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Nutrient-phytoplankton-zooplankton (NPZ) models have been in use in oceanogra-
phy for at least three decades, and are still a common research tool. Given the discov-
eriesof thelast two decades, particularly concerningtherole of bacteriain the plank-
ton, there are questions as to whether NPZ models can still be supported as a useful
tool in planktonic research. Here | review the construction of NPZ models, and some
of the physical platformsthey have been coupled to. | then discussthe applications of
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NPZ-physical models, and concludethat they still constitute an important and viable
resear ch tool, provided that the questions being explored are clearly stated.

1. Introduction

The nutrient-phytoplankton-zooplankton (NPZ)
model is a common tool in oceanographic research. The
NPZ model incorporates one of the simplest sets of dy-
namics that usefully describe oceanic plankton dynam-
ics. Their acceptability as a research tool is by no means
universal, however. In areview of arecent manuscript in
which we used an NPZ model (now published as Franks
and Chen, 2000), one of our anonymous reviewers com-
mented, “ The real world cannot be modeled with a3-com-
partment NPZ model that agrees (possibly fortuitously)
with satellite images. ... even in open ocean systems the
scientific community has long-abandoned the use of 3-
compartment models.” This attitude reflects a common
biasin modelling—that amore complicated model is nec-
essarily a better model. While there are fine examples of
detailed modelsintheliterature (e.g., Barettaet al., 1995;
Carlotti and Wolf, 1998), | would argue that there is no
compelling reason to reject the NPZ model until itisclear
that it cannot describe the system being studied. The
choice of the biological model (and indeed the physical
model) should be determined by the questions being
asked, and data available—not driven by the fact that more
complicated models exist. Modelling studies should pro-
ceed from athorough understanding of the simplest mod-
els, to detailed investigations of more complicated mod-
elswhen it is clear that a simple model cannot work for
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the given problem.

NPZ models have the useful attributesthat they have
few parameters (and can thus be more reliably
parameterized with existing data than a more complicated
model), the limited number of state variables (N, P and
Z) allows for analytical solutions under some circum-
stances, they are more easily explored and understood,
and they are more easily initialized and tested against data
than more complicated models. While these attributes may
render them lessrealistic, they still allow for awide range
of model behaviors which are sufficient to give realistic
simulations of some ecosystem dynamics.

In the sectionsthat follow | review almost three dec-
ades of research using NPZ models. Thisreview isby no
means exhaustive, and | apologize to those whose work |
have slighted by not including it here. | am quite restric-
tivein my analysis, considering only 3-compartment NPZ
models. Still, many of the observations and conclusions
apply equally to more complex models. First | explore
the construction of an NPZ model, describing the math-
ematical forms used to simulate the ecosystem dynam-
ics. | then explore how NPZ models have been coupled
to physical models, and how these coupled models have
been used to explore physical-biological interactions in
the ocean. Finally, | discuss some of the philosophical
issues associated with using NPZ models in research.

2. Constructing an NPZ M odel

An NPZ model has, by definition, three state vari-
ables: nutrients, phytoplankton and zooplankton. These
are usually modelled in terms of their nitrogen content,
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Table 1. Some functional formsfor (1), the phytoplankton response to irradiance |. In some implementations, a second parameter
P e the maximal photosynthetic rate, will be multiplied by the functional forms below.

Functional form  Description

Linear response

I Saturating response

Saturating response

Saturating response

Saturating and photo-inhibiting response.
Parameter |, determines irradiance at photosynthesis maxi mum.

since nitrogen is often limiting to primary production in
the ocean. The first issue in putting an NPZ model to-
gether is the choice of transfer functions—the functional
forms joining the various state variables to each other.
The choice of functional form is critical to the dynamics
of the model, and may constrain the parameterization of
the model (the choice of coefficients such as the maxi-
mal grazing rate, or half-saturation constant for nutrient
uptake).

A general set of NPZ model equations can be writ-

ten:

& = 1)aN)P-h(P)Z-i(P)P

£ - (P)z-i(2)2 @
== 1(gN)P+(1-Y)(P)Z +i(P)P +(2)2.

In an NPZ model there are 5 transfer functions to
consider: phytoplankton response to light f(l),
phytoplankton nutrient uptake g(N), zooplankton graz-
ing h(P), and phytoplankton i(P) and zooplankton j(Z)
loss terms due to death, excretion, and predation by or-
ganisms not included in the model. Zooplankton assimi-
lation ymay also be important, though it istypically mod-
elled as a simple linear function of food ingested.

Some of the functional forms that have been used to
describe phytoplankton response to irradiance f(l) are
given in Table 1. These range from a simple linear re-
sponse to incident light, to nonlinear forms with a satu-
rating and photoinhibiting response. Some forms are cho-
sen for their ease of integration over adiel period, while
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others are attempts to more accurately parameterize the
nonlinear response of photosynthesisto irradiance. While
all the functional formsin Table 1 can be written with 1
parameter, several parameters are often used. For exam-
ple, alP,,, issometimes used in place of | ,, though math-
ematically unnecessarily. The use of multiple parameters
may, however, aid in parameterizing the transfer func-
tions based on laboratory data.

Most commonly nutrient uptake by phytoplankton
g(N) ismodelled by a saturating rectangular hyperbola—
the Michaelis-Menten formulation (Table 2). Thisformu-
lation was introduced to phytoplankton ecology by
Dugdale in 1967, in analogy with chemical reaction ki-
netics. Droop (1973, 1983) argued that phytoplankton
show luxury uptake of nutrients—they are stored in an
internal pool Q beforethey are used for growth, allowing
uptake to be uncoupled from growth. It has also been ar-
gued that only the most limiting process (photosynthesis
or nutrient uptake) should determine the growth rate, al-
lowing for switching between the two types of limitation
depending on circumstances.

Zooplankton grazing (h(P) in Eq. (1)) has always
presented a problem in NPZ models. Though most for-
mulations show a saturating response to increasing food
(Table 3) (e.g., thelvlev response), they may also include
grazing thresholds (usually denoted P, or P,), varying
degrees of nonlinearity, and acclimation of the grazing
rate to changing food conditions. This nonlinear coupling
between Z and P is a strong determinant of the dynamics
displayed by the NPZ model. Franks et al. (1986a) showed
that the use of an acclimating grazing response led to more
highly damped oscillations in the model, a trait which
was felt to be desirable. Parsons et al. (1967) introduced
the use of a grazing threshold which can stabilize the
model, allowing the phytoplankton populationsto persist
even when grazed to low levels. Murray and Parslow



Table 2. Some common functional forms for g(N), the phytoplankton nutrient uptake.

Functional form Description
Vo Michaelis-Menten uptake: saturating response. Two parameters, V, and k.
ki +N
V,min(y,, 1) Uptake rate determined by the process most limiting to growth (u): light or nutrients. Potential

growth rates usually calculated using Michaelis-Menten uptake, and a functional form from Table 1.

-3
0

%: ‘//n[-#rn(l—kQ)l

Luxury uptake: nutrients stored in an internal pool Q, then used up through growth.
Requires an equation for nutrient uptake from . Minimum cell quota for Q is k,,.

Table 3. Some of the functional forms used for h(P), the zooplankton grazing on phytoplankton. Note that the units for R, and A

are not the same in every case.

Functiona form Description
R.P Linear
min[cP, R,] Bilinear with saturation at R,
Rn(P-PR,) Saturating, with |ower feeding thresholdP,
R,P" n=12 Saturating, with curvature determined by n
A+P"’
R.[1—exp(-=AP)] Saturating (Ivlev)

Ri[1-exp(-A(P-PR))]
RAP[1 —exp(-AP)]

Saturating with feeding threshold P,
Acclimating to ambient food—relatively linear at high P

(1999) explored the steady-state behavior of 4 different
grazing formulations (both saturating and non-saturating),
and found that the details of the function were less im-
portant than whether the function saturated or not.

The death or loss terms of the phytoplankton i(P),
and zooplankton j(Z), arethe“closure” terms of the model
(Table 4). These transfer functions allow nutrients in
particulate form (phytoplankton and zooplankton) to be
recycled back to the dissolved pool, potentially to be taken
up again during photosynthesis. While phytoplankton
death is almost always modelled as a linear process
(though see Murray and Parslow, 1999), zooplankton
death is sometimes more complicated. Including a
nonlinear death rate usually implies a density-dependent
loss rate—higher death rates at higher zooplankton den-
sities. While there is little field evidence supporting the
use of such afunctional form (but see Ohman and Hirche,
2001), the use of a density-dependent loss rate has sig-
nificant implications for the model behavior. Steele and
Henderson (1992) suggested that the NPZ model was sta-
ble with quadratic zooplankton mortality, but showed
unforced oscillations with linear mortality. Edwards and

Brindley (1996, 1999; see also Edwards and Yool, 2000)
however, showed that both the linear and quadratic mor-
tality terms allowed unforced oscillations, though the lin-
ear term allowed oscillations over a wider parameter
range. Caswell and Neubert (1998) showed that nonlinear
closure terms could cause chaotic oscillations, while
Murray and Parslow (1999) explored the ecological rel-
evance of an NPZ model’s behavior with linear vs.
nonlinear mortality in relation to nutrient loading of the
planktonic ecosystem. They showed that the steady-state
phytoplankton biomass did not vary with nutrient load-
ing under linear zooplankton mortality, until limit cycles
were reached at the highest loadings. Under quadratic
zooplankton mortality, steady-state phytoplankton
biomass increased with the loading until phytoplankton
uptake or zooplankton grazing became saturated at the
highest loads. Such model dynamics call for careful field
experimentation and analysis to aid in developing crite-
riafor choosing a particular model formulation.

3. Coupling an NPZ Model to a Physical M odel
In the most general form, the NPZ model is coupled
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Table 4. Some of the functional forms for i(P), the phytoplankton death rate, and j(Z), the zooplankton death rate.

Form of i(P) Description

< Linear

P Quadratic (nonlinear)—density-dependent

Form of j(2) Description

£ Linear

& Quadrati ¢ (nonlinear)—density-dependent

& Nonlinear, density dependent but saturating rate (linear) at high zooplankton densities
b+z

Table 5. Examples of physical model architectures used to force NPZ models.

Model type

Reference

1D no spatial resolution (only mixed layer forcing)
1D with turbulence-closure mixed-layer model
1D mixed-layer model with horizontal resolution

1D mixed-layer Lagrangian model coupled to 1.5 layer
quasi-geostrophic contour dynamics model

2D kinematic models (vertical and horizontal)

2D primitive-equation with turbulence-closure

3D quasigeostrophic model

3D primitive-equation model
3D primitive equation with turbulence-closure

Evans and Parslow (1985)

Denman and Gargett (1995), Edwards et al. (2000b)
Dippner (1993), Wroblewski et al. (1988),
Wroblewski (1989)

Flierl and Davis (1993)

Evans et al. (1977), Franks et al. (1986b),

Klein and Steele (1988), Ishizaka (1990)

Chen et al. (1997), Franks and Chen (1996),
Franks and Walstad (1997), Edwards et al. (2000a)
Yoshimori and Kishi (1994),

McGillicuddy et al. (1995a, b)

Kishi (1994), Lewis et al. (1994)

Franks and Chen (2000)

to aphysical model through the advection-diffusion equa-
tion. Each state variable of the NPZ model will have a
separate equation describing its motion in space and time,
of the form

oC oC  oC
— +u—
ot 0x ay

_ Co%C +62_CD+K 62—C+bio|ogical dynamics  (2)
"Hox? T ay?H Y a2

where C is the concentration of the state variable (N, P,
or Z), u, v and w are the horizontal and vertical water
velocities determined by the physical model, w; is the
vertical swimming or sinking speed of the state variable,
and ky, and k, are the horizontal and vertical eddy
diffusivities. The biological dynamics are given by Eg.
(1). Asit stands, Eq. (2) isnot trivial to solve, even when
u, v and w are prescribed. Typically u, v and w are ob-
tained from a physical model run simultaneously with the

382 P J. S Franks

biological dynamics (though this is by no means neces-
sary if sufficient computer storage is available to retain
the physical model results). Some of the physical model
platforms that have been used to couple to NPZ models
are given in Table 5. These models range from simple
one-dimensional (1D) models with biological dynamics
averaged over the mixed layer, to full 3D models with
high-order turbulence-closure submodels.

Many researchers cast the physical couplinginasim-
plified form to facilitate finding solutions to the prob-
lem. For example, Evans and Parslow (1985) explored a
1D (vertical) model in which the plankton were affected
by shoaling and deepening of the mixed layer. For amixed
layer of depth z,,, the rate of change of mixed layer depth
was

dz . .
Tml =(t), with Z*(t) = max(¢ (t),0).
With mixing rate m, this gave physically driven rates of
change of N, P, and Z of



N, — N),
dt (No=N)
f:—m-‘FZ P’

dt Zy
d_Z:LZ

d z

ml

This set of equations allowed nutrientsto be injected into
the mixed layer during entrainment (deepening), while
the phytoplankton became diffused throughout the mixed
layer z,,. During stratification, the phytoplankton below
the new mixed layer z,; werelost, while the zooplankton
density increased as they swam upward with the new
pycnocline. This simple physical model allowed Evans
and Parslow (1985) to simulate annual cycles of mixing
and entrainment.

Flierl and Davis (1993) used a conceptually similar
coupling of physics and biology to simulate plankton
dynamics along convoluted water parcel trgjectories. As
the water parcels moved along the curving path, the
pycnocline could rise and sink, giving entrainment and
mixing with the waters below. This was modelled as a
dilution term for the plankton concentration C, with deep
concentration C, and entrainment velocity w*:

dc _ WD |:l\/\F )

o_w C-C.). H(>0)=0, H(>0)=1
T HHe-Ck HEO=0 HEO

The entrainment velocity istherate at which fluid crosses
the moving base of the mixed layer, z,,. If w* > 0, the
mixed layer is entraining, and C is diluted or increased,
depending on the deeper concentration C,. When water
is downwelling through the mixed layer (w* < 0), the
concentration is unaffected, similar to Evans and
Parslow’s (1985) formulation. Both these models aver-
age the biological dynamics over the mixed layer, poten-
tially losing some spatial detail in favor of more simple
solutions.

Other means of coupling biological to physical mod-
els (in addition to advection and diffusion) include the
depth-dependence of irradiance, including the possibil-
ity of self-shading of the phytoplankton photosynthesis,
and temperature effects on biological dynamics.

4. How have NPZ Models been Used?

In areview of coupled physical-biological models
in oceanography (Franks, 1995), | defined three applica-
tions of models: theoretical, heuristic, and predictive.
These applications answer the questions, “What would

happen if ...?", “How did this happen?’, and “What will
happen ...?", respectively. The applications of NPZ mod-
els can be categorized in the same manner.

One of the most common uses of NPZ modelsis for
theoretical investigations: how does the model behave if
different transfer functions are used (e.g., Sjoberg, 1977;
Steele and Henderson, 1981, 1992; Franks et al., 1986z;
Murray and Parslow, 1999; Ruan, 2001), if different pa-
rameters are used (e.g., Jernigan and Tsokos, 1979, 1980;
Hastings and Powell, 1991; Ruan, 1993; Abrams and Roth,
1994; McCann and Yodzis, 1994; Truscott and Brindley,
1994; Edwards and Brindley, 1996, 1999; Edwardset al .,
20004, b), or if different physical models are used (Franks,
1997). These investigations explored the array of possi-
ble dynamics inherent in the various NPZ model
architectures, usually from a mathematical point of view
rather than applying the equations to specific data sets.
Such investigations are an essential element of any mod-
elling program—uwithout knowing the possible range of
behaviors of the model, it isimpossible to diagnose and
interpret model behaviorsin more complicated scenarios
(e.g., when the NPZ model is coupled to a physical
model). All these investigations have shown that NPZ
models display a wide range of behaviors, from highly
damped adjustments to initial conditions, to chaotic os-
cillationsin time.

Other theoretical investigations have concentrated
less on the model structure and parameterization, and
more on the biological implications of the model. Evans
(1978) and Evans et al. (1977) coupled the simple NPZ
model to a kinematic physical model of vertical shear to
explore how the interaction of vertical migration with
vertical shear could lead to patchiness of plankton. Steele
and Frost (1977) used an elaboration of an NPZ model to
investigate the factors controlling the size structure of the
phytoplankton. Kiefer and Atkinson (1984) used an NPZ
model to study nitrogen cycling efficiency in the plank-
ton. All these theoretical models used the NPZ frame-
work as a hypothesis-testing tool. The model was used as
a mathematical articulation of a hypothesis, which was
then tested by running the model in various configura-
tions and parameterizations.

More recently the NPZ model form has been used
successfully in a heuristic sense, exploring the dynamics
underlying particular observationsin thefield. Evans and
Parslow (1985) used their model to understand the fac-
tors controlling the very different annual plankton cycles
in the Atlantic and Pacific oceans. Using different forc-
ing functions (vertical mixing cycles), they were able to
reproduce the highly damped oscillations characteristic
of the North Pacific, versusthe strongly oscillatory North
Atlantic spring phytoplankton bloom. A similar study was
undertaken by Denman and Gargett (1995) using more
elaborate physical models (see Table 5).
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On shorter time scales, Marra and Ho (1993),
Dippner (1993), Wroblewski et al. (1988), Wroblewski
(1989), and McGillicuddy et al. (1995a, b) used NPZ
models to explore the spring phytoplankton bloom. The
NPZ model was usually the Franks et al. (1986a) formu-
lation, coupled to arange of physical frameworks. Marra
and Ho (1993) found that the Droop (1973, 1983) modi-
fication to the nutrient uptake (Table 2) was necessary to
obtain agood simulation of the increase of phytoplankton
biomass and the uptake of nutrients during the bloom.

Coupling the NPZ ecosystem model to a variety of
physical models has allowed exploration of a range of
physical-biological interactions in the ocean. Klein
(1987), Lewis et al. (1994), and Franks and Chen (1996,
2000) have all explored the plankton dynamics on Georges
Bank. The models have been used to investigate the im-
portance of closed circulation around the bank, wind
events over the bank, and the influence of tidal forcing
on production on the bank. Similarly, 1shizaka (1990) and
Chen et al. (1997) used coupled NPZ-physical modelsto
study the influence of physical forcing on shelf ecosys-
tems.

Mesoscale motions in the ocean are particularly
suited for study using NPZ models, dueto the close match
of physical and biological spatial and temporal scales.
Franks and Walstad (1997) coupled the Franks et al.
(1986a) NPZ model to a primitive-equation model with
turbulence-closure to investigate the effects of wind
events on plankton patchiness at fronts. Flierl and Davis
(1993) explored the plankton dynamics of Gulf Stream
meanders using a clever reduction of acomplex physical
and biological model to a more tractable system. Franks
et al. (1986b), Kishi (1994), and Yoshimori and Kishi
(1994) used NPZ models to investigate the influences of
mesoscale eddies on plankton dynamics in the ocean.
Edwards et al. (2000a) coupled the Franks et al. (1986a)
NPZ model to a physical model of wind-driven coastal
upwelling to explore the types of patchiness generated in
microzooplankton-dominated versus mesozooplankton-
dominated plankton communities.

While many of the models discussed above made
only qualitative comparisonsto oceanographic data, some
had success in making quantitative comparisons to vari-
oustypes of field data. There are three main types of data
for comparing to model output: biomasses, rates, and de-
rived quantities. Obtaining good agreement of field-mea-
sured biomasses and the values of the state variablesis a
primary (but not sole) requirement for accepting a model
as a description of the system under investigation. NPZ
modelstend to be very good at reproducing biomasses of
nutrients and phytoplankton. Comparison of modelled
zooplankton with data tends to be less revealing, mainly
because of the paucity of zooplankton data, and the diffi-
culty in converting it to the modelled form (usually ni-
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trogen content). The launching of new remote-sensing
instruments (e.g., OCTS and SeaWiFS) is generating new,
spatially resolved, synoptic data sets of surface
phytoplankton biomass. These maps of phytoplankton
provide astronger constraint on coupled physical -biol ogi-
cal models than point measurements of biomass, as they
include a great deal of spatial detail. The level of detail
that can be reproduced by the model depends on the physi-
cal model employed. Franks and Chen (2000) for exam-
ple, had excellent success in comparing their 3D model
to satellite images of the Gulf of Maine and Georges Bank.
The model and satellite data had similar spatial resolu-
tion, and the model contained many (but clearly not all)
of the dynamics necessary to reproduce the dominant bio-
logical featuresin this region.

Comparing biological rates between the model and
data adds a further constraint on the model as a possible
descriptor of the system. The rates usually chosen for
comparison are primary production and nutrient uptake,
though zooplankton grazing is also used. Rates of pri-
mary production are commonly measured in field pro-
grams, and should be used as a second test of model ap-
plicability. Nutrient uptake rates are less commonly mea-
sured, but also provide a strong constraint on the model.
The more types of data used to test the model, the more
confident the scientist can bein the model output. Franks
and Chen (1996, 2000) showed that their simple NPZ
model coupled to 2D and 3D physical models of tidally
forced flows over Georges Bank gave excellent repro-
ductions of primary productivity and nutrient uptake rates
measured in that region. Furthermore, nutrient regenera-
tion rates (h(P), i(P) and j(Z) in Eq. (1)) also agreed well
with field data. Combining the biological and physical
dynamics allowed quantification of the nutrient fluxes
onto and off of the bank, which also gave good agree-
ment with existing field data.

Derived quantities such as the f ratio (Eppley and
Peterson, 1979) can also be used to test model output.
The f ratio is the ratio of “new” production to total pro-
duction. New production is primary production supported
by nutrients from outside the local euphotic zone. The
main source of new nutrientsis physical mixing from the
deep pool in the aphotic zone, particularly in regions of
wind- and tidally dominated flows. New nutrients are
usually in an oxidized form, typically nitrate. Nutrients
lost from the particulate phase (phytoplankton death,
zooplankton excretion and death) are usually in areduced
form—ammonium. While an NPZ model cannot (by defi-
nition) resolve nitrate and ammonium, it can follow the
dynamics that would control the presence of these two
forms in the euphotic zone. One technique is to assume
that all nutrients below the euphotic zone are in the form
of nitrate, while all biologically generated nutrients are
in the form of ammonium. During the model runs the



physical and biological fluxes of these forms can be
tracked and quantified for comparison to data (e.g., Franks
et al., 1986b). A second technique is to note that ammo-
nium is taken up in preference to nitrate. Thus, if the
phytoplankton nutrient uptake is balanced by excretion,
new production will be negligible. However, if the ex-
cretion rate is too low to account for phytoplankton nu-
trient uptake, another source must be present—new nu-
trients. Thus the total production not accounted for by
excretion (h(P), i(P) and j(2) in Eqg. (1)) must be new
production. Thisterm isrelatively easy to calculate, and
gives excellent agreement with data in some cases (e.g.,
Franks and Chen, 1996, 2000).

So far as| could find from the literature, NPZ mod-
els have not been used for predictive purposes. Whilethey
have been used successfully in hindcasting certain data
types (e.g., Ishizaka, 1990), they have not, to my knowl-
edge, been used in any operational sense to predict bio-
logical dynamics.

5. Discussion

| have described how NPZ models can be con-
structed, how they have been coupled to physical mod-
els, and how they have been employed in oceanographic
studies. It is appropriate then, to revisit the original point
concerning the general utility of NPZ models.

An NPZ model, like all mathematical models, is a
mathematical manifestation of ahypothesis. The hypoth-
esis concerns the dynamics that are presumed to underlie
the observations. Inherent in the NPZ model is the as-
sumption that the mathematical formulation captures the
dominant dynamics of the biological system. So under
what conditionsisan NPZ model an appropriate descrip-
tion of the system?

Clearly an NPZ model cannot capture our best un-
derstanding of how the planktonic ecosystem works. On
the other hand, there is no single model that does; nor
would it necessarily be useful. The NPZ model is a sim-
plification of an extremely complex system, and it must
be used and applied carefully and appropriately. Before
deciding what type of model to use, it is essential to make
a clear statement about the question being asked. Very
different models would be used, for example, to study
patterns of primary production in mesoscal e eddies ver-
sus studying the effects of turbulence on phytoplankton
community structure. There are certainly occasions in
which an NPZ model is a completely inappropriate tool.
On the other hand, there are many instances in which the
NPZ model is the best tool to begin the investigation.

Another way of putting the question posed aboveis,
“When should we reject the NPZ model as an appropri-
ate descriptor of the system under study?’ The answer to
this is not as obvious as it might seem at first. A simple
answer would be that the NPZ model must be rejected

when it does not fit the data. But to do thisin a practical
sense, we must first decide which data are to be used asa
test. These data should be independent of the data used to
parameterize the model. Second, we have to decide on
criteriaby which the model will be judged. These criteria
should be objective and quantitative. However, compar-
ing a model to any particular data set will almost cer-
tainly give bad results—the data give asingle realization
of a few variables from a huge set of complex and
nonlinear interactions. Thereiserror associated with every
measurement, and parallel experiments (if this is possi-
ble) will almost certainly give different results. Do we
reject one of the experiments because it does not agree
with the other? Typically not; we perform some statisti-
cal test to find a more robust descriptor of the system,
such as the mean or median. We must be careful, then, in
rejecting a model as a descriptor of the system. We need
to find out how sensitive the model is to variations in
parameters and transfer functions; to explore the condi-
tions under which the model might accommodate the vari-
ability inherent in the data. It is only after the model has
been exhaustively explored that it should be rejected, and
anew model (hypothesis) sought. If the model cannot be
rejected, then it can tentatively be accepted as an adequate
descriptor of the system being studied for the questions
being asked. The model may be a completely inappropri-
ate system descriptor for other types of questions.

The relative simplicity of NPZ models makes them
appealing tools for many questions. It becomes increas-
ingly difficult to carry out the tests described above for
models with more state variables. Finding analytical so-
[utions becomes impossible (except in the caseswhen state
variables go extinct), and exploring the range of possible
behaviors and sensitivity of complex models is a daunt-
ing task. In addition, parameterizing, initializing, and test-
ing amore detailed model is difficult with the data avail-
able from most field programs.

New techniques of data assimilation are proving
fruitful for facilitating model-data comparisons. I shizaka
(1990) was probably the first to assimilate data into a
coupled physical-biological model. He found that assimi-
lating phytoplankton data into the NPZ model improved
the model’s skill at predicting future data. However, data
assimilation is not just for improving model forecasts.
Certain techniques can also be used to obtain more accu-
rate parameterizations of the models, and used to give
objective measures of the model’s skill in describing the
data. The adjoint method uses a cost function (the
“adjoint”) to allow parameter estimation of a model us-
ing data. Lawson et al. (1995) used a model to generate
data which were then subsampled and used to
parameterize amodel with the same number of state vari-
ables. The skill of the technique depended a great deal on
the subsampling scheme used, as well as the form of the
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generating model. A great deal more research is required
to understand how we can exploit techniques such asthese
in improving our ability to model marine ecosystems.
My conclusion, then, is that NPZ models provide a
robust platform for oceanographic research. They are
particularly good toolsfor initial investigations of physi-
cal-biological dynamics, and give a good picture of the
general planktonic community responseto physical forc-
ing. They constitute an appropriate tool for many scien-
tific questions, and can give robust quantitative
simulations of many types of dynamics. On the other hand,
thereisagreat deal that NPZ models cannot tell us about
the workings of the ocean, and it isimportant to continue
to develop and test new models of planktonic dynamics.
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