplankton population crashes mainly because
the large nutrient pool has been depleted and the daily
replacement of nutrients is not enough to support a
swelling standing stock of phytoplankton.

3.2. Seasonality and skipping dynamics

We now return to our original goal of modelling
recurring phytoplankton blooms by analysing the
periodically forced NP model (Eq. (5)). Figs. 3–5
provide summary overviews of some of the model’s
different types of dynamics. The step-function forcing
scheme for b (Eq. (3)) makes it possible to gain simple
insights regarding the model’s behaviour. We first note
that each season can be associated with its own ‘pseudo-
equilibrium.’ Here, we use the terminology ‘pseudo-
equilibrium’ to describe the equilibrium that the model
would be attracted towards if there were no changes of
season. (Technically speaking the forced model has no
equilibrium, stable or otherwise.) If in the case of the
unforced model there is a single stable equilibrium, now
the periodic forcing creates two different pseudo-
equilibria between which the model jumps with every
change of season. The first pseudo-equilibrium (EL) is
associated with the low season and the other (EH ) with
the high season.

EH ¼ ðN�
H ;P�

H Þ ¼
1

1þ d
; I þ

q

ð1þ dÞ

� �
,

EL ¼ ðN�
L;P

�
LÞ ¼

1

1� d
; I þ

q

ð1� dÞ

� �
. (7)

In addition to the pseudo-equilibria, each season has its
associated set of nullclines. In practice, the N-nullclines

ðP ¼ I
b�N

Þ changes very little from season to season

(see Figs. 3h and 7) while the two vertical P-nullclines

(N ¼ 1
b�
) stand to the left- and right-hand side of the

phase plane, respectively. The equilibria EH and EL are
located at the intersections of the NP nullclines.
Recall that in the absence of periodic forcing, the

model’s trajectory spirals in phase space to a single
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Fig. 3. Periodic solutions of seasonally forced model equations (5) for different parameters. Top panel: Time-series. Bottom panel: Phase plane (open

circles represent the pseudo-equilibria which the trajectory is attracted in different seasons). Note the logarithmic scale used for the vertical axis

(phytoplankton) of the phase plane where e.g. �2 refers to a population of 10�2. (a,b) (I ¼ 0:05) Limit cycle with annual bloom. (c,d) (I ¼ 0:04)
Period two cycle with bloom maxima alternating in amplitude every other year. (e,f) (I ¼ 0:03) period two with skips. The main bloom occurs every

second year followed by a skip (2y represents 2 years between blooms). (g,h) (I ¼ 0:014) Periodic solution with a bloom every 4 years, and three skips

between consecutive bloom events. The dashed lines represent the N and P nullclines associated with the high season (bþ) while the dotted line

represent those associated with the low season (b�). Parameters: q ¼ 0:0012; o ¼ 0:19; d ¼ 0:5.
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stable equilibrium as it traces out the path of the generic
bloom event. However, with the inclusion of periodic
forcing the trajectory is prevented from ever reaching
this equilibrium. Instead, with each change of season,
the direction of the trajectory is kicked away from its
original path towards one ‘pseudo-equilibrium’ where-
upon it becomes attracted to the other ‘pseudo-
equilibrium.’ The resulting trajectory can follow a much
more complicated geometry than the ‘spiral to equili-
brium’ of the unforced system. In the simplest scenario
the trajectory may form a closed loop in phase space
corresponding to an annual limit cycle as seen in Fig. 3a
and b. The NP phase-plane representation of Fig. 3b
displays the model trajectory as it is attracted from one
equilibrium to another while continually rotating in the
phase plane.
We now examine exactly the same model used to

generate Fig. 3a and b (with I ¼ 0:05) but after reducing
the inflow to I ¼ 0:04. Fig. 3c shows that the dynamics
are now biennial with the bloom heights alternating
from 1 year to the next in the form of a two cycle.
Fig. 3d displays the phase-plane representation of the
biennial limit cycle.
With smaller inflow (I ¼ 0:03) the model generates a

qualitatively different biennial cycle (Fig. 3e). Now there
is a succession of yearly blooms, but with a major bloom
always followed by an extremely small bloom. In actual
fact the minor bloom is too small to be identified in
Fig. 3e but may be readily visualized in the phase-plane
portrait of Fig. 3f where a logarithmic scale is used. The
major peak is to be found in the upper part of the phase
plane and is to be associated with the peak of the generic
phytoplankton bloom. The minor bloom arises because
the trajectory is curtailed in the phase plane and
prevented from ever triggering a large amplitude bloom.
We refer to this inhibition of a large amplitude bloom
as a ‘skip’.
To understand how skips arise, first note that at the

beginning of the High season the trajectory is found in
the bottom left-hand side of the phase plane and
attracted to the pseudo-equilibrium EH which it spirals
towards. But this growth is interrupted when the seasons
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Fig. 5. Chaotic solutions of the forced model (5). Top panel: Time-series. Middle panel: Phase plane with logarithmic scale as in Fig. 3. Bottom panel:

histograms of the month where the bloom maximum occurs. (a,b) Chaotic attractor with annual bloom (I ¼ 0:027; q ¼ 0:0012; o ¼ 0:147; d ¼ 0:38).
(c,d) Chaotic attractor with blooms in some years and skips of 1 year in others (I ¼ 0:022; q ¼ 0:0012; o ¼ 0:19; d ¼ 0:45). (e,f) Chaotic attractor
with skips of up to 2 years (I ¼ 0:015; q ¼ 0:0012; o ¼ 0:19 and d ¼ 0:45).
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change. The trajectory then becomes attracted to the
low season equilibrium EL which sits on the right-hand
side of the phase plane. Thus instead of the bloom
continuing, the sudden change of season cuts short the
growth phase, and the phytoplankton begins its decline.
It is important to note that during a skip, nutrient levels
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always continue to increase despite the fact that
phytoplankton levels pass through a maximum. This
contrasts to the pattern observed for the generic
phytoplankton bloom where the nutrients increase and
then decline before the phytoplankton reaches a
maximum.
Skips come in many shapes and forms. In the biennial

cycle of Fig. 3e–f there is a single skip every 2 years.
Upon reducing inflow even further to I ¼ 0:014, leads to
a scenario in which there are multiple skips (Fig. 3g and
h), with a bloom occurring every 4 years and there are
three skips between bloom events. The phase plane
shows a ‘tooth-like’ structure with three peaks at the
transition points of each skip followed by a generic
bloom event every 4 years.
In some simulations, especially when there are multi-

ple skips, the populations range over many orders of
magnitude. Real phytoplankton populations do in fact
have this feature. Thus, Beltrami (1989) published data
for blooms that ranged over some six orders of
magnitude while the Kinneret ranges over five.
Fig. 3h, however, shows that in some parameter regimes
the simulations can become extreme, implying that
model populations would reach unrealistically low
levels. Shortly, we will describe several important and
ecologically realistic modifications that eliminate this
problem.

3.3. Complex behaviour

The model’s different dynamics are best summarized
in the bifurcation diagram of Fig. 4a where the maxima
in phytoplankton numbers are plotted as a function of
the forcing strength d. For weak forcing there is a limit
cycle of period 1 year as indicated by the single line in
the bifurcation diagram when d is in the range
0:09odo0:11. A typical limit cycle in this range would
appear rather like the time-series shown in Fig. 3a or as
the phase-plane portrait in Fig. 3b.
From Fig. 4a it becomes evident that as the forcing d

increases a bifurcation occurs and the limit cycle changes
to period two. When d ¼ 0:155, for example, there are
now two points in the bifurcation diagram for each value
of d indicating how the peak of the annual bloom jumps
between two values (High��4Low��4High . . . ;
etc.) each year (see also Fig. 3c–f). Increasing d further
gives rise to a complex set of bifurcations that follow the
period doubling route to chaos (0:2odo0:315). The
chaos appears as a black band in the bifurcation diagram
since for each value of d there are now an infinite number
of possible phytoplankton maxima.
The bifurcation diagram of Fig. 4 makes clear that

large proportions of parameter space are dominated by
chaotic behaviour. These warrant further discussion and
we proceed by examining several representative time-
series. Firstly, Fig. 5a shows a model simulation in
which there is an annual phytoplankton bloom but the
dynamics are nevertheless chaotic. The chaos manifests
in two ways:
	
 (i) the peak heights of the phytoplankton blooms are
erratic and not easily predictable.
	
 (ii) the time between consecutive peaks of the bloom is
regular and approximately one year.
This behaviour is referred to as UPCA (uniform phase
chaotic amplitude, see Blasius et al., 1999), implying that
the regularity in phase growth or timing is constant but
the amplitude of the bloom is chaotic.
With different parameters the models dynamics can

be even more irregular as shown in Fig. 5c. Now the
model time-series jumps erratically between a period-
one component and period-two component. This
corresponds to jumping between the ‘inner’ and ‘outer
loops’ of the phase plane (Fig. 5d). On some occassions
the trajectory circuits the ‘outer loop,’ a process that
takes approximately 2 years, in which case a major
bloom 1 year is followed by a skip (i.e. a minor bloom)
in the next year (cf. Fig. 3f). On other occassions
the trajectory circuits the smaller inner loops, which
generates a set of consecutive major bloom events
each year.
Fig. 5e and f show how reduction in the inflow I can

induce skipping events. Thus for the same parameters
that produced Fig. 5a slight reduction in I significantly
suppresses bloom events and induces skips of up to two
years. The skips can be seen in the lower part of the
phase plane of Fig. 5f producing once again a ‘tooth-
like’ structure.
Another model complexity arises from the existence

of multiple coexisting attractors. This is shown in Fig. 6
where for a given set of parameters the model (5) may
have a number of different solutions each characterized
by its own unique qualitative dynamics. The solution
that the model finally converges to depends on the
model’s initial conditions. This is further demonstrated
in Fig. 6b which depicts the time-series of three such
coexisting attractors, one being chaotic and the other
two periodic. The existence of multiple attractors can
have important ecological consequences. In real ecolo-
gical systems, if there are several coexisting attractors, it
may be difficult or even impossible to predict which
attractor the system will eventually converge to. This
will be especially true if the system’s initial conditions
are situated close to the edge of different basins of
attraction. Multiple attractors have been noted in many
other ecological models (e.g. Rinaldi et al., 1993; Earn
et al., 2000; Henson, 2000; Huisman and Weissing, 2001;
Vandermeer et al., 2001), and have also been verified in
Daphnia-algae systems under laboratory conditions
(McCauley et al., 1999).
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domain.
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4. Reconstructing the phase-plane dynamics

We now proceed further and attempt to gain a deeper
understanding of the dynamical principals that lead to
skips between bloom events. To simplify the analysis we
assume that the nutrient loss rate is negligible and set q ¼

0 in Eq. (5); this has little qualitative effect on the model’s
dynamics when qo I

2
(see Huppert et al., 2002). It is also

assumed that the nutrient influx is much smaller than
phytoplankton mortality rate i.e. I51 for the given
scaling. Under these conditions the forced NP model
represents a classical slow-fast system. This can be easily
seen in the phase plane in Fig. 7 where P changes many
orders of magnitude compared to N. The nutrient
dynamics in (5) is dominated by a difference of two terms:
a small constant inflow rate, I, and a term b�NP which
varies proportionally to the rapidly changing phytoplank-
ton levels P. As a consequence it is possible approximate
the dynamics of Eq. (5) in two different regimes:
	
 Type I: Fast bloom dynamics where bNPbI :

_N ¼ �b�NP,

_P ¼ Pðb�N � 1Þ. (8)

This is the generic bloom model already discussed in
which high phytoplankton levels ensure bNPbI . The
bloom event is fast with the trajectory confined to the
upper part of the phase plane (UPP). The solution of
this system of equations may be approximated as (see
Appendix B; Banks 1994):

NðtÞ ¼ N0 expð�bRðtÞÞ

PðtÞ ¼
s2

2b2N0

sech2
1

2
st � f

� �
ð9Þ

RðtÞ ¼ �1 þ �2 tanh
1

2
st � f

� �

where �1, �2, s and f are constants defined in
Appendix B.
	
 Type II: Slow nutrient buildup where bNP5I :

_N ¼ I ,

_P ¼ b�NP � P. (10)

Nutrient levels slowly build up at the rate _N ¼ I and
‘skips’ may occur from year to year. The generic bloom
event cannot trigger until nutrients have built up to a
minimal threshold level, and the trajectory is thus
confined to the lower part of the phase plane (LPP).
Eq. (10) can be integrated out (see Appendix B) to

give the following explicit analytical solution:

NðtÞ ¼ Iðt � t0Þ þ N0

PðNÞ ¼ P0 exp
1

I
ðN � N0Þ

b
2
ðN þ N0Þ � 1

� �� �
ð11Þ
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Fig. 7. Phase-plane diagram with logarithmic scale for phytoplankton. Type I solutions (the generic bloom) occur in the UPP above the N-nullcline.

Type II solutions (nutrient buildup) appear in the LPP. The dashed lines represent the N- and P-nullclines associated with the high season (bþ) while
the dotted line represents the N- and P-nullcline associated with the low season (b�). Open circles represent the pseudo-equilibria. Note that the N-

nullcline hardly changes between seasons, while there is a clear change in the P-nullcline. The oi demark the points in the phase plane when seasons

change and the N-nullcline jumps from b� to bþ or vice-versa (I ¼ 0:025; q ¼ 0:001; o ¼ 0:19 and d ¼ 0:5).
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As the forced model’s trajectory spins around the
phase plane it alternates between these two different
types of behaviours. Thus we can use these results to
formally deduce or ‘‘reconstruct’’ the full motion of the
seasonally forced NP model in the phase plane.
At any moment, the motion of the trajectory depends

both on its location in the phase plane (see Fig. 7, UPP
or LPP), and on the particular timing, e.g. high (bþ) or
low (b�) season. Thus, at a certain time point the system
is described by one of four possible analytic solutions i.e.
they can be either Type I or Type II solutions calculated
for either the High or Low season. Since Eqs. 9 and 11
gives the analytic approximations of each of these
solutions, we are able to trace out the trajectory in the
phase plane as in Fig. 7.
Fig. 7 gives a schematic sketch of how this works out

in the simple case of a limit cycle. We start from an
initial condition in the LPP which calls for using a Type
II solutions. Then, after each change of season we switch
to the analytic solution relevant for that season. These
changes occur at the transition points o1; o2, and o3

shown in Fig. 7. As soon as the trajectory crosses the
N-nullcline entering the UPP, the trajectory changes to a
Type I solution. This solution is followed until it again
crosses into the LPP. As a result the trajectory is found
to rotate around the phase plane in the form of a limit
cycle, here with a single ‘skip’ in the LPP. This is
described in more detail in Appendix B.
When the parameters are such that the model

dynamics is chaotic, the resulting reconstructed attrac-
tor obtained from the explicit Types I and II solutions is
shown in Fig. 8a. The success of the analytical
reconstruction scheme may be gauged by comparing
the resulting attractor (Fig. 8a) to a simulation with
closely matching parameters. (Slightly different para-
meters were needed to compensate for the change in the
model’s sensitive dynamics induced by the approxima-
tion.) shown in Fig. 8b. The latter was obtained by
numerical integration of the actual equations (5) using
the step-function forcing scheme. Similar good agree-
ment can be found also in other parameter regimes for
the other attractors (limit cycles of all periods as well as
other chaotic attractors). Comparing Fig. 8b and c
shows that the model solution is robust to the specific
form of bðtÞ which is chosen as step-function and
sinusoidal forcing, respectively.
For other parameter regimes, this procedure can lead

to more complicated dynamics (including larger number
of skips, multiple attractors). In principle, by using the
four different analytic solutions it is possible to describe
the flow in phase space for any set of parameters. Even
though in practice, this might be difficult to carry out,
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Fig. 8. (a) Reconstruction of the trajectory in the phase plane using analytic solutions obtained by Types I and II approximations (see text for details.

I ¼ 0:015; t ¼ 33 and d ¼ 0:5. (b) Simulations with Eq. (5) and b taken as a step-function (Eq. (3)) I ¼ 0:021; t ¼ 33 and d ¼ 0:5). (c) as in (b), but
with sinusoidal forcing (Eq. (2)) (I ¼ 0:034; q ¼ 0:0012; t ¼ 30; d ¼ 0:6).
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we are able to grasp the essential principles governing
the system dynamics. The excellent agreement between
numerical solutions and the analytical results demon-
strates clearly that our heuristic understanding of the
model dynamics is correct.
5. More realistic models

The simple NP model studied here can be understood
as a strategic model which contains only the most
essential ingredients to describe bottom-up controlled
seasonally recurring phytoplankton blooms. The ques-
tion however remains, as to the realism of such a
simplified model. In this section therefore, we introduce
various additions into the model which might be
regarded as essential.

5.1. Phytoplankton cysts

When modelling the dynamics of biological popula-
tions, a deterministic model is usually a sufficient
approximation provided that population numbers never
become too small. In the case of phytoplankton the
lower bound is set by the unit of the single individual
algae cell. During the course of a phytoplankton bloom,
it is not uncommon for an algae population to vary in
number by some six orders of magnitude or more
(Beltrami, 1989). Given that the phytoplankon popula-
tion in our model can easily vary many orders of
magnitude, the deterministic description given by Eq. (5)
should be expected to break down in cases where the
variation in P exceeds seven orders of magnitude. As the
phase planes of Figs. 3 and 5 indicate, such unrealisti-
cally small phytoplankton densities arise only for
parameter regimes of the model for which there are
multiple skips. In this case, with each skip the trajectory
in the plane dives deeper and deeper downwards until
finally the phytoplankton levels drop below the persis-
tence threshold. It is reasonable to treat such an event as
a local extinction. Note that the effects of demographic
noise are enhanced in the vicinity of the ‘extinction
threshold’. Due to the low algae population levels
random perturbations can easily kick the phytoplankton
below threshold leading to extinction.
However, in many aquatic environments phytoplank-

ton blooms recur even despite these skips. One plausible
mechanism which enhances the persistence of algae is
the formation of cysts. Cysts are a vegetative form of
phytoplankton that can survive hostile environmental
conditions, and are usually present in the sediment or
lower water levels. The cysts can be resuspended to the
photic zone by hydrodynamical processes such as
upwelling or the overturn of the water column at the
termination of stratification.
As a first approximation, cysts dynamics can be

incorporated into the model by a small constant
phytoplankton influx term, c, as follows:

_N ¼ I � b�NP � qN,

_P ¼ b�NP � P þ c. (12)

(Alternatively, c might be interpreted as an immigration
of phytoplankton from nearby patches.)
First, consider a case without cysts (c ¼ 0) and with

the model parameterized in a region which yields a
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Fig. 9. Phytoplankton time-series with the combined effect of cysts

and multiplicative noise (12). Parameters (I ¼ 0:025; q ¼ 0:0012;
o ¼ 0:19; d ¼ 0:45; s ¼ 0:2; c ¼ 0:0001). Note that the dynamics

are UPCA.
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chaotic tooth attractor similar to the one shown in
Fig. 5d. With the inclusion of only a small cyst inflow
rate of c ¼ 0:0001, the model’s natural tendency to skip
disappears and is replaced by annual bloom dynamics
(here an annual limit cycle). Fig. 9 is a simulation where
both cysts dynamics (c ¼ 0:0001) and environmental
noise forcing are at work (as in Eq. (13) with s ¼ 0:2). In
order to introduce environmental noise into our model,
we modify the seasonality in (2), (3) to the form

~bðtÞ ¼ bðtÞð1þ ZðtÞÞ, (13)

where ZðtÞ is a Gaussian white noise with mean zero and
standard deviation s. As can be seen the model’s
dynamics are once again annual but with erratic peaks
resulting in the desired UPCA time-series.
To conclude, a small inflow of cysts effectively boosts

the phytoplankton population at the minima of the
cycle. Fig. 9 shows that this boost is relatively large
since, skips fail to occur and annual bloom dynamics
dominate. (The phytoplankton here ranges over 5 orders
of magnitude.) Depending on the cysts inflow, there is a
lower limit for the smallest phytoplankton densities of
the model. Therefore, by inclusion of parameter c

unrealistic small P-levels in the model are systematically
avoided.

5.2. Monod nutrient uptake and UPCA dynamics

One of the characteristics of the basic NP model is its
tendency to ‘skip’ and this occurs over large parameter
regimes. We have found that UPCA dynamics (i.e.
without skips) can be achieved by changing the
functional form of the nutrient uptake terms. As is well
known, under laboratory conditions the nutrient–phy-
toplankton interaction is more realistically described by
the classical Monod equation (DeAngelis, 1992) equiva-
lently referred to as a Holling Type II functional form.
The leads to the following equations:

_N ¼ I � bbðtÞ
NP

k þ N
� qN,

_P ¼ cbðtÞ
NP

k þ N
� dP. (14)

Fig. 10a presents the time-series for a typical
simulation of Eq. (14) in the chaotic regime where the
annual dynamics could be reasonably termed UPCA.
The phase plane in Fig. 10b demonstrates that there are
no skips, something which holds over a large parameter
range, and that the phytoplankton population is well
above the extinction threshold. Nevertheless there are
parameters in which the model gives rise to skips, but in
this case the phytoplankton population remains above
the extinction threshold (see Fig. 10c and d). Compar-
ison of Fig. 10d with Figs. 5 and 8 clearly show that the
basic mechanism of chaos and the recurrence of
phytoplankton blooms (as was developed before for
the simple Lotka–Volterra uptake rate) prevails also in
the case of the saturated uptake rate. The basic topology
of the attractor remains unchanged, even though uptake
saturation is introduced. However the attractor is
deformed. The reason for this deformation is due to
the modified position of the nullclines of the more
realistic model equations (14). Thus, we conclude that
our basic methods, which were developed here for the
simple model equations (5), could be extended also to
more complicated functional forms such as the Monod.
These features can be explained by the functional

form of the Monod nutrient uptake which permits larger
growth rates at small nutrient levels than the linear
functional form under the constraint that growth rates
must eventually saturate. A detailed analysis of this
effect is beyond the scope of the present paper and will
be described elsewhere (Olinky et al. ms). The Monod
functional form thus seems to enhance UPCA dynamics
in a model for which this effect is otherwise difficult to
produce.
6. Conclusion

The basic NP bloom model stands in a class of other
simple standard ecological outbreak models (Ludwig et
al., 1978; Truscott and Brindley, 1994) which aim at
understanding the processes which lead to population
outbreaks. There are two fundamental differences
between the earlier outbreak models to the Eq. (5)
advocated here. Firstly, previous models rely on top-
down effects such as predation to induce outbreaks
while our model (5) is relevant for blooms that are
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Fig. 10. UPCA dynamics generated from Eq. (14) using the Monod uptake term. Top panel: Time-series. Bottom panel: Phase plane with

logarithmic scale as in Fig. 5. (a,b) Chaotic attractor with annual bloom parameters are: I ¼ 1500; b ¼ 0:0000204; c ¼ 87; d ¼ 73, q ¼ 0:1;
k ¼ 65; d ¼ 0:12. (c,d) Chaotic attractor with blooms in some years and skips of 1 year in others (d ¼ 0:075; I ¼ 720).
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‘bottom-up’ or nutrient controlled. With this, however,
we do not intend to suggest that bottom-up regulation is
more important than top-down control, nor would we
want to enter this controversial debate. Secondly, many
of the previous models are based around excitable
system theory. In the excitable paradigm the trajectories
are confined in phase space by cubic nullclines which
rigidly fix the amplitude of the bloom i.e. there is only
minor variability in bloom height from one outbreak to
the next. In contrast, the bloom produced by Eq. (5) is
governed by spiral dynamics in the phase plane and
provides a very natural and simple way to simulate
irregular phytoplankton blooms.
Many phytoplankton blooms occur annually and it is

a rare event if in some year a bloom fails to appear. In
our attempt to model annual blooms, it was therefore
somewhat surprising to find that the seasonally forced
NP model (Eq. (5)) does not easily produce regular
annual blooms in the chaotic parameter regime. Instead
skipping events tend to occur with great frequency. To
overcome this shortcoming we investigated three differ-
ent scenarios. The first was the addition of demographic
noise in the growth rate. Secondly we included cysts in
the model which act to increase the population size.
Finally we replaced the bilinear Lotka–Volterra inter-
action terms with a Monod saturation functional form.
All three modified models successfully generated bloom
dynamics with outbreaks each year having erratic
amplitudes. In addition, we found that by using the
Monod functional form and/or adding cysts dynamics
enables phytoplankton levels in the model to remain
above the extinction threshold and solve the main
drawback of the simpler model. That is, the Monod-
based model generates UPCA dynamics and there is a
large parameter range for which populations never fall
below unrealistical levels.
To conclude, the strategic NP models we have

investigated might form the basis of more complex
predictive management models that could be used for
considering or even simulating aquatic decision making
policies. The different mechanisms behind the bloom
dynamics seem to be generic to the basic structure of the
NP model and should therefore serve as a useful guide
of scenarios to expect when incorporating greater
biological realism (e.g. with multiple phytoplankton
species, higher tropic levels etc.). But this work is a
warning sign as well. We find that it is extremely
difficult, if not impossible, to predict phytoplankton
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blooms in advance given the sensitivity of the bloom
to the nonlinearities of the growth process and the
presence of environmental noise. These factors can
easily influence the bloom’s skipping dynamics and act
as a fine control on the triggering of bloom events.
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Appendix A

Below we show that the basic NP-model (Eq. (1) with
bðtÞ ¼ 1), can never generate an oscillatory solution.
Without loss of generality it is possible to rescale
equations (1) to the simpler parameters b ¼ c ¼ d;
a ¼ I & e ¼ q. First using vector notation, we set
~x ¼ ½N;P�. Dulac’s criterion (Strogatz, 1994) states
that if there exists a continuously differentiable real-
valued function g such that 5 
 ðg d~x

dt
Þ is of one sign only

in the positive quadrant, then the model cannot have
limit cycle solutions. If we set g ¼ 1

NP
then

5 
 g
d~x

dt

� �
¼

q
qN

g
dN

dt

� �
þ

q
qP

g
dP

dt

� �
,

¼
q
qN

I

NP
� 1�

q

P

� �
þ

q
qP

1�
1

N

� �

¼
�I

PN2
o0,

which is always satisfied in the positive orthant. Hence,
by Dulac’s criterion, there can be no limit cycles. Using
Dulac’s criterion on the same model but with a
Michaelis–Menten interaction term (see Eq. (14)) again
rules out the possibility of limit cycle solutions.
Appendix B

Here we approximate of the motion of the trajectory
in phase space for the forced model.

B.1. Type I solutions: The generic bloom

By looking at the phase plane (Fig. 7), one sees that
Type I (fast bloom dynamics) solutions are initiated
when the trajectory crosses the N-nullcline and enters
the upper part of the phase plane (UPP). (Note that this
entry point is actually the end point of Type II solutions
which we specify shortly.) Let this entry point serve as
the initial conditions ðNy;PyÞ, which will be used for
deriving the model trajectory in the UPP.
Eq. (8) show that the rate ð _RÞ of phytoplankton

removed or lost from the water column during the
bloom is _R ¼ P. Let us define

R ¼ �
1

b
ln

N

Ny
. (B.1)

It follows directly that _R ¼ � 1
bN

_N with initial condition

Ry ¼ 0. Banks (1994) shows how to obtain an analytic
approximation of RðtÞ; NðtÞ and PðtÞ for a given value
of b. First introduce the variables

s2 ¼ ðbNy � 1Þ2 þ 2b2NyPy,

f ¼ a tanh
Nyb� 1

s
; ~t ¼

1

2
st � f,

where ~t is a scaled time. Then, following Banks (1994)
the dynamics of R is given by

RðtÞ ¼
1

b2Ny
½bNy � 1þ s tanhð~tÞ�. (B.2)

From this we immediately deduce the time course of P

PðtÞ ¼ _RðtÞ ¼
s2

2b2Ny
sech2ð~tÞ (B.3)

and using (B.1), that of NðtÞ

NðtÞ ¼ Ny expð�bRðtÞÞ. (B.4)

It is easy to see that PðtÞ obtains its maximal value

Pmax ¼
s2

2b2Ny at time ~t ¼ 0. The definition of R together

with Eq. (8) is very similar to the classical SIR epidemic
equations (see e.g. Murray, 1989; Banks, 1994). How-
ever, the classical scheme of the SIR outbreak does not
contain a description of seasonality. While in the
traditional analysis the trajectory in the phase plane
could be derived by straightforward integration of dP

dN
, in

our case this scheme holds until the season changes. At
this point it is necessary to continue the integration only
after switching to the appropriate value of b.
Under the assumption that an outbreak event is

initiated in the high season, begin by integrating
equations (8) with a constant b ¼ bþ and the initial
condition ðNy;PyÞ. The solution is given by Eqs. (B.3)
and (B.4). If the seasons change, we continue with b ¼

b� and with initial conditions that are given by the final
state at the change of seasons. The bloom dynamics ends
at t ¼ t0 where the trajectory crosses once again the N

nullcline, where Pðt0Þ ¼
I

bNðt0Þ
. We are thus able to

calculate the entrance point ðN0;P0Þ to the Type II
model, which serve as initial conditions for solving
Eq. (10).
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B.2. Type II: Slow nutrient buildup

We continue to approximate the model’s trajectory but
focus now on the flow of Type II solutions (slow nutrient
buildup) in the lower part of the phase plane (LPP).
Recall that a year is taken to have only two seasons. It
begins in the low season at times tk; k ¼ 0; 2; 4 . . . with a
low growth rate b� ¼ 1� d, followed by high seasons at
times tk; k ¼ 1; 3; 5 . . . with high growth rate bþ ¼ 1þ d.
The length of each season is given by the constant T ¼

tnþ1 � tn and during this period the growth rate is
constant (i.e. either b� or bþ). Eq. (10) describing Type
II solutions are studied in terms of the new variable

l ¼ lnðPÞ, (B.5)

whereby Eq. (10) become

_N ¼ I ,

_l ¼ b�N � 1. (B.6)

Firstly, suppose that the trajectory has just crossed the
N-nullcline N ¼ I=bP to enter the LPP. Let t0 be the time
of entry. Suppose also that the trajectory spends n seasons
in the LPP before it crosses the N-nullcline to return to the
UPP and change over to a Type I solution. In total, nT þ

t� � t0 represents the entire time the trajectory spends as a
Type II solution.
Recall that in the LPP the trajectory moves slowly

from left to right, as nutrients gradually build up at a
constant rate. According to (B.6) this is given by

NðtÞ ¼ Iðt � t0Þ þ N0. (B.7)

However, every time there is a change of season, a sharp
point is created in the phase plane (indicated by the
points ðo1;o2;o3; . . .Þ in Fig. 7). At these points, the
trajectory abruptly changes its direction as phytoplank-
ton growth changes from positive to negative or vice-
versa. Define ‘transition points’ as those points in the
phase plane where the vertical component of the
trajectory, ðPÞ changes direction in the phase plane.
We now proceed to calculate the transition points.
Let the kth transition point have coordinates in the

phase plane ok ¼ ðNk; lkÞ. Assuming that at time t0,
bðtÞ ¼ b� and the initial conditions are N0 and
l0 ¼ lnð I

b�N0
Þ, which defines the transition point

ðN0; l0Þ. By Eq. (B.7) the Nk are given by

Nk ¼ IkT þ N0. (B.8)

By integrating system (B.6) between two neighbouring
transition points we obtain

l1 � l0 ¼ b�
Z T

t0

NðtÞdt � T þ t0

¼ ð1� dÞ
I

2
T2 þ Tðð1� dÞc0 � 1Þ � c1 ðB:9Þ

where c1¼ð1�dÞ I
2

t20 þ t0ðð1�dÞc0�1Þ, and c0¼N0�It0.
Or in a more general way: for every kX2

lk � lk�1 ¼ b�
Z kT

ðk�1ÞT

NðtÞdt � T

¼ ð1þ ð�1ÞkdÞ

�
I

2
T2ð2k � 1Þ þ Tc0

� �
� T , ðB:10Þ

which enables us to express lk in recursive form to
ultimately obtain

lk ¼ l0 � c1 þ
I

2
T2½k2

þ ð�1Þkd�

þ T kðc0 � 1Þ þ
ð�1Þk � 1

2
dc0

" #
, ðB:11Þ

where c1¼ð1�dÞ I
2

t20 þ t0ðð1�dÞc0�1Þ, and c0¼N0�It0.
We thus have an expression for all the transition

points ok ¼ ðNk; lkÞ which comprise the tooth-like
structure seen in the phase plane.
Finally, in order to obtain the phytoplankton

trajectory between two transition points ok ¼ ðNk; lkÞ

and okþ1 ¼ ðNkþ1; lkþ1Þ, Eq. (B.6) gives dl=dN ¼

ðb�N � 1Þ=I , which can be integrated to give

lðNÞ ¼ lk þ
1

I
ðN � NkÞ

b
2
ðN þ NkÞ � 1

� �� �
. (B.12)

This last relationship tells us that log-transformed
phytoplankton levels (l) are a quadratic function of
nutrients N between any two transition points in the
LPP. Hence, it is possible to calculate the exact
trajectory between any two consecutive transition points
in the LPP.
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