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abstract: A simple model that describes the dynamics of nutrient-
driven phytoplankton blooms is presented. Apart from complicated
simulation studies, very few models reported in the literature have
taken this “bottom-up” approach. Yet, as discussed and justified from
a theoretical standpoint, many blooms are strongly controlled by
nutrients rather than by higher trophic levels. The analysis identifies
an important threshold effect: a bloom will only be triggered when
nutrients exceed a certain defined level. This threshold effect should
be generic to both natural blooms and most simulation models.
Furthermore, predictions are given as to how the peak of the bloom

is determined by initial conditions. A number of counterintuitivePmax

results are found. In particular, it is shown that increasing initial
nutrient or phytoplankton levels can act to decrease . CorrectPmax

predictions require an understanding of such factors as the timing
of the bloom and the period of nutrient buildup before the bloom.

Keywords: phytoplankton blooms, nutrient-phytoplankton models,
bottom-up control, threshold model.

Phytoplankton are the source of almost all energy passing
through aquatic food webs and comprise some 40% of the
total fixed global primary productivity (Falkowski 1994).
A large component of this productivity can be attributed
to the occurrence of both seasonal and sporadic algae
blooms that form as patches over the ocean’s surface in
areas of localized nutrient enrichment (Lohrenz et al. 1992;
Berman et al. 1995; Flynn et al. 1997; Lucas et al. 1999).
Once triggered, bloom events lead to rapid rates of increase
in phytoplankton growth. Biomass can sometimes increase
by several orders of magnitude, only to decrease or crash
as suddenly as the bloom mysteriously appeared. As phy-
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toplankton sink out of the water column, they transport
large quantities of carbon in a manner that intimately
connects these primary producers with the earth’s global
carbon cycle. Hence phytoplankton have the capability of
directly affecting large-scale global processes such as
ocean-atmosphere dynamics and climate change. In fresh-
water lakes, rivers, and reservoirs, phytoplankton com-
munities can have a major impact on ecosystem dynamics.
Here, the appearance of algae blooms are often a signal
of dangerous eutrophication and may result in major
water-quality problems.

Until recently, there has been little research describing
the generic mathematical mechanisms that underlie the
dynamics of phytoplankton succession and blooms, except
for direct simulation approaches (Evans and Parslow 1985;
Evans 1988; Fasham et al. 1990). In this respect, Truscott
and Brindley (1994b) made notable progress in modeling
a bloom as a nonlinear “excitable system.” Their formu-
lation depends on “top-down” control, with zooplankton
strongly controlling the initiation of blooms both in fresh-
water lakes and upwelling ocean systems. However, top-
down control is an unlikely mechanism for the many
blooms that are toxic or largely inedible and that can thus
hardly be affected by zooplankton grazing. Here, we at-
tempt to overcome this shortcoming by designing a model
that is based on bottom-up nutrient control. In this model,
a threshold level of nutrients is required to trigger the
bloom. Although there have been a number of bottom-
up models reported in the literature (Patten 1968; O’Brien
1974; Evans 1988; DeAngelis 1992; Stone and Berman
1993; Franke et al. 1999; Litchman and Klausmeier 2001),
to our knowledge the threshold effect described here has
not been identified previously either in simulation ap-
proaches or in theoretical studies of bloom dynamics.
(Note, however, that threshold effects have been reported
for chemostat [Smith and Waltman 1994] and resource
competition models [Grover 1997] but in the context of
equilibrium behavior rather than the transient dynamics
discussed here.) Yet the concept has been anecdotal among
limnologists for a long time now and has on occasion even
been identified. For example, some 70 yr ago, Pearsall, in
his landmark studies of phytoplankton blooms (1932, p.
245) in the English Lake District, provided one of the first
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Figure 1: Time series from Lake Kinneret, Israel, of Peridinium gatunense phytoplankton blooms from 1970–1999. Data courtesy of Utza Pollingher
and Tamar Zohary. The bloom peak varies considerably from year to year, and in unusual cases, there might be no bloom at all.

records of the threshold: “it seems probable that … sub-
stantial increases in the proportions of diatoms will not
take place in these lakes if silica [nutrients] is below 0.5
mg per litre.”

The model is also able to shed light on what are currently
difficult questions in the study of phytoplankton dynamics
still today, namely, What are the mechanisms that lead to
the triggering of blooms, and what then causes their sub-
sequent demise or collapse? What determines the time at
which a bloom is triggered, and what then limits the peak
of the bloom event?

The annual phytoplankton bloom dynamics at Lake
Kinneret (Sea of Galilee), Israel, are illustrated in figure
1, which displays the biomass time series of the dinoflag-
ellate Peridinium gatunense. The Kinneret is one of the
best monitored lakes in the world, with a long-term data
set that extends over 25 yr (Berman et al. 1995). Despite
intensive study, the dynamics of these bloom events are
still poorly understood. The bloom generally occurs in

spring every year, not long after the “turnover” of the water
column and the injection of nutrients and phytoplankton
cysts from the sediment into the lake’s surface waters. Yet,
strangely, in 1997 there was an irregular “non-Peridinium”
year when the bloom mysteriously failed to appear. Fur-
thermore, when examined on an annual basis, there is
great variability from one bloom to the next. Although
there is no evidence that the collapse of the bloom is solely
due to strong nutrient limitation, this is one of the only
plausible theories available to explain these crashes in Per-
idinium biomass. Since Peridinium is rarely grazed by zoo-
plankton and fish, top-down control of the bloom dy-
namics is out of the question (Hart et al. 2000).

Figure 2 illustrates what appears to be a cause-effect
relationship between nutrient and phytoplankton dynam-
ics occurring in the Danube River, Germany (data collected
by G. Volkmar). Large nutrient increases are generally fol-
lowed by bloom events, which in turn tend to draw heavily
on nutrient supplies, thus depleting them considerably. A
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Figure 2: Time series from the Danube River, Germany, showing the relationship between chlorophyll measured in milligrams per liter (a proxy
for phytoplankton) and nutrients measured in milligrams per liter, from March to October 1998. Phytoplankton data (thick line, triangles)PO � P4

courtesy of Gerhardt Volkmar (University of Regensberg); nutrient data (thin line, squares) courtesy of Kopf and Pöhlmann (Bavarian State Office
for Water Management, Munich). In general, high nutrient levels lead to rapid phytoplankton growth and therefore depletion of nutrients. This in
turn causes a collapse in the phytoplankton numbers.

long phase of high chlorophyll levels is thus associated
with low nutrient concentrations, but, because of the dif-
ficulty in supporting large phytoplankton levels, this ex-
tended period of productivity breaks down soon enough.
The successive triggering of further blooms is most likely
due to the discharge of nutrient sources into the river.

These features, both for the Kinneret and the Danube,
make a strong case for bottom-up nutrient control of
blooms. However, apart from isolated simulation studies
(O’Brien 1974), the basic underlying dynamics have yet
to be addressed from a theoretical perspective. We examine
this behavior in depth below and formulate a generic
model to gain new insights into the interplay between
factors such as the timing of the bloom, its peak height,
and the role of initial conditions for both nutrients and
phytoplankton.

A Simple Nutrient-Phytoplankton Model

Here, we present a model that illustrates the important
dynamic properties of phytoplankton blooms. Although
the model is of a very simple structure, it is an extremely
useful one, and its dynamics are inherently generic to more
complex N-P models. Later, we return to discuss the con-

sequences of adding further realistic features and explain
why our initial model captures the essential dynamics.

The model consists of only two variables: nutrients lev-
els, N, and phytoplankton biomass, P. It is assumed that
small levels of nutrients enter the system at a slow but
constant rate, and we first seek to determine how these
nutrient “inputs” might influence phytoplankton dynam-
ics. Phytoplankton, P, rely on nutrient “uptake” for growth
and are removed from the water column through mortality
and sinking. This gives the following system:

Ṅ p input � uptake � loss,

Ṗ p uptake � (death � sinking). (1)

It is possible to learn a great deal about the general
dynamics of models of the above form by examining the
particularly simple system

Ṅ p a � bNP � eN,

Ṗ p cNP � dP, (2)

with initial conditions and .N(0) p N 1 0 P(0) p P 1 00 0

There are five parameters in this first model. Nutrient
inputs flow into the system at a constant rate, a, and
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Figure 3: a, Time-series plot of equations (4) with phytoplankton (P)
in grams per meter cubed (solid line) and limiting nutrient (N) in mil-
ligrams per meter cubed (dashed line). Nutrients slowly build up linearly
until initiation of the bloom. This occurs just before nutrients reach their
maximum level. Parameters are as follows: , (I p 0.075 q p 0 a p

, , , in eqq. [2]), with initial conditions0.00075 b p c p 1 d p 0.1 e p 0
. For the purposes of illustration, nutrient levelsP p 0.05, N p 0.00050 0

were rescaled and reduced by a factor of five. b, Phase-plane diagram of
the phytoplankton bloom. The arrows indicate the direction that the
trajectory “flows” in the phase plane. The motion in the phase plane is
always counterclockwise (see below). The different stages i, ii, and iii are
indicated at the top of the graph. Nutrients are in units of the model.
The NP-phase plane provides a simple graphical means to understand
the dynamics of the model. The N nullcline of the equations is defined
by the line in the phase plane, where . For equations (4), this isṄ p 0
given by , which is a line that divides the NP-phase planeP p (I/N) � q
into two. In the region of the phase plane that lies below the N nullcline,

, and nutrients accumulate in the system accordingly. In the regionṄ 1 0
above the N nullcline, , and nutrient levels decline. The P nullclineṄ ! 0

is given by the equation . There is no phytoplankton growthṖ p 0 N p 1
( ) when the trajectory is on the left side of the P nullcline, whereasṖ ! 0
phytoplankton increase ( ) when the trajectory is to the right. TheṖ 1 0
point at which the N nullcline intersects the P nullcline˙ ˙N p P p 0
defines an equilibrium point. The two nullclines divide the plane into
four quadrants, and the model’s dynamic behavior is determined by the
region into which its initial conditions ( ) fall. The phase plane mayN , P0 0

be used as a guide to trace out how the trajectory of the model changes
in time as it is attracted toward equilibrium. A careful examination of

and in the four regions shows that the trajectory must move coun-˙ ˙N P
terclockwise through the phase plane in its approach to equilibrium.

nutrient uptake rates of phytoplankton are determined by
the parameters b and c. In equations (2), nutrients and
phytoplankton are treated as though they are part of an
“interacting-particle system” (Durrett and Levin 1994),
where the bilinear Lotka-Volterra interaction, NP, implies
that the probability of a phytoplankton utilizing a nutrient
is determined by the product of their relative abundances
(or proportional probabilities). Michaelis-Menten uptake
dynamics (Dugdale 1967) might provide a more realistic
reflection of nutrient uptake dynamics (as discussed later),
but in the interest of simplicity, we have chosen to retain
the Lotka-Volterra term, which is a good first approxi-
mation to the former. The parameters d and e are the per-
capita-mortality/loss rates of phytoplankton and nutrients,
respectively, which we have taken to be constant here.

Units of N are given in milligrams solute per meter
cubed water, P is in units of kilograms solute per meter
cubed water, and the time t is measured in days. The
parameter a is the flux entering the system and can be
given in units of milligrams per day per meter cubed, while
b and c are the coefficient rates with units of meters cubed
per kilogram per day and meters cubed per milligram per
day, respectively. The death and loss rates d and e are given
in units per day.

The analysis of the model can be greatly simplified by
rescaling to nondimensional variables:

c b′ ′ ′N p N, P p P, t p dt,
d d

ac e
I p , q p . (3)

2d d

When the dashes are dropped, the model becomes

Ṅ p I � NP � qN,

Ṗ p NP � P. (4)

Here, three of the five original parameters have effectively
scaled out, leaving only the two dimensionless parameters
I and q, which can be interpreted as effective influx and
nutrient loss rate, respectively.

A typical simulation of the nutrient-phytoplankton dy-
namics in the time domain is presented in figure 3. In the
first phase, the nutrient level slowly builds up due to the
constant external nutrient input I in a manner that is
similar to that observed in many temperate lakes and
oceans during winter and early spring. After a time delay,
when the nutrients finally reach a threshold level, the phy-
toplankton dynamics trigger, initiating the bloom. How-
ever, when the phytoplankton growth rates attain high
levels, the nutrient supply is quickly depleted, causing the
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bloom to crash in turn. Thus, the time evolution of the
simulation may crudely be divided into three stages: stage
i, linear nutrient buildup; stage ii, phytoplankton bloom
(rapid rise in P) and subsequent depletion in nutrients
(N); stage iii, bloom crash (rapid decline in P).

This motivates the following simple working definition
of a bloom as a rapid increase in phytoplankton biomass
by over at least one order of magnitude, contemporaneous
to a depletion of nutrients. These events are followed im-
mediately by a rapid decline in phytoplankton levels. Note,
however, that a phytoplankton bloom is not necessarily a
singular event. Sometimes the major bloom is succeeded
by a number of smaller secondary blooms (see fig. 3).

The phase plane of figure 3b provides a convenient
means for understanding the three stages in bloom dy-
namics (see legend for an explanation of phase-plane anal-
ysis). Here, the initial conditions are such that ( ) liesN , P0 0

in the lower left region ( and ). Hence, initially,˙ ˙P ! 0 N 1 0
the phytoplankton levels decline, and there is a slow con-
stant nutrient buildup due to the inflow I (stage i). The
nutrient levels N continue to build up until they reach the
threshold level , and the algae bloom is then trig-N p 1c

gered (stage ii). At this point, the trajectory crosses into
the lower-right region ( and ) of the phase˙ ˙P 1 0 N 1 0
plane, and both nutrient and phytoplankton levels are on
the rise. Next, the trajectory crosses the N nullcline and
moves into the upper-right region ( and ) of˙ ˙P 1 0 N ! 0
the phase plane. In this region, phytoplankton dramatically
increases while nutrients plummet in their attempt to fuel
the bloom.

However, at some point nutrients can no longer support
further increase in P. This occurs when the trajectory
passes from the upper-right into the upper-left region and
crosses the P nullcline ( ) where the bloom attainsṖ p 0
its maximum level . Now and so that both˙ ˙P P ! 0 N ! 0max

the phytoplankton and the nutrient levels crash in the final
phase (stage iii) of the bloom. The phytoplankton pop-
ulation crashes mainly because the large nutrient pool has
been depleted and the daily replacement of nutrients is
now not enough to support a swelling standing stock of
phytoplankton. This feature, namely that the nutrient de-
pletion is directly responsible for initiating the crash in
phytoplankton levels, was astutely noted by O’Brien
(1974).

To illustrate how well these equations approximate the
dynamics of real data, a time series of the Peridinium
biomass in Lake Kinneret over 1982 (an arbitrarily chosen
year) has been superimposed over a model simulation in
figure 4. It is somewhat surprising that a model of such
simple structure fits the data so well. One sees that even
the asymmetry of the plankton data (compare the fast rise
to the slow fall) is reproduced by the model.

Underlying Threshold Dynamics of
Minimal Model: I p q p 0

We start the analysis of model (4) with the simple case
when , and there are no external nutrient inputI p q p 0
and output fluxes whatsoever. The equations simplify to

Ṅ p �NP,

Ṗ p (N � 1)P, (5)

and the model is parameter free. Equations of the above
form are also used in the epidemiological literature (Mur-
ray 1989; Banks 1994) and have been referred to as
the Kermack and McKendrick SIR (susceptible-infected-
removed) model, hinting that epidemic and bloom dy-
namics might not be unrelated.

Model (5) has the single equilibrium

∗ ∗P p 0, N p k,

where the constant k is determined by the model’s initial
conditions (see below). A stability analysis reveals that the
two eigenvalues of the system’s Jacobian, when evaluated
at equilibrium, are

l p 0 and l p k � 1.1 2

That one eigenvalue is 0 reflects the fact that the equilib-
rium is neutrally stable; for the same model parameters,
the equilibrium solution is essentially determined by the
initial conditions and is sensitive to perturbations.

Of particular interest are the model’s transient dynamics
to equilibrium since, as seen in figure 4, they describe the
characteristic features of a bloom’s growth and demise
well. Looking at model equations (5) in more detail, we
see that for positive initial conditions, the nutrient level
N must monotonically decrease in time, .Ṅ ! 0

Consider now equations (5) governing phytoplankton
dynamics when :t p 0

Ṗ p P (N � 1).tp0 0 0

In this equation, the critical nutrient level takesN p 1c

on the simple interpretation of a “threshold.” If N ! 10

(i.e., the initial nutrient levels are below the threshold
), then . This is true for all t thereafter, since,˙N P ! 0c tp0

as has already been established, N decreases with time to
equilibrium. The plankton levels are thus condemned to
decrease monotonically to 0, and there can be no bloom.
If, however, (i.e., initial nutrient levels exceed theN 1 10

threshold ), phytoplankton growth is positive, ˙N P 1c tp0

, and a bloom develops, as seen in figure 4 passing0
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Figure 4: Simulation of equations (4) with parameters and ( , , as in eqq. [2]) and initial conditionsI p 0 q p 0 a p q p 0 b p c p 1 d p 0.1
and . Units as in figure 3. The bloom is triggered even though there are no nutrient inputs ( ) because the initial nutrientN p 15 P p 0.0002 I p 00 0

levels are above the threshold ( ). The nutrients (dashed line) monotonically decay to a positive nonzero equilibrium level, while the phytoplanktonN 1 10

(continuous line) display a typical bloom that eventually crashes. Superimposed on the simulation is observed data from the 1982 Lake Kinneret
Peridinium gatunense bloom (dots) in real units. For the purposes of illustration, nutrient levels have been rescaled appropriately (by a factor of

).9/15

through stages ii and iii. We have just identified one of
the most important features of the model, namely the
underlying threshold behavior of the bloom.

The peak height of the bloom Pmax can then be readily
obtained in the same manner as for the SIR epidemic
model (e.g., Murray 1989; Banks 1994). Dividing the equa-
tions in (5),

dP N � 1
p . (6)

dN �N

This can be integrated and has the solution

N
P p P � N � N � ln . (7)0 0 N0

Recall that a bloom can occur only if . Given thatN 1 10

the phytoplankton bloom reaches its peak height whenPmax

(where ), then˙N p 1 P p 0

1
P p P � N � 1 � ln . (8)max 0 0 N0

From this equation, it is easy to see that increasesPmax

with either an increase in or , as one might intuitivelyP N0 0

expect.
Since , equation (7) also makes it possible to∗P p 0

calculate the nutrient equilibrium in terms of the initial∗N
conditions:

∗N∗N p N � P � ln . (9)0 0 N0

The above transcendental equation can be shown to have
a single positive root (see Murray 1989, p. 614) for ,∗N
which may be solved by numerical techniques. That ∗N
is nonzero has the interesting implication that when the
bloom finally crashes and all phytoplankton is removed
from the water column, nutrients nearly always remain—a



162 The American Naturalist

Figure 5: a, Stability of the two equilibria and plotted as a function of the bifurcation parameter I. The solid line represents∗ ∗P p 0 P p I � q
the stable equilibrium for a given value of I, while the dashed line indicates the unstable equilibrium. Note the exchange of stability at . b,I p q
Equilibrium is locally unstable in region A of parameter space and locally stable in region B. The parabolic line∗ ∗(P , N ) p (I � q, 1) q p I(1 �

demarks the boundary of the region for which there are damped oscillations (see text).I/4)

feature that occurs in lakes but is considered somewhat
puzzling. Hence, although the crash of algae blooms is
often attributed to strong nutrient limitation, nutrients are
in fact never fully utilized. This leaves the paradoxical
impression that the bloom must in some ways have a life
and death of its own.

Bloom Dynamics When Nutrient Fluxes I 1 0

Examine now the effects of incorporating a small constant
inflow of nutrients ( ) into system (4) and possibly aI 1 0
small nutrient loss . The system is characterized byq ≥ 0
two equilibria that we examine in turn. The equilibrium
we will be most concerned with is

∗ ∗P p I � q, N p 1. (10)

Its stability may be determined from the eigenvalues
of the system’s Jacobian, and a calculation shows thatl1, 2

�I 1
2�l p � I � 4(q � I).1, 2 2 2

The equilibrium is locally stable only if both eigenvalues
have negative real parts (i.e., ; Murray 1989).Re(l ) ! 01, 2

Hence, for , this equilibrium is locally stable only ifI 1 0
. Note for future reference that if , theq ! I q ! I(1 � I/4)

eigenvalues have imaginary components causing trajec-
tories to spiral in phase space as they approach equilibrium
through damped oscillations (see fig. 5). However, as a
consequence of Dulac’s criterion, it is impossible for the
model to attain limit-cycle behavior.

The model also has a second equilibrium at which the
phytoplankton population is extinct:

I˜ ˜P p 0, N p . (11)
q

At this equilibrium, the eigenvalues of the Jacobian are

I � q
l p �q, .1, 2 q

Hence, the second equilibrium is stable only for andq 1 I
is an unstable saddle point otherwise. This condition tells
us that if nutrient inflows I are small and below a distinct
threshold level, a phytoplankton population cannot be sus-
tained. Thus, in addition to the threshold level discussedNc

already in the context of the bloom formation, there is yet
another threshold effect.

A full picture of the system’s dynamics can be under-
stood better by examining the stability of the equilibria as
a function of the control parameter I, as is shown in figure
5a. As I increases above , we see an exchange ofI p q
stability whereby ( ) becomes unstable while ( )∗ ∗˜ ˜N, P N , P
stabilizes. This exchange of stability caused by a change
in q is referred to as a transcritical bifurcation. In figure
5b, we summarize the stability of the system in the ( )I, q
parameter space. Above the line , the equilibriumI p q
( ) is stable, while below it, the second equilibrium˜ ˜N, P
( ) is stable.∗ ∗N , P

From here on, we deal only with equilibrium equations
(10), which have a feasible phytoplankton population, and
we are thus concerned with the case . In particular,q ! I
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we attempt to identify the model’s threshold under con-
ditions of nutrient inflow . At the beginning of theI 1 0
simulation shown in figure 3, the initial conditions of the
system and are both well below equilibrium so thatP N0 0

. Hence, equations (4), describing nu-∗ ∗N P K N P p I0 0

trient dynamics, may be approximated as

Ṅ p I � qN. (12)

Integration leads to the increasing nutrient buildup

N � It, q p 0,0

N(t) p (13)I I
�qt� N � e , q ( 0,{ 0( )q q

and the nutrients increase monotonically with time. Nu-
merical simulations have shown that for , it is rea-q ! I/2
sonable to develop the exponential up to first order

. (In practice, the bloom triggers rapidly�qte ≈ 1 � qt
enough to make the linearization a good approximation
because higher-order terms remain negligible.) For this
approximation, the nutrient dynamics are again charac-
terized by a slow linear buildup:

N(t) p N � (I � N q)t. (14)0 0

We note that if , the buildup is nonlinear at theI/2 ! q ! I
final stage only (i.e., just before the bloom triggers), and
the linear approximation equation (14) is still reasonable
for our purposes. Equation (14) shows that q may effec-
tively be scaled out by reparameterizing I,

′I p I � N q, (15)0

or, alternatively, if initial nutrient levels are small, thenN0

q has a negligible effect. Thus, since q has little qualitative
impact on the dynamics as long as , from here on weq ! I
need concentrate only on the case .q p 0

In terms of the phytoplankton dynamics,

Ṗ p (N � 1)P p (N � It � 1)P, (16)0

which can be integrated and solved for , yieldingP(t)

2P(t) It
ln p N t � � t. (17)0P 20

Combining (13) and (17), we find the form of the tra-
jectory in the NP-phase plane:

P 1
2I ln p (N � 1)(N � N ) � (N � N ) . (18)0 0 0P 20

Evolution and Intensity of the Bloom Event

We now attempt to fully characterize the evolution of the
bloom dynamics. Two cases have to be distinguished in
terms of whether the state variables N and P are below or
above the N nullcline .∗ ∗N P p I

Case A. If N and P are such that (i.e.,∗ ∗NP K N P p I
the initial conditions are below the N nullcline), then stage
i, the first phase of the bloom, may be approximated ac-
cording to our results for . This is the regime of slowI 1 0
nutrient buildup.

Case B. If the conditions are such that NP k

(i.e., the initial conditions are above the N∗ ∗N P p I
nullcline), then I has little effect on the dynamics of in-
terest, and the previous analysis for the parameter-free
model in which is relevant. The simple parameter-I p 0
free model thus describes the main bloom itself, that is,
stages ii and iii.

A typical bloom event begins with low initial conditions
( ) where the predictions of case A apply and thereN , P0 0

is a nutrient buildup. This is followed by the initiation of
the bloom event as specified by the predictions of case B.
Next, we locate the switching point where dynamics
change from case A to B. However, this must occur just
as the trajectory (which is initially below the N nullcline

) cuts the N nullcline ( ). Hence,∗ ∗ ˙NP K N P p I N p 0
the switching occurs at the point of maximal nutrient levels
when or, that is, when .Ṅ p 0 N p Nmax

Let be the time when the nutrients attain theirˆt p t
maximum levels (i.e., when ); phytoplank-N dN/dt p 0max

ton levels will thus be . The maximum nutrientˆˆP(t) p P
level achieved is (see eq. [13]). After someˆN p N � Itmax 0

mathematical maneuvering, the details of which are de-
scribed in appendix A, it is possible to approximate tot̂
find the maximum nutrient levels :Nmax

I
2�N p 1 � (N � 1) � 2I ln . (19)max 0 ( )P0

To recap, beginning with relatively small initial condi-
tions ( ), we use case A to model the nutrient buildupN , P0 0

until and . At this point, we change overˆt p t N p Nmax

to case B, where we take as initial conditions N p0

and (see app. A). Rememberˆ ˆN(t) p N P p P(t) ≈ Imax 0

that case B is just the simple parameter-free threshold
model we first examined. When these initial conditions
are plugged into equation (8), the bloom height is given
as

1
P p I � N � 1 � ln . (20)max max ( )Nmax
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Figure 6: a, Simulations of model equations (4) with parameters I p
and and initial condition . The value was monitored0.1 q p 0 N p 1 P0 max

and plotted as a function of initial phytoplankton levels . The graphP0

results in a V shape. The solid line represents solutions of model equations
(4), while the dotted line is the approximation calculated from equation
(20). b, Parameters as in a but now fixing and varying .P p 0.0001 N0 0

We can use the above analysis to gain a deeper under-
standing of the factors that control the intensity of the
bloom. Whereas intuition might lead us to expect that
bloom height increases as the initial number of phy-Pmax

toplankton cells ( ) or nutrient levels ( ) increases, thisP N0 0

is not always the case. Figure 6a displays the results of
simulations of equations (4), with plotted as a func-Pmax

tion of while is held fixed. The bloom height canP N0 0

both decrease and increase as the initial level of phyto-
plankton cells increases, which gives the graph an unusual
and counterintuitive “V shape.”

The pattern can be explained using the algebraic ex-
pression (20) for the peak of the phytoplankton bloom,

. A plot of the prediction for as a function ofP P Pmax max 0

(with fixed) is given in figure 6a. This should be com-N0

pared with the simulation results given in the same figure.
As can be seen, up to a small constant offset, equation
(20) provides an excellent fit to the basic trend produced
by the simulations. The graph indicates that first de-Pmax

creases and then increases (i.e., in a V shape) as a function
of the initial condition . A similar relationship is seenP0

in figure 6b, which plots as a function of whenP Nmax 0

is fixed.P0

The reasons for the V shape are explained in more detail
in appendix B, where equation (20) is investigated for
specific initial conditions to simplify the analysis. In these
specific cases, the origin of the V shape is immediately
evident. Another approach, also outlined in appendix B,
is to approximate the nutrient dynamics in the neighbor-
hood of the nutrient threshold . This gives a veryN p 1c

simple formula for the phytoplankton maximum:

1 I
2P p (N � 1) � I 1 � ln , (21)max 0 ( )2 P0

where is a simple quadratic function of and thusP Nmax 0

has a trivial V shape. This explains the parabolic form in
figure 6b.

Phase-Plane Analysis

Phase-plane analysis provides a simple qualitative graph-
ical interpretation of the changes in bloom height asPmax

a function of the initial conditions. Figure 7b plots several
model runs in the phase plane for different initial phy-
toplankton levels but for the same initial level of nutrients

. For the different simulations shown in figure 7b, it isN0

useful to locate the points on the N nullcline where nu-
trients reach their maximum, , and points on the PNmax

nullcline where phytoplankton reaches maximal levels,
.Pmax

The phase plane shows that the smaller the initial phy-

toplankton level, , the more the trajectory is pulled to-P0

ward the horizontal N axis, which ultimately leads to a
larger . Squeezing the trajectory toward the lower hor-Nmax

izontal axis for a long period of time results in a slow
buildup of nutrients; it is this nutrient buildup that delays
the triggering of the bloom. Hence, smaller levels of P0

increase simply due to the way trajectories are forcedNmax

to flow geometrically in the phase plane under the restric-
tion (intrinsic to dynamical systems) that trajectories can-
not intersect (Boyce and Diprima 1969; Lin and Segel
1974).

The phase plane shows that , the final amount ofNmax

nutrients accumulated, is the key element in determining
the bloom height . The more the nutrient levels buildPmax

up (as reflected in the excursion of the trajectory to the
farthest right side of the phase plane), the larger is the
bloom that can be fueled.

If, however, the initial phytoplankton levels, , are rel-P0

atively high (more specifically, above the N nullcline), one
sees from the phase plane that the opposite effect must
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Figure 7: a, Three time series generated from model equations (4) with
parameters and ( ,I p 0.075 q p 0 a p 0.00075, b p c p 1 d p

for eqq. [2]) and initial condition for three different0.1, e p 0 N p 0.150

initial conditions: (dotted line); (solid line);P p 1.5 P p 5 P p 150 0 0

(dashed line). The bloom peaks of the time series ( ) make evidentPmax

the basic V-shaped pattern that arises as increases. b, Time series ofP0

figure 7a are plotted in the phase plane.

hold. Namely, for the same initial nutrient level, the larger
the , the bigger the bloom. This is because when isP P0 0

relatively high, the nutrients are unable to build up in the
manner just described (fig. 7b).

A similar argument can help to explain the changes in
bloom height found when the initial condition isP Nmax 0

varied while is held fixed. For trajectories starting withP0

, increasing serves to decrease . However, ifN ! 1 N P0 0 max

, increasing leads to larger blooms. Now the PN 1 1 N0 0

nullcline proves to be the dividing line where the quali-
tative behavior of the graph changes to form a character-
istic V shape.

Parameters and Model Variants

Given a fixed-model structure, the results obtained so far
allow interesting predictions to be made for variations in
the model parameters such as nutrient inflow and mor-
tality/loss rate of the phytoplankton. From an ecological
perspective, these parameters are important and clearly

vary over different systems. We have therefore summarized
the effects of parameter changes on the model in table 1.

Despite the simplicity of the above model, the main
results appear to be robust to structural changes. We ex-
tended our study of the model and replaced the Lotka-
Volterra interaction terms that describe nutrient-phyto-
plankton dynamics with several other more complicated
forms in an attempt to add realism. For example, Dugdale
(1967) proposed Michaelis-Menten enzyme kinetics spe-
cifically to describe nutrient-phytoplankton interactions.
The Michaelis-Menten equations are of the same form as
the well-known Monod equations (see DeAngelis 1992)
used, say, in the Droop equations, and they have formed
the basis of a number of modeling studies intended to
simulate phytoplankton blooms (e.g., O’Brien 1974). In
addition, we examined the effects of including several
other realistic features, both biological factors such as nu-
trient recycling and higher predation and physical factors
such as sinking out of nutrients and phytoplankton into
the water column. The more generalized model configu-
ration has the following structure:

Ṅ p input � uptake � loss

� mixing � recycling, (22)

Ṗ p uptake � death � sinking � mixing

� predation � recycling. (23)

Ṅ p I � F(N, P) � qN � k(N � N) � rP,0

Ṗ p F(N, P) � DP � (s � k)P � G(P) � rP, (24)

N
P, (Monod),

a � N
F p

N a{ P, (Edwards and Brindley 1996, 1999),
e � N b � cP

(25)

P
Z, (Holling Type II),

b � P
G p (26)

2P{ Z, (Holling Type III).
2 2m � P

In equations (26), the variable Z represents the zooplank-
ton, which is held constant as a first approximation.
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Table 1: Effect of parameter changes

Parameter change Effect

An increase in effective nutrient inflow I Increases the phytoplankton equilibrium .∗P p I � q
Has no effect on the nutrient equilibrium .∗N p 1
Has no effect on the threshold level controlling theN p 1c

initiation of the bloom.
Reduces the time (eq. [A1]) at which the nutrients reacht̂

their maximum height . In principal, this shortensNmax

the time it takes for nutrients to reach the threshold
level , at which the bloom is triggered, and alsoN p 1
the time at which the peak of the bloom occurs.Pmax

Increases the peak of the nutrient buildup (whenNmax

).∗ ∗N P ! N P0 0

Increases the peak of the phytoplankton bloom .Pmax

Increasing the nutrient loss q Gives rise to a second equilibrium , that is˜ ˜P p 0 N p I/q
unstable for . This equilibrium does not exist ifq ! I

.q p 0
Decreases the phytoplankton equilibrium .∗P p I � q
Slows down the triggering of the bloom due to delayed

nutrient buildup, that is, (eq. [A1]) is reduced. (Recallt̂
that the effective I rescales according to eq. [15].)

Decreases the peak of the nutrient buildup (whenNmax

).∗ ∗N P ! N P0 0

Decreases the peak of the phytoplankton bloom .Pmax

Spiral behavior When (see fig. 5b), secondary blooms canq ! I(1 � I/4)
arise as the trajectory spirals in the phase plane.

The model structure now closely resembles those given
in several other recent food-web studies (Edwards and
Brindley 1996, 1999). A full study of this system is beyond
the scope of this article. However, it should be emphasized
that the powerful techniques of nullcline analysis often
makes it possible to understand the effects of each of these
factors rapidly. For example, we examined a more “real-
istic” model in which the equations (4) are modified by
incorporating Michaelis-Menten kinetics:

N
Ṅ p I � P � qN,

a � N

N
Ṗ p P � DP. (27)

a � N

We reanalyzed the above equations in detail with real-
istic parameter values taken from DeAngelis (1992, p. 49).
The nullclines of the above model ( , ) when˙ ˙N p 0 P p 0
plotted in phase space are plotted in DeAngelis (1992, his
fig. 3.4, p. 50) and are extremely similar to those of the
original equations (4) (see fig. 3b), that is, with Lotka-
Volterra terms. For this reason, the two models share many
of the same dynamic features. Simulations reveal that there
are no qualitative differences between the responses of the

above model to changes in and (e.g., in terms ofP N0 0

, , threshold behavior, nutrient buildup, etc.).P Nmax max

We also investigated several other interaction terms
(e.g., the Holling-type interaction terms used in the Ed-
wards and Brindley [1996, 1999] N-P-Z model) and con-
firmed that their behaviors are not substantially different
from the simpler model of equations (4).

Discussion

O’Brien (1974) developed one of the first successful
models describing the dynamic properties of nutrient-
phytoplankton interactions. Despite its simplicity, the
model provides fascinating insights into many of the events
occurring in the epilimnion of lakes and oceans. O’Brien
(1974) suggests that the “most interesting property of the
model is the consistent occurrence of population crashes
during simulations. The shape of the curve describing
these crashes markedly resembles spring phytoplankton
pulses and the subsequent crashes which occur in many
lakes and portions of the ocean” (O’Brien 1974, p. 136).
Our study attempts to provide a general theoretical analysis
of this phenomenon observed repeatedly in the many sim-
ulation models reported in the literature over the last dec-
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ades (Patten 1968; Fasham et al. 1990; Truscott and Brin-
dley 1994a, 1994b; Edwards and Brindley 1996, 1999).

The model described here demonstrates that nutrient-
phytoplankton dynamics may be governed by a generic
threshold effect, a possibility not yet discussed in the lit-
erature pertaining to simple aquatic models. That is, a
critical buildup of nutrients is required before a phyto-
plankton bloom can be triggered. Such an effect has been
referred to by limnologists (Lund 1950) as the Pearsall
hypothesis (see also Pearsall 1932), but it is only poorly
understood and is usually anecdotal. In Lake Kinneret, for
example, there have been several years (in the late 1990s;
data not shown in the time series) on record when, against
all expectations, the annual Peridinium bloom strangely
did not appear. In the Kinneret system and many other
lakes, algal blooms are often regular events. However,
blooms can also be sporadic and formed by transient
events (Dickey et al. 1988; Lohrenz et al. 1992; Cloern and
Jassby 1995). One interesting and not atypical study
(Glover et al. 1988) demonstrated that only transient na-
nomolar changes in nitrate concentration in surface Sar-
gasso Sea water were required for the formation of a
nitrate-dependent bloom. This type of behavior, where a
slight suprathreshold change in nutrients initiates bloom
formation, is consistent with the threshold predictions de-
scribed here.

Another interesting facet of the model lies in the pro-
pensity of the bloom to oscillate so that after the first major
bloom there will be signs of a secondary smaller bloom.
These secondary blooms can arise when .q ! I(1 � I/4)
Hence, the nutrient-phytoplankton trajectory spirals in
phase space, as seen, for example, in the model time series
of figure 3a. Secondary blooms are also to be found in
time series of many other modeling studies (Evans 1988;
Fasham et al. 1990; Franke et al. 1999) and have been
observed in a number of natural systems (Lund 1950;
Fasham et al. 1990; Jassby et al. 1992; Ross et al. 1993).

In real systems, the intensity of blooms are often difficult
to predict in advance. Some of the results found here give
us an indication as to why this might be so. In particular,
we have demonstrated that bloom intensity does not nec-
essarily increase with an increase in initial nutrients or

phytoplankton cells—something that a linear systems par-
adigm might lead us to expect. With higher initial con-
ditions, it becomes possible to trigger the bloom more
rapidly; however, this means that nutrients have less
chance to build up, and the bloom itself is thus less pro-
ductive. This effect is another outcome of the model’s
intrinsic threshold, which controls the timing of the
bloom.

The model also gives insights concerning the unpre-
dictable timing of the sudden crash observed in many
phytoplankton blooms. As O’Brien (1974) mentions, al-
though zooplankton have often been implicated as the
agents responsible for crashes in many spring and summer
phytoplankton blooms, the model shows that the key fac-
tor is more likely to be the large-scale reduction of nu-
trients used up in supporting the phytoplankton bloom.
As soon as N drops below , the model predicts thatN p 1c

the phytoplankton crash will be initiated. Zooplankton
may in fact increase the death rate of phytoplankton, thus
serving to speed up the occurrence of the phytoplankton
crash, but the crash in itself could well be inevitable with
or without the presence of zooplankton. In the English
lakes, Lund (1950) and Macan (1970) argue similarly:
“Grazing by animals has no appreciable effects on the
fluctuations in [phytoplankton] numbers” (Lund 1950, p.
31).

We are currently investigating a suite of oscillatory, ex-
citable, and chaotic bottom-up phytoplankton-nutrient
models in order to understand the more complicated tem-
poral dynamics seen in empirical data such as that of the
river Danube and Lake Kinneret.
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APPENDIX A

Here, we estimate the bloom height for the case when initial conditions are such that . The∗ ∗P N P K N P p Imax 0 0

value is estimated in a two-step procedure. In the first step, an approximation is made for the maximum nutrientPmax

level, , attained in the initial phase of nutrient buildup. In the second step, we use this peak nutrient level as anNmax

initial condition for model equations (5) where we can assume . The peak height of the bloom can then beI p 0
estimated from the previous analytic prediction, equation (8).

Step 1. Let be the time at which the nutrients attain their maximum levels , and thus . Define the˙ˆt p t N N p 0max

phytoplankton levels at this time as . Since , clearly . Solving equation (17) for andˆ ˙ ˆˆ ˆP p P(t) N p 0 P p I/N t p tmax

taking the maximal root (which is the only consistent solution) gives

I2�1 � N � (N � 1) � 2I ln0 0 ( )N Pmax 0

t̂ p . (A1)
I

Thus, a good approximation for can be obtained by solvingˆN � N � Itmax 0

I
2�N p f(N ) p 1 � (N � 1) � 2I ln ≥ 1. (A2)max max 0 ( )N Pmax 0

This transcendental equation may be solved using the iterated Newton-Raphson scheme:

i�1 iN p f(N ), i p 0, 1, 2, … . (A3)max max

At equilibrium, . Clearly, the fixed point of the difference equation must also be the solution to∗ i�1 iN p N p Nmax max

equation (A2).
In iterating (A3), a reasonable first approximation for is its lower bound (see eq. [A2]) . A better0N N p 1max max

approximation for is thus , the first iterate of the map (A3), namely,1N Nmax max

I
1 2�N ≈ N p 1 � (N � 1) � 2I ln . (A4)max max 0 ( )P0

Numerical simulations show that this estimate for gives excellent predictions and certainly captures the mainNmax

trend we seek. (We have found that the Newton-Raphson scheme converges over the relevant parameter ranges of
interest. Convergence is ensured if , which can be shown to hold when I is relatively small, that is, as′Ff (y)F ! 1 I ! 2
a first approximation.)

Step 2. The bloom height may now be estimated as follows. We take and as initialˆP N p N P p P p I/Nmax max max0 0

conditions for equations (5), where the ensuing bloom dynamics may be reasonably approximated by assuming
. The value may then be approximated directly by applying equation (8). We have found that an even betterI p 0 Pmax

approximation may be obtained by taking and as initial conditions since now∗ˆN p N P p P p P p I N P 1max0 0 0 0

, and this brings us even further into the range for which the approximation is valid. By equation∗ ∗N P p I I p 0
(8), the bloom height may be approximated as
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1
P p I � N � 1 � ln .max max ( )Nmax

APPENDIX B

Here, we provide further details as to why , when plotted as a function of the initial conditions or , has aP P Nmax 0 0

characteristic V shape, as seen in figure 6. Our aim is to explore equations (A2) and (20) for specific initial values.
Consider the predictions for and in dependence of for the special choice of . (A similar analysisN P N P p 1max max 0 0

holds for the case when is fixed and is free to vary.) Now the equations simplify toN p 1 P0 0

N p 1 � FN � 1F, (B1)max 0

1
I � 1 � N � ln , N ! 1,0 0( )2 � N0

P p (B2)max
1{I � N � 1 � ln , N 1 1.0 0( )N0

The derivative of in equation (20) with respect to isP Nmax 0

1
�1 � ! 0, N ! 1,02 � NdP 0max p (B3)

dN 10 {1 � 1 0, N 1 1.0N0

In this way, we see that the bloom height is a decreasing function of for ; yet once , increasesP N N ! 1 N 1 1 Pmax 0 0 0 max

with . Thus, proves to be the dividing line between decreasing and increasing bloom height when the initialN N p 10 0

condition is varied.N0

We now show that the V shape is a generic phenomenon in this plankton model by solving equations (5) when
nutrient levels are slightly perturbed from equilibrium . We take advantage of the fact that nutrient levels∗N p 1
typically stay close to , whereas plankton levels change dramatically. This allows us to approximate the first∗N p 1
equation of (5) as

Ṅ p �NP ≈ �P. (B4)

Using equations (5), we obtain , which can be integrated exactly to obtaindP/dN p 1 � N

1
2 2(P � P ) p (N � N ) � (N � N ). (B5)0 0 02

Therefore, in this approximation, the trajectory follows a parabola with a phytoplankton maximum at the threshold
level .N p 1c

We can calculate similar to the derivation of (20) by evaluating equation (B5) at the threshold valueP N p 1max c

and taking the special initial values and . Thus, we obtain the new formula for :P p I N p N Pmax max0 0

1 12 2P p P � 1 � N � (1 � N ) p I � (N � 1) . (B6)max max0 0 02 2

Using equation (A2) for , we finally obtain the simple formula for the maximal phytoplankton levels:Nmax

1 I
2P p I � (N � 1) � 2I ln . (B7)max 0[ ]2 P0
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