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A Brief Chronology of Fractals

The monsters (complex, irregular objects)
1872: The Cantor set.
1875: Weierstrass's coatinuous
nowhere-differentiable curve
(du Bois).
1906: Brownian motion (Perrin).
The Koch snowflake (von Koch).

Scaling hehaviour

1919; The HausdorfT dimension of compiex geometric objects.

1951: Hurst's law for scaling behaviour of Nile river discharges.

1956: The Gutenberg-Richter faw for the distribution of earthquake magnitudes.

1961: Richardson’s scaling laws in the measurement of complex natural curves
such as coastlines.

1963: The Stommel diagram describes spatial and temporal scales for ocean
dynarmics in space and time.

1968-9: Mandelbrot, Van Ness, and Wallis extend Hurst’s work in hydrology.

The science of fractals (except for dynamics)

1975: Mandelbrot coins the word ‘fractals’.

1977 Mandelbrot's Fractals: Form, Chance and Dimension.

1980: The Weierstrass~-Mandelbrot fractal function (Berry and Lewis)—the
natural geometry of the Weierstrass monster of 1875.

1982: Fractal models applied to ecology (Hastings et al) and cloud patterns
(Lovejoy). Mandelbrot's revised monograph The Fractal Geometry of Nature.

1986: Tterated function systems (Barnsley ef al.).

Fractals and dynamics

1981; Witten and Sander introduce
diffusion-limited aggregation.

1983; Hentschel and Procaccia relate
fractals and strange attractors.

1984; Wolfram’s dynamics of cellular
automata.

1987: Bak, Tang, and Weisenfeld's self-organized criticality.

1991: Scherizer and Lovejoy's book on fractals and multifractals in geophysics.

The present

1991; 400 publications.

1992: Fractals applied to answer open questions ranging from the origin and
structure of the universe to the distribution of earthquakes.




Part I

Introduction

Euclidean geometry has shaped much of the way natural forms are viewed
in science and mathematics, and even in art; and seems to be writ deeply.in
the human psyche. Motivated by our basic desire to find simplicity and order
in nature, Euclidean ideals are often held out as approximations or caricatures
of natural forms that may be essentially complex and irregular. Thus, the
planets are roughly spheres, elm leaves are ellipses, and spruce trees are
roughly cone-shaped. That is to say, we achieve simplicity by filtering out
the complexity and uniqueness of natural forms and identifying their essence
with the class of shapes which can be rendered by protractors, conic sections
and French curves.

Whether nature is ‘essentially’ complex (that is, irregular and random) or
‘essentially” simple (that is, Euclidean and ordered) is in some sense an
artificial dichotomy. Piet Mondrian's geometric forms and Jackson Pollack’s
random patterns both capture important parts of nature. Can an appropriate
geometry combine the complexity of Poliack’s patterns with the simplicity
of Mondrian’s descriptions?

We believe that fractals, and in particular random fractals, may provide
such a bridge. To quote the founder of this field, Benoit Mandelbrot {1989):
‘Fractals provide a workable new middle ground between the excessive
geometric order of Euclid and the geometric chaos of roughness and
fragmentation.

Self-similarity and measurement

The key idea in fractal geometry is self-similarity. An object is self-similar if
it can be decomposed into smaller copics of itself. Thus self-similarity is the
property in which the structure of the whole is contained in its parts. For
example, recall that line segments, squares, and cubes are measured by
dividing them into similar small units, for example, centimeters, square
centimeters, and cubic centimeters. These smalier units are similar to the
whole, and share the same units of measurement. That is to say, the basic
building blocks (straight lines, squares and cubes) can be summed to produce
the ‘measure’ of the whole.

In the formalism of calculus, highly magnified views of a smooth curve
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The Hofstra University Pineum. Henry Moore’s Upright Motive No. 9, 1979, in the
foreground, is an idealized, artistic vision of the human form built from smooth curves
and surfaces. Although Euclidean geometry is also evident in the patio in the
foreground and building in the background, it does not capture the order inherent
in the complex forms of pine trees throughout the photograph. A new geometry —
fractal geometry—is needed to provide wseful, compact descriptions of such natural
forms. (Reproduced by kind permission of the Henry Moore Foundation.)

can be viewed in the limit as a polygonal arc with infinitesimally small sides.
Thus, in the limit, straight line segments are the basic building blocks of
smooth curves, and the length (measure) of a curve is just the sum of the
lengths of infinitesimally small line segments. Indeed, most regular geometric
objects can be measured with the same basic building blocks: lines, squares,
and cubes.

On the other hand, highly magnified view of natural forms such as
coastlines, vegetation patches, and graphs of population fluctuations do not
appear smooth and may not reduce to the usual buiiding blocks. Indeed,
upon magnification, they will frequently display the same irregularity on the
smallest scales as is present in the large. Because of this, such complex objects,
called fractals, cannot in fact be rigourously measured by the basic building
blacks of Euclidean geometry. A fractal curve does not have a ‘length’ as
we commonly know it. Indeed, the basic building block of a self-similar
irregular form is an infinitesimally small copy of itself; and its measure comes
from enumerating these small irregular building blocks.
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Barnsley's ‘trademark’—the black spleenwort fern (c. M. F. Barnsley, Fractals
Everywhere, Academic Press, 1988, Fig. 3.10.8(b), reprinted with permission). This
complex pattern can be generated relatively simply through the use of fractals, using
a six-parameter iterated function system. It is, however, generally guite difficult to
find such descriptions.

While the basic building blocks of Euclidean geometry are simple, the
mathematical apparatus required to mimic 4 complex form can be obtuse.
For example, a Euclidean description of the black spleenwort fern might
involve a polynomial with thousands of fitted parameters. One is basically
pushing a simple basic building block (a straight line) into a complex shape
with a complicated function. In contrast, the complexity in fractal geometry
comes from the building blocks, and the process which generates the larger
pattern is relatively simple. The simple process, recursion, essentially involves
echoing a simple rule over and over again, giving rise to self-similar geomelry.
Indeed the assembly of fractals from their natural building blocks, smaller
self-similar fractals, appears to capture some essential aspect of the growth
and branching rules of nature itsell.

Thus fractal and Euclidean geometry are conjugate approaches to the
geometry of natural forms, Fractal geometry builds complex objects by
applying simple processes to complex building blocks; Euclidean geometry
uses simpler building blocks but frequently requires complex processes. As
we shall see, fractal geometry, by emphasizing a unique relationship between
a form and its building biocks, seems to fit nature remarkably weil.

Mandelbrot’s first book (1975, 1977) demonstrated the potential of fractals
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'To provide a unified setting for the study of ubiquitous irregular objects,
regarded as ‘mathematical monsters’ in the late nineteenth and early
twentieth centuries. Since Mandelbrot's {1982) book, The fractal geometry
of nature, the field of fractals has exploded. The 1991 Science Citation Index
listed over 400 papers with the words ‘fractals’ or “power laws’ (the algebraic
analogue of fractals) in their title. They span fields ranging from physical
geometry (the surface texture of sea beds, the structure of continental faults
and, in the spring of 1992, a lively debate about the distribution of intervals
between earthquakes) to ecology (fungal structures, the power law relation-
ship between the area of a quadrat and the number of species it contains,
the structure of peat systems). Cosmology (the structure of star clusters and
galaxies and, in May 1992, questions about the big bang and the origin of
the universe), and developmental biology (lung branching patterns, heart
rhythms, the structure of neurons) are also represented.

Stimulated by the explosive growth in the science of fractal geometry, we
have written this book as both a logically developed lext and a handbook
for natural scientists interested in applications of fractals—in short, a book
on ‘fractals for users’. We have aimed to make the book self-contained: most
chapters assume only modest mathematical background.

The first chapter introduces and motivates fractals and their algebraic
analogues, formulae of the form y = ax® called power laws, as geometric and
algebraic images of nature. Everyone is familiar with the power laws of
Euclidean geometry: formulae for the area of a square A = 5? and the volume
of a cube V = s* We shall motivate and explain power laws in nature:
classical power laws such as allometric relationships connecting the size and
melabolism of an animal, relationships between the area of a quadrat and
the number of species it contains (the species-area Jaw), and the Gutenberg-
Richter law relating the number and magnitude of earthquakes, as well as
several new power laws discovered through fractal geometry.

Part 11 builds upon these ideas to develop the mathematics of random
fractals. Chapter 2 introduces the basic foundations: sel-similarity, sell-
affinity, scaling and Hausdorfl dimensions, and the mathematics of power
laws. The scaling and Hausdorfi dimensions are exponenls in power laws
for measuring the complex objects of nature, just as the familiar topological
dimension in the exponent in the formulac A = 52 and V = s see also
McGuire's (1991) beautifully illustrated essay on fractals.

The next three chapters devlop practical techniques for computing the
dimension and other scaling exponents associated with fractal patterns and
time series. In particular, Chapter 3 develops a wide varicty of simple and
useful alternatives to the HausdorfT and scaling dimensions. Although all of
these alternative dimensions measure essentially the same thing—how Lo
build a complex object simply by using itsell as the building block,
applications will frequently dictate the choice of one particular technique.
Chapter 4 describes similar approaches for the characterization of complex
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time series. The last of these chapters, Chapter 5, describes Fourier transform
techniques and their use in computing fractal exponents. Chapters 2—-5 gather
together material from many sources, ranging from nineteenth-century
examples, largely following the explanations of Mandelbrot {1977, 1982) to
papers written in the 1980s and 1990s. Although much of this material is
‘well known' to those active in the field, it is not readily accessible to
prospective users working in other fields, or present-day students in the
natural sciences. We aim in these chapters to steer a clear path between the
excessive formality of many papers in pure mathematics and the excessive
informality of many books on fractals, in keeping with our goal of a ‘middle
ground’ book for students and researchers in the natural sciences.

The next four chapters form a bridge from the mathematics to two case
studies: fractal patterns in vegetative ecosystems, and the new study of the
persistence and extinction of smail populations. Chapter 6 begins with an
introduction to statistical techniques used to compute fractal exponents from
experimental data, namely log transforms and linear regression. It also
describes tests for fractal behaviour and the role of simple simulation
techniques in determining the validity and confidence limits of fractal
descriptions. Since a thorough test of the validity of fractal models in a
particular application requires comparisons with other possible models,
Chapter 7 briefly describes several alternative approaches to the study of
complex systems: cellular automata (cf. Wolfram 1984), classical linear
stochastic models, and nonlinear time series analysis. Following these core
chapters on the statistical foundations of fractal models, the next two
chapters illustrate fractal modelling through both new and classical examples,
presented at the level of journal articles. Chapter 8 begins with a new study
of earthquake time series aimed at the possibility of predicting large events.
Chapter 8 also summarizes two applications of fractals to developmental
biology with a surprising common thread: the same mathematics governs
the formation of patterns of islets of Langerhans and pancreatic ductules
(recent results of Hastings et al. 1992) and of neuronal processes (Caserta et
al. 1990; Kleinfeld et al. 1990). Chapter 9 concludes with suggested applica-
tions of Hurst’s techniques to a wide range of weather phenomena, ranging
from rainfall patterns to ocean surface temperatures and El Nifio periodicity.

The culminating case studies of Part IV include *behind the scenes’
material cut from most research presentations: deliberations about the choice
of models, historical and logical motivations, and, in particular, thorough
discussions of paths not followed. Chapter 10 describes the fractal modelling
of vegetative ecosystems (cf. Levin and Paine 1974; Hastings et al. 1982).
Chapter 10 concludes with a list of open questions which might be at least
partiaily answered with fractals: For example, are there general rules relating
the number of species of a given size and the number of species found in a
given area? Chapter 11 is our new attempt to forecast local extinction of
small bird populations (cf. Sugihara and May, 19904). This chapter concludes
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with a challenge to combine several partial measures for the persistence of
small populations to form a practical tool for forecasting.

Finally, Chapter 12 of Part V is a toolbox of our programs, ready to use
for both new and experienced users of fractals. The programs in Chapter 12
are written in Turbo Pascal, but no special features of Pascal are used. The
reader with a knowledge of Basic can casily understand these programs and
translate them if necessary. On the other hand, the reader with strong
programming skills, including a knowledge of C, can easily combine the
algorithms underlying these programs with programs in Press et al.’s (1989)
Numerical recipes to obtain fast efficient code.

Legal issues. The authors and Oxford University Press explicitly dis-
claim any and all warranties, express or implied, concerning the mer-
chantability, suitability or fitness of the software described herein. The
user assumes all responsibility and risk associated with using such soft-
ware. In particular, neither the authors nor Oxford University Press shall
be responsible for damages of any kind, including but not limited to special,
incidental or consequential damages, resulting from the use of the software.

This book can be read straight through as a text beginning with the
examples of Chapter 1 and the basic mathematics of Chapter 2, or the reader
can jump in at many points: the computational techniques of Chapters 3-5,
the *how to’ statistics of Chapters 6 and 7, representative applications
including new applications to the geometry of pancreatic islets, carthquake
time series, and ocean temperature data in Chapters 8 and 9, or either of
the case studies. The list of references includes eclectic comments and a few
recommendations for further reading.

We have found the science of fractals both interesting and fun, and hope
that the reader will agree.




Our view of nature

Natural patterns, especially those in ccosystems, frequently appear irregular,
complex, and hard to measure, even at very small scales. Consider, for
example, the problem of measuring the length of the coastline of England
(Richardson 1961; cf. Mandelbrot 1977, 1982). Richardson attacked this
question by traversing the coastline in a sequence of small steps, and counting
the number of steps requircd. If the coastline could be traversed in n(As}
steps, each of length As, then the product n{As)As would be a close
approximation of the actual fength. If the coastline were a smooth curve,
then for very small steps the apparcnt length n(As)As would closely
approximate the actual length, implying that

n(As) = const x (1/As).

However, Richardson found that the apparent length (n{As)As appeared to
increase without bound as As was decreased, and in fact that

n{As) = const x (1/As)™ ", (L0

where the exponent D was strictly greater than 1.

Similar regularities had been found in other attempts to measure complex
patterns such as the distribution of areas of Aegean islands (Korcak 1938)
and fluctuations in discharges from the Nile river (Hurst 1951, 1656; cf.
Mandclbrot (1977, 1982) for both Korcak and Hurst). Korcak found that
the distribution of sizes of Aegean islands foHowed the formula

n(u) = const x a~ ¥, (1.2)

where n(a) denoles the number of islands of area at least a. In designing the
Aswan dam, Hurst found that the difference between observed and expected
cumulative discharges over time periods of duration Ar foliowed the formula

y = const x At (1.3)

Formulae of the form

y = ax" (1.4)

are called power laws. Why do power laws appear in the measurement of
such irregular natural patterns and time series?
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Fig. 1.1 Construction of the Cantor set. This complex pattern is built through the
endless repetition of a very simple process, removing the middle third of a line segment
to obtain two shorter segments.

Power laws are also found in Euclidean geometry, allometry, and statistics.
For example, the familiar formulae for the area of a square and volume of
a cube are the power laws

A=s5* and V=35> (1.5)

in which the scaling exponent is the dimension of the object. We shall see
below that many complex patterns can be similarly characterized by an
appropriate dimension. These formulae have simple explanations in cases
where the parameter s is an integer. A square of side s can be decomposed
into s* similar smaller unit squares, and a cube of side 5 can be decomposed
into s° similar smaller unit cubes.

Such simple geometric principles underlie some of the power laws in
allometry or the measurement of form in animals (cf. Peters 1983; Schmidt-
Nielsen 1984). For example, for a family of similar animals, the surface area
is proportional to the square of the length and the mass is proportional to
the cube of the length. Combining these formulae yields the power law

mass = const x (surface area)*2. (1.6)

This power law provides sharp limits on the form and metabolic require-
ments of many families of animals. A power law also connects the metabolic
rate and weight of animals (cf. Peters 1983; Schrnidt-Nielsen 1984):

metabolic rate = const x (weight)**, (1.7

Although the power law (1.6) is a simple consequence of geometric formulae,
the power law (1.7) reflects more complex scaling of metabolic processes.
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Even random walks display regularities in the form of power laws. The
Central Limit Theorem of statistics implies that the change in position As
resulting from a random walk over a time interval At is approximately

As =~ const x (Af)!7%. (1.8)

Mandelbrot (1977, 1982) discovered that a natural geometry, the geometry
of fractals, could provide a unified framework and explanation for many of
these power laws. It is hard to measure the coastline of England because the
coastiine of England never appears straight, even on very small scales. It is
similarly hard to measure the path of Brownian motion, the continuous-time
analogue of a random walk (Perrin 1906; cf. Mandelbrot 1977, 1982) because
irregularities persist, even on very small scales. However, a highly magnified
view of a portion of the coastline of England does resemble the coastline,
and a highly magnified view of a portion of the graph of Brownian motion
does resemble the graph itsell. Mandelbrot’s surprising observation was that
the coastline of England could be ‘built” out of pieces similar to the whole
coastline, and a continous-time random walk could be built of similar shorter
random walks, both in close analogy to building a square out of similar
smaller squares. Mandelbrot called this property self-similarity (he actually
and correctly found only a weaker scale-invariant property, self-affinity, for
the graph of Brownian motion), and called self-similar objects fractals. The
measurement of fractals is no harder than the measurement of the regular
objects of Euclidean geometry if the right building blocks, the fractals
themselves, are used in measurement—self-similarity forces the complexity of
the object into the building blocks and describes the inherent regularities
through power laws.

Fractals thus provide a simple description of many natural forms. For
example, a standard Euclidean description of the black spleenwort fern
illustrated in the Introduction might require thousands of data points and
fitted parameters (Barnsley 1988). In constrast, Barnsley describes this fern
using a fractal building block, four transformations having only six para-
meters, and the iterative process of recursion.

In an abstract setting, recursion generates such ‘mathematical monsters’
{Mandelbrot, 1977, 1982) as Cantor (1872) sets, Brownian motion (Perrin
1906; cf. Mandelbrot 1982, pp. 6ff.), the Koch snowflake (von Koch, 1906),
and Weierstrass's continuous nowhere-differentiable function (cf. du Bois,
1875). The graphs of Brownian motion, the Koch snowflake, and the
Weierstrass function never look like straight lines, even on arbitrarily smal
scales, and thus cannot be measured by using sufficiently small line segments.
Cantor (1872) described uncountably infinite sets of measure zero; these
Cantor sets also challenged the classical concepts of measurement. Cantor
sets are complex on all scales, and in fact their smail-scale complexity mimics
their large-scale complexity. They can all be easily described with iterative
processes and measured with [ractals.
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For example, the first stage in the iterative construction of the Cantor set
is just a line segment. Each successive stage is constructed from the previous
stage by removing the (open) middle third of all segments in the previous
stage (see Fig. 1.1). This figure suggests that a Cantor set constructed from
an interval of length 3 can be decomposed into 2 smaller ‘unit’ Cantor sets,
each constructed from a unit interval of length 1, and more generally that
a Cantor set constructed from an interval of length 3* can be decomposed
into 2* smaller ‘unit’ Cantor scts. At least for s of the form 3% a Caantor set

(a)

Fig. 1.2 A montage of natural and artificial patterns. (a) A false colour Landsat
photograph of natural and agricultural patterns near Salton Sea in Southern
California (cf. Short et al. 1976, plate 133, reprinted with permission of NASA).
The natural patterns appear regular on sufficiently small scales. (b) Istands
of vegetation (cypress and mixed cypress patternis) in the Okefenokee Swamp
{Hastings er al. 1982, Fig. 3). (c) A computer generated landscape generated with
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Fig. 1.2 {continued) Mandelbrot-Weierstrass fractals; see Sections 5.6 and 123,
Islands like those in (b) can be generated by flooding the lower elevations of the
landscape. (d) A Landsat photograph of northwestern Kyushu island in Japan (cf.
Short et al. 1976, Plate 319, reprinted with permission of NASA). (e} A single
computer-generated island, using the randomized Koch snowflake of Section 2.4 (sce

also Section [2.2).




12  Introduction

constructed from an interval of length s can thus be measured in terms of
unit Cantor sets, and has measure given by the power law

m = 2 = slos2ioE3, (1.9

We shall see that many iterative growth, branching, and aggregation
processes of biology give rise to power laws, Small-scale processes combine
and form aggregated larger-scale processes in ecosystem dynamics. Iterated
growth and branching rules can also give rise to complex patterns such as
the vascular system and the bronchi of the lungs (cf. Mandelbrot 1977, 1982,
Barnsley 1988). The abstract Brownian motion as well as actual cumulative
river discharges are aggregations of smaller discharges. The dynamics behind
the formation of islands, coastlines, and mountain ranges occurs on many
scales. Species, community, and system dynamics in ecosystems represent
successively higher aggregates of specics-level dynamics.

Barnsley (1988) defines fractals in terms of iterating functions. We shall
follow a more geometric approach because it is frequently difficult to find
explicit algebraic representations of the iterative processes underlying natural
dynamtics, but shall make frequent reference to the use of power laws and
fractals to distinguish between classes of underlying dynamics. Physicists cail
these classes *universality’ classes, and in fact the geometry of fractals owes
much to the physical sciences.

The purpose of this book is to develop the science of random fractals from
the viewpoint of applications to the natural sciences. We aim to be precise
in the use of mathematics and statistics. Some proofs are outlined or included
in order to make the ideas precise.

Part 11 begins with a chapter on the basic foundations of fractals:
self-similarity, self-affinity, scaling and Hausdorfl dimensions, and the mathe-
matics of power laws, followed by three chapters of practical techniques
for computing the dimension and other scaling exponents associated with
fractal patterns and time series.




Part 11

The mathematics of random fractals

The examples from Chapter 1 demonstrated that natural patterns can be
extremely complex. However, these natural patterns appeared statistically
scale-invariant, that is, statistically unchanged under magnification or con-
traction, at least over a [airly wide range of scales. Scale-invariant objects
are called fractals; statistically scale-invanant objects are called random
fractals. The next four chapters develop the mathematics of random fractals,
with a special emphasis on measurement and description.




2

Fractals and power law scaling

2.1 Introduction

The examples from Chapter 1 demonstraled that some natural patterns can
appear extremely complex. However, they may display an underlying
simplicity through scale-invariance. Again, scale-invariance means that the
pattern appears unchanged under magnification or contraction. More
generally, there may be several scaling regions, separated by breakpoints,
with scale-invariance holding within each region, but {ailing when a break-
point is crossed.

in this chapter we shall define fractals as geometric objects which exhibit
scale-invariance, and we shall show how scale-invariance leads to a class of
scaling rules—power Jaws—characterized by scaling exponents. These scal-
ing exponents are constant within each scaling region, but jump at the
breakpoints separating scaling regions.

We consider a pattern or object to be scale-invariant within a scaling
region if the pattern or object contains no natural internal measures of size,
and thus appears the same at all scales within the scaling region. For
example, a set of islands may be scale-invariant despite the fact that we can
measure the area or perimeter of each island (see Fig. 1.2 above). In this
case, scale-invariance simply means that the small islands are essentially
reduced versions of the large islands, and the large islands enlarged versions
of the small islands. We might then consider the relationship between the
area and the perimeter of each island in the set. As explained formaily in
Section 2.6, scale-invariance is manifest algebraically in a power law rule for
the distribution of areas of islands,

N(a) = const x a™5, (2.1

where N{a) denotes the number of islands of area at least a (Korcak 1938),
another power law relating the area a and perimeter p of each island,

p = const x a™%, (22)

and other power laws described below.

The first three sections develop the concepts of self-similarity, regular
fractals, and random [ractals. In particular, Section 2.4 contains an axiomatic
characterization of an important class of prototype random fractals: the
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graphs of random walks, their diffusion limits, and their fractal generaliza-
tions. In Section 2.5 we introduce the use of the scaling dimension and the
more general Hausdorfl dimension to describe the scaling propertics of
regular and random fractals. The parameter D in formula (2.2) is in fact the
Hausdorfl dimension of the boundaries of the islands. Chapters 3~5 develop
a wide variety of methods for computing the Hausdorfl dimension and
related scaling exponents for fractal patterns and functions. Finally, Section
2.6 introduces algebraic self-similarity and power laws.

2.2 Sclf-similarity and fractals

Fractals are defined to be scale-invariant (self-similar or self-affine) geometric
objects. A geometric object is called self-similar if it may be written as a
union of rescaled copies of itself, with the rescaling isotropic or uniform in
all directions. A geometric object is called self-affine if it may be written as
a union of rescaled copies of itself, where the rescaling may be anisotropic
or dependent on the direction. Regular fractals display exact self-similarity.
Random fractals display a weaker, statistical version of self-similarity or, more
generally, self-affinity. Although virtually all natural fractals are random, the
concept of sell-similarity is best first explored through the study of regular
fractais.

‘The class of regular fractals includes many familiar simple objects such as
line intervals, solid squares, and solid cubes (because of the gencrality of our
definition), and also includes many irregular objects such as the Cantor set
and Koch snowflake. The scaling rules are characterized by scaling exponents
(dimension). We shall see that *simple’ regular fractals have integral scaling
dimensions, and complex self-similar objects such as the Cantor set and Koch
snowflake shown in Fig. 2.1 have nonintegral dimensions.

We shall develop a more precise definition of statistical self-similarity and
self-affinity as we develop the theory of random fractals. For now it suffices
to state that a peometric object is statistically self-similar or self-affine,
respectively, if it is the union of several picces, each of which is statistically
an appropriately rescaled copy of itsell. The randomized Koch snowflake
shown in Fig. 1.2 and discussed in Section 2.4.2 is a typical random fractal.

2.3 Regular fractals

In this section we shall develop the concepis of self-similarity and regular
fractals. Many regular geometric figures are self-similar and self-similarity
has its origins in the formulae for the area of a square, A = §?, and volume
of a cube, ¥ = s°. If s is a whole number, then these formulae follow from
decomposing the square of side s into s similar unit squares and from
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Fig. 2.1 (a) The Cantor set and (b} Koch snowflake: mathematical monsters of the
nineteenth century tamed by fractal geometry.

similarly decomposing the cube of side s into s° similar unit cubes. (This
type of decomposition can be made precise through the concept of an
almost-disjoint union. The line segment of length (or side) s may be similarly
decomposed into s segments each of unit length. Area and volume formulae
thus relate the size of these simple objects to their linear scales, with the
dimension serving as the key parameter. The formulae follow from decom-
posing the objects into unions of similar smaller objects—therefore the cube,
square, and line segment are called self-similar and the dimension is called
a scaling or similarity dimension. A point is trivially self-similar with scaling
dimension 0.

2.3.1 Construction of the Cantor set

The power of the concepts of self-similarity and scaling dimension becomes
apparent when they are used to characterize such seemingly complex and
irregular objects as the Cantor set. Cantor (1872) constructed this set as a
pathological example to demonstrate the need for careful hypotheses in
mathematical analysis. The Cantor set is constructed as a limit of an iterative
process in which the first stage, stage number 0, is the closed unit interval.
Referring to Fig. 1.1 above, given any stage n, the next stage n + 1 is
constructed by deleting the open middle third of each closed interval of stage
n. The Cantor set is the resulting limit, and may be formally defined as the
intersection of all of the approximating stages. Note that stage n is the union
of 2" closed intervals, each of length 1/3" Thus stage n has length or linear
measure (2/3)", which approaches 0 as n approaches infinity.
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Although it is difficult to conceive of the Cantor set as a union of familiar
objects from Euclidean geometry, it can be written as the union of smaller
Cantor sets just as a square can be written as a union of smaller squares. In
fact, by construction, the Cantor set is the union of 2 smaller Cantor sets,
each obtained by contracting the original Cantor set by a factor of 3. More
generally, for any number m which is a power of 2,

m=2" 2.3

the Cantor set is the union of m smaller Cantor sets, cach a factor of 3"
smaller than the original Cantor set. Since a Cantor set of scale 3 is a union
of 2 Cantor sets of scale 1, and

2= 3lu¢ 2log 3 , (24)

we assign the Cantor set a scaling dimension of log 2/log 3 =0.63 ... Unlike
the case of the square and similar ‘simple’ geometric figures discussed above,
the scaling dimension of the Cantor set is not an integer.

There is a second standard description of the Cantor set which sheds
additional light on its scaling dimension. This description involves ternary
decimals, where a ternary decimal is the analogue of a decimal in base three
notation. That is, a ternary decimal is a sequence of the form

a,a;a; .. (2.5)
which represents the number
a1/3 + 02/32 + a3/33 + S (2.6)

By analogy with the usage ol ordinary decimals, ternary decimals are
generally written in the form

0.q,a;d5 . 2.7
We note that the equivalence

0999 .. =1 {2.8)
for ordinary decimals corresponds to the equivalence

0222..=1 (2.9)

for ternary decimals, and adopt the convention that any Jfinite ternary
decimal

0.a,a,0; .4, a,#0, (2.10a)

will always be written as an eventually repeating ternary decimal

0.a,a505 .. @) 222 ., dp=a,— L. (2.10b)
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Suppose that all finite ternary decimals are represented as such eventually
repeating ternary decimals. Then stage 0 of the Cantor set consists of all
ternary decimals, stage | of the Cantor set consists of all ternary decimals
with ¢, # 1, and stage 2 of the Cantor set consists of all ternary decimals
with a, # 1 and a, # 1. More generally, each ‘middle third’ corresponds 1o
a ‘1" in the appropriate position in a lernary decimal expansion. Therefore
the Cantor set consists of all ternary decimals which can be written with no
I's. Reducing the scale of the Cantor set by 1/3" corresponds to multiplying
the ternary decimal expansions by

1/3* = 0.000 ... 01 (n — 1 zeros), (2.11a)

and thus the mapping
0.a,a,a, ... = 0.000 .. 00a,a,4; ... (n zeros). (2.11b)

Moreover, one may obtain the 2" copies of the reduced Cantor set which
make up the original Cantor set by replacing none, any, or all of the first n
zeros by 2's. It is easy to see that this replacement may be done in 2" ways.
This shows rigorously that the original Cantor set is the union of 2° such
reduced Cantor sets.

Moreover, this description provides a simple way to generate a Poisson
distribution on the Cantor set. Define a ternary decimal ¢ = 0.4,d;4; ... as
follows. For each i, let

(2.12)

a;

3 {0 with probability 1,
2 with probability 3.

It is easy Lo see that
Pr(0.a,a,dy .. a,0 < 0.a,a;0; ... 4,854 . <. 0yaz05 .. a,2) = 1/2",
(2.13)

and that this is the same as the probability that the point 0. a,a;d; .. dyty 4 g -
lies in the corresponding reduced Cantor set.

We now describe a second regular fractal, the Koch snowflake, and relate
its iteralive construction to its scaling dimension, just as we did for the
Cantor set. The construction starts with a triangle as stage 0. Stage n + 1 is
constructed from stage n by replacing each line segment of stage n by a
polygonal path consisting of four line segments, cach one-third the length
of the original segment (see Fig. 2.2).

Although the Koch snowflake is not itself the union of similar smaller
snowflakes, by construction, each side of the Koch snowflake is such a union
of 4 similar smaller curves, each one-third of the length of the original side.
Moreover, by construction, each reduced side has the same scale-invariant
property, and thus the scaling dimension of the Kock snowflake is log 4/log 3,
or about 1.26.
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Replace

with /\
Stage 0 Generator
Stage 1 Stage 2
Stage 3 Stage 4

Fig. 22 Construction of the Koch snowflake. The Koch snowflake is constructed
as the limit of a sequence of simple iterative steps. Starting with the equilateral triangle
at the top left, each successive stage is constructed by replacing line segments
with copies of the polygonal generator at the top right. Compare Fig. 1.1 {con-
struction of the Cantor set) and Fig. 2.5 (construction of the randomized Koch
snowflake).
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Natural branching processes such as the formation of neuronal processes,
the bronchial tubes, the vascular system, and pancreatic ducts reflect a
random version of the above iteration (see Chapter 8). Mandelbrot-
Weicrstrass fractals (Berry and Lewis 1980) display a wave upon wave
appearance reminiscent of the appearance of successive stages in the
construction of the Koch snowflake. Chapter 12 contains programs for
construction of the Koch snowflake and Mandelbrot-Weierstrass and
related fractals.

REMA RKS 2.1 The Cantor set, which consists of a totally disconnected set of
points (cl. Hurewicz and Walman 1941, Dugundji 1966 or any text on point
set topology for definitions), has topological dimension 0, strictly less
than its scaling dimension log2flog3 =0.63.. (sec Figs. 26 and 3.2
below). Similarly, the Koch snowflake is a Jordan curve in the plane and
has topological dimension 1, also strictly less than its scaling dimension
log 4/log3 = 1.26.... In facl, unlike us, Mandelbrot (1977, 1982) includes
the condition that the scaling dimension exceed the topological dimension
in his definition of a fractal.

We shall return to these ideas in Section 2.4, and conclude this section
with a precise definition of almost-disjoint union.

DEFINITION 2.1 A set X is the almost-disjoint union of two sets 4 and B if
X is the union of A and B, and the intersection of 4 and B has lower
dimension than the dimensions of A4 and of B. Almost-disjoint unions of
more than two scts are defined similarly. Figure 2.3 illustrates this concept.

DEFINITION 2.2 Suppose that a self-similar set X is the almost-disjoint
union of n copies of X, each contracted by a factor k and translated by a

(a) (b} (c)

Fig. 2.3 Almost-disjoint union. (a) An almost-disjoint union of two lines—the lines
{dimension 1) meet in a point (dimension 0). {b) An almost-digjoint union of two
squares--the squares (dimension 1) meet in a {ine (dimension 1}. (c} A union of two
squares which is clearly not an almost-disjoint union—the squares (dimension 1)
meet in a rectangle (dimension 1).
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vector a; in space:

X= | (/KX +a. (2.14)

1€ign

Then X has scaling dimension log nflog k.

2.4 Random fractals

The graph of Brownian motion, a continuous-time random walk (shown in
Fig, 2.4 below), is the prototype random fractal. We therefore begin with the
construction of random walks, and their diffusion limits, Brownian motion.
This construction can be found in Lin and Segel (1974), Hogg and Tanis
(1977), or any elementary textbook on probability and statistics. We shall
then describe fractal generalizations of Brownian motion, and conclude with
their axjomatic characterization (Mandelbrot, 1977, 1982).

A random walk in one dimension is defined as follows. Choose a time step
Ar and a space step Ayp. Let

»0) =0, (2.15)

and define y(t) inductively for times ¢ which are a whole-number multiple
of the time step At, by the formula

y(t + AN = y(1) + Ay(t), (2.16}
where
. —_—
Ay} = { Ay leh probabflfty 5 .17
—Ay with probability 4,

independently of any previous steps. Thus each random walk is a func-
tion defined at the points {nAt:0, 1,2,..} which takes values in the set
{nAy:n =0, +1, +2,..}. Each random walk may be considered as a sample
from the space of all random watks. The statistics of random walks may be
readily computed, since the value of a random walk at time nAt is just the
sum of n independent identically distributed random variables AY,, each with
distribution

{ Ay  with probability 3, (2.18)

—Ay with probability 1.
We now calculate the first and second moments of y(¢). Recall the following

properties of the expectation function E. First, the expectation is linear, which
means that, for any constant ¢ and any two random variables X, and X,

E(X, + X,) = E(X,) + E(X,) and E(cX,)=cE(X)). (2.19)
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In additton, il the random variables X, and X, are independent, then
E(X,X,) = E(X,)E(X;). (2.20)

We shall informally write E(x) where x is a random sample from a
distribution in place of the more formal use of E(X).

PRrorositioN 2.1 For any time ¢, the expected value (or first moment) of
y(t)is 0.

Proof. By definition, E(p(0)) = E(0) =0, and E(Ay(1)) =0 for all times t.
Now assume inductively that

E(y(1)) =0 fort = nAL.

Then because the expected value of a sum is the sum of the respective
expected values, the inductive construction of a random walk implies that

E(y(t + Ar)) = E()(1) + Ap(1)) = E(y(1)) + E(Ay(1)) = 0.
Therefore,
E(()) =0 fort=(n+ 1)As,
The conclusion follows by mathematical induction. [

ProprosiTION 2.2 For any time t, the expected value of [ y(1)}? (the second
moment or, since E(y()) = 0, the variance of y(1)) is nAt?,

Proof. We compute similarly, beginning with the calculations that
E([#(0)]%) = E(0) = 0, and E([Ap(1)]*) = E(A¢®) for all times 1. As above,
assume inductively that

E([y(t)]?) = nAt* for t = nAt.

Then, since all increments are independent, y(t) and Ay(t) are also indepen-
dent by construction, which implies that

E([y(t + A1) = B([¥()]?) + 2E(WNEA¥0) + E([A(1)]7)
= E([y{]%) + 4y*. (2.21)
By equation (2.21),
E([y(D]%) = nAt* for 1= (n+ 1)Ar.

The conclusion follows by mathematical induction. [

Thus the expected value of the square of the distance traversed by a
random walk grows linearly with the time. A rough translation is that the
displacement grows as the square root of the time. This translation is readily
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made precise by using the standard deviation, or root mean square displace-
ment, as a kind of ‘average’.

2.4.1 The asymptotic distribution of y

The central limit theorem of statistics implies that the sum of n independent
identically distributed bounded random variables approaches a normal (or
Gaussian) distribution. Therefore, for large n, the distribution of y(nAt) is
asymptotically normal with mean 0 and variance distribution nAy?, denoted
N(0, nAy?).

In erder to introduce the continuous version of random walks, Brownian
motion, we further develop their long-term scaling behaviour. Consider (wo
random walks, with respective time and space steps At, and Ay,. Suppose
that the time steps are commensurable and that, at some time i,

{=n Aty = n,At,. (2.22)

Then, at this time t, the position of the first random walk is approxi-
mately (asymptotically as n — o) a sample from the normal distribution
N(0, n,Ay?}) and the position of the second random walk is approximately
a sample from the normal distribution N(0, n,Ay?). However, if

mAy? = n,Ay?, (2.23)
then the two normal distributions are the same:
N(O, n,Ay?) = N(O, n,Ay3). (2.24)

Equations (2.23) and (2.24) imply that, for times long compared with the
time step A¢, the statistics of a random walk depends only on the ratio

Ay*/AL. (2.25)

Thus, we may use any time step At much less than any time scale under
consideration in formulating and applying random walk models. In a formal
sense, we take the diffusion limit of random walks by letting the time step At
approach 0, and requiring that the ratio Ay*/At of equation (2.25) approach
a constant called the diffusion rate R. Letting the time step At approach 0
makes any constant time scale long, and thus yields a continuous-time
version of random walks called Brownian motion (see Lin and Segel 1974, for
details). The effect of diffusion limits is illustrated in the random walk
program (Section 12.4.1).

RemMARKS 2.2 We shall use the scaling rule for Brownian motion, formula
(2.25) above, in Chapter 3 to show that its graph has scaling dimension 1.5.

We conclude this section by giving the axiomatic characterization of
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Brownian motion and its fractal generalization following Mandelbrot (1977,
1982).

DEFINITION 2.3 A continuous process {y(1)} is called a continuous-time
random walk or a Brownian process if, for any time step At, the increments

Ay(t) = y(t + Ar) — y(1) arc

(i) Gaussian,
(ii) of mean 0, and
{iii) variance proportional to At.

In the presence of axiom (ii), axiom (iii) is equivalent to axiom
(iv) successive increments Ay(r) and Ay(t + At) are uncorrelated.

The axioms which characterize random walks can be readily generalized
to characterize fractal processes (Mandelbrot, 1977, 1982) by introducing an
additional parameter, the ‘Hurst exponent’ H (0 < H <) and replacing
axom (11) by the axiom

(iii") variance proportional to Ar*"

(Hurst 1951, 1956 first observed similar scaling properties; cf. Mandeibrot
1977, 1982). A random walk has Hurst exponent H = 1. As abovc, axiom
(iii") is equivalent to a simple axiom (iv') about the correlation of successive
increments: in a fractal process successive increments are correlated with
cocfficient of correlation p, independent of the time step h, where p is defined
by the formuia

M =242 (—i<p<). (2.26)

The axioms characterize the scaling behaviour of fractal processes. If { y(t)}
is a fractal process with Hurst exponent H, then, for any constant ¢ > 0, the
process

¥ = (1/c")plct) (2.27)

is another fractal process with the same statistics. Physicists call this rescaling
renormalization,

In order to introduce the concept of random fractals, consider the family
F,; of graphs of all fractal processes of Hurst exponent H. The family Fy is
closed under the renormalization (2.27) and all elements of Fy, share the same
statistical properties. More generally, a random fractal is an element of a set
S which is closed under application of a renormalization formuia, or a group
of renormalization formulae. This is essentially Barnsley et al.’s (1986) and
Barnsley’s {1988) definition of fractals through iterated function systems.
There are “trivial’ examples, such as the set of all curves in the plane, but
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most interesting examples, such as the graphs of fractal processes, are
characterized by a set of statistical properties.

For example, one can define fractal functions of two or more variables
similarly to [ractal processes. For a fractal function z = f(x,y) of two
variables the increments A,z=z(x+Ax,y)—z(x,y) and A;z=
2(x, y + Ay) — z(x, y) satisfy axioms (i)-(iv). In fact, increments in any
direction satisfy the same axioms, and the intersection of a fractal sheet (the
graph of a fractal function of two variables) with a vertical plane is a fractal
curve with the same exponent. It is easy to see that fractal sheets are also
random fractals.

We conclude by asking what is the dimension of the graph of Brownian
motion y = B(t)? Can it be computed from the renormalization property?
In order to have a bounded set, we restrict the domain of ¢ to the closed
unit interval [0, 1]. The graph of y = B(t) (0 <t < 1) is the almost-disjoint
union of four segments, each obtained by a further restriction of the domain
to one-quarter of the unit interval. However, by renormalization, the original
graph is not self-similar but rather only self-affine: statistically each segment
is reduced by a factor of } horizontally but only } (the square root of 1
vertically (see Fig. 2.4). Moreover, if contracting both axes by a factor of 4
led to a similar graph, then D would be 1, despite the apparent non-Euclidean
complexity of the graph. However, we shall sec in Section 3.2 below, using
an appropriate variant of the Hausdorfl dimension, that the missing factor
of 2 in the contraction along the y-axis adds an additional log 2/log 4 to the
dimension, making D = 1.5.

24.2 A randomized Koch snowflake

The relationship between regular and random fractals can be understood by
considering another example, a ‘randomized’ Koch snowflake in which the
bumps move up or down. More formally, a randomized Koch snowflake
has two generators, shown in Fig. 2.5 below. Stage n + 1 is constructed from
stage n by replacing each line of stage n by one of the two generators, chosen
randomly and independently with equal probability, from the preceding
iteration, Figure 2.5 also illustrates the construction of a randomized Koch
snowflake. (The sell-intersections can be avoided by slightly shrinking the
bumps in the generators.) It is easy to sce that each side of the randomized
Koch snowflake is the union of 4 smaller statistically similar curves, each
contracted by a factor of } from the original side. Thus, as in Fig. 2.2
and the subsequent discussion, the randomized Koch snowflake has the
same fractal dimension, log4/log 3, as the corresponding regular Koch
snowflake. :

We shall next discuss the definition of dimension and the algebra of power
laws, or scaling rules, parametrized by scaling exponents.
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Fig. 24 Scaling in Brownian motion. (a) Graph of a typical Brownian function
y = B(z) on the unit interval 0 <1 < 1. (b) The graph consists of four subgraphs—
each obtained by restricting the domain of the original graph to one of the
subintervals 0 € 1 < 4, 1 <1<}, 1 <1< 43 <1< 1.(c) Graph of a rescaled version
of the first subgraph in (b)—streiching the t-axis by a factor of 4 and the y-axis by
a factor of 2 yields the Brownian function y = }B(4r) whose graph is statistically
similar to the graph in (a).

2.5 Dimension

In this section we extend and formalize the concept of scaling dimension
through the concept of Hausdorff dimension, and compare and contrast the
Hausdorf dimension with the nsual topological dimension. (The properties
of dimension functions will be given in Section 3.7.) We shall see that the
Hausdorff dimension is a natural generalization of the scaling dimension
defined above. There is one key difference. The scaling dimension measures
the *mass’ (natural measure) of a self-similar set X in terms of small-scale
copies of X. The Hausdorff dimension measures the mass of X in terms of
Euclidean building blocks: open balls of a given radius. Although the
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Fig. 2.5 Construction of the randomized Koch snowflake. Like the original Koch
snowflake of Fig. 2.2, the randomized version is constructed as the limit of a sequence
of simple iterative steps. Starting with the equilateral triangle at the top left, each
successive stage is constructed by replacing line segments with copies of one of the
two polygonal generators, chosen at random, shown at the top right.
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generality of the Hausdorfl dimension requires a more complex definition,
this generality itself leads to many practical computationally equivalent
techniques (sce Chapter 3).

The Hausdorff and ‘usual® topological dimensions are both defined in
terms of coverings by open sets and agree for nice Euclidean sets such as
manifolds (c[. Hurewicz and Wallman 1941; Mandelbrot 1977, 1982).
However, in general the Hausdorfl dimension necd not agree with the
topological dimension (see also Remarks 2.1 above). We begin by recalling
the definition of open set of Euchdean space.

DEFINITION 2.4 The open ball B(p,r) of radius r about the point p in
Euclidean space is the set

B(p, r) = {x:dist(x, p) <r},

where dist(x, p} is the distance between the points x and p. A set U in
Euclidean space is called an open set if U is the union of a distance r >0
such that the open ball B(p, r) is contained in U. A family of open sets {U,}
is called an open cover of a set X if X is contained in the union Uia U, of
the sets U,.

We shall usually consider open coverings by open balls or open boxes
(boxes without their boundaries).

Both the Hausdorfl dimension and the topological dimension are defined
by the properties of suitably minimal open coverings.

DEFINITION 2.5 The topological dimension of an object X in Euclidean
space is defined as follows (cf. Hurewicz and Wallman 1941, Dugundji 1966,
or any text on elementary point set topology). Consider a family of open sets
(such as open boxes) which covers the object X in the sense that X is
contained in the union of these open sets. A refinement of such an open cover
is a second open cover each of whose open sets is contained in an open set
of the given open cover. The topological dimension of an object is defined
to be D,,, provided that any open covering of the object admits a refinement
in which any intersection of more than D, + 1 distinct open sets is empty
(see Fig. 2.6).

DEFiNITION 2.6 The Hausdorfl dimension D of a subset X of Euclidean
space arises from asking ‘*how big is X?" for very general sets. The answer
comes from counting the number of open balls needed to cover the set X.
For each r > 0, let N{r) denote the smallest number of open balls of radius
r needed to cover X. One can show that the limit

D = lim (~log N(r)/log r) (2.28)

r— 10
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Fig. 26 Topological dimension of the Cantor set and the line. () A typical covering
of the Cantor set by open sets. (b) Refinement of the covering in (a) so thal no two
open sets in the refinement intersect. Thus the Cantor set has topological dimension
0. {c) A typical covering of a line segment by open sets. Any such covering can be
refined so that no three open sels intersect, but some pairs of open sets will always
intersect unless the covering consists of only one open set. Thus a line segment has
topological dimension {: Compare Fig. 3.2 on the box dimension.

exists. The value of D is calied the Hausdorfl dimension of X. (Since
log r —+ —oo, the negative sign is needed in order that D be positive.)

REMARKS 2.3
(a) Formula (2.28) is equivalent to the approximate power law

N(r) = const x r~?. (2.29)

We shall read formula (2.29) as * N(r) scales asymptotically as r~ P or looscly
as *N(r) scales as r~”". Roughly, two quantities x and y are asymptolic as x
approaches 0 if the limit

lim log y/log x (2.30)

x—~0

exists (cf. Lin and Segel 1974). We shall not need the precise definition. The
concept of asymptotic as x approaches oo is defined analogously.

(b) The Hausdorff dimension is due to Carathéodory (1914) and Hausdorff
(1919). Mandelbrol (1977, 1982) provides a nice survey of the Hausdorfl
dimension, its properties, and a list of references. The list includes Hurewicz
and Wallman (1941), Billingsley (1967), Rogers (1970), and Adler (1981).

(c) The generality of the Hausdorff dimension makes it difficult to
compute and to determine its properties (cf. Mandelbrot 1977, 1982). We
therefore develop practical alternatives in Chapter 3.

PROPOSITION 2.3 Let X be a subset of Euclidean space with scaling dimen-
sion D. Then X also has Hausdorfl dimension D.
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Sketch of proof. First, assume that X can be decomposed into n rescaled
copies of itsell, each conlracted by a linear factor of k, and thus that

D = log nflog k. 2.31)

This assumption will be relaxed below. Choose a small r, > 0 and suppose
that X can be covered by N(r,} open balls of radius ry. Each reduced copy
can clearly be covered by N(r,) ‘rescaled’ open balls of radius ry /k. The union
of the r families of open balls used to cover the n rescaled copies of X covers
X, and thus X can be covered by nN{rp) open balls of radius ry/k. Thus, at
least approximately,

N{rofk) = nN{rg). (2.32)
The above construction can be iterated, obtaining the formulae
N(rp/k™) = 0"N(ry) (m=123,..). (2.33)

Formulae (2.33) imply that

lim [~log N{r/k™)/log(ry/k™)]

m-+a

lim [—log n™N(r)flog(ra/k™)]

= w

lim [—(log n™ + log N(ry))/(log r, — log k™)]

=t oo

lim [(mlogn + log N(rp))/(mlog k —log rp)]

f Bl (]

It

I

lim [(log n + (1/m) log N{rp))/log k — (1/m) log ry)]

= log nflog k
=D, (2.39)
as required. Three technical problems must be handled in order to turn

formuia (2.34) into a mathematically rigorous proof. We shall outline their
solution in the Appendix at the end of this Chapter. [J

REMARKS 2.4 Although the point, line, square, and cube have integral
scaling dimensions, the irregular Cantor set and Koch snowflake, with
dimensions log 2/log 3 and log 4/log 3, respectively, do not. The nonintegral
dimensions both locate the figures in size and describe the irregularities. For
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example, in terms of Hausdorfl dimension, the Cantor set is intermediate
between a finite set of points (dimension 0) and a line segment (dimension 1).

In contrast the topological dimension of the Cantor set is 0 since the
Canlor set may be covered by a disjoint family of arbitrarily smail open
intervals. The box dimension (see Fig. 3.2) and related dimensions differ
from the topological dimension in that the topological dimension does not
involve the concept of length or scaling. The box dimension is always at
least as large as the topological dimension whenever the box dimension is
defined. Since we are interested in scaling properties, the topological
dimension is not adeguate for our purposes. Similarly the Koch snowflake
is intermediate between a regular polygon {dimension 1) and a filled-in
planar figure (dimension 2). The highly irregular space filling curves in the
plane have dimension 2.

2.6 Power laws

In this section we show that relationships between measurements of scale-
invariant systems take the form of power laws and give several examples.
For example, consider a pattern of separate islands, in which the ith island
has area x; and perimeter y,. Suppose the pattern is enlarged slightly. I the
patlern is scale-invariant, the area of cach island will be multiplicd by a
factor a, independent of the size of the island, and similarly the perimeters
will each be muitiplied by a factor b, independent of the size of the island.
Moreover, by scale-invariance, the new (enlarged) islands will be simiiar to
the old (not enlarged) islands, so that any relationship between areas and
perimeters of old islands will still hold after enlargement. Since the pattern
is scale-invariant, we may repeat this process, with ax, replaced by a?xy and
by, replaced by b%y,. Continuing inductively, suitably scaled versions of the
pattern have measurements

x=ga'x, and y="by, (k=012.). (2.35)

This inductive process is reminiscent of the scaling of iterative processes
in nature such as the branching of small blood vessels {rom larger ones (cf.
Mandelbrot 1977, 1982), and more generally of the iterated function systems
of Barnsley et al. (1986) and Barnsley (1988).

Formula (2.35) can also be shown to hold for negative exponents k.
Moreover, one can then obtain formula (2.35) first for all rational exponents
k and then for all exponents k by continuity. It follows from (2.35) that

logy=klogh+logy, and logx—=kloga + logx,. (2.36)
Formula (2.36) readily implies that

k = log x/log a — log x,/log a, T(2.37)
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and substituting (2.37) into the first formula in (2.36) yields
log v = (log bflog a) log x + [log y, — (log bflog a)log xg]. (2.38)
I we set ¢ = log b/log a, it follows that
¥ = (yo/xa)x", (2.39)

and thus the scale-invariant behaviour yields the scaling rule (2.39) for areas
and perimeters, parametrized by the area-perimeter exponent

¢ = log h/log a (2.40)

Any two measurements from a scale-invarianl pattern show a similar
exponential relationship. For example, the cumulative frequency exponent
— B parametrizes the relationship between an arca 4, and the number of
islands n(a) of area at least a:

n(a) = const x ¢ # (2.41)

(cf. Korcak 1938). The negative sign 1s used so that the parameter B will be
positive. Distributions of the form (2.41) are calied hyperbolic by analogy
with the rectangular hyperboia y = 1/x.

ProrosiTiON 2.4 Functions f whose graphs appear the same on all scales
must take the form y = f(x) = const x x* for some exponent c.

Sketch of proof. First note that scale-invariance requires that
Slax) = hf{x) (2.42)

for any constant @ and a related constant # which depends upon a. As in
the discussion of the area -perimeter exponent, scale-invariance implies that

J(x) = const x x*, (2.43)
where ¢ = log b/log a, as required. 1]

We shall call any exponent which measures a scaling behaviour of a
function or geometric object, and is itseil invariant with respect to that scaling
behaviour, a scaling exponent. The scaling dimensions of Sections 2.2-2.4
are scaling exponents.

We conclude with an obvious but key result.

PrROPOSITION 2.5 The log transformation of the power law (2.43) is the
linear function

log y = log(const) + ¢ log x. (2.44)

L.og transforms play a central role in computing fractal exponents because
ofl the central role of linear functions in mathematics and statistics. In
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particular, linear regression can be used to fit log-transformed power laws to
log-transformed experimental data (cf. Korcak 1938, Chapter 6 and sub-
sequent chapters). The next three chapters describe a wide variety of useful
scaling exponents and the relationships among them.

2.7 Appendix: Technical points needed to complete the proof of Proposition 2.3

We outline three technical points in the proof of Proposition 2.3.

First, suppose that D is not of the form log nflog k. One can still choose
a sequence of approximate decompositions of X into n; rescaled copies, each
.educed by a factor of k;, with the property that

log n;f/log k; = D, {2.45)

and carefully modify the limits in the above computations. The problem and
its solution are reminiscent of Euclid’s treatment of incommensurable
quantities in discussing similar triangles, and illustrate the need for suitable
generalizations of the scaling dimension.

Secondly, we have not considered whether the coverings obtained by
rescaling are minimal. One needs to check that the computations hold if all
coverings are replaced by minimal coverings {in terms of the number of open
sets). This is tedious and conveys little insight; the details can be found in
the references cited above.

Finally, the limit lim,, . o, in formula (2.34) is equivalent to the imit lim, .. ¢
for a restricted set of values of r, namely the sequence {ro/k™}. This limit
must be replaced by the more general limit lim, 4. The basic idea, in the
simplest case, is that, given any r, we can choose m so that

mrofk™t < r < mrpfk™, (2.46)

simply by letting m be the integer parl of the solution ¢ (grealest integer less
than or equal to 1) to the equation r = ro/k', that is,

m = int[log(ro/r)/log k]. (247
The inequality (2.46) implies that
N(rp/k™) < N(n) < N(ra/km™* ') = kN{ro/k™), (2.48)

since reducing the size of the open balls in a covering can never decrease
the number needed to cover a given set. It is now straightforward to check
that

—log N{ro/k™ )log(re/k™*1) < —log N(r)/logr
< —log N(ry/k™* ")flogl(ra k™). (2.49)
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But the inequality (2.49} can be rewritten as
—log N(ro/k™)/[log(ro /k™) — log k] < ~log N{r)flogr
< —[log N(ry/k™) + log k}/log(ro/k™),
(2.50)

which traps the term —log N(r)/log r in between two terms with the same
limit. Thus the limit as r — 0 can be computed in terms of the sequence
{rofk"} asm — c0. LI




3

Dimension of patterns

3.1 Introduction

In the last chapter we introduced two related concepts of dimension for
fractals: the scaling dimension (Section 2.3) and the Hausdorff dimension
(Section 2.5). We then described the axioms for fractal processes, whose
graphs form prototype random fractals (Section 2.4), and power laws, the
fundamenta! algebraic property that links dimension and self-similarity
(Section 2.6). We shall now develop alternative equivalent definitions of
dimension, with practical methods for computing the dimension of random
fractals, in particular, the graph of Brownian motion. We shall also develop
some additional properties of dimension.

We shall find and use two key principles of scaling behaviour. The first,
which we call the “telescope-microscope’ principle, stales that reducing the
scale of measurement (for example, the size of open sets used in computing
the Hausdorfl dimension or the size of a figure in measuring the scaling
dimension) of an object X by a factor s is equivalent to scaling X up by a
factor s. The second principle states that any measurement the ‘mass’ of a
fractal of Hausdorfl dimension D contained in a box of side s must scale as
sP. This provides alternative measurements of D.

There are many natural ways to determine the mass of a fractal set X and
thus its Hausdorfl dimension. One of the simplest is to lay grids of several
scales over the object and count the number of squares in each grid which
meet the object. This leads to the *box dimension’ (Section 3.2). The box
dimension and the scaling dimension are complementary approaches to the
same problem of measurement: shrinking the boxes is equivalent to magnifly-
ing the object. The box dimension has been used to compute the dimension
of fractal curves such as perimeters of islands and boundaries of leaves
{Morse et al. 1985). Our discussion is similar to that of McGuire (1991). An
alternative for discrete sets is to count the number of points within typical
grid squares. The grid squares are replaced by balls around points of the
object leading to the cluster or correlation (Hentschel and Procaccia 1983)

dimension (Section 3.3). Lovejoy et al. (1986) used the cluster dimension to

characterize the clustering of weather stations. Hastings et al. (1992) used
the cluster dimension to study patterns of pancreatic islets. The cluster
dimension is also used to find patterns in time series (Grassberger and
Procaccia 1983; Sugihara and May 1990a); see Chapter 7. We next develop
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(in Sections 3.4 and 3.5) two special techniques for computing the dimension
of fractal curves and boundaries. The first, the dividers method (Richardson
1961; see Mandelbrot 1977, 1982; Sugihara and May 1990a), ariscs from
measuring the *length’ of a fractal curve, such as a coastline or river, using
a range of scales. The second method uses a power law relationship between
areas and perimeters of a family of [ractal islands. Applications include
Lovejoy's (1982} study of rainfall and cloud patterns.

Korcak's (1938) patchiness exponent for the distribution of areas of a
family of islands, a scaling exponent closely related to the fractal dimension,
introduced in Chapter 2, is developed in Section 3.6.

Although a particular approach may be needed to compute the dimension
in any given application, all of these approaches measure essentially the same
quantity, which thus deserves to be called the fractal dimension.

We conclude this chapter with a description of the main mathematical
properties of dimension functions in Section 3.7. Chapter 4 covers additional
methods for computing the dimension of graphs of functions and introduces
Fourier transform techniques. Details of the Fourier transform are given in
Chapter 5.

3.2 The box dimension

The scaling dimension of the square is based on representing the square as
an almost-disjoint union of small unit squares. The Hausdorff dimension of
an object is based on covering the object by small disks or balls. These ideas
converge in familiar area formulae such as the formula for the area of a circle,

A =nr?, a.n

Formula (3.1} arises from approximating the circle with an almost-disjoint
union (of approximately nr?) small unit squares, and taking a suitable limit
as the unit squares themselves are shrunk. Although the circle is not
sel{-similar—it cannot be written as an almost-disjoint union of smaller
circles—the formula for its area is a simple power law. The exponent in this
power law is the familiar Euclidean dimension of the circle. A similar, larger
circle of radius kr will cover k?* times as many small unit squares as a circle
of radius r. Equivalentiy, shrinking the unit squares by a factor of k will yicld
a smaller scale (and relatively larger circle), again requiring k times as many
unit squares (see Fig. 3.1).

The box dimension of a subset X of the plane is defined similarly, by
counting the number ol small unit boxes which intersect X. (This is the
simplest way to handle partiaily occupied boxes.) Let N(As) denote the
number of boxes in a grid of linear scale As which meet X. Then X has box
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Fig. 3.1 Scaling of circle. (a} A small circle meets 4 unit squares. (b) H the radivs
of the circle is doubled, then it meets 16 of the same unit squares. (c) Alternatively,
the unit squares in (a) are reduced by a linear factor of 1. The same circle as (a) now
meels 16 unit squares. Part (c) may be obtained by reducing both the circle and the
unit squares in (b) by a linear factor of . We call this the telescope-microscope
principle.

dimension D if N(As) satisfies the power law
N(As) = c(1/As)? 3.2)
asymptotically in the sense that

lim N(As)As” = c. (3.3)

As— 0

The box dimension D is computed by solving equation (3.2) asymptotically
for D, obtaining

D = lim [—log N(As)/log As]. 34

As— 0

This is the same as the formula for the Hausdorfl dimension (2.28), except
that minimal covers by ‘round’ open balls (which are hard to count) are
replaced with covers by boxes in a grid (which are easy to count).
Consequently the Hausdorff dimension equals the box dimension whenever
the latter is defined (see Proposition 3.4 below).

As in computations of the Hausdorff dimension and scaling dimension in
Chapter 2, the limit in formula (3.4) need only be computed for a sequence
of scales {As;} which approaches 0 (see the Appendix to Chapter 2). Figure
3.2 illustrates the computation of the box dimension of the standard Cantor




Dimension of patterns 39

O N R L L L T o e Y SR T

P o oy o o e e e e e g o e e g e e

Ty PR PRy, Ep———

i et ettt ittt

Fig. 32 Box dimension of the Cantor set and the line. The Cantor set, as well as
the stage of the Cantor sel shown above, meets 2 of the larger unit boxes {bounded
by solid lines) and 4 of the smaller unit boxes (bounded by dashed lines). The smaller
boxes are } the linear scale of the larger boxes. Continuing this calculation over all
scales yields a box dimension of log 2flog 3, or about 0.63 for the Cantor set. The line
segment shown above meets 3 of the larger unit boxes and 9 of the smaller unit
boxes, Continuing this calculation over all scales yields a box dimension of 1.
Compare Fig. 2.6 on the topological dimension.

set. The box dimension D, whenever it exists, is well defined because of the
following “critical property’. More generaily, all such exponents defined by
power laws share similar critical properties.

ProPosiTON 3.1 Suppose that for a given exponent D, and for sufficiently
small As, the set {N(As) As®} is bounded above and is bounded below by a
strictly positive number. Then

lim NAs" =0 for D' < D and lim NAs® =0 for D' > D,
As 0 As -+ 1}
(3.5)

and thus the limit lim,, ..o N As™ is only both finite and nonzero at the
single value I¥ = D.

Proof, First suppose that D' < D. Then N As” = N As” As?™P. As As
approaches 0, As” =P = 1/As"~?" approaches co, and N As” is bounded
strictly above 0 (the weaker condition that N As” > 0 does not suffice).
Letting As approach 0 yields the first part of equation (3.5). The second part
can be shown similarly, yielding the conciusion. [0

ReEMARKS 3.1 The above proposition holds whenever N(As) As® has a finite
posttive limit as As approaches 0.

A square of side s has box dimension 2 and two-dimensional measure
(area) A = s%. It is aiso easy to see that the box dimension can be defined
for objects in the line, or three-dimensional Euclidean space, or in fact, any
Euclidean space and that the box dimension of a set, provided that it is
defined, does not depend upon the ambient Euclidean space. However, the
situation for the associated D-dimensional measures is more complex, and
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the box dimension can only be used to compute the measure of subsets of
codimension 0 (that is, whose dimension is the same as the dimension of the
ambient Euclidean space). Otherwise the more general Hausdorfl dimension
is needed to define the D-dimensional measure.

ProrosiTION 3.2 Suppose that a figure X has scaling dimension D =
log n/log k. Then the box dimension of X is defined and also equal to D.

Sketch of proof. Suppose that, for a given As, ¢ boxes of side As are required
to cover X. By hypothesis, we may write

X= U (/X +a, (3.6)

lL€£i%n

an almost-disjoint union of n copies of X, each contracted by a factor k. A
single reduced copy of X, not translated, (1/k)X, can clearly be covered by
¢ reduced boxes of side As/k. Therefore, except for small discrepancies due
to incommensurability of the translations &; and the unit As/k, X is covered
by en reduced boxes of side As/k.

This argument can be iterated, implying that X is covered by cn™ small
boxes, each of side As/k™. This implies that, as m approaches oo, the number
of boxes N of side Asfk™ required to cover X satisfies

lim N(As/k™)D = lim cn™(Asfk™)”

m= m o

lim cAsP(n/k®)y"

[ Rad 1]

lim cAs®(n/kiee s}y (by hypothesis)

m=* f

lim cAs®(n/n)"

L el 7]

= ¢As”. 3.7

By proof of the critical property of scaling exponents (Proposition 3.1),
formula (3.7) holds for at most one scaling exponent D. As in Section 2.5
and the Appendix to Chapter 2, the above formula holds for all sufficiently
small boxes. The conclusion follows.

3.2.1 The box dimension of the graph of Brownian motion

As in Section 2.4, consider the graph of y = B(t) on the unit interval 0 € 1 < |
and as an almost-disjoint union of 4 segments, each defined on one-quarter
of the unit interval. Suppose that the original graph can be covered by N
boxes of a given side As. Then cach of the 4 segments can be covered by N
rectangular boxes of width As/4 and height As/2. Each of these rectangular
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boxes is an almost-disjoint union of two square boxes of side As/4 (see Fig.
3.3). In Brownian motion, Ay?/At has a finite limit as At approaches 0, and
therefore the ‘approximate slope’ (slope of an approximating random walk)
Ay/At approaches co. Thus, for small As, the graph of Brownian motion
would have almost vertical slope and meet almost all of the 8N boxes of
side As/4 in Fig. 3.3. There is nothing special about the number 4: it can be
replaced by any perfect square. Extending this argument to all sufficiently
small scales yields a box dimension of log 8/log 4 = 1.5.

The number of pieces in the above subdivision of the t-axis was chosen
for convenience. One could instead have divided the t-axis into & pieces for
any integer k > 1, and covered each of the k? segments by N rectangular
boxes of width s/k? and height s/k. Each ol these boxes could then be further
subdivided into k square boxes of side s/k*. As above, most of the time that
the graph meets one of the k%N rectangular boxes of width s/k? and height
s/kc, it will pass through all of the k smaller square boxes it contains. Thus
the graph meets k*N small square boxes of side s/k?, again yielding
D =log k*flog k¥* = 1.5. This result is readily extended to generalized
Brownian or fractal processes.

ProrosiTion 3.3 The graph of a fractal process of Hurst exponent H (see
Definition 2.3) has box dimension 2 — H.

Sketch of proof. First suppose that H is a rational number, say
H = m/n. (3.8)

One can proceed as in the computation of the box dimension of the graph
of Brownian motion, except that the t-axis is subdivided into 2" segments,
the first cover uses rectangular boxes of width 5/2" and height 5/2™, and the
finer cover uses small square boxes of side s/2" If the original graph was
covered by N boxes of side s, it will also be covered by 2"N rectangular
boxes of width 5/2" and height s/2", and 2**~™N small square boxes of side
£/2". This yields

D = log 2*"~™/log 2" = 2 — m/n. (3.9)

Again, the number 2 can be replaced by any integer greater than 1. This
argument can be extended to irrational Hurst exponents by following the
outline in the first paragraph of the Appendix to Chapter 2. [

REMARKS 3.2 The box dimension of a self-affine figure is sometimes called
an clliptic dimension (in contrast to the scaling dimension) in order to reflect
the nonisotropic scale changes used in the above caiculation (see Schertzer
and Lovejoy 1991).

We have seen that the box dimension is easy to compute. The next
proposition shows that it agrees with the more general Hausdorff dimension.
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Fig. 3.3 The box dimension of the graph of Brownian motion y = B(1), (a) The
graph of y = B(t) with a superimposed grid of unit square boxes, each of side As.
The graph meets 12 of these boxes. (b) The grid is modified by subdividing each unit
square box in (a) into 8 rectangular boxes, each of width As/4 and height As/2,
corresponding to the self-affine property of Brownian motion. The rescaled function
y = 1B(41) is statistically similar to the original function y = B(f). Rescaling the graph
is equivalent to shrinking the boxes in the covering grid (see the telescope-microscope
principle of Fig. 3.1). Moreover, the rescaled graph on the interval 01 <1 is
equivalent to the original graph on the larger interval 0 = ¢ < 4. Therefore, the graph
of y = B(t) can be expected to meet 48 of the rectangular boxes. Tt actually meets 47
such boxes. (c) The grid in (b} is further modified .by subdividing each rectangular
box into two smaller square boxes, each of side As/4. Since Brownian motion has a
steep *slope” at such small scales, the graph of y = B(r} can be expected 1o meet 94
of these small squares, corresponding to the 47 rectangles above. The graph actually
meets 90 of these small squares, yielding an apparent box dimension at this scale of
log(90/12)/log 4 = 1.4. The actual valve is L.5.
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Fig. 3.4 Coverings by square boxes and round balls. A circle of radius r (the smaller
circle above) can be covered by a square of side 2r. Similarly, a square of side As can be
covered by a circle of radius /2 As/2 (the larger circle above). Here the ambient
dimension K = 2.

PROPOSITION 3.4 Let X be a set of Hausdorfl dimension D embedded in
Euclidean space. Then X also has box dimension D.

Sketch of proof. Define an intermediate covering dimension D' analogous lo
the Hausdorff dimension, except that square boxes replace open batls. It is
not hard 1o see that if X can be covered by N(r) open balls of radius r then
it can be covercd by N(r) square boxcs of side 2r (each circumscribed about
an open ball). Similarly, if X can be covered by N'(As) open square boxes
of side As, then it can be covered by N'(As) open balls of radius E'2As/2
{each circumscribed about an open box), where E is the dimension of the
ambient Euclidean space (see Fig. 3.4).
One can easily check that

D' = lim [—log N'(u)/log u] = lim [—log N(u)/log ul=>b. (3.10)

u—0 [TEad-]

Now consider covering X by boxes of side As from a selected grid, and
suppose that N” such boxes are required. (We shall ignore here the
distinction between open and closed boxes. This technical point is readily
handled (see Hurewicz and Wallman 1941).) Clearly, except for this point,

N'(As) < N"(As). (3.11)

But it is easy to see that each box in the more general covering can be
covered by at most 2% boxes from the grid (see also Fig. 3.4) and thus

N"(As) < 25N'(As). (3.12)
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Formulae (3.11) and (3.12) imply that
D' = lim [—log N'(u)/log u] = lim [—log N"(u)/log ul=D (3.13)

u=-+Q u—0
and thus the box dimension is D, as required. [l

In conclusion, there is a close relationship between the box dimension and
the scaling dimension of self-similar figures. The scaling dimension and box
dimension are in fact complementary ways of looking at scaling behaviour.
The scaling dimension considers Lhe effect of shrinking or magnifying a figure
and the box dimension considers the effect of shrinking or magnifying the
underlying grid. We shall define a discrete analogue of the box dimension,
the cluster or correlation dimension, in the next section.

3.3 The cluster dimension

Consider now an object X consisting of finitely many points or pixels.
Although X has box dimension 0, in many cases a dimension reflecting
clustering of the points of X can be defined by power law scaling of the
number of intermediate-sized boxes which meet X. For example, let X,
consist of all the lattice points (points with integral coordinates (m, n)) within
some large box with sides S. Consider covering X, with boxes of side As
where

| « As « §. (3.14)

Since the large box can be divided up into (§/As)* = $%/As? small boxes of
side As, and most of these boxes contain points in X if 1 < As <5, it follows
that the box dimension of X, in the scaling range 1 < As < § is equal to 2
For another example, let X, consist of all of the lattice points on the x-axis
in some interval 0 € x < S. Since the interval can be covered by S/As small
boxes of side As, and most of these boxes contain poinls in X, if 1 <As < S,
then the box dimension of X, in the scaling range 1 < As < S is equal to 1.

We could count the number of points within a typical occupied box instead
of counting the number of occupied boxes. Within the scaling range
1 < As < S, a typical occupied box of side As will contain As? points of X,
and As points of X,.

We now define the cluster dimension of an object X, motivated by this
example. We shall consider occupied boxes of side

s=2r (3.15)

centred on points of X. If the average number of points within such a box
scales as

const x s” (3.16)
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for some exponent D, then X has cluster dimension D. (Compare Ripley’s
(1981, p. 150fT.) discussion of Poisson distributions in D-dimensional space.}

Since we only nced the exponent in the power law (3.16), the cluster
dimension can be defined with disks instead of boxes, and, alternatively, the
cluster dimension can be defined with boxes chosen from a specific grid, See
the proof that the HausdorfT dimension equals the box dimension (Proposi-
tion 3.4).

The first observation, that the cluster dimension can be computed with
disks instead of boxes, is useful in applications and in computation since it
is both natural and easy to study scaling of the number of points within a
distance r of a typical point in a finite point set. Alternatively, one can
compute ail distances between pairs of points and count the number N of
such distances which are less than r. Since the number N’ of pairs of points
within a distance r of a typical point is 2N divided by the number of points
in X, N and N’ must satisfy the same power law. Thus both methods yield
the same dimension. A program for computing the cluster dimension is given
in Section 12.6.3.

‘The second observation relates the cluster dimension to the box dimension.
Consider a finite set X of p points in Euclidean space with box dimension
D over an appropriate scaling range s, < s < 5,. We shall compute the box
dimension using boxes from the grids used to compute the scaling dimension.
Suppose that the average occupied box of side s contains k of these pixels
and that b boxes are occupied. Clearly,

p=kb, and k=p/b. (3.17)

By scale invariance, the p pixels must be divided among p/k boxes of ‘radius’
s. Moreover, the number of occupied boxes, b, scales as (1 /57

b = const x (1/5)? (55 €5 < 5). (3.18)
Combining the above two formulae yields
k = p/[const x (1/5)"] = const x s” (3.19)

Thus the box dimension given by the exponent in the above formula is also
equal to D.

We have shown that the box dimension and cluster dimensions are equal,
and thus, by Proposition 3.2, both dimensions equal the scaling dimension
whenever the latter is defined.

CoORGLLARY 3.1 Consider a set X of box dimension D. Suppose that A isa
finite subset consisting of randomly chosen points from X. Then the cluster
dimension of A is equal to D.

Sketch of proof. Suppose that A consists of # points and X meets k boxes.
Then the average number of points in each of these boxes is nfk. Now mimic
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the proof that the cluster dimension equals box dimension (above} consider-
ing all boxes which meet X. U

Applications (a) This corollary was used by Hastings et al (1992) to
compute the dimension of ductules in the pancreas (see Section 8.3).

(b) Lovejoy et al. (1986) used the cluster dimension to estimate the
dimension of the global weather sensing network, and then used the corollary
and properties of dimension to determine whether strongly clustered storms
could be located. Other applications include our observations about connec-
tions between neuronal processes (Section 8.4) and aboul counting species
(Section 10.7.6).

(c) Estimates of the dimension of stars and galaxies (Mandeclbrot 1977,
1982; Szalay and Schramm 1985) use the cluster dimension at the opposite
end of size scales.

(d) The cluster dimension was used by Grassberger and Procaccia (1983)
to compute the dimension of strange attractors (see Chapter 7).

3.4 Dimension of boundaries

We now describe additional methods for computing the dimension of the
boundary of a fractal island or a collection of fractal islands. Of course, one
could apply the general methods for computing the fractal dimension of a
set of Euclidean space; for example, one could compute the box dimension
of the boundary. However, there are two more specialized natural methods:
the dividers method, analogous to the box dimension, and the area-perimeter
exponent, analogous to the scaling dimension (Mandelbrot 1977, 1982).

The dividers method is best illustrated by asking a classic question: ‘How
long is the coastline of Britain?’ (Mandelbrot 1977, 1982; cf. Sugihara and
May 1990a, which we paraphrase below). This question can be answered
fancifully by using a giant to walk around the coast of Britain, counting his
steps, or more practically using an appropriate pair of dividers to traverse
a map image of the coastline with a polygonal path with steps of length As.
Let N(As) denote the number of steps of length As required to traverse the
coastline.

If the coastline were a simple smooth curve of length L, then the limit

lim N(As)As =L (3.20)

As—~0

is finite, and, in fact, formula (3.20) is the fortula from elementary calculus
for the length of a rectifiable curve. However, empirically, the limit (3.20) is
infinite in the case of the coastline of Britain.

Now suppose that the boundary were a fractal curve of scaling dimension
D = log nflog k. Then the boundary would be (at least statistically) an
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almost-disjoint union of n copies of itself, each reduced by a scale factor of
k. Suppose that measurement of the boundary required N(As) steps of size
As, and yielded an apparent length of N(As)As. Consider measurement of
the boundary using steps of size Asfk. We shall measure each reduced copy
dircctly. Measurement of a reduced copy using steps of size Asfk is equivalent
lo measurement of the boundary itself using steps of size As. Therefore, on
average, N(As) steps of size As/k will be required to traverse each reduced
copy of the boundary, and nN(As) such steps will be required to traverse
the entire boundary. We have shown that

N(As/k) = nN(As) (.21)
and thus
N(As/k)As/k)? = nN(As)(As/k)?
= (nk®IN(As)As®
= (njkes MRk N (Ag) AsP
= N{As)As”. (3.22)

If we let k approach <o, and suitably rescale n using the scaling dimension,
Euclid’s commensurability argument (cf. Section 2.5 and the Appendix to
Chapter 2) implies that

lim N(As)As® = Ly, (3.23)

Ar—= @

with Lp, nonzero and finite. Thus this process, the dividers method, has the
scaling dimension D as critical exponent. The dimension D can be found by
rewriting formula (3.23) in asymptotic form

N(As) = LpAs™ as As— 0, (3.24)

and fitting the data to formula (3.24). The constant L,, in the above formulae
is the corresponding D-dimensional measure of the size of the boundary.

More generally, a curve which can be traced with N steps of size As can
be covered by N disks of radius As, and, conversely, a curve which can be
covered by N disks of radius As can be traced with 2N steps of size As. Thus
the dividers method is just another implementation of the familiar Hausdorff
or box dimension and yields the same value. Similar arguments were used
to relate the box dimension to the scaling dimension (Proposition 3.2), and
the cluster dimension lo the box dimension (Corollary 3.1).

In essence, using dividers of step As ignores smaller features of the
boundary. This is most readily seen by considering the iterative construction
of the Koch snowflake (Fig. 2.2). Recall that the beginning stage, stage 0, is
an cquilateral triangle. Suppose that the perimeter of this triangle is L,
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Fig. 3.5 Illustration of the dividers method. Tracing the Koch snowflake with steps
of length As ignores bumps on scales smaller than As.

making each side L/3. Then stage n consists of 3 x 4" segments, each of
length L/3"*1. As shown below, tracing the Koch snowflake with dividers

of step
As = Lj3"*!, (3.25)

starting at one of the vertices of the original cquilateral triangle, recovers
stage n of the triangle, and thus ignores subsequent stages. Even starting at
a randomly chosen point in the Koch triangle with a random As, not of the
form 3"*!, ignores features significantly smaller than As, and essentially
recovers stage n, where n is given approximately by formula (3.25).

Applications. Bradbury et al. (1984) used the dividers method to compuie
the dimension of boundaries of features in an Australian coral reef (see
Chapter 10).

3.5 The area—perimeter exponent

The ideas behind the dividers method yield a related method, using the
area-perimeter exponent, for a fractal pattern of many islands of different
areas. For such a fractal, scale-invariance implies a power law relation
between the area 4 and perimeter p of each island:

p = const x AE. (3.26)

We shall see that the exponent E is haif the fractal dimension of the boundary
as computed by any of the above methods.
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Regular objects provide a simple example. For exampie, for a circle, the
perimeter or circumference C, the radius r, and the area A are related by the
formulae C = 2ar and A = nr?,

Thus r = (A/n)'/?, and

C = (2n'?)4"? (3.27)

The area—perimeter exponent, 3, is half the fractal dimension, 1, of the smooth
boundary of the circle,

We now perform a thought-experiment on more general fractal patterns
of islands. Consider for example, two islands of areas A; and A4,, and
perimeters p, and p,, respectively. We assume, without loss of gencrality,
that the second island has larger area. Define a linear scale factor k by the
formula

k= AY*/A?  orequivalently 4; = k*A,. (3.28)

The square root in formula (3.28) transforms two-dimensional measure into
one-dimensional measure. Then the second island is statistically a copy of
the first island, enlarged by the (one-dimensional) scale factor k.

Suppose that the perimeters of both islands are measured on the scale As,
and that N, steps are required to traverse the ith island. By scale-invariance,
measurement of the second island on the scale As is equivalent to measure-
ment of the first island on the scale As/k. Since the dimension of the boundary
of the first island can be computed by the dividers method,

Ny(As/k)P = N, As®, (3.29)
an analogue with formula (3.22). Thus
N, = NikP = Ny(A,/A)P* (3.30)

by equation (3.29) followed by equation (3.28). Since the perimeters are
simply N, As and N, As, respectively, formula (3.30) implies that

Pa/py = (A2 /AP, (3.31)

yielding an area-perimeter exponent of D/2 for these two islands.

This sketch may be readily formalized to prove that the area- perimeter
exponent in general is given by D/2, where D is the dimension of the
boundary.

A similar thought-experiment relates the area—perimeter exponent to the
box dimension. Suppose that the perimeters of a family of islands all have
box dimension D. This means that if we approximate the perimeter of these
islands using a grid of scale As, the number of boxes the perimeter of each
island will meet is asymptotically proportional to (1,/As)”. However, as above,
shrinking the grid by a factor k is statistically equivalent to magnifying the
islands by the same factor k. Shrinking the grid by a factor k asymptotically




50 The mathematics of random fractals

multiplies the number of boxes met by the boundary by k”. Thus magnifying
cach island by a factor k also asymptotically multiplies the number of boxes
of fixed scale As which meet by the boundary by &°. In addition, the
magnification asymptotically multiplies the area of the island (which is
proportional to the number of boxes of any fixed scale met by the island
itsell) by k* since the islands have box dimension 2. However, in 2
scale-invariant pattern, large islands are statistically similar to magnified
small islands. Thus the area and perimeter of various islands, both measured
on the same fixed scale, are related by the formula

perimeter = const x k” & const x area”?, (3.32)
yielding an area—perimeter exponent of D/2.

Applications. Krummel et al. (1987) (see Chapter 10 below) used the
area—perimeter exponent to discuss landscape patterns. Lovejoy's (1982)
carly work on cloud shapes and rainfall patterns used both the area-
perimeter exponent and the cluster dimension.

3.6 Cumulative frequencies: the Korcak patchiness exponent B

Fractal patterns of islands can also be described by another scaling exponent,
the exponent B introduced by Korcak (1938, see Chapter 2) to study the
distribution of the areas of the islands. It has been conventional to study the
cumulative frequency distribution, that is, the number N(a) of islands of area
greater than or equal to a. By scale-invariance,

N(a) = const x a™%. {3.33)

The exponent in equation (3.33) must be negative since N(a) is clearly a
nonnegative nonincreasing function of a. We shall call B the Korcak
patchiness exponent.

Applications. Korcak (1938), sec Mandelbrot (1977, 1982), used the exponent
B to parametrize the distribution of areas of Aegean islands. Hastings el al.
(1982) used this method to measure patchiness in vegetative ecosystems,
Chapter 10 summarizes the work of Hastings et al. (1982), Meltzer (1991),
and others in this area.

The exponents B and D are related by simple formulae involving the
dimension of the ambient space (Mandelbrot 1977, 1982, p. 118). For fractal
sels of islands in the plane

B=4iD (0<B<1), (3.34)

and more generally for fractal sets of islands in the n-dimensional Euclidean
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Table 3.1 Computation of B and D for the standard Cantor set

At scale As

Stage of Cantor
set construction Number of intervals Number of gaps

As {Fig. 2.1} of length As, ny(As) of length at least As, ng(As)
1/3 1 2 1
1/9 2 4 1+2=3
121 3 8 1+2+4=7
1/81 4 16 1+24+4+8=15
1/3"  n P 1424 27 20}
space

B=({/mD {(0<B<I1) {3.35)

We cail formulae (3.34) and (3.35) the Mandelbrot formulae, and sketch a
proof of (3.35), largely following Mandelbrot (1977, 1982, p. 118). First, for
motivation, consider the process of computing B and D for the Cantor set
(Fig. 2.1} C by choosing a sequence of scales As, and counting both the
number of intervals of length As required to cover C, and the number of
gaps of length at least As between points in C. The results are summarized
in the Table 3.1,

The dimension D is the limit

lim [log ny(As)/log(1/As)] = log 2"/log 3"

As— 0
= (nlog 2)/(n log 3)
= log 2/log 3. {3.36)

The Korcak exponent B is the limit

lim [log ng{As)/log(1/As)] = lim [log(2" — 1}/log 3"]
As—0

As— 0O
= log 2/log 3, (3.37)
since clearly

lim {log(2" — 1)/log2"] = 1. {3.38)
As~0

Thus D = B.
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REMARKS 3.3 We have restricted the values of As in the above limits to
values of the form 1/3". A standard argument (see equations 2.46-2.50)
above) implies that the above limits are well defined over all scales. We
sketch the proofl. Given a more general scale As, choose n such that

1737 < As < 13, (3.39)
which requires that
n = int(—log As/log 3), (3.40)
where int(u) represents the integer part of u, that is, the greatest integer less
than or equal to u. Formula (3.39) implies both that
Alimo (log As)/n = log 2 (3.41)

and, since the number of intervals ny(As) of length As required to cover the
Cantor set is a nonincreasing function of As, also that

lim [log n,(As)]/r = log 2. (342)
As— 0
Similarly,
lim [log ng(As)]/n = log 2 (3.43)
A D

Informaily, As is asymptotic to 3", and both n,(As) and ng(As) are asymptotic
to 2". Thus the limits in formulae (3.36) and (3.37) are well defined, and
B=D.

3.6.1 The general case (lollowing Mandelbrot 1982, p. 118)

More generally, suppose that a fractal X embedded in the line R has scaling
dimension D = log kflog n. Suppose that there are ng(As) gaps between
points of length at least As, Then the fractal X is statistically the union of
k rescaled copies of itself, each reduced by a factor of n. Each reduced copy
contains nz(As) gaps between points of length at least As/n. Thus the fractal
X asymptoticaily has

np(As/n) = king(As) (3.44)

gaps of length at least As/n (neglecting the order-of-k gaps induced in the
process of taking the union). Iterating formula (3.44) implies that

ng(As/in™) = k™ng(As) (m=1,273.) (3.45)
and thus that

ng(As) = const x As*sk/losn (3.46)
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As above, formula (3.46) implies that B = D. A similar argument shows that
D=nB or B=(1m)D (3.47)

for fractal sets of islands embedded in n-dimensional Euclidean space.

3.7 Properties of dimension

Here is a summary of the main properties of dimension functions, including
all of the equivalent definitions of fractal dimension D as well as the
topological dimension D,,. Consider first objects X and Y of fractal
dimension D(X) and D(Y), respectively, embedded in a Euclidean space E.

3.7.1 Subset relationships

Suppose first that X is a subset of Y. Then the fractal dimension D and the
topological dimension D,,, both satisly the subset relationships

D(X)< DY) and D (X) < D).

3.7.2 Topological dimension and fractal dimension

These are related as follows. For any topological manifold X or for the
Euclidean space itsell, the fractal dimension equals the topological dimen-
sion. The class of topological manifolds includes the regular objects of
Euclidean geometry (points, line segments, arcs, polygons), the graphs of
smooth (differentiable) functions, and open sets and their topological
closures. Loosely, the ‘nice’ objects of calculus are topological manifolds. In
general we have

D,,(X) < D(X) < D(E} = D,,(E).

We may therefore interpret the difference D(X) — D, (X } as a measurement
of the irregularity or nonmanifold behaviour of X. We similarly interpret
the relationship between D(X ) and D(E) = D,,,(E) as measuring the extent
to which X locally fills up E.

3.7.3 Intersection relationships

One may see quite casily that two randomly drawn lines in the Euclidean
plane intersect in a point, and that two randomly drawn planes in Euclidean
3-space intersect in a line. These are consequences of the fact that, for two
subspaces X and Y in general position (a precise statement of random
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Fig. 3.6 [Intersection relationships. Line A and horizontal plane P are in general
position in three-dimensional space, and they therefore intersect in a set of dimension
1 + 2 — 3 = 0, that is, a point. Line B paraliel to plane P and line C contained within
plane P are not in general position. Line B does not meet P; line C meets P in a line.

position) in Euclidean space E, we have

‘Dlnp(X nY)= Dmp(x) + Dlop( Y)— Dmp(E)
and
DX n Y)=D(X)+ D(Y) ~ D(E).

Application (see Mandelbrot 1977, 1982; Hastings et al. 1982; Vicsek 1989,
Erzan and Sinha 1991). Consider a self-similar fractal pattern in space-time,
where space, as represented by the vector x is n-dimensional. This makes
the (x, t)-space (n + 1)-dimensional, with the { = constant hyperplanes #-
dimensional and the x = constant lines one-dimensional. By the intersection
relationships, the ¢ = constant sections have typical scaling dimension

Dacons =D +n—(m+1)=D-1,
and the x = constant sections have typical scaling dimension
Dicconn=D+1—-(n+1)=D—n.
Thus

Dl“:ansl = D,gsc.m,l +n-—1.

Erzan and Sinha (1991) use these results to study the dynamics of the
Bak-Tang-Weisenfeld (1987) model for earthquakes. Caution: these results
do not hold for more general self-affine fractals.

3.7.4 Projection relationships

Consider a projection from Euclidean 3-space to the Euclidean plane, The
entire Euclidean 3-space as well as most planes in 3-space project to the
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Fig. 3.7 Projection relationships. Lines A and B are projected vertically {ortho-
gonally) onto horizontal plane P, yielding the line A’ (the usuai case—line A is in
general position), and the point B’ (since the line B is vertical, and hence nol in
general position).

entire Euclidean plane (only planes parallel to a *vertical’ line in Fig. 3.7
project to lines). Most lines project to lines, and all points to points. Note
that we might consider a random plane (with respect to the direction of
projection) instead of considering most planes. These geometric projection
relationships reflect the fact that for a scale-invariant object X embedded in
Euclidean m-space, its projection to Euclidean n-space has fractal dimension
max { D(X), n}, and similarly for topological dimension,

Moreover, the same result holds for random maps ol maximum rank for
Euclidean m-space to Euclidean n-space. A map has maximum rank if its
Jacobian matrix has maximum rank (n in this case). This implies that the
map locally is a projection onto Euclidean n-space, but the direction of the
projection may change from point to point in Euclidean m-space.




4

Dimension of graphs of functions

4.1 Introduction

In the previous chapter we developed the theory and computation of the
fractal dimension (and related exponents) of spatial patterns. We now
consider the dimension of graphs of functions, and especially the graphs of
time series. Although the methods of Chapter 3 can be applied to sets of
Jractal islands of the form

{t:f() =}, (4.0

there are additional methods for computing the fractal dimension (and
related exponents) of graphs of scale-invariant or self-affine functions and
time series (regarded as functions with discrete domains) which use more of
the information available.

We shall develop these methods in the next three sections: Section 4.2,
second momenl techniques which compute the fractal Hurst exponent by
fitting the data to the axiomatic description of a fractal process (see also
Definition 2.3); Section 4.3, closely related local second moment (correlation-
like) techniques (see also formula (2.26)); and Section 4.4, growth of range
techniques which make use of the renormalization property of fractal
processes (see also formula (2.27)).

The computational methods of the previous chapter also yield scaling
exponents for the graphs of fractal processes; see Section 4.5. Section 4.6
extends Section 3.6.1 by describing Mandelbrot {1977, 1982) formulae for
these new exponents. Fourier transform techniques are introduced in Section
4.7, and are developed more fully in Chapter 5. We conclude the introduction
with one crucial warning: one must be careful wtih fractal analysis of short
time series just like any other statistical technique. One easy way to estimate
confidence limits is to delete an initial or final segment of the series and
repeat the analysis. Simulation methods can also be used.

Finally, the study of the fractal exponents of time series and functions
poses two special questions: whether to detrend the data and when Lo take
sums. The first question concerns data which may contain linear or cyclic
trends. The second question is best illustrated by an example. In modeHing
river discharges, Hurst (1951, 1956) and Mandelbrot (1977, 1982) considered
the cumulative discharge (the sum of discharges to date) rather than the
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discharges themselves as a fractal process. The rationale lor this choice, and,
more gencrally, answers to these questions, will be given in Chapter 9.

4.2 Secomdl moment techniques

‘The third axiom for fractal processes (see Definition 2.3, restated below)
provides a natural way to determine the Hurst exponent H in a postulated
fractal model of experimental data. For a fractal process and any At, the
corresponding increments Ay have expectation 0 and satisfy the equation

E(Ay®) = c A1, 4.2)

For an example from a fractal process, the mean value of Ay® is an unbiased
estimator of expectation E(Ay?). The exponent 2H in equation (4.2) can be
determined empincally by using linear regression to fit log-transformed data
to the log-transformed version of equation (4.2):

log E{Ay?) = logc + 2H log Ar. 4.3)

In addition, the exponent 2H can be determined locally in the scaling interval
from At to 2 Ar by computing the ratio

E(Ly(t + 2 A1) — y()FP)/E(Ly( + A) — y(0]%). {4.4)
More precisely, axiom (1) implies that
H = {{log E(Ly(t + 2 At) — y()]*) — log E([y(t + A) — p()]})}, (4.9

Since the Hurst exponent H of a fractal process is independent of the time
step, local computations of the form (4.5) can be used to test whether a given
process is fractal. One can substitute more general intervals, or even windows
containing more than two data points, to obtain similar local [ractai
cxponents. Similar windowing techniques can be applied to all computations
of fractal exponents. These techniques will be used later to determine scaling
regions in ecosystem patterns (Scction 10.5) and in natural time scries
(Chapters 9 and 11).

Caution and critique. In the case of long time series, the mean increment Ay
will be very small compared with the second moments discussed above, and
the terms second moment and variance may be used interchangeably. This
15. however, not the case for short time series, and we prefer to test the
hypotheses about the expectation and second moment independently, A
similar caution holds for correlation techniques below.
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4.3 Local second moment (correlation-like) techniques

The Hurst exponent can also be determined from the coefficient of correla-
tion between successive increments (axiom (iv) of Definition 2.3) using
formula (2.26). Under the assumption that the increments Ay have expecta-
tion 0, the coefficient of correlation p is determined directly from its
definmtion:

p= E([y(t + 2 A0) — y(t + A][y(r + AD) — p(O)])
{E((p(t + 2 At) — y(t + AYTHE([y(t + A — p(O)]

the expected vatue of the product of successive increments divided by the
geometric mean of their second moments. The mean values of the terms
[yt + 2 At) — (1 + AtYIL (e + A) — p(0)], [p(t + 2 A1) — y(t + An)J?, and
[y(t + Af) — y(£)]? serve as unbiased estimators for the expectations. The
locat Hurst exponent is then given by the formula

22 =2 4 2p, or H =log(2 + 2p)/log 4, 4.7

(4.6)

as derived in formula (2.26).

More generally, formulae (4.6} and (4.7) compute the local fractal exponent
over the scaling interval from At to 2 At, even when the expectation is not
zero, and p is not the coefficient of correlation. The axioms for a fractal
process may be tested by repeating these local computations for several
vaiues of Ar. This method will be used in Chapter 11 to test whether
popuiation fluctuations are in fact fractal.

4.3.1 Thought-experiment

Consider a short time series obtained from a fractal process with H > 3,
meaning that the increments are expected to be positively correlated. In this
case we expect the mean increment to be nonzero. Can the above techniques
still be used? Yes, if the coefficient p is used to estimate the local fractal
exponent, and is not interpreted as a coefficient of correlation.

4.4 Growth of range

The concept of renormalization may be applied to compute the [ractal
exponent H from the growth of range, with-one caveat stated below, This
method is closely related to the rescaied range of Mandelbrot and Van Ness
(1968) and Mandelbrot and Wallis (1969).

The range of a fractal process {y(t)} over a time interval At is defined to
be the difference between the maximum and minimum values of y(t) in that
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interval. We shall let R(At) denote the average range of the process { y(f)}
over all intervals of duration Ar. The scaling behaviour of the range R(Ar)
as a function of the duration Af can be ¢asily determined by renormalization.

If {y(2)} is a fractal process with fractal exponent H, then, for any constant
¢ > 0, the process

Ye = (1/c") per) (4.8)

is another fractal process with the same statistics. Thus the processes { y(f)}
and {y.(£)} = {(1/c")y(ct)} shouid have the same expected range, over all
intervals. Formula (4.8) would then imply that the range of the process { y (1)}
over an interval of duration At is the 1/c” times the range of the process
{ (1)} over an interval of duration At/c. Replacing At/c by At implies that
the range should scale as

R(At) = ¢ Ar", 4.9

However, in the case of a fractal process in discrete time, formula (4.9) only
holds for sufficiently long time intervals, since there are not enough data
points within a short time interval to adequately determine the range.

Unfortunately, many natural processes can only be sampled in discrete
time. Therefore, formula (4.9) must be corrected before it can be used to
determine the fractal exponent of real data. It is clear that restricting the
computation of the range of y(t) over a time interval by using just a few
points in that interval underestimates the range, and thus for short intervals,
R(Ar), will grow faster than Ar¥ (see Table 4.1).

Thus the process defined by sampling Brownian motion at discrete times
has H = 0.63, not the expected 0.5. This investigation was motivated by
studying time series of bird populations with relatively few data points (see
Chapter 11, especially Section [1.6).

Table 4.1 Growth of range R(At) for Ar at most
5, compared with the value (At)'/? expected from
the axioms for a continuous-time Brownian

process

Expected R(At)}

from analysis
Time lag, At of all paths (Ary'#?
1 1.0 1.0
2 1.5 1.414
3 20 1,732
4 2.375 2.0
5 2.75 2.236
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4.5 Other techniques

The techniques of Chapter 3 may also be applied to the determination of
scaling exponents for the graphs of fractal processes. We shail recall the most
useful technigues here.

The fractal dimension D of the graph may be determined with the box
dimension or a similar technique. One can also determine the fractal
dimension Dy of the set of zero-crossings of the graph. More formally, Dy is
just the fractal dimension of the set

{t: (1) = 0O} (4.10)

Since the set of zero-crossings is just the intersection of the graph with the
line y = 0 in two-dimensional Euclidean space,

Dy=D+1-2=D-1. (4.11)

One can also compute the Korcak patchiness exponent B for the intervals
on the t-axis where (1) is positive, or even for all of the intervals which
result from cutting the f-axis at zero-crossings. The exponent B is defined
by the power law

NIL>D=cl"8, (4.12)
where N(L > ) denotes the number of intervals of length greater than I. Then
B =D,, (4.13)

following an argument similar to those in Section 3.6.1.
The calculation of the fractal dimension of the graph of Brownian motion
implies that
D=2—-H, (4.14)
and thus
Dp=1—H and B=1-H. (4.15)
This completes the list of Mandelbrot relations among the exponents.
These relations have important consequences for applications, for example,
the Korcak exponent for the distribution of durations of floods or droughts

is closely related to the power law for the range of river discharges (sce
Chapter 9).

4.6 Fourier transform techniques

The use of Fourier transform techniques provides another extremely useful
exponent H. We shall briefly motivate Fourier transforms here, but defer
most of the details to Chapter 5.
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Consider first the idea of a surface, such as the surface of the ocean, made
up of waves upon waves. We can build up such surfaces mathematically by
adding up a sequence of simpler waves, defined by sine and cosine functions.
Fourier transform technigues represent the surface in terms of the amplitudes
(and signs, that is, Fourier coefficients) of the sine and cosine waves required
to buitd up the surface. If the surface is fractal, then the amplitudes should
satisly a power law which depends upon the fractal exponents of the surface.
In the simpler case of a fractal curve, the power spectrum (set of variances
of the Fourier coefficients) scales as

eff W, (4.16)

where [ is the frequency. Surfaces may be resolved in two directions. Power
spectra of surfaces scale as

/12T = /(L) (4.17)

where f, and f, are the frequencies in the two directions. Aithough these
methods are readily and frequently used to construct fractal curves and
surfaces (the Mandelbrot~Weierstrass fractals of Berry and Lewis (1980)),
some care is needed in their application (see especially the caution in Section
5.1 below).




5

The Fourier transform

5.1 Introduction

Chapter 4 introduced the use of Fourier transform techniques in the
caleulation of fractal exponents. This chapter describes the mathematical
details. The Fourier transform of a time series shows how that series is built
up from simple periodic functions. Similarly, the Fourier transform of spatial
data describes spatial periodicity. We shall show that the Fourier coefficients
associated with Brownian and fractal processes satisfy power law scaling
rules corresponding to the scaling rules which characterize their self-similar
behaviour. The scaling rules of the Fourier coefficients are easily used to
calculate the corresponding fractal exponents. Conversely, the most common
class of random fractal curves and surfaces, the Mandelbrot-Weierstrass
fractals (Berry and Lewis 1980; Mandelbrot 1982}, is constructed by apply-
ing the inverse Fourier transform to appropriately scaled ‘Fourier coeffi-
cients’ with random phascs. This construction builds up complex patterns
from waves upon waves, recalling an intuitive picture of the surface of the
ocean.

This chapter is organized as follows. Section 5.2 reviews the foundations
of Fourier transforms, beginning with the Fourier series of a continuous
function [ defined on the unit interval 0<t< 1. The Fourier series
represents the function f as a sum of sine and cosine functions. Section 5.3
develops practical implementations. The Fourier transform is usually imple-
mented using a computer algorithm called the fast Fourier transform {FFT)
(see Aho et al. 1974; Burrus and Parks 1985; Horowitz and Sahni 1978;
Kreyszig 1988). The FFT uses complex cxponentials in place of the
equivalent sine and cosine terms. The set of Fourier coefficients of a function
is frequently called its spectrum. The fast Fourier transform has a long history
(see Cooley et al. 1967; Aho et al. 1974, p.276) extending back to Runge and
Kénig (1924), Danielson and Lanczos (1942), and Good (1958). The most
common implementation is due to Cooley and Tukey (1965). The basic
terminology of power spectra (essentially squares of amplitudes of the
spectrum) is reviewed in Section 5.4. In Section 5.5, we derive the Fourler
series of Brownian motion from the axioms, and state the corresponding
scaling rule for both Brownian and fractal processes. The converse process
for constructing Mandelbrot—Weierstrass fractals (Berry and Lewis 1980) is
given in Section 5.6.
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Caution and critigue. Although the Fourier transform of any sequence of
Fourier coefficients (spectrum) is periodic, that is, f(0) = f(1), Fourier
analysis is frequently applied to nonperiodic functions such as random walks.
The lack of periodicity will generate additional high-frequency terms in any
discrete Fourier transform, and therefore scaling regions must be chosen
carefully to avoid such high-frequency terms.

5.2 Review of Fourier transforms

The Fourier transform of a function f describes f as a sum of multiples of
simple periodic functions, sines, and cosines, at a fundamental frequency and
its harmonics. The coefficients of these functions describe the behaviour of f
at scales corresponding to their respective frequencies. Both periodicity and
random-walk behaviour may be clearly represented in terms of correspond-
ing patterns in the Fourier transform of f.

5.2.1 The standard case: the Fourier transform of a continuous function f
on the closed interval [0, 1]
Let f be a continuous function defined on the closed interval [0, 1] which
satisfies the condition f(0) = f(1). The Fourier transform in this case
represents the function f as a sum {its Fourier serics) of simple periodic
functions:

f(t) =Y. a, cos 2nnt + Sag -+ Y, b, sin 2znt. (5.1
Here all sums run over n = 1,2, 3, ..., and the coefficients are given by the
integrals

e, =2 Jf(t) cos2antdx (n=0.1,23,..) (5.2)

and
b,=2 If(l) sin2mntdt (n=1,2,3,..), (5.3)

where all integrals are over the unit interval,
Assuming the decomposition (5.1), the formulac (5.2) and (5.3) follow from
orthogonality relations among the sine and cosine functions:

: )
sin 2zmt sin 2mnt dr = {0 fr B
i ifm=an,
0 ifm#n, {(5.4)
J‘cos 2rpitcos 2mntdt =41 fm=n=0,
! ifm=n=0,

Jsin 2mmt cos 2rnt dt = 0. J
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The orthogonality relationships are easily derived using integration formulae
from elementary calculus. Formula (5.3) follows from integrating

jf(t) sin 2mmt dt = ff(t) (3. a, cos 2mnt + Yag + 3 b, sin 2nnt) dt
=) 4, fcos 2nnt sin 2emt dt + }a, J.sin 2my di
+ Y. b, J.sin 27nt sin 2mme dt = 3b,,. (5.5)

Formula (5.2) uses a similar integration of ff (f) cos 2amt dt.

We shall need one key formal property of the Fourier transform, namely
linearity. The Fourier transform can be considered as a function T from the
vector space of all suitable (piecewise continuous) funclions on the interval
0 < ¢ < 1 to the vector space of all sequences of Fourier coefficients. Let ¢ be
a constant and write the Fourier transform of a function f as 7(f). Then

Th+ L =T)+ Tf) and T(f)=cT(f). (5.6)

This property, linearity, follows immediately from the analogous property for
the integrals (5.2) and (5.3) which define the Fourier coefficients.

5.3 Implementing the Fourier transform

The cfficient application of Fourier transform techniques relies upon an
extremely clever and efficient numerical algorithm for computing transforms.
This algorithm is known as the fast Fourier transform (FFT), and is available
on most mathematical application packages. Although we shall not develop
the FFT algorithm itself because of its mathematical complexity, we shall
indicate its relation to the Fourier transform of Section 5.2, above. A program
is included in Chapter 12,

The FFT implements a discrete version of the Fourier transform called
the discrete Fourier transform (DFT). The DFT requires only a finite
sequence of data points, for example from a time series, in place of the
continuous function f above, and is thus more useful than the standard
Fourier transform in most applications. The DFT and FFT are most easily
described with complex exponential functions in place of sine and cosine
functions.

The relationship between sine and cosine [unctions and complex exponen-
tial functions is given by the formulae

exp(i¢p) = cos ¢ + isin ¢ (5.7)
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and correspondingly

cos ¢ = [explid) + exp(—i)]/2 and sin ¢ = [exp(id) — exp(—ip)}/2i.
(5.8)

These relationships can be used to rewrite the Fourier series (5.1) in terms
of complex exponentials and complex coefficients by replacing the building
blocks cos 2nnt and sin 2nnt by corresponding combinations of exp{2nint)
and exp{ —2znint). This yields

[y =Y ¢, exp(2mint), (5.9)

where the summation extends over all integers n= ..., =2, —1,0.1,2,...

Formulae for the coefficients ¢, may be derived by making similar
substitutions into formulae (5.2) and (5.3), or by directly using the ortho-
gonality relationships

T
J‘exp(?_nimr) exp(—2nint) dt = {I ] m=n (5.10)
0 ifm#n.

The integral is again over the unit interval. Note the use of the complex
conjugate exp( — 2nint) in place of exp(2mint), here and below, in integrals of
certain products. We obtain the formula

C, = J.f(t) exp(— 2nint) dt (5.11a)

Caveat. Some authors (Aho et al. 1974; Horowitz and Sahni 1984) define
the discrete Fourier transform as the complex conjugale of our transform.
For example, they replace formula (5.11a) by

C, = jf([) exp(2nint) dt, (5.11b)

and make a corresponding change in formula (5.7). Others (Burrus and Parks
1985; Kreyszig 1988) follow our sign convention. Since we shall only need
the magnitudes of the Fourier coefficients in order to compute fractal
cxponents, the choice of sign convention has no effect outside of the
mathematical derivation.

The discrete Fourier transform (DFT) is defined by constructing a
discrete analogue of the standard Fourier transform. This avoids errors
implicit in discrete numerical integration problems with extending a time
scries to a continuous function. The function f on the unit interval is replaced
by the vector

f":(fﬂ’fh'"!j;n—l)' (5.12)
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The DFT represents f as a sum of vector analogues of complex exponential
functions, namely the vectors v; whose kth entry is

exp(2mijk/n). {5.13)

For example, the vector vy = (1, 1,..., 1) is the analogue of the function
exp(2xilt), the vector

v, = (1, exp(2nifn), exp(2ni-2/n), cxp(2ni-3/n), ..., exp(2ni-(n — 1)/n))
is the analogue of the function exp{2xit), and the vector
v; = (1, exp(2nij/n), exp(2nij - 2/n), exp(2mij - 3/n), ..., exp(2mi-j(n — 1)/n))

is the analogue of the function exp(2rijr).

We shall use the methods of linear algebra in order to obtain the DFT.
Let M be the matrix whose jth column is just v;. Then the (j, k}th entry of
M (jth column, kth row) is given by

M, = exp(2nijk/n). (5.14)

£

For example, if n = 4, then
M= {5.15)

Let N be the conjugate of M:
Ny, = exp(—2nijk/n). (5.16)

J

By direct calculation, the product MN is the diagonal matrix whose diagonal
entries are n. Therefore,

(}/m)MN =1, (5.17)

the identity matrix, that is, the matrices (1/n)M and (1/n)N are inverses, and
the columns of M are a basis for the vector space of n-dimensional
complex-valued vectors.

Since M and N are symmetric matrices, we may interchange rows and
columns almost at will. In particular, we shall identify f with its transpose,
the column vector fT, whenever f is multiplied by a matrix, and simply
write f in place of f7. Now write

f = (1/n)MNf (5.18)
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and consider the trunsformations

f = NS (5.19)
and
&~ (1/mMg (5.20)

The transformation (5.19) transforms f into the vector g = Nf whose
entries g; are the coefficients in the expansion of f as a lincar combination
of the rows of the matrix (1/n)M:

S= ;gj(l/")"j; (53.21)

as required. Thercfore the transformation (5.19) is the discrete Fourier
transform or DFT, and (5.20) is the inverse discrete Fouricr transform.

We note that the DFT and inverse DFT are automatically linear because
multiplication by a matrix is linear, see (5.6). Converscly, one could dertve
the matrix representation formally from linearity. We chose the more
compulational and less abstract approach.

Moreover, there is no problem with convergence or the way with which
vectors can be represented by Fourier transform methods because there are
no limits or infinite sums. One can show that there is a close relationship
between the Fourier transform of a function and the DFT of the time series
obtained by sampling the function at discrete intervals. The details are
complex and are omitted.

We now consider a computer implementation of the DFT: f — Mf.
Computing the product Mf is straightforward, but involves a large computa-
tional cost for large n. Computing the product of an n x n matrix with a
vector of length n in the usual way requires n? (complex) multiplications and
n? (complex) additions, thus the order of n* operations. (This is usually
denoted O(n?) operations in the computalional complexity literature.) For
large i the computational cost may be prohibitive. For example, ifn = 10000
in a time series problem, then there are the order of 10® operations. The
analogous two-dimensional DFT for two-dimensional arrays {functions of
iwo discrete variables) is even more expensive: a small two-dimensional
(300 x 300) DFT requires the order of 10'° operations.

However, whenever n is a power of two, the matrices M used to compute
the DFT have useful symmetry properties. These significantly speed up the
calculation, and ultimately lead to the fast Fourier transform (FFT). These
properties can be used to reduce the computation of 2 DFT of length n to
two computations of a DFT of length n/2, together with n additions and
subtractions. Figure 5.1 illustrates this symmetry in the case n = 4.

At the cost of increasing the program complexity, the FFT uses these
symmetry properties to sharply reduce the number of computations needed
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The DFT of a vector of length 4

| 1 1 iw wHx+y+2z (w+y)+(x+2z)
1 i -1 —i]| x W+ix—y—iz (w— Py +i{x—2z)
I -1 I -1y} ¥y - W—X+y—z N (w4 p)—{(x+2)
1 —-i -1 idL z w—ix—p+iz (w—y)—i(x—2z)

can be computed in terms of two DFTs of length 2
I S
1 —1]ly Wy
[1 I][x] N [x + z:,
1 =11tz xX—z
and the additions and subtractions

w+p+(x+2) and (w—y)+i(x—2z).

Fig. 5.1 Symmetry properties of DFT matrices.

to compute the DFT. The DFT requires the order of n log, n operations for
a vector of size n, This represents a significant practical improvement over
the computational cost of the DFT (the order of n? operations) for # > 16.
Figure 5.2 illustrates the relative computational costs of the FFT and the
basic DFT algorithms.

4096
¥ 3072| m OFT
g | FFT
£ 2048
£
£ 1024

0.

2 4 8 16 32 b4
Size n

Fig. 5.2 Relative computational cost of the discrete Fourier transform (DFT) and
the fast Fourier transform (FFT).
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5.4 Power spectra

It is convenient to introduce several alternative representations of the spectra,
or coefficients in the Fourier transform. These coefficients are frequently
described in terms of amplitudes and phases. The power spectrum of a
function is the sequence of squares of the amplitudes of its Fourier
cocfTicients. We review the precise definitions here.

First, let { be a continuous function on the interval [0, 1] with f{0) = f(1),
as in Section 5.2, and recall the Fourier series of f:

f(ty=Y a,cos2nnt + }ag + 3 b, sin 2zni. (5.22)

We combine cosine and sine terms of the same frequency, obtaining the
equation

f(1) = 1ao + Y. (a, cos 2ant + b, sin 2nnr). (5.23)

In addition, since the formula for the cosine of the difference of two ‘angles’
yields

¢, cos[2n(nt — 8,)] = ¢, cos 2ad, cos 2nnt + ¢, sin 20, 2ant, (5.24)

we can rewrite the Fourier series (5.23) as

J0) =Y ¢, cos[2n(mt — 6,)], (5.25)
where the amplitude
co=1ap,  Ca=(a; + 6D (n>0), (5.26)
and the phase 3, (well defined if ¢, > 0) satisfics the conditions
a, =c,cosd, and b, =c,sind, (n>0). (5.27)

The use of ¢, here should not be confused with a different use in the DFT
and FFT.

Formula (5.25) clearly expresses the idea that a continuous function may
be built up of waves upon waves, at various scales 1/n, of appropriate
amplitudes c, and phases é,,.

It is much easier to describe amplitudes and phases in the case of complex
exponential representations of the Fourier transform, and in the case of the
DFT and FFT. In both cases, the coefficients ¢, contain both the amplitude
and phase information. Any complex number z = x + iy can be written as
the product of a real number r and a complex number ¢'* of magnitude 1,
¢, namely re'®, where the amplitude, denoted ||, is given by

7l =r=(x*+y)"

and the phase ¢ (well defined in the interval 0 < ¢ < 2r if r > 0) satisfies
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the conditions
X = r cos ¢, y=rsin ¢;

compare with formula (5.26) and (5.27). This yields the amplitude (denoted
lc,) and phase for the FFT and DFT (the phase is interpreted slightly
differently from that in the standard Fourier transform).

The amplitudes are usually represented by the power spectrum which
represents the ‘energy’ associated with each frequency. The power specirum
is just the sequence of squares of amplitudes, although in the discrete case
(DFT and FFT), we restrict the frequency j to the interval

0<j<n, (5.28)

where n is the number of data points (components in the vector f and its
transform).

Technical remarks. The coefficient c, is essentially the average value of the
components of the vector f. For j > n/2, the frequencies fold back, in that
the Irequency associated with the vector

v; = (1, exp(2nij/n), exp(2mij- 2/n), exp(2mij-3/n), .. , exp(2zmi-j(n — 1)/n))
m2<j<n=1)

is n — j. However, the corresponding Fourier coefficients provide no new
information in the case of the DFT or FFT of a real-valued vector since for
real data, the amplitudes |c;) and phases ¢; satisfy the symmetry conditions

e =leazjls #5=—~u-; (O <j<n2). (5.29)

This follows from an easy calculation (cf. Burrus and Parks 1985, p.27).

5.5 The Fourier transform of Brownian motion

Since Brownian motion (and its fractal generalization) are scale-invariant,
their Fourier transiorms should alse be scale invariant, and thus (the
statistics of) their Fourier coefficients should satisfy appropriate power laws.
We shall show how the power law [or Brownian motion follows formally
and easily from the axioms for Brownian motion and from elementary
calculus. These power laws will be used in the next section and in Chapter
12 to generate a class of fractals called Mandelbrot—Weierstrass fractals. The
results of this technical section are summarized in the next section.

Let f be a Brownian function on the interval [0, 1] with f(0) = f(1). We
shall calculate the spectrum of f, or more precisely, scaling rules for its power
spectrum. In doing this calculation, it is easiest to use complex exponentials,
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and then to calculate statistics on the distribution of the random variables
C, corresponding to the Fourier coefficients

c, = J f(t)e~ 2 dy (5.30)

for randomly chosen Brownian functions f. We shall see that the Fourier
coefficients have expected value 0, random phases, and variances which
satisfy power law scaling.

ProrosiTioN 5.1 The expected value E(C,) is 0.

Proof. The key idea is linearity of the expected value of a random variable.
Fix a value of n. We shall compute the expectation

E(jf(r) exp( —2mint) dt) (5.31)

from the definition of the Riemann integral. For any Riemann sum which
approximates the integral in (5.31), we have

E(Z fan cxp(-Ziutj)) =Y E(f(t}) exp(—2nint;))
=Y exp{—2xnint;) E(f(t}) =0, (532)

since, for at any time t}, the expected value E( f(t})) of Brownian motion
is O (there is no drift toward the right or left). Passing to the Riemann integral
by taking limits as the mesh of the Riemann sum approaches 0 implies that
the expectation (5.31) is zero, as required. [

In fact, we have shown that the real and imaginary parts of the expectation
of the complex random variable

C,= X, +iY, (5.33)

are both zero. We shall use this result later in describing the statistics of the
phases of the spectrum.

We now proceed te calculate the scaling behaviour of the expecled value
of the power spectrum

E(C,1) = E(U f(1)y e~ 2 d:r). (5.34)

{Since the expected value of the coefficient C, is 0, the expected value of the
power spectrum coefficient E(JC,{?) is also the variance of the coefficient C,.)
In order to do this, we calculate E(JC,[*) as a function of n and E(/C,|).
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PROPOSITION 5.2
E(IC,|%) = (1/n)E(C,1?)  (n>0). (5.35)

Proof. Let n > 0 below. The first step involves integrating
If(r) exp(—2mint) dt (5.36)

by a substitution which in essence replaces the factor exp(—2maint) by
exp( —2miu). To do this, let u = nt, and thus

t =u/m and dt =du/n. {537)
[ntegration by substitution yields

i ]
.[ J(@) exp{—2mint) dt = (I/n)j f(u/n) exp(—2niu) du

1] [1]

1
= (U/n) (J f(ufn) exp(—2niu) du
0
2
+.[ [ (ufn) exp( —2miu) du
1

+...+In f(u/n)cxp(-Zniu)du). {5.38)

n—1

The required expected value may be computed by now computing the square
of the magnitude of both sides of equation (5.38).

2

1
J‘ J(1) exp(—2nint) dt

o

= (I/n)’

1 2
.[ Slufn) exp(—2miu) du + J‘ fufn) exp(—2miu} du
0 1

4

+ot I ’ [(u/n) exp(—2miu) du
n=1

2

=(I/n)* ) JJ [(ufn) exp( —2niu) du
ildj-1

+ (/) (J-JI f(ufn) exb(—?.niu) du
i1

I#k

K
+ ‘[ S (ufn) exp( - 2niu) du). (5.39)
k=1
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Here the bar denotes the complex conjugate and the last equality requires
rewriling the square of each magnilude iz]> as the product of = and ils
complex conjugate. However, for j # k,

!
] k
= F(I [tufn) exp( —2miu} du x I Sluin) exp( —2aiu) du)
i1 k-1

' k
J.J flufin) exp(—2miu) du x J‘ Stufn) exp(—2miu) du
=1 k=1

= E(-[-i [fu/m) — f(j — 1)/n] exp(—2xiu) du
i1

% J‘k [ f(ufny — f(k — 1)/n] exp(—2miu) du)

{since the Fourier transform is linear and the Fourier series of a constant is
just the constant itself, or alternatively by a direct calculation)

= E(JJ [ flu/m) — f(j — 1)/n] exp(—2niu) du)

k
x E(I [flu/n) — ftk — 1)/n] exp( —2miu) du)
1

l -
(since the two integrands and thus the two integrals are independent)

=0 (5.40)

(by Proposition 5.1: the expected value of the Fourier coefficients of
Brownian motion is 0).
Therelore equation {5.39) implies

i

J. | 1(0) exp( —2xinr) dt
1]}

= (1/n)’ (

2 2 2
+ lf [f(ufn) exp(—2miy) du
1

2
). (5.41)

J‘ l f(u/n) exp(—2mit) du
0

o I +

Jm Sf(u/n) exp(— 2min) du
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Moreover, each term on the right-hand side of equation (5.41) has the
same expected value, so that we need merely rewrite

1
j f(uf) exp( —2niu) du (5.42)
0

as an integral of a Brownian function defined directly on the w-axis. It is
here that we invoke the self-similarity of Brownian functions, namely, that
for any nonzero constant ¢, and any Brownian function f, the rescaled
function ¢~ % (cs) is itsell a Brownian function with the same statistics as
the original function f(s) (see Section 2.4). Therefore, the statistics of the
integral (5.42) above are the same as those of the rescaled integral

]
n'2 j f(u/n) exp{ — 2miu) du. (5.43)
1]

R Iy
= (1/n) E( )

(5.44)

Thus

{

I : J() exp{ — 2miu) du
0

1
f S(ufn) exp( —2miu) du
[4]

1
J S{u) exp(—2niu) du
0

The calculations of formulae (5.42)-(5.44) may be summarized in the

statement
I z
) = (1/n) L( )

o
(5.45)

We now apply expected values to both sides of equation (5.41) and use
formula (5.45) to conclude that
)

2
) = (1/n?) E(
(5.46)

E(IC, %) = (/%) E(IC, %), (5.47)

1
f J(u) exp(—2mu) dt
o

_r f(u/n) exp(— 2riu) du
J=1

1 1
E(I J(8) exp(—2xint) dt J. S{u) exp(—2miu) du
0 0

Thus

as required. OO

A closer look at the details of the above proof, inciuding a careful
examination of the choice of a random sample from all Brownian motions,
implies the following result.
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Fig. 53 Distribution of the probability density function for the amplilndes of a
typical Fourier coefficient ¢,.

PROPOSITION 5.3 The distributions of the Fourier coefficients C, are
independent and Gaussian as complex-valued random variabies.

This means that the real and complex components are each independent
Gaussian random variables, and the amplitudes form ‘half® a
normal distribution, with probability density function falling off as
exp(—const x |¢,}2). The coefficients of cosine and sine terms of a real
representation are each independent and Gaussian.

Finally, we have the following result.

PROPOSITION 5.4 The phases of the Fourier cocfficients are uniformly dis-
tributed on the interval [0, 2x].

Proof. The probability density function for the phase ¢ is given by the
following double integral over the sector ¢ < 0 < ¢ + A¢ up to a constant
factor;

o
expf — }(x* + y*) dx dy

I

”exp(— ix?) exp(—4iy*) dx dy

e

= || exp(—ir*) dxdy

(since r? = x* + y?)

P .
= || exp(—1r*)rdrdé
oJ o
b+ Agh
= df = Ag. (5.48)
Jo

Since the integral (5.48) is independent of the phase ¢, the phasc has a
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uniform distribution. (The proof is reminiscent of the elementary calculus
trick for computing the definite integral of exp( — }x?) over the real line.) {1

5.6 The Fourier transform of fractal processes and Mandelbrot-Weierstrass
fractals

We summarize all of the results in the previous section, and their generaliza-
tion to fractal processes, in the following theorem.

THEOREM 5.1 Let [ be a fractal function on the interval [0, 1] with f(0) =
f(1), and with fractal similarity exponent H. Let {¢,:n > 0} be the spectrum
(Fourier series of c,). Then each ¢, is an independent sample from a
complex-valued normal distribution of expected value 0, and expected
variance (square of absolute value)

const x n~ 173, (5.49)

COROLLARY 5.1 The phases are independent and uniformly distributed on
the interval [0, 2x].

COROLLARY 5.2 The power spectrum of a fractal process salisfies the power
law const x n™! 724,

The above results suggest a technique for generating a class of random
fractals called the Mandelbrot-Weierstrass fractals by generating appro-
priate spectra and then applying the inverse Fourier transform. In order to
generate these fractals (Berry and Lewis 1980),

(a) choose a fractal exponent H (H must be in the interval 0 < H < 1in
order to obtain all of the dimension relationships);

(b) choose the number N of terms (Fourier coefficients) to be used in the
simulation (note that N is also the highest frequency involved);

(c) choose N independent random phases ¢y, .., ¢y, uniformly from the
interval [0, 2n];

(d) choose ‘amplitudes’ |c,| from normal distributions with mean 0 and

variance proportional to n~'~2¥ (negative values are acceptable here,
or alternatively take the absolute value of the normal variates),

(e) form the spectrum {|c,| exp(ip,)};

(f) apply the inverse Fourier transform (preferably the inverse FFT) to the
above spectrum to obtain a complex-valued [ractal process f(1). and,
finally,

(g) take the real part of f(r) Lo obtain the required fractal (since we imposed
no symmetry condition on the spectrum).
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Note that the inverse FFT is the conjugate of the FFT, up 1o scale lactors,
so that the ordinary FFT may be used instead. A computer implementation
of the above algorithm is given in Section 12.5.

This algorithm may be readily extended to two dimensions, obiaining
Mandelbrot-Weierstrass fractal sheets defined by real-valued functions
z = f{x, ). The iwo-dimensional Fourier transform of such a fractal sheet
requires {wo integrations, in the x- and y-directions, and thus the amplitudes
of the two-dimensional Fourier coefficients scale as

c(m, n) = const x m~ My~ (5.50)
and the corresponding power spectrum as
const x m~ T2y 1-2t {5.51)

Frractal islands are readily defined as sets of points {x, Yy withz = 0in a
sca of points with z < 0 and bounded by shorelines with z = 0 (sec Fig. 1.2).

Historical remarks. Weierstrass ‘invented’ Mandelbrot-Weierstrass fractal
curves in the nineteenth century (before the science of fractals) in order to
write down examples of continuous nowhere-differentiable curves. For
H < 1, Mandelbrot-Weierstrass fractals have this property.




Part IIT

The bridge to applications

The next chapters develop and illustrate the main techniques for the fractal
modelling of spatial (and temporal) patterns, beginning with the basic
statistics and factors affecting the choice of modelling techniques. The
potential breadth of fractal modelling is shown by applications to carthquake
models and developmental biology in Chapter 8 and to weather and climate
in Chapter 9.




6

Modelling spatial and temporal patterns

6.1 Introduction

The purpose of this chapter is to identify the main techniques in fractal
modelling of spatial {and temporal) patterns. Korcak (1938) found a
hyperbolic distribution

N(a) = const x a”# {6.1)

for the areas of Aegean islands by using linear regression to fit log-
transformed data to the log transform of equation (6.1):

log N(a) = log(const) — Blog a. (6.2)

These are the first key steps in fractal modelling; the choice of an appropriate
power law, the application of log transforms, and finally the use of linear
regression to fit a log-transformed linear model.

The organization of this chapter follows these steps, beginning with a
summary of fractal exponents in Section 6.2 and a review of linear regression
in Section 6.3. Fractal behaviour can be at least partially tested by evaluating
the goodness of fit in linear regression: both visually and with the use of the
coefficient of correlation. Simulation methods can also be used; see Section
6.4. However, there are other useful tests and important deviations from
fractal behaviour. These are discussed in Sections 6.5 and 6.6.

6.2 Summary of fractal exponents

Tables 6.1 and 6.2 summarize the fractal exponents developed in Part 11.

Tt is frequently desirable to use several techniques for computing fractal
exponents and then compare the results (see especially Chapter 11 for an
illustration).

6.2.1 Mandelbrot (1977, 1982) formula (see Sections 3.6 and 4.5)

In many cases, the exponents B, D, and H are rclated. The Korcak patchiness
exponent B of fractal patterns of islands in Euclidean n-space, and the fractal
dimension D of their boundaries are related by the formula D = min{nB, n}.
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Table 6.1 Fractal exponents of spatial patterns
Dimension Exponent, formula, definition Typical applications
Scaling D, n = const x k°, if X is a union of  Branching processes
dimension n similar copies of itself, such as vascularization,
each reduced by a linear stream order, etc.
scaling factor of k
Hausdorff D, n = const x kP, where the Mostly theoretical
dimension smallest cover of X by balls foundations

of radius 1/k consists of n
such balls

D, n = const x kP, if X intersects n
boxes of side 1/k formed by a
grid in the ambient space E

Box dimension

Cluster D, n=const x r? if X is a discrete
(correiation set and there are n points of
dimension) X within a radius r of a

typical point of X

Korcak B, n = const x a~%,if Bisa union of
patchiness disjoint ‘islands’, and n
exponent islands have measure (in the

ambient space E) at least a

Hurst H, Az = const x As?, if X is the

exponent graph of a Brownian

function f, As denotes the
length scale in the domain of
£, and Az denotes the
length scale in the range

of f

Computable version of
Hausdorfl dimension,
‘available habitat’ in a
leaf (Morse 1985).
Sections 3.1-3.2

Dimension of discrete
patterns such as
pancreatic islets
(Hastings et al. 1992},
Section 8.3 below

Aegean islands (Korcak
1938), ecosystem
patterns (Hastings et al.
1982), Chapter 10
below

Time series (Hurst 1951,
1956; Sugihara and
May 1990a), Chaptets
9 and 11 below

The ‘minimum’ is required since D < n by the subset relationship for
dimension, but B may exceed 1 in some applications (Meltzer 1990; Meltzer
and Hastings 1992; see Chapter 9 below).

The fractal dimension D of a the graph (in n-dimensional space) of a
fractal process with Hurst exponent H on (n — 1)-dimensional space is
D=n—H.
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Table 62 Time series techniques (largely computation of the Hurst exponent H)

Technique Formula, definition Typical applications
Second Ax? = const x Ar*¥, where At is the  Axioms, population
moment time step, and Ax? the fluctuations, Chapler
(loosely, second moment of the 11 below
‘growth of corresponding spatial
variance”) increments
Growth of R(Ar) = const x AtY, where At is Most common technique
range the time step, and R{Af) is for time series (Hurst
the mean range (maximum 1951, 1956; Sugihara
value of x minus minimum and May 1990a),
value of x) over time Chapters 9 and 11
intervals of duration At. below

Caution: a correction
factor is needed if Ar is small.
See Section 4.4

Local second 23 = 7 .+ 2p, where p is the Same as growth of
moment corretation between variance, good test for
successive spatial increments in multiscaling, Section
the case where the increments 8.2 and Chapters 10
have zero expectation. and 11 below
See Section 4.3 for the general
case
Power E(f) =const x f ~'"2H where fis  Connection with spectral
spectrum the frequency, and E(/[) the analysis, Mandelbrot-
power spectrum coefficient Weierstrass fractals,
at frequency f simulation, Chapter 5

6.3 Linear regression

Linear regression is used to determine fractal exponents as slopes of
log-transformed data. Here are the key ideas (see Hogg and Tams 1977,
pp. 232-7, 324-6; Draper and Smith 1981).

6.3.1 Notation

For simplicity, in the remainder of this section, we shall represent log-
transformed data points by order pairs (x;, y;), and discuss the use of linear
regression to fit such log-transformed experimental data with linear functions

y=a+ bx. (6.3)
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Here and below there are n data points (x;, y;) and all sums range over
1gign

If y =a + bx, we may associate with each value x; of the independent
variabic x, the predicted y-valuc

vi=a+ bx; {6.4)
and the corresponding residual or unexplained error
yi -a - bx". (6.5)

Linear regression minimizes these errors by minimizing the sum of their
squares

2y~ a—bx,), (6.6)
or, equivalently, their average
o = (I/m) ¥ (y; — a — bx;)%. 6.7

For this reason, linear regression is called a least squares method.

The parameters a and b (in precise terms, maximum likelihood estimates of
a and b) are readily determined using the techniques of elementary calculus.
The sum of squares of residuals, Y (y; — a — bx;)?, is a quadratic function
of the variables g and b, and is therefore readily minimized by taking partial
derivatives with respect to a and b, and setting them equal to 0. This yields
a pair of linear equations in the variables @ and b. Their solution is given by

b=(nzxiyi_zxizyi)/("zx? —(Z xi)l)!} 65)
a=(Ly—bT x)n.
The formula lor the slope b can be written as the quotient
b = covar/var(x) = covar/o?, (6.9)

where covar denoles the covariance of x and y, and is understood roughly as
Ax Ay/Ax® = Ay/Ax,

the formula for the slope of a line.

There is a simple relationship between the covariance of x and y and the
size of the unexplained errors, The coefficient of correlation p between x and
y is defined by

p = covar/[var(x) var(y)]'/?
1/2

= covar/[ala?]

= (n Z Xi Vi — in Z y!)/[(nzxiz - (Z xi)z)(," Z J’iz - (Z J’i)z)]l;z,
(6.10)
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and measures the extent to which changes in the independent variable x are
accompanied by corresponding changes in the dependent variable y. Then
one can see that the variance o2 of unexplained errors (which have mean 0)
and the variance o} of y are related by a formula involving the coefficient
of correlation p:

62 = (1 — p?oal. (6.11)

If the slope b is nonzero, then the coefficient of correlation p and the slope
b have the same sign; otherwise the coefficient of correlation is necessarily
ZETO.

The distribution of experimental values of a, b, and p is readily determined
analytically, under the usual assumptions that the independent variables can
be measured precisely and that the residuals are independent samples from
a normal distribution of fixed variance. (We shall not need to consider the
distribution of a.)

Let B denote the random variable corresponding to the slope of a
regression line through n points with nominal slope b,. Then the transformed
random variable

T=(B — bo)l(n — 2)a?]' /(1 - p*)a]'"? (6.12)
has a Student’s t-distribution with n — 2 degrees of freedom. Solving for B
yields

B = by + TI(1 — p*)a7]'*/[(n — 2)a31'2, (6.13)

where T denotes a random variable with the Student’s t-distribution, The
Student’s ¢-distribution with k degrees of freedom has variance

kitk — 2) (6.14)

provided that k > 2. Therefore, B follows a similar distribution with mean
0 and variance

var(B) = (1 — p*)o}/(n — 4)o?, (6.15)
and standard deviation
[var(B)]'? = [(1 — p?)a]"?/[(n — o2} (6.16}

Confidence limits are readily obtained from tables of the Student’s i-
distribution.

For n larger than approximately 25 to 30, the normal approximation to
the ¢-distribution implies that T is approximately normal with mean 0 and
variance 1. Thus B is approximately normal with mean b, and variance

var(h) = (1 - r¥)a/(n — 2)5?). 617N

In this case, confidence limits for b, are readily obtained using calculators
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or tables for the normal distribution, for example b, lies in the interval

b — 1.96[var(h)]"? < by < b + 1.96[var(h)]'?>. (6.18)

The statistics of B can be understood by using formula (6.11) for the
variance ¢ of the residual or unexplained errors (differences between
predicted and observed y-values) to rewrite the formula for the variance of
B. We obtain

var(B) = (1 - p*)a}/(n — 4)6? = 6*/(n — 4)a?, (6.19)

the quotient of the variance of the residuals by the variance of x and a
measure of the amount of averaging implicit in the formula (6.8) for the slope
b. These results can be used to estimate confidence limits for fractal
exponents; see the programs in Chapter 12.

Similarly let R denote the random variable corresponding to the coefficient
of correlation in samples of n points with nominal coefficient of correlation
po- If py = 0, then the transformed random variable

T=(n—2)"2R[1 — RY)'"? (6.20)

also has a Student’s (-distribution with n — 2 degrees of freedom. More
generally, the transformed random variable

W=1In[(1 + R)/(1 - R)] (6.21)
is approximately normal with mean
210 [(1 + pe)/ (1 — po)] (6.22)
and variance

1f(n — 3). (6.23)

6.4 Simulation methods

These methods for determining confidence limits are readily supplemented
by simulation methods. Moreover, it is probably best to use simulation
methods to develop appropriate confidence limits because of the difficulty
in accounting for all errors. For example, experimental determination of the
cluster dimension D of a discrete fractal set X underestimates the actual value
of D. The cluster dimension is determined experimentally by counting the
number n(r) of points within a radius r of each point of X, and fitting the
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dala to a hyperbolic distribution
n{r) = const x r®. (6.24)

For large r, many of the disks B(x, r) of radius r go outside the boundary
and contain fewer points than expected. Thus the range of r must be suit-
ably restricted. Even so, a computer simulation gave an experimental
D =1.91 + 0.24 for 100 replicates, each consisting of 20 points randomly
distributed in the plane (see Section 8.3 below). Simulation has many other
applications; see, for example, Section 4.4 on the Hurst exponent for short
time series.

However, confidence limits for fractal exponents can be readily obtained
with simulation methods. For example, assuming a given hypothesis, if the
smallest value for the dimension D obtained in 95 of 100 (or, better, 950 of
1000} replicates is Dy, then D is greater than Dy with probability 0.95 under
that hypothesis,

6.5 Stationarity

One important characteristic of fractal processes is that their increments are
stationary, that is, independent of time. This means that a subsequence of a
fractal time series has the same fractal exponents as the original series,
Similarly, the increments are independent of the current value of the process.
Both conditions are readily tested. For example, a 40-year time series of
earthquakes in Japan (1988) is shown to be stationary in Section 8.2. In
contrast, time series of bird populations examined in Chapter 11 are not
fractal because population increments depend upon the current population
value.

Stationarity in fractal patterns is defined similarly and is readily tested
visually. Consider, for example, a pattern of islands in a rectangle in the
plane. If the pattern is fractal, and the rectangle is divided into four smaller
rectangles, then the islands in each of the patterns will have the same general
appearance and in particular the same fractal exponents.

Processes which are independent of spatial location should generate
stationary patterns. This simple observation can be used to find differences
in ecosystem or other dynamics, see the exposition of Hastings et al.’s (1982)
work on the Okefenokee Swamp in Chapter 10 below. More generally,
Meltzer (1990) and Meltzer and Hastings (1992) found evidence for chan ging
grassland dynamics in Zimbabwe in corresponding changes in f[ractal
exponents; see also Chapter 10.

Finally, one must be careful with fractai analysis of short time series just
like any other statistical techniques. The above methods for looking for
stationarity should prove useful: one need only apply the analytical tech-
niques to parts of the series as well as the whole series.
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6.6 Extensions of fractal behaviour

Many natural patterns display fractal behaviour only over a limited range
of scales. Mandelbrot (1977, 1982) considered the dimension of a loose ball
of string over various scales. In particular, the ball appears three-dimensional
at scales large enough to encompass many strands of string, but small
compared with the diameter of the ball, one-dimensional at smaller scales
which encompass only a single strand, but are large compared with the
diameter of a strand, and again three-dimensional at scales small compared
with the diameter of a strand. How can we decide between the single scaling
region of fractals and such multiscaling behaviour? What other natural
generalizations of [ractals occur?

We have shown how to fit power laws to experimental data with log
transforms and linear regression, and introduced the coefficient of correla-
tion, one measure of the goodness of fit. Unfortunately, the coefficient of
correlation can be high in many cases where a linear model (for log-
transformed data, and thus a power law model for the original untransformed
data) is not appropriate. The definitions of fractal exponents almost invari-
ably (except for the area~perimeter exponent) yield monotone functions,
which usually give high correlation.

Fortunately, the existence of multiple scaling regions can frequently be
detected by graphing the data, and looking for patterns among the residuals
(differences between data points and the regression line)—the residuals will
be independent in each scaling region. Such patterns can frequently be
detected by statistical tests such as the Durbin- Watson test (Johnston 1973,
pp. 249-59; Draper and Lawrence 1981; see Meltzer and Hastings 1992, or
Chapter 10, for ecological applications). The Durbin-Watson test measures
correlations among residuals u; with the statistic

> (o — )Y () (6.25)

If the residuals are independent and identically distributed, then
E{(4; ~ u;~,)*] = 2E(u?) and the Durbin-Watson statistic is approximately
2. The Durbin-Watson statistic will be less than 2 if the residuals display
positive serial correlation; see Draper and Smith {1981} {or details.

Alternatively, il log-transformed data appear to fit a piecewise linear
model, linear regression can be used on separate intervals, overlapping only
at endpoints, and the endpoints can be varied so as to minimize the mean
square error. If linear regression then yields significantly different slopes on
adjacent regions, one should reject the fracial hypothesis of a single power
law, and replace it with the inultiscaling hypothesis of separate power laws
over separate regions. ,

Multifractality represents another possible deviation from {ractal behaviour.
Consider a fractal pattern of islands formed by undersea mountains, or by
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flooding a mountain range. More formally, following the construction of
Mandelbrot-Weicrstrass fractals in Section 5.6, consider the surface

z=f(x,y) (6.26)

and the pattern of islands defined by

{(x,p):f(x, 3 2 ¢} (6.27)
The boundaries of these islands are the level curves defined by
{6 9): f(x, y) =} (6.28)

{Topographical maps represent the surface of the carth by similar families
of level curves.) If the surface defined by the cquation (6.26) is a [raclal, then
the fractal dimensions of the islands are independent of the sea level c.
Conversely, il the above construction vields fractal islands whose fractal
dimension depends upon ¢, then the surface is said 1o be multifractal. Lovejoy
and Schertzer (1991) found that strong rainfalls clustered more closely than
weak rainfalls; more formally, the dimension of the set of times when the
rain fell at an intensity of at least ¢ decreased as ¢ was increased. Thus these
patterns are multifractal. In contrast, the scaling behaviour of the Bak-Tang-
Weisenfeld (1987) earthquake model and of some real earthquakes appears
independent of an intensity threshold (see Hastings and Troyan 1991), and
thus is not multifractal. It may, however, be muitiscaling—further analysis
is needed.

Spatial anisotropy represents yet another deviation from fractal behaviour.
The dimension of a section of a fractal surface is independent of the choice
of section—thus fractals are isotropic in space. The existence of spatial
anisotropy can lead to more complex models involving an elliptic dimension
{cf. Lovejoy and Schertzer 1991), or simply lead (o a search for deviations
from fractal behaviour, Spatial anisotropy can be checked by computing the
fractal exponents associated with sections through spatial patterns: for
spatially anisotropic patterns, the fractal exponent is independent of the
direction of the section.

Our work on earthquake time series (Section 8.2) includes additional tests
for stationarity of time series, of which the simplest is to compute the fractal
exponents separately for segments of the time series. The exponents of each
segment are the same for a stationary time series. Hastings et al. (1982) tested
for stationarity in spatial patterns similarly, by computing the Korcak
cxponent for spatially distinct subsets of vegetation ‘islands™ the fractal
dimension of part of a spatially stationary pattern is independent of the area
selected.

In conclusion, although many authors have stimply assumed that fractal
modeis apply to the system under study, we feel that it is important
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to demonstrate their applicability. Applicability can be demonstrated by
statistical methods, and also by a qualitative search for the scale-invariance
of fractals. The absence of natural scales {at least over limited regions) in
physical models implies scale-invariance (over these regions), and their
presence can prevent scale-invariance.
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Alternative models

7.1 Introduction

We briefly describe several alternative models for dynamics and time series
and compare them with [ractal models: cellular automaton models (see
Wollram 1984, 1985, 1986), linear models, including stochastic linear models;
low-dimensional nonlinear prediction (Sugihara and May 1990b) based on
low-dimensional chaos (see Grassberger and Procaccia 1983). Cellular
automaton models are used in Section 8.2 (on earthquake models) and
Chapter 10 (on vegelative ecosystems). Chapter 11, on models for singie-
species population dynamics, compares the use of fractal models, low-
dimensional nonlinear prediction, and linear models for predicting local
species extinction.

7.2 Underlying dynamics

The purpose of this section is to briefly explore a class of dynamical models
which can generate fractal patterns, namely cellular automaton, or CA,
models (Wolfram 1984, 1985, 1986). CA models are discrete models for
cvolution in space and time. Time is usually represented by the nonnegative
integers. The cells in a one-dimensional CA model space are usually
represented by a finite set {0,1,..,n~ 1, n} of consecutive integers. In a
two-dimensional CA model, space is a chessboard corresponding to a set of
points with integral coordinates. At any time ¢, each ceil is assigned one state
from a (usually finite) set of possible states. The state of each cell at time
t + 1 depends upon the states of one or more cells at time t. Levin and Paine
(1974) developed a CA model, which they called patch dynamics, in order
to model the dynamics of immigration and extinction in space and time, We
shall develop this model further in Chapter 9.

Even one-dimensional CA models can exhibit considerable dynamical
complexity (Wolfram, 1984), including point and periodic attractors, fractals,
and chaos. Here is an example, a one-dimensional analogue of Conway's
(sce Gardner 1983) game of life. This CA has two states: 0 (vacant) and |
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(occupied). The system evolves according to the next-state lormula

0 la(x — 1, 1)+ ulx, 1) + ulx, t + 1) =00r3,

u(.\'.r+|)={ )
T ifa(x — L,y 4w, ) +u{x,t +1)=1or2.

This rule is a toy example of density-dependent growth: a given cell will be
occupied ‘next year® if some but not all of its neighbours are occupied *this
year’. The onc-dimensional game of life is thus what Wollram (1984) calls
a “totalistic CA: the statc of any cell at time 1 + | depends only upon the
number of occupicd cells in a given neighbourhood of it at time r.

The one-dimensional game of life evolves into a Sierpinski (riangle (a
fractal with dimension log 3/log 2; see Mandelbrot 1977, 1982) from a single
source of two neighbouring occupied cells; random initial conditions can
yield very complex patlerns; see Fig, 7.1.

The original two-dimensional game of life is more complex and not
totalistic: a cell will be occupied at time ¢ + 1 under either of the following
conditions: (i} the cell is occupied at time t, and 2 or 3 of the other 8 cells
in the 3 x 3 squarc centred on it are also occupied; or (ii) the cell is vacant
at time ¢, but 3 of the other 8 cells in the 3 x 3 square centred on it are
occupied.

The Bak Tang Weisenfeld (1987) sandbox model for earthquakes, de-
scribed in Chapter 8 below, and many neural network models (see Linsker
198R) are also CA models.

REMARKS 7.1 There is a close relationship between some CA models and
related partial differential equation (PDE) models. The numerical solution
of PDE’s on finite grids yield cellular automata with real-valued states.
Consider, for example, the basic diffusion equation in one space dimension

1 0%

ar o 20x?

(7.1

We may discretize (7.1) by replacing fu/dt with the difference quotient
[u(x,t + h) — u(x, )}/h and replacing 0%u/0x* with the similar difference
quotient [u(x + k, ) + u(x — k, 1) — 2ufx, 1)]/k, where h is the time step and
k is the space step. If we set both the time and space steps equal to 1. we
obtain the discrete equation

wx, t 4+ 1) —ulx, 1) = u(x + 1,0) + ulx — 1, 1) — 2u(x, 1)],
or, more simply,

u(x, t + 1) = [u(x + 1, 1) + a(x — 1, 0]. (7.2)

Converscly, the diffusion limits of suitable CA modcls yield partial differen-
tial equations. The mathematics is analogous to the usual derivation of the
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.
0,

w

(b}
Fig. 7.1 Evolution in the one-dimensional game of life. (a) A Sierpinski triangle is
generated starting from two adjacent occupied cells. (b) Random initial conditions
yield complex patterns.

heat equation (see Kreysig 1988). Levin and Paine (1974) took this approach
to modelling ecosystem dynamics; see also Chapter 10 below.

7.3 Linear models

The mathematical study of dynamics was first motivated by the classical
physics of small systems. This study led to the parallel development of
classical mathematics (calculus and differential equations) and classical
physics during the seventeenth to nineteenth centuries. The mathematical
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models included both systems of differential equations

dx
= 7.3
= glx, 1) (7.3)

and their analogues in discrete time
x(t + h) = x(t} + hglx, 1) + = f(x,1), (7.4)

where x(t) represents the state of the system at time 1. We shall consider the
discrete-time system (7.4), and assume, without loss of generality, that the
time step k = 1. A system (7.4) is called autonomous if its evolution does not
depend explicitly upen time, in which case we have

x(t + 1) = f(x(1)). (7.5

A state x,, is called an equilibrium if the system remains in the state x,,
whenever it is started there:

xXq = flx.). (7.6)

The equilibrium x_ is called stable if the state approaches x,, whenever the
system is started sufficiently near x_,. That is, there is an & > 0 such that
{l2(0) — x_. || <& implies

lim x(¢) = lim f(f(.. f(x{0))..)) (1 iterates of f)

r—ow 1 on

-t (7.7

For most classical systems, the next-state function f can be expanded
about the equilibrium x., in a convergent Taylor series

f(x) = flx,) + [0f:/0x,)(x — X, ) + (higher-order terms),  (7.8)

where [3f,/0x,] is the Jacobian matrix of partial derivatives of f. We note
that

flx,) = x, (7.9)
and rewrite equation (7.8) in the following form:
J(x) — x = [8f:/0x;)(x — x.,} + (higher-order terms). (7.10)

If the size of the dominant eigenvalue (largest eigenvalue in size) of the matrix
[df,/6x,] is not equal to 1, then the dynamics of the next-state function can
be approximated in a sufficiently small neighbourhood of x., by neglecting
the *higher-order terms’ in-equation (7.10) and writing

f(x) T [a.’:/ax]]('t - 'th)' (7'1 I)
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This process is called linearization and the corresponding linear model (7.11)
may be represented more simply by letting

w=x—-x, and M =[df/ox] (7.12)
and wriling
u(t + 1) = g(u(t)) = Mu(t). (7.13)

Even though linear models involve significant simplifications of the dyna-
mics, they frequently give interesting insights into the behaviour of complex
systems such as ecosystems (May 1974). For example, population Jevels in
many eccosystems appear relatively stable, and much of the theory of
eigenvalues of random matrices was developed in order (o understand the
(Lyapunov) stability of these systems (May 1972, 1974). See also Hastings
(1983).

Models such as (7.13) are deterministic in that they involve no random
components. Hastings (1983) extended the models of May (1974) by
introducing random walk terms Aw(t), yielding the linear stochastic model

u(t + 1}y = Mult) + Aw(t), (7.14)

and studying the rclationship between the eigenvalues of M and the
asymptotic statistics of u(t). See also Chapter 11,

REMARKS 7.2 In the special case that M is the identity matrix, equation
(7.14) is just a random walk. II M has spectral radius p(M) less than 1, then
equation (7.14) has a stable equilibrium at 0, and at large times # is normal
with expected value 0 and variance

E(Awy){1 - [o(M)]*}.

Many systems without stable equilibria do display stable behaviour.
For example, many systems including certain Lokta-Volterra models for
predator-prey interactions (see May 1974) yield stable cyclic behaviour.
Roughly, a cycle is stable if the trajectories of nearby poeints approach and
track the cycle as the time approaches o (see Hirsch and Smale 1974). Some
Lokta-Volterra models for predator-prey interactions display stable cycles
(seec May 1974) although the cycles in the original model were only neutrally
stable (trajectories of nearby points remained close to the cycle but did not
approach it).

In 1963, E. N, Lorenz described complex stable aperiodic behaviour in a
model for fluid Aow—this well-studied example has been termed the Lorenz
attractor. Stable equilibria and stable limit cycles are classical examples of
attractors. A compact subset 4 of the state space of a dynamical system is
called an attractor provided that: (i) 4 is invariant (if the state of the system
starts in A, then it remains in A); (ii) trajectories which start sufficiently near
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A approach A; and (iii) A is minimal (no proper closed subset of A has these
propertics). See Hirsch and Smale (1974) for mathematical details. The study
of attractors is important because the geometry of an attractor frequently
captures much of the dynamics on that attractor—for example, in continuous-
time models, stable cycles correspond to attractors which look like
(more formally, are homeomorphic to) circles, and, in particular, are
one-dimensional. We shall describe techniques for finding and studying
low-dimensional attractors in the next section.

7.4 Low-dimensional nonlinear models

Many natural systems and nonlinear mathematical systems display more
complex stable behaviour, as shown by the existence of attractors other than
equilibria and limit cycles. E. N. Lorenz (1963) found perhaps the first such
behaviour in a mathematical model of a natural system-—a strange attractor
in a truncated version of the Navier-Stokes equations for flow in the
atmosphere. Linear models cannot capture the dynamics of strange attrac-
tors. Thus an alternative approach is needed to tame the nonlinearities.

The discrete-time logistic equation (see May 1974) of population dynamics
provides an instructive example. In this model

Yy = ry(t — D1 =yt = 1], (7.15)

where the state variable p(f) represents the population level at time ¢ in
suitable arbitrary units, the parameter r represents the intrinsic growth rate,
and the nonlinearities are due to the density-dependent factor | — y(t — 1).
(Equation (7.15) is usually written in the form yt + 1) =ry@)1 — p(1)]); our
unusual notation is chosen for Fig. 7.2 below.) For simplicity, we shail rewrite
equation (7.15) in the form

Voew = 1¥(1 — ). (7.16)

This model shows a wide variety of simple and compiex behaviours
depending upon the value of the intrinsic growth rate r (May 1974). We
restrict r to the interval 0 < r < 4 in order that equation (7.16) define a
mapping from the closed unit interval 0 < y < | to itself, For r < 3, there are
stable equilibria given by the formula

Yeq = max{0, 1/(r — 1)}. (7.17)

For r > 3 the situation is significantly more complex. As r is slowly increased,
first the point attractor y,, becomes unstable and bifurcates into an attractor
consisting of a pair of points of period 2. Later one obtains similar periodic
attractors of period 4, 8, 16, eic. Finally, for r > 3.57 there are many regions
which appear to exhibit complex behaviour (May 1974; Li and Yorke 1975),
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Fig. 7.2 Two views of the discrete-time logistic equation. (a) A graph of the time
series of 25 points generated by the equation y(f) = ry{t — 1) shows no apparent
pattern. (b) Graphing the corresponding 24 points (3(t — 1), y(r)) clearly shows the
original function (1) = ry(1 — 1).

including chaos, a stable form of apparently random behaviour. However,
other parameter values, such as r = 3.83, give stable periodic points. For
example, a stable period-3 cycle is born at r = 3.83, bifurcates to give period
6, 12, etc. as r is increased, and compiletely disappears by the time r = 3.85
(Smale and Williams 1976). See also Collet and Eckmann {1980) for a fuller
description of the dynamics of the discrete-time logistic equation.

On the surface, for many values of r > 3.57, the time series {w(t)} of
population levels (values of y) generated by iterating equation (7.16) appears
indistinguishable from a random sequence. However, if we search for
nonlinear correlations among the population values by plotting ordered
pairs of successive values (y(t — 1), ¥(1)), then the deterministic nature of the
discrete-time logistic model becomes evident.

Grassberger and Procaccia (1983) generalized the ideas behind Fig. 7.2
with their algorithm for computing the correlation dimension. Suppose that
one is given a time series {x(t)}. For each positive integer n, plot all n-tuples
of consecutive values

(x(), x(t 4+ 1), ..., x(t+n—1))

in n-dimensional ambient Euclidean space, and determine the embedding
dimension D (cluster dimension or Hausdorfl dimension) of the resulting
patiern. If D is less than n, then the n-tuples (x(¢), x(t + 1), .., x(t + 1 ~ 1))
do not correspond to randomly selected points in n-dimensional Euclidean
space. Moreover, once n is sufficiently large that D stabilizes, the embeddings
in n-dimensional and (n + 1)-dimensional Euclidean space have the same
dimension D, and this implies a nonlinear dependence of x(t + n) upon the
n-tuple

(e(2), x(t + 1), .., x(t + n—1)).
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Table 7.1 Summary of three approaches for modelling time series

Lincar (plus  Low-dimensional
Model: noise) nonlinear Fractal

Basic approach:

linear nonlincar random

stochastic deterministic descriptive
Predictability of next event:

yes yes no
Long-term predictability:

yes no no
Scale-invariant:

no sometimes yes
Scale-invariant over scaling regions:

sometimes sometimes yes
Grassberger-Procaccia dimension of time series (after detrending):

high low high
Amount of data needed to fit;

little large relatively

little

This dimension is essentially the number of degrees of freedom in a
nonlinear sense. Moreover, this construction has essentially found a sel of
coordinates for parametrizing the attractor: to cach point in the attractor
we associate the n-tuple (x(0), x(1), ..., x(n — 1)) resulting from n successive
observations of the quantity x.

Sugihara and May (1990b) used these ideas to develop a method for
distinguishing low-dimensional chaos from measurement error in natural
time series. The method has been fruitfully applied in many areas, ranging
{from modelling disease outbreaks to long-range weather forecasting.

REMARKS 7.3 In theory, each value generated by a pseudo-random number
generator should be statistically independent of all previous values, and thus
the set of n-tuples generated by a pseudo-random number generator should
have dimension n. In essence, Marsaglia (1968) used this fact as a test of
pseudo-random number generators. See also Knuth {1981). However, this
behaviour is difficult to achieve since pseudo-random number generators are
deterministic algorithms.
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Caution. The Grassberger-~Procaccia algorithm requires a relatively long
time series {of the order of 10” where D is the dimension of the underlying
attractor) points (Ghil et al, 1991; Ruelie 1990; Smith 1988). However, many
natural time series are high-dimensional or short or both. Tn this case one
is forced into the world of statistical models, including random fractals.
Three approaches for modelling time series are shown in Table 7.1. -
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Examples

8.1 Introduction

In this chapter we introduce the application of fractals to the study of spatial
patterns through several illustrative examples: the work of Hastings and
Troyan (1991) on scaling in earthquake time series (Section 8.2), the work
of Hastings et al. (1992) on pancreatic islets (Section 8.3), and the work of
Caserta et al. (1990) on neuronal processes (Section 8.4). The following
section considers the possibility or impossibility of predicting earthquakes,
and asks aboult possible measurable differences between earthquakes along
fault lines and ‘mid-continent’ earthquakes far from fault lines. Which comes
first—the fault or the earthquake? The last two sections investigate a possible
universal role for diffusion-limited aggregation in developmental biology
(Witten and Sander 1981; Meakin and Tolman 1989), as suggested by
Caserta et al. (1990), Kleinfeld er al. (1990), and Hastings er al. (1992).

8.2 Earthquake models

We investigate scaling properties of some real and artificial earthquake time
series, such as the series of Japanese earthquakes shown in Fig. 8.1. This
investigation is motivated by the Bak Tang Weisenfeld (1987) ‘sandbox’
model, a CA model thought to capture the main phenomenological aspects
of carthquake dynamics. The modecl formalizes the following thought
experiment. Consider a sandbox in which sand is added slowly and
randomly. Where the slope of sand (representing the ‘local strain’) exceeds
a given critical value, sand falls from high points to neighbouring low points,
thus reducing the local slope. Cascades arise whenever this readjustment
causes the local slope to exceed the critical value at new points. The model
thus captures the dynamics of energy storage as strain, energy release when
the strain exceeds a critical value, and cascades as strain release at one point
overstresses the system at nearby points.

The sandbox model is readily formuiated as a two-dimensional cellular
automaton. Cells are located at lattice points in a region in the plane. The
state z(x, y) of each cell (x, y) takes on the values 0, 1, 2, 3, and corresponds
to the strain at the point (x, y). Sand is added to randomly and independentty
chosen cells, and the corresponding increase in strain is represented by the
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Fig. 8.1 Major earthquakes in Japan. A graphical representation of the dates (on
the horizontal axis) and magnitudes (ranging from 4 to 9 on the vertical axis) of
events in the first 2400 days in the catalogue in Utsu (1988). Only damaging events
or events with magnitude at least 6.0 are shown. What patterns are present in these
data?

stale transition z — z + [. The addition of sand may cause the state of a cell
to temporaniy exceed the value of 3, in which case sand topples onto nearby
cells, representing the local release of strain. This is represenled by the state
transitions

2(x, y) — z(x, y) — 4, } 3.1

z(x', y') ~ z(x’, y') + | at the four neighbours of (x, v).
The Bak-Tang-Weisenleld model has no natural scale, making its dynamics
scale-invariant, except possibly at scales comparable with the size of the
*sandbox’. Therefore the model is scale-invariant, and thus any pair of related
descriptive parameters must be related by a power law. For example,

the Bak-Tang-Weisenfeld model predicts the Gutenberg-Richter {1942,
1956a, b} law, a power law lor the distribution of energy release earthquakes:

number(energy release > E) = const x E~°, (8.2)
or, equivalently, since the magnitude M is the logarithm of the energy release:

log[number(magnitude > M)] = const — cM (8.3)

How well does the Bak~Tang-Weisenfeld model capture the dynamics
of real earthquakes? We approach this quesion by studying the scaling
properties of real and simulated earthquake time series: see Tang and Bak
(1988) and Erzan and Sinha (1991) for model results. As an application,
we also describe the consequences for predictability of earthquakes. In
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particular, we test real and model data for stationarity (do segments of the
series have the same statistics, and in particular the same exponents, as the
whole series?), number of scaling regions, and monofractal versus multifractal
behaviour (are scaling properties of carthquake time series independent or
dependent of a rmnimum magnitude threshold M_)?

We also ask whether there are good alternative descriptions (for example,
exponential waiting time models) for the time series? The seisimic gap
hypothesis ‘states that carthquake hazard increases with time since the
last large carthquake on certain faults or plate boundaries’ (Kagan and
Jackson 1991). The seismic gap hypothesis is consistent with an exponential
waiting time model, but not with a fractal model, which implies a relatively
constant hazard in each area. Kagan and Jackson (see also the review
Monastersky 1992) recently found that earthquakes frequently are more
likely to recur near previous sites, apparently negating the seismic gap
hypothesis and confirming the fractal hypothesis.

8.2.1 Methods

We computed the Korcak exponent B assoctated with the distribution gaps
between earthquakes:

number(gap > {} = const x ¢~ F, (8.4)

(Following standard techniques, log-transformed data were fitted to the
log-transformed equation logfnumber(gap > )] = const — B log 1.}
Stationarity was tested by computing the Korcak exponent for portions
of the time series. Multiscaling was tested by comparing data points with
regression lines, and by considering exponential waiting time models.
Multifractality was tested by restricting the time series to earthquakes of
magnitude greater than a critical magnitude and looking for ¢ffects upon the
Korcak exponent. Both aspects could be tested at the same time—for
example, the time series of Utsu (1988), illustrated in Fig. 8.1, consists of 600
earthquakes, of which 536 have magnitude al least 6.0. The series of 536
events was subdivided into shorter series of 101 events (100) gaps each. We
also used computer simulations to generate artificial time series with power
law gaps and thus determine confidence limits for the measurement of B,
and to generate a time series from the sandbox model for lurther comparison.

8.2.2 Results

We begin with an empirical study of the distribution of Korcak exponents,
using computer simulation, in order to establish statistics for later compari-
son, Results are given in Tables 8.1 and 8.2.
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Table 8.1 Distribution of the Korcak exponent for simulated
serics of length 100, based on 25 replicates of each series

Nominal Observed B

B (mean + s.d.) Minimum Maximum
0.8 081 +0.13 0.57 1.08

1.0 1.00 + 0.19 0.70 1.49

1.25 1.284+ 026 0.87 L9%

Table 8.2 The effects of the length of a time series upon its
distribution of the Korcak exponent given a nominal exponent
of 1.2. The study used 100 replicates of each series

Obscrved B
Length {mean + s.d.) Minimum Maximum
10 1.06 + 0.50 0.00 2.64
100 1.16 +0.23 0.65 1.74

Using this statistical data, we found the time series under study to be
stationary, multiscaling, and monofractal (as opposed to multifractal within
each interval). However, we could not rule out an alternative exponential
waiting time model Figure 8.2 illustrates the multiscaling and exponential
time models, and Tabic 8.3 the tests for multifractality and stationarity.

Note that large events appear to be a random subset of all events. We
also found no special behaviour in neighbourhoods of large events. More-
over, computer simulations (sandbox) and real time series looked visuaily
similar at time scales long compared with the addition of sand.

8.2.3 Discussion

Ovwr fractal hypothesis appears consistent with Kagan and Jackson (1991),
but more work is needed. In particular, one should investigate time series
of ‘mid-continent’ earthquakes (that is, events far from fault lines), as well
as quakes along or near known faults, to see if there are any differences.
What are the implications for predictability if the data are fractal? The
hyperbolic distribution of gaps (between ¢vents) is a very ‘broad’ distribu-
tion, and thus it is hard to determine the Korcak exponent from short time
serics of empirical data. This implies sharp limits on both the predictability
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Fig. 82 Models for carthquake time series. (2) A log log plot of the number of gaps
between earthquakes of magnitude at least 6.0 as a function of their duration, showing
a good fit to a Korcak-type power law. (b} A similar tog-log plet for earthquakes
of magnitude at least 6.5 (dashed line) shows significant deviations from such a power
law. The data for magnitude at least 6.0 are shown as a solid line. (¢) A similar plot
of the log of the number of gaps as a function of their duration, showing a possible
exponential waiting time distribution,

of single large events and the determination of their statistics from time
serics alone. In particular, since large events are rare by the Gutenberg

Richter law, it is especially difficult to determine whether there is an excess
number of large events, a highly debated question (Gutenberg and Richter
1942, 1954, 1956a, b; Carlson and Langer 1989). It would be interesting to
apply the above analysis to data from other regions, and in particular
lo compare cvents at fault lines with events in the interiors of continental
plates. '

The sandbox model offers a reasonable fit to observed data. It would be
interesting to study the dynamics of an anisotropic sandbox model (for
example, topple at = 2 6, moving 2 grains north, 2 south, 1 east, 1 west)
which incorporates {ault zones.




Examples 105

Table 83 Tests for multifractality and stationarity:
the Korcak exponent for the time series of Japanese
earthquakes, and for subseries defined by
considering only those earthquakes with a given
minimum magnitude, and portions of the above series

Minimum Events Korcak
magnitude numbered exponent B
¢ 1 to 599 (all) .22
! to 100 .1
101 to 200 110
20! 10 300 131
301 to 400 1.21
401 to 500 1.21
50t to 599 0.67*
6 I 10 535 (all) 1.05
I to 100 1.22
101 to 200 1.06
201 10 300 108
301 to 400 1.32
401 to 500 0.96*
436 to 535 0.65*
6.5 I to 263 (ail) 1.13
1 to 100 1.19
101 to 200 117
164 1o 263 115
7 I to 114 (all) I.14

* Statistically significantly different from the Korcak expo-
ment for all the events at or above the listed minimum
magnitude, at least at the 0.05 Jevel, using the computer
simulation results of Table 8.2,

8.3 Geometry of pancreatic islets

8.3.1 Background

We report on results of Hastings et of. (1992). Pancreatic islets (containing,
among other cell types, insulin-producing p-cells) occupy less than 1% of the
pancreatic volume and appear irregularly distributed, even on smail scales,
It is therefore difficult to understand their underlying geometry from
standard mecthods of analysis of immunohistochemically stained two-
dimensional sections (Logothetopolis 1972; Weibel 1979; Hellestrom and
Swenne 1985).
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8.3.2 Biological materials and methods

Alloxan is a selective B-cell toxin commonly used to generate experimental
models of diabetes meilitus in laboratory animals. Unlike other animals, in
the guinea pig, the lost B-cell volume is predictably regenerated within five
days after the alloxan injection (Gorray et af. 1986a, b). The processes of
regeneration and islet formation were studied by comparing the observed
fractal properties of islet centres in microscopic sections. Preparation and
data logging are detailed in Hastings ef al. (1992).

8.3.3 Are islet patterns fractal?

We first computed the cluster dimension (Section 3.3) of islet centres. The
cluster dimension D is the exponent in the power law for the number nir)
of islets within a distance r of a typical islet

n(r) = mr®, (8.5)
As usual, we fit the linear mode]
log n(r) = log m + D log R (8.6)

to log-transformed data. The parameter m is a *fractal density” with units
(length)~2; the typical interislet distance r —m~'® makes n(r)=1. It is
important to check the goodness of fit of the linear model (8.6) using both
the coefficient of correlation and some test (perhaps just a simple visual test)
for the absence of apparent patterns among residuals (differences between
data points and the regression line). In a fractal pattern one expects to sec
a linear relationship between logr and log n(r) as long as r is sufficiently
small so that circles of radius r around most islets stay within the confines
of the pattern.

We found a good fit between the data and the linear model (8.6}, indicating
scale-invariance or fractal behaviour. islets in 35 sections from control
animals had a cluster dimension of 1.56 + 0.04 {mean + standard crror
of measurement); islets in 4 slides from experimenta! animals had
D = 1.48 + 0.13 (not significant) (Hastings ef al. 1992).

One can now ask whether the observed cluster dimensions are significantly
different from 2. In order to answer this question, we also empirically
determined D for two types of computer generated patterns: randomly
distributed centres in the plane and randomly distributed centres in a typical
lower-dimensional fractal (an attractor based on the Sierpinski triangle) with
expected D = in 3/ln 2 = 1.58. This attractor was constructed with iterated
function systems (Barnsley et al. 1986: Barnsley 1988); see the program
fractgame in Section 12.8. Random subsets of the plane and fractal had
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D =191+ 0.03 and 1.74 + 0.03 {100 replicates of each), respectively. These
results suggest that all of the variability in experimental data can be explained
by sampling, and thus there is no necessary biological explanation. On the
other hand, the combined set of all 39 sections had D = L.55 + 0.04,
significantly different from the value for random subsets (p < 0.001, t-test).

The intersection formula in Section 3.7.3 implies that a planar section of
a D-dimensional pattern in three-dimensional Euclidean space has dimension
D — 1. Thus islet centres in both islet-regenerated experimental animals and
controls cluster in similar 2.6-dimensional fractal subsets of the pancreas (sec
Hastings et al. 1992). It is believed that islets form along tips of a tree-like
structure of exocrine ductules (Falkmer 1985). Since the dimension of a
random {Poisson) subset of a D-dimensional fractal has cluster dimension
D, our results suggest the testable hypothesis that exocrine ductules may be
a random [ractal of dimension 2.6 (Hastings et al. 1992).

The observed clustering of islet centres has important consequences for
sampling and allometry (Hastings et al. 1992). The number of islets in a
square of side s scales as "%, and thus a 2 mm square section will contain
on average only 2*® = 3.03 (not 4) times as many islets as a I mm square
section. See Weibel (1979, pp.153-7) and Paumgartner et al. (1981) for
similar applications to scale-dependent measurements in stereology.

8.4 Dimension of neuronal processes

Caserta et al. (1990) and Kleinfeld et al. (1990) observed a fascinating [ractal
structure in developmental biology: the cluster dimension of neuronal
processes is about 1.7 + 0.1,

We thus observed that the processes of nearby neurons can be expected
to intersect in a subset of dimension 1.7 + L7 — 3 = 0.4 (se¢ Section 3.7.3)
and thus nearby neurons almost certlainly interscct. We thus expect micro-
columns, small assemblages of neurons in the brain (see Schmidt 1978), to
be almost completely connected.

REMARKS 8.1 Qur ideas are based on those of Lovejoy et ol. (1986). They
used similar methods to show that the global weather detection network, of
fractal dimension 1.75 on the two-dimensional surface of the arth may miss
highly clustered intense storms of fractal dimension less than 2 — 1.75 = 0.25.

The above results suggest several questions, which are beyond the scope
of the present work. In particular, how can one explain the observed fractal
dimensions? Are they a consequence only of universal properties of growth
processes such as diffusion-limited aggregation (Witten and Sander 1981;
Meakin and Tolman 1989}, as suggested by Caserta et al. (1990), Kieinfeld
et al, (1990), and Hastings et al. (1992)? Diffusion-limited aggregation
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predicts D = 1.7 (the value obtained for growth of neuronal processes) in
the planc and D = 2.4 (pancreatic ductules had D = 2.5) in space. Perhaps
random growth toward slowly diffusing factors follows such models.

On the other hand, perhaps the dimensions and structures themselves are
also dictated by biological functions, such as maximizing oxygen uptake in
the bronchi and short-range communication in the brain. In either casc,
diffusion-limited aggregation may play a central role in pattern formation
in developmentatl biology. Finaily, since universal processes such as diffusion-
limited aggregation are independent of small changes in parameters, they
yield robust patterns which arc relatively constant during growth. Such
universality may even be favoured in evolution, in order to ensure structure
and thus function in the face of noise,
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Fractal analysis of time series

9.1 Introduction

The purpose of this chapter is to introduce and illustrate the fractal analysis
of time series. The central limit theorem in statistics implies a power law for
the sum of n (identical, independentiy distributed, bounded) random vari-
ables of mean 0: the size the sum scales as '/, The displacement in a random
walk consisting of n steps scales similarly as n'/2 Hurst (1951) asked whether
fluctuations in the cumulative discharge of the Nile River, the sum of many
incremental discharges, scales similarly and found instcad that the range
of fluctuations over a time period T scaled as T, where H is strictly
greater than 1. Mandelbrot (1965), Mandelbrot and Van Ness (1968), and
Mandelbrot and Wallis (1969) explain this behaviour in terms of scale-
invariant long-term correlations, and thus introduced fractal modelling of
time series. We shall develop such fractal models using our own analysis of
occan surface temperatures at the Scripps pier (La Jolla, California, LUSA)
and New Jersey (USA) rainfall data.

We begin by reviewing the process of *detrending’, using to eliminate large
cyclic trends (such as those in temperature data) or lincar trends, and
considering when (o form cumulative time series. We next illustrate these
processes and fractal modelling by studying California ocean surface tem-
peratures and New Jersey rainfall data. The chapter concludes with a brief
formal comparison of fractals with residence time models. A detailed case
study on the application of fractals Lo population dynamics and the possible
application 1o forecasting specics extinction (see Sugihara and May 1990a)
is given in Chapter 11,

9.2 Detrending

Many time serics show pronounced cyclic trends. For example, daily
temperature data follow an annual cycle whose magnitude overwhelms other
fluctuations. Rainfall data in may areas undergo a similar annual cycle of
similar magnitude. It is therefore desirable to compare the temperature on
a given date or the amount of rainfall in a given month to the average
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temperature on that date or the average amount of rainfall in that month.
This can be accomplished by detrending.

in both the cases cited above, the dominant cycle has a duration of one
year, and it is this cycle which we choose to remove. We assume that
there is sufficicnt data to reliable compute daily or monthly averages, as
appropriate. (In the case where the graph of the average temperature on
each day seems to fluctuate excessively rather than follow a smooth curve,
one can readily apply further smoothing techniques such as computing the
moving average (over the date vanable) of the average temperature by
days.)

The deviation from this trend can be measured as the difference between
actual values and the tend, or as the ratio of actual values to the trend. In
the case of temperature data, subtracting the corresponding trend value from
each data point seems clearly most appropriate. The situation for rainfall
data is less clear, but questions about flood control and water storage
concern total amounts of water and not relative amounts of water. We
therefore chose to subtract out the trend data. (There is one caveat in doing
the subtraction. In a rainy month, for example a month with 6 inches of
rainfall, an excess of 1 inch may not seem significant. However in a dry
month, for example a month with 1 inch of rainfall, an excess of 1 inch
represents a doubling of the amount of rain.)

Although actual (noncumulative) deviations are bounded, and thus cannot
be [ractal, the cumulative deviation may be fractal, just as a random walk
with bounded increments is fractal, (The increments of a fractal process taken
over a time step At are Gaussian and thus ‘effectively bounded'’) We
therefore studied cumulative deviations, just as in Hurst’s (1951, 1956) study
of the cumulative river discharges of the Nile river. There is another useful
test for fractal behaviour involving the range of the Hurst exponents,
0 < H < 1, and the equivalent restriction of the coefficient of correlation p
between successive increments to the interval —! < f < 1 (see also Section
4.3). If experimental results should lie outside these ranges, then one should
consider taking sums or differences.

Since annual river discharges, daily temperatures, and instantaneous heart
rates are bounded, they cannot be fractal processes themselves. However,
they could be the increments of fractal processes over time steps of 1 year,
| day, and ! sampling interval, respectively.

9.3 La Jolla, California, temperature data

We analysed a time series of over 20 000 daily readings of ocean surface
temperature from the end of the Scripps pier in La Jolla, California, from
the years 1927 to 1989, Parts of this data have been previously analysed for
spectral properties (Tont 1975, 1981).
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93.1 Methodology

We began by looking for annual trends by computing daily average
temperatures over the more than 60 years of data. Leap years were handled
by deleting every 1461th temperature {4 x 365.25 = 1461). We then further
smoothed the daily average temperature by applying a seven-day moving
average. This yielded average temperatures over 365-day ‘years’. We found
an annual cycle and removed it by subtracting the average temperature at
cach date from the corresponding actual temperature.

We looked for fractal behaviour by local growth of variance method, that
is, by computing the correlations between successive increments of the
cumulative temperature difference function F(t) defined by

F(0) =0,
F(t + 1) = F(1) + (temperature on day ¢ + 1) (%.1)
—(average temperature onday ¢ + 1).

We then computed the correlation between successive increments F{t + h) —
F(t) and F(t + 2h) — F(t + h) for lags h of from | day to 2500 days. Since
the temperature data was detrended, we could assume that the mean
difference between excess temperature was 0, and compute the coefficient of
correlation by the methods of Section 4.4,

REMARKS 9.]

(a} Theincrement F(f + k) — F(t) is the sum of the temperature deviations
ondays t + 1, t +2,..,t + h, and may be considered as the ‘cumulative
temperature deviations’. in fact, F(t + h) — F(t) is the average excess
temperature over the h days above, and the correlations are correlations
between excess temperatures in successive periods of h days.

(b) The cumulative temperature deviation F(t) can grow large in size, in
contrast with the temperature itself, which is surely bounded, for example
between 0 and 50°C!

(c) We also tried computing correlations between differences between
excess temperatures, for example [(temperature at day ¢ + h) — (average
temperature at day ¢ + h)] — [(temperature at day 1) — (average temperature
at day 1)}, but obtained correlations which rapidly tended towards — 1,

9.32 Results

Increments in the cumulative temperature deviation are strongly positively
correlated (as might be expected) for very short lags of one to several days.
This correlation is gradually lost to a near-zero correlation at roughly two
years. The correlation continues to decrease slowly with increasing time lag,
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Fig. 9.1 Correlation of successive increments in a time series of almost 80 years of
ocean surface temperatures from the Scripps Institute of Oceanography pier, La Jolla,
California, USA.

and becomes significantly negative at times of six or more years. In terms
of the fractal exponent H, we found that H is greater than } for short lags,
decreases Lo about ] for times from two to five years, and becomes less than
4 for periods of six years or more. The value H = 1 is the Brownian value;
we interpret H > 1 as ‘persistence” and H < } as ‘anti-persistence’ or a
tendency towards reversal. These resuits mean that if one month is warmer
than average then the next month is quite likely to be warmer than average.
Il one year is warmer than averge, the next year is somewhat likely to be
warmer than average. This tendency is lost after about two years, and
reverses after about six years (see Fig, 9.1).

REMARKS 9.2 This behaviour may be related to the duration of El Nifio
events (Rasmussen er al. 1990; Ghil et al. 1991) which characteristically last
for about two years, and might thus be explained by residence time models
of Section 9.5. A system with a residence time of the order of two years
would smooth out anti-persistent behaviour on shorter time scales, but have
little effect on longer time scales.

A toy Fourier analysis might provide additional hints. Consider a system
with a broad spectral peak, and calculate the correlation p between successive
increments as a function of the lag Ar—the correlation methed of Section
4.3. Without loss of generality, we use units in which the spectral peak has
time scale 2z. Then the correlation p will be 0 when

2x
J [sin(t + 2A¢) — sin(t + Ar)]{sin(¢t + At) —sint]dt =0. (9.2)
[+]
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Evaluating the above integral yields

2x
J [sin{t + 2At) sin(t + Ar) — sin®(r + Az) — sin{t + 2As) sin ¢
0 —sin(t + M) sint] dt

2=
= I [—sin 2(r + At) — sin(t + 2Af) sin 1] dt
L1
(since (3" sin(t + 2Ar) sin(r + Ar} dt = (37 sin(t + Ar) sin (1) dt)

in
= —n +j sin(t + 2Ar) sin ¢ dr

0

2x
=—n- f [sin® t cos 2At + sin t cos 7 sin At] dt
0

In
= —m — (cos 2A1) J. sin*f cos 2A¢ dr
[4]

(the second integrand above integrates to 0)
= —x — (cos 2Al)n. (9.3)

Thus the correlation is 0 when cos 2Ar = — 1, or when At = n/2, one-quarter
of the time scale of the natural peak. The graph of the sine function is also
relatively large (over 70% of its maximum) over one-quarter of its cycle, and
thus the time scale of zero correlation 1s approximately the time scale of
maxima of the sine function. Since El Nifio events may occur on a strange
attractor (Rasmussen et al. 1990; Ghil et al. 1991), one expects more complex
quasi-periodic behaviour.

9.4 New Jersey rainfall data
We performed a similar analysis on 20 years of almanac data on New Jersey

rainfall after discussions of flood controi projects of the Army Corps of
Engineers in the area.

9.4.1 Methodelogy

We analysed these data as follows. We first computed monthly average
rainfalls over the 20 years of data. There was no pronounced annual trend,
so we did not detrend the data. We then used the p-lag method as above,
for lags of one to 24 months. The maximum lag was limited so that there
would be sufficient data to reliably compute the population coefficient of
correlation from experimental data.
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94.2 Results

As above, the rainfall data display short-term persistence, middle-term
Brownian behaviour, and long-term anti-persistence. The short-term per-
sistence {positive correlations and thus H > 1) holds for periods of up to five
months. Brownian or approximately Brownian behaviour {corrclation = 0,
and thus H = }) holds for periods for six months to one year. The behaviour
became increasingly anti-persistent for periods ol over one year.

9.4.3 Significance

Water storage is important for both food control and drought tolerance,
The data suggest that reservoir capacity should allow at least one year of
waler slorage, with several years better. Naively, water storage of less than
five months is likely to be inadequate because shorter dry periods are likely
to be followed by similar dry periods, and similarly for wet periods, On the
other hand, multiyear dry periods are likely to be followed by similarly long
wet periods, and vice versa,

To make this more precise, recall the Mandelbrot (1977, 1982) formula of
Section 6.2.1 relating the Hurst exponent H (o the Korcak exponent B for
the duration of excursions of fractal processes {on the line) above or below
a given level: the probability of an excursion (food or drought) of duration
at least T scales as T ® where H = 1 — B. The cumulative size of the
excursion scales as

T" + I‘ (94)

the product of its range (of the order of T") and duration T. In addition,
larger values of B, associated with smaller values of H, correspond to
relatively smaller numbers of long-lasting floods and droughts. Thus,
increasing the size of a dam and thus its water storage capability is most
beneficial when H is small, for example H < i. In the case of New Jersey
data, increasing the water storage capacity of a dam from one to two years
(where H < 1) is relatively casier than increasing the water storage capacity
of a dam from two to four months (where H > 4.

9.5 Storage and residence times

In order to compare fractal with compartmental residence time models,
consider a compartment with one input and one output. Let f(t) denote the
time series of input values and g(¢) denote the time series of output values.
The compartment is said to have residence time T if g(t) depends largely
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upon the values of f from times ¢ — 7T to t, and relatively little upon the
values of f at times preceding time t — T,
In a discrete modei this behaviour may be represented by the formula

T

gy = Y als)f{t - s), 9.5)

5=0

or more smoothly by the formula

an

gt) = ¥ exp(~—s/T) f(t ~5) (9.6)

s=0

In continuous time, one has

g(t) = Im exp(—s/T) [t — s)ds )

0

If the input function f{(t) corresponds to the increments in a Brownian
function, then it is casy to see that the cumulative output

r
HOES f g(s) ds (9.8)

0

is approximately Brownian over time scales long compared with the
residence time T, but is persistent (successive increments are positively
correlated, or equivalently H > 1) over much shorter time scales. More
generally, if f(t) represents the increments in a fractal process F(t), then G(r)
behaves like F(t) over time scales long compared with the residence time T,
but is more persistent (larger H) over much shorter time scales.

Caution. The proper formalism requires replacing f(t — s) ds by the distri-
butional derivative of Brownian motion dB(r — s). The mathematics is
somewhat forbidding (Mandelbrot 1965; Mandelbrot and Van Ness 1968;
Mandelbrot and Wailis 1969), but it is adequate to think of the integrals as
sums of many small steps.

Thus finite residence time models display severai characteristic time scales,
and might generate the ‘muitiscaling’ behaviour of the time series of Sections
9.3 and 9.4, a behaviour characterized by short-term persistence, middle-term
Brownian behaviour, and longer-term anti-persistence. It would be interest-
ing to reexamine Hurst’s (1951, 1956) data in this light. See also Chapter 11

below.
In contrast, Mandelbrot and co-workers showed that a compartment with
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4n appropriate ‘unbounded” residence time could transform such an input
f(t) into the increments of a scale-invariant process: the integral

(1) = fm s*LS AR - ) 9.9)
(4]

yiclds the increments in a fractal process with Hurst exponent H.

|
F
|




Part IV

Case studies

Two case studies, the first semiclassical and the second new, illustrate the
science of fractal modelling. Chapter 10 unifies and reviews work of many
authors in the last dozen years on pattern and process in vegetative
ecosystems and concludes with a list of promising future projects ranging
from studying mechanisms for succession to counting the number of species
on the earth. In particular, this chapter demonstrates how fractals capture
the hierarchical structure of ecosystems, in which, as first shown in the
Stommel diagram, dynamics occurs on many spatial and temporal scales.
Chapter 11 considers the problem of forecasting the extinction of small
populations from short data sets: a crucial test for population models and
a central problem in conservation biology. We use the opportunity presented
by the ‘case study’ fermat to include background, supporting, and teaching
material all too frequently omitted from most journal articles.
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Case studies: pattern and process in vegetative
ecosystems

16,1 Introduction

The purpose of this chapter is to show how [ractal geometry might be used
to measure important aspects of complex vegetation patterns, to identify
scales and scaling behaviour, and to describe the underlying dynamics which
gave rise to these patterns.

As background, recall Korcak’s (1938) empirical search for structure in
the complex distribution of areas of islands in the Aegean sea (discussed in
detail in Section 3.6). Upon finding a wide range of areas, many small islands
and a few large islands, Korcak applied three natural techniques to study
their statistics. Areas were replaced by their logarithms in order to reduce
the range of the data. The data was smoothed replacing the histogram of
logarithms of areas by the corresponding cumulative frequency distribution.
These steps yielded an apparently lincar relationship for the number of
islands of area greater than a given area a as a function of the logarithm of
a. Finally, Korcak applied linear regression to find the slope of this lingar
relationship, yielding the power law

number (area > a) = const x @~ % (10.1)

In effect, Korcak had found a fractal relationship in nature, which required
Mandelbrot’s discovery of fractal geometry for a full interpretation. About
20 years later, Richardson (1961) found another fractal relationship in nature:
a power law for the apparent length of the coastline of England as a function
of the unit *step siz¢’ used in measurement, given by

number of steps = const x (step size) "2 (10.2)

for a similarly fitted exponent (fractal dimension) D.

The work of Korcak, Richardson, and Mandelbrot, and apparent similar-
ities between ‘islands’ of various types in vegetation maps and islands in the
ocean, stimulated the first-named author (Hastings et al. 1982, see Section
10.2) to attempt to quantify patterns in Okefenokee Swamp vegetation with
Korcak’s techniques. As discussed below, many authors (cf. Bradbury et al.
1984; Krummel et al. 1987, Meltzer 1990; Sugihara and May 19904)
subsequently developed additional techniques and applications to ecology,
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using fractals to study boundaries of patches as well as their areas, and also
lo objectively identify natural size scales in vegelation patterns.

Fractal geometry may also contribute to the identification of ecosystem
processes, Ecosystems arc described as hierarchical systems, with relevant
dynamics occurring on a variety of spatial and temporal scales (Allen and
Starr 1982; Sugihara 1984: O'Neill et al. 1986; Milne 1988; May 1988).
Morcover, ecosystems are open systems, with encrgy flowing both in and
out, and typically have a large number of metastable states. One would
cxpecl in many cases that changes in the dynamics would be reflected
In corresponding changes in spatial patterns and thus in the fractal exponents
quantifying those patterns. In such cases sharp changes in fractal exponents
computed over a limited range of scales would signal scale-dependent
‘changes in the generating process with scale, and define a boundary across
which one may no longer make extrapolations. In this way, fractals may
provide a methodology for obtaining objective answers to such difficuit
problems in hierarchy theory as how to determine boundaries between
hierarchical levels and how to determine the scaling rules for extrapolating
within each level” (Sugihara and May 1990a).

The present chapter will address potential applications of fractals in
describing scaling behaviour in vegetation patterns, and identifying certain
aspects of ecosystem dynamics. In particular, we shall attempt to relate
patlerns in the distribution of a species or closely related group of species
to their successional stage and tendency to persist. We shall also attempt to
show how fractal methods can objectively determine the presence of multiple
scaling regions, and thus determine natural scales in a vegetative system.
Fractal geometry can thus provide objective, quantitative measure of
ccosystem patterns and processes which can, at the very least, complement
more complex surveys and dynamical models. Finally, we shall attempt to
demonstrate the vast potential of fractals in applied ecology, in areas ranging
from identifying the functional role of disturbances (shail we extinguish forest
fires in a given region?) to ongoing, automated determination of the stress
of grazing on heavily used grasslands,

This chapter is organized as follows. The first two scctions develop the
fractal geometry of vegetation patterns. The next three sections apply this
geometry to models for underlying processes in vegelative ecosystems,
beginning with a postuiated relationship between patchiness and persistence.
The last section contains a list of questions and hypotheses for further study,
covering a wide variety of topics ranging from the identification of spatio-
temporal scales to possible extensions to the species- area relationship.

REMARKS 10.1 Bak, Tang and Weisenfeld (1987) proposed a set of cellular
automaton models for complex physical systems which give rise to fractal
patterns and dynamics. These models are discussed cxtensively in Sections
7.2 and 8.2 above. It is interesting to speculate whether similar cellular
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aulomaton models might explain [ractal patterns and dynamics in ecology.
Section 10.6 develops some consequences of such a program.

10.2 Scaling behavieur

We shall begin by reviewing an early study of fractal patterns in the
distribution of vegetation patches and the shapes of their boundaries
(Hastings et al. 1982). In this work, apparent similarities between vegetation
palches (‘islands’) in the Okefenokee Swamp and islands in the Acgean
studied by Korcak suggested that Korcak's techniques be applied to search
for fractal patterns in the distribution of areas of vegetation patches. Hastings
et al. therefore atiempted to fit the number of patches of area at least g to
the hyperbolic distribution

number (area > a) = const x a”®,

using a set of values of a spaced by semi-octaves or multiples of ‘f-stops™:
1, 14, 2, 28, 4, 5.6, 8, 113, 16, ... .

The Korcak patchiness exponent was determined by applying lincar regres-
sion lo log-transformed raw data (see Chapter 6). Results are summarized
in Table 10.1. Table 10.2 presents typical raw data.

The Korcak exponent B measures the number of small patches relative to
the number of larger patches with smaller values of B corvesponding to fewer
small patches. Classical fractal models restrict B to the range l<B<g 1
Cypress distributions appeared patchier (more small patches) than broadleaf
distributions, and cypress itsel{ appeared patchier in the northeast than in the
southeast. Informally this suggests that cypress is less persistent in the
northeast, according to a postulated inversc relationship between patchi-

Table 10.1 The exponent B and coefficient of cor-
relation p in linear regression for patches of cypress
(Tuxodium ascendeus) and broadleaf evergreen (Mag-
nolia virginia, Persa palustus, and Gordonia lasiantus)
in the Okefenokee Swamp, following Hastings e al.

(1982)

Species, region

of swamp B p
Cypress, northeast 0.624 0.987
Cypress, southeast (.799 0.975
Broadleaf, northeast 0.453 0975

Broadleaf, southeast 0.491 0952
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Table 1.2 Distribution of cypress (including mixed
cypress) patehes in the Okelenokee Swamp in the northeast
corner (north of 34, and eas| of 3,,) of the vegetation map
of McCaffrey and Hamilton (1978), following Hastings et
al. (1982). The last column is not included in Hastings et al.
(1982), but is included here for a later critique. Eight patches
smaller than 40 acres are not included due 1o measurement
difficulties; a 40 acre patch is about } inch (0.6 cm) in
diameler on the | inch = | mile (1:63 360) map

Number of patches

Number of patches of area between

Area a of arca at least ¢ ¢ and a,/2
2560 3
1810 5 2
1280 6 1

905 7 !

640 10 3

452 13 3

320 17 4

226 22 5

160 24 2

113 28 4

80 32 4

57 39 7

40 43 4

ness and persistence to be discussed in Section 10.4. Morcover, an artificial
sill approximately 10 cm high built in a failed attempt to drain the swamp
separates its northeast and southeast portions (Patten, personal communijca-
tion). This sill partially interrupts the surface water flow, which runs
predominantly from northeast to southwest. Thus, the northeast is wetter
than the southeast, and thus likely a better habitat for cypress.

Broadleaf species appeared still more persistent than cypress. This is
consistent with observed succession Irom cypress to broadleal in the
Okefenokee (Schlesinger 1978).

Conjectures. These results suggest {wo intriguing conjectures.

1. Late successional patterns are less patchy than early successional
patterns; more precisely, the Korcak exponent B associated with a given type
of vegetation decreases with successional stage.

2. More persistent species are less patchy than less persistent species; more
precisely, the Korcak €xponent B associated with a given type of vegetation
decreases with increasing persistence.
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(@ (b}

Fig. 10.1 Boundaries of artificial () and natural (b) patches. A sketch from Sugihara
(1982). The differences can be quantified with fractal exponents (see Section 10.3,
and especially Fig. 10.2).

Other exponents. As discussed in Chapter 3, many related fractal exponents
might be used in attempts to find structure in complex natural forms.
Krummel et al. (1987) used the area—perimeter exponent (equal to D/2) of
Section 3.5 to find the fractal dimension D of irregular patch boundaries.
This may be especially appropriate in cases where the boundaries arise from
intense competition. Bradbury et al. (1984) used the dividers method of
Section 3.4 to find the fractal dimension D of an Australian coral reef. As
shown in Chapter 3 and Section 6.2, in many fractal models the exponents
Band D are closely related by the Mandelbrot formula D = 2B. In particular,
the fractal dimension of a patch boundary increases with increasing com-
plexity just as the Korcak exponent increases with increasing patchiness in
the distribution of areas. What does the Mandelbrot formula say about the
fractal geometry of vegetation patterns? This question will be discussed in
Section 10.7.1.

Sugihara (unpublished, 1982) represented this type of complexity in Fig.
10.1.

Critique. Referring to Table 10.1, note that distribution of patches by bins
appears more irregular than the cumulative frequency. It is not hard to sce
that the expected distribution by bins should have the same scaling as the
cumulative frequency:

number(a < area < a,/2) = const x a7, (10.3}
or, more generally, for any constant ¢ > 1,

number(a < area < ca) = const x a” 2. (10.4)

The use of formula 10.4 together with suitable windowing techniques should
result in a better sense of fractal (or more complicated multiscaling)
bchaviour in the data.
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Proof of formula (10.4). Fix ¢ ~ |. By scale-invariance,
number(a < area < ca) = const x g~* (10.5)
for some exponent b. Then
number(area = 1) = const x (I + ¢ * 4 ¢~ 2 +-)
= constf{] — ¢7?), (10.6)
number(area = ¢*) = const(c ™* 4 ¢ K+ b | —tt 2 +)
=const x ¢ ¥l 4 7P g o7 4
=const X ¢ "1 —¢b)
= ¢ " x number(area = 1). (10.7)
Thus,
number(area = q) = number(area > 1) x ™% (g = |, ¢ el ). (10.8)

But the power law (10.8) 1s characterized by the Korcak exponent — B.
Therefore b = B, and formula (10.4) holds as required. [J

The paper by Hastings er al. (1982) did not consider or attempt to measure
scaling regions and breakpoints separating different scaling regions. This
theme was, however, soon taken up by many authors, including Bradbury
el al. (1984), Krummel et af. (1987), Mcltzer (1990), and Meltzer and Hastings
(1992). We shall discuss their work in the next section.

10.3 Scaling regions

Fractal exponents are determined empirically as slopes of linear fits to
log-transformed data. However, many authors (Bradbury er ol 1984
Krummel et af. 1987; and, more recently, Meltzer 1990 and Meltzer and
Hastings 1992) found that log-transformed ecological data are best fitted
using piecewise linear curves, in which the slope of each Jine segment is the
fractal dimension over the corresponding scaling region (see Fig. 10.2).

Fractal methods thus have the potential to objectively identify scaling
regions in the hierarchical construction of ecological patterns. Sugihara and
May (1990q) cite the following examples.

Bradbury, Reichlet and Green (1984) investigated the fractal dimension D of
boundaries of features in an Australian coral, reef, They used the dividers method
and rolling regressions to study whether D depends on the range of length scales.
They found that D declines from approximately 1.1 at the finest scale (of the order
of 10 cm) to approximately 1.05 for intermediate scales (from 20 cm to 200 em) and
rises sharply to approximately 1.15 at the largest scales (from 5 m 1o 10 m). [However,
within each size range, D was close lo constant, suggesting that scale invariant
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Fig. 10.2 The area-perimeter exponent over various scaling ranges, computed with
a moving window technique (after Krummel er al. 1987). Note the sharp transition
at scales of 60 to 70 ha (600000 to 700000 m*, or 13.3 to 13.5 on the horizontal axis).

dynamics (within that size class) gencrated the relevant features.] These three ranges
of scale correspond nicely with the scales of three major reef structures: 10cm
corresponds to the size of anatomical features within individual coral colonies
{branches and convolutions); 20-200 ¢m corresponds to the size range of whole adult
living colonies; and 5-10 m is the size range of major geomorphological structures
such as groves and buttresses. That is to say, the shifts in fractal exponent at different
scales appear to signal where the breakpoints occur in the hierarchical organization
of reefs.

In similar vein, Krummel et al. {1987) evaluated the fractal dimension of boundaries
in deciduous forests in Mississippi using the area-perimeter exponent. Krummel et
al. began with aerial photographs of the US Geological Survey (1973) Naichez
Quadrangle. This region has experienced relatively recent converston of native forests
into agricultura! use. The use of rolling regressions using a window of 60 points (Fig.
10.2) revealed a marked change in slope (p < 0.001) in the graph of log transformed
perimeter and area at areas around 6070 hectares [1 hectare = 10000 square metres =
approximatey 2.5 acres). Small areas of forest tend to be smoother with D = 1.20 +
0.02, while Jarger areas, greater than 70 hectares, have more complex boundaries,
D =1.52 + 002 This result is interpreted to indicate that human disturbances
predominate at small scales making for smoother geometry and lower D, while
natural processes {e.g. geology, distributions of soil types, eic) continue to pre-
dominate at larger scales.

Note that the dimension of 1.52 is close to that of islands {(x, y):z(x, y) = 0}
formed by a Brownian function z = f(x, y).

Fractal analysis has also been used to measure changes in grasslands in
Zimbabwe due to increasing human and cattle populations (Meltzer 1990,
of. Meltzer and Hastings 1992). Meltzer found clear evidence of two scaling
regions for the cumulative frequency distribution of areas, with a single
breakpoint between them. The smaller patches had a less patchy distribution
than the larger. Morecover, grassland patches of size smalier than the
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breakpoint were less patchy (had a smaller exponent B) than patches of size
larger than the breakpoint. As in Section 10.2 one may conjecture that the
smaller patches are more persistent. It appeared [rom further analysis that
large grassland patches undergo patch extinction from invasion by trees and
shrubs and rapid succession. Small patches are less likely to undergo such
mvasion, and thus extinction of smail patches follows another route.

Critigue. The cumulative frequency distribution counts ail patches in deter-
mining the Korcak exponent B from the number of patches of size greater
than a. The process of forming the cumulative frequency distribution may
thus cross scale boundaries in systems with several scaling regions. In such
systems the histogram of frequencies of areas (see Table 10.2) should be used

instead of the cumulative frequency distribution. Formula 10.5 above justifies
this approach.

RiEMARKS 10.2 There are several ways to ascertain the existence of multiple
scaling ranges separated by breakpoints. First, one can simply plot log-
transformed data points, and decide whether they appear to lie on a straight
line. This simple visual test can be supplemented by appropriate statistical
tests such as the Durbin-Watson test (Section 6.6: . Draper and Smith
1981). These tests measure the distribution of residuals, that is, displacements
of data points above and below the regression line. A linear model is
appropriate if the residuals are random and independent.

Finally, regression can be restricted to subsets of the data in order lo
determine local slopes over these subsets. One approach is to perform
regression over a window containing a fixed number of data points, and let
the window range over the entire set (see Krummel et al. 1987). This method
1s called rolling regression. Alternatively, one can postulate the existence of
one or more breakpoints, and perform regression separately in each scaling
range (see Meltzer 1990: Meltzer and Hastings 1992). If the computations
over two adjacent windows (overlapping only at their common endpoint)
give apparently distinct regression slopes, and thus exponents, one can then
determine whether the slopes are significantly different. It is also easy to vary
the breakpoint between adjacent windows and thus minimize the overall
mean square ¢rror.

10.4 Patchiness and persistence

We have seen that fractal geometry can be used to objectively identify scaling
regions in vegetative ecosystems and scaling behaviour within each scaling
region. We have also postulated an inverse relationship between patchiness
and persistence in vegetative ecosystems, based on field data from the
Okefenokee Swamp (Section 10.2). Sugihara and May (1990a) suggested the
possibility of a more general inverse relationship between patchiness and
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persistence, based upon observations on a variety ol different systems:
sateilite occan colour data and patch dynamics of bryozoan and coral
colonies (Jackson and Hughes 1985).

Thus fractal geometry appears to offer the promise of forecasting persist-
ence in vegetative ccosystems [rom a single set of measurements of spatial
patterns. We shall explore this question theoretically with a variety of
mathematical models in the next two sections.

10.5 Model building

Fractals can be used to compare patterns generated by postulated dynamical
models with patterns in nature. In this section we shall review some of the
history of ecosystem models in space and time, and show how fractals
can be used to assess such models, following Hastings et al. (1982).

Levin and Paine (1974) developed patch dynamics in order to model
immigration and extinction in space and time. They represented space as a
two-dimensional grid of cells (we use the term ‘“cell’ rather than their term
‘patch’ in order to reserve the term ‘patch’ for a connected region of cells
of one type). The cells are assumed to be so small that each cell may be
assigned a unique state from a finite set of states. The states of all cells are
updated by deterministic or probabilistic rules at discrete time intervals (for
a chosen small time step At, assumed short compared with all natural time
scales, so that the dynamics is essentially continuous). Usually, and unless
otherwise stated, the state of the system at time ¢ + At depends only on its
state at time ¢, that is, the system is Markovian.

The dynamics of immigration and extinction are caplured in a toy system
with just two competing species, A and B, and thus three states: those
occupied by species A (denoted simply A), those occupied by species B
(denoted simply B), and those that are vacant. Extinction is modelied by a
Markovian process: cells of type A have a characteristic mean lifetime L,,
and cells of type B have a characteristic mean lifetime Lg. Let ry = I/L, be
the celi extinction rate. Then, in time A, a fraction r,At of the cells occupied
by species A will become vacant. Extinction of cells of type B is modelled
similarly. Suppose also that vacant cells are immediately recolonized.

One simple mean field model (Levin and Paine 1974; see Hastings er al.
1982) assumes that the probability that a cell is recolonized by species A 1s
proportional to the product of number of cells of type A and a characteristic
diffusion rate Dy, and similarly for species B. We call this model a mean field
model since propagules can come from throughout the system. If a fraction
« of all the cells is currently occupied by species A, then the fraction

xDyf{xDa + (1 = x)Dg] (10.9)

of vacant cells is colonized by species A. The rest of the vacant palches are
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Table 10.3  State transitions in the oy mean field model

Fraction of alt cells undergaing transition within

Transition time At
A - vacant nx At
B — vacant (1 — x) Az
A or B - vacant Lrax + ra(1 — x} Ar
A or B - vacant — A Crax + my(1 - SN xD,j(xD, + (1 — X At
A or B = vacant -» B [rax + n(1 = x)I[(1 — X)Def(xDy + (1 — x)D,)] At

colonized by species B. Table 10.3, taken from Hastings et al. (1982)
summarizes the state transitions,

The dynamics of this model are easily derived, again following Hastings
et al. (1982). Subtracting the cell extinction rate from the colonization rate
yields

Ax/At = —ryx + [rox + il — x)]{xD,/[xD, + (1 — x)Dgl}. (10.10)

Formula (10.10) can be simplified by dividing by x, obtaining the logarithmic
rate of change

(I/x)yAx/At = —r, + [rox + m(l — x){D,/[xD, + (1 — x)Dg1}. (101D
Additional caiculations yield
(1/x)Ax/Ar = { - ralxD, + (1 - x)}D,] + [rax + n(t — x)]1D,}
X [xDy + (1 — x)D,]"!
=(=raDpx = 1\ Dy + 1, Dyx + "aDax + 1Dy — 1Dy x)
X [xDy + (1 = x)D,]!
(after writing the numerator as a sum of terms)
= (=raDy + mD\Y[xD, + (1 — x)Dy] (after cancellation).
(10.12)

If the ratios of diffusion to extinction rates satisfy the condition

Dyjra > Dy/ry, (10.13)

then (1/x) Ax/At > 0, and the fraction of patches x occupied by species A
increases to 1, that is, species A displaces species B.

Even this toy model has interesting  behaviour. First, the long-term
dynamics of any single species depends only upon the diffusion-extinction
ratio Djr. However, il species B has a faster diffusion rate, a vacant region
adjacent to a region containing both species would Initially be colonized by
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species B, and later go over o species A. There are thus two distinct time
regimes (Levin and Paine 1974).

It is casy to construct similar but more realistic models. For example, the
diffusion rates may be interpreted as the effective areas over which prop-
agules spread from individual cells. That is, suppose that propagules of
species A travel a characteristic distance s, and propagules of species B
travel a characteristic distance s, each in a unit time step. In a mathematical
sense, the diffusion rate is the ratio As?/A¢, and thus

D, =53, Dy=si, (10.14)

There is also a simple geometric interpretation. Propagules from a cell
occupied by species A typically travel over a circle of radius s, centred on
that cell, and thus cover an area 7nsi, and similarly for species B. As in
the mean field model, suppose that vacant cells are colonized by each
species with probability proportional to the number of propagules of that
species arriving there. Then the probability that a given cell is colonized
by species A is given by the formula

ast x/(msdx + msgy) = sax/six + SEV), (10.15)

where x is the fraction of cells within a circle of radius s, occupied by species
A, and y is the fraction of cells within a circle of radius sg occupied by species
B. Thus, by analogy with formula (10.9), the effective diffusion rates are
D, =s3 and Dy = s&, respectively. Note that y is not necessarily equal to
| — x unless 5, = sg. In that case, species A drives out species B under the
same conditions as in the mean field model.

However, the analysis is already more complex. In general, the centres of
large patches of one type are not invaded, but for a patch of type A, a
houndary layer (neighbourhood of the boundary) of characteristic width sp
can be invaded.

One can also consider history-dependent (non-Markovian) models, in
which the fate of each cell depends not only upon its current state but upon
its history of occupancy. The use of non-Markovian models is likely Lo be
more appropriate since they include the effect of the history of cell occupancy
upon the probability of cell extinction. However, the analysis becomes
significantly more complex and onc must turn to simulation methods, as in
Section 7.2.

We conclude by considering a possible role of fires in regulating the
classical succession of pine or other conifers to broadleal forests. As
hypothesized, the rapid spread of pines corresponds to a faster effective
diffusion rate for pines. Because shade is more beneficial to broadleaf
germination, and broadleal trees overtop pine trees, broadleal trees should
exhibit reduced extinction and therefore a greater diffusion-extinction ratio.
In the absence of fires, succession should continue from pine to broadleaf
as the diffusion-extinction ratio drives the dynamics. In the presence of
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frequent fires, succession is interrupted as the fires periodically ‘reset the
clock to zero', and keep the system in its onginal diffusion-oriented regime,
and pines with faster effective diffusion should predominate,

FProject. Study these models with cellular automata simulations as discussed
in Section 7.2. How do the fractal exponents depend upon the choice of
model or simplifying assumptions used? Does each model have a distinct
set of exponents?

REMARKS 10.3 This model predicts that the most persistent species (as
measured by patchiness) is also the most common at a successional climax.
It would be interesting to test this hypothesis; see Section 10.7.2.

10.6 A possible formalism for patchiness and persistence: evolution of CA
models in time and space

As a thought-experiment, consider time lapse photography of a forest. This
yields a sequence of vegetation maps at regular time intervals. Consider
these maps as slices in a map showing the evolution of vegetation in time
and space, analogous to the representation of the evolution of cellular
automata tn time and space (see Section 7.2).

Under an assumed self-similar fractal behaviour in space and time together,
there is a simple relationship between the dimensions Dy of the state
transitions of a cell in time (see Application on p- 54; Mandelbrot 1977, 1982;
Vicsek 1989; Erzan and Sinha 1991) and the dimension D,,,.. of cell
boundaries in space (the dimension D computed above, the subscript *space’
1s used for emphasis):

Dlim: = Dspanc ] (1016)

Since both [ractal exponents D, and Dpuc. increase with increasing
irregularity, formula (10.16) associates irregular temporal distributions (lack
of persistence) with irregular spatial distributions. Moreover, the time
dimension of transitions of a fractal (generalized Brownian) process is related
to the scaling exponent H for that process by the Mandelbrot (1977, 1982)
formula (see Sections 3.6 and 6.2):

H~ 1= Dipe (10.17)

Combining formulae (10.16) and (10.17) yields the postulaied inverse

relationship between persistence H and palchiness D (=D, )

H=2-D. (10.18)

The simple Markovian model has H = 0.5, and thus D = 1.5, close to the
value of 1.52 in Krummel et al.’s (1987) study of deciduous forests.
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Critigue. Observed B values outside the range 0 < B < 1 implied by formula
(10.18) and the relationship D = 2B, suggesting that a more complex multi-
species analysis may be needed for real systems (Meltzer 1990; cf. Meltzer
and Hastings 1992). Nonetheless, ecological data, thought-experiments, and
simuiation analysis suggest the possible ubiquity of a qualitative inverse
relationship between the patchiness and persistence.

10.7 Future projecis

This chapter sketches several speculative applications of fractals to a variety
of questions in ecology, ranging from identification of dynamical scales in
space and time, motivated by the Stommel diagram (Stommel 1963, 1965;
Haury et al. 1978) to the problem of counting the number of species on the
carth. We begin with several questions related to succession.

10.7.1 Mechanisms for succession

At least in principle, fractals can be used to study whether succession is
determined by invasion or senescence, and to study the role of boundaries in
competition. Many processes have characteristic or universal fractal expo-
nents, which can be compared with field data in order to test their
applicability.

For example, our Markovian model predicts that boundaries have fractal
dimension D = 1.5. The physics of fluids in porous media may provide
another model for competition along boundaries in which one species
actively displaces another. In this model, viscous fingering (cf. LeNormand
1989; Mandelbrot 1982), and, in a related model, diffusion-limited aggrega-
tion (cf. Meakin and Tolman 1989; Mandelbrot 1982; sec our Sections 8.3
and 8.4 above), boundaries have fractal dimension D = L.7.

The existence of boundaries which are too regular to arise from Markovian
extinction and random short-range immigration might be explained in many
ways, instead of or in addition to non-Markovian extinction rules. However,
non-Markovian extinction rules remain an attractive possibility in terms of
known species-environment interactions.

For example, oak leaf litter is a natural fire retardant, and thus reduces
the probability that a cell occupied by oaks becomes vacant from fire. Thus,
regions dominated by oak trees might have relatively smooth boundaries,
with fractal dimension close to 1.

Cypress bark contains tannin, making water in cypress swamps acid, and
inhibiting invasion by competitors. This might again leave few holes and
relatively smooth boundaries. What is actuaily observed? In fact (see Section
10.2) cypress patches in the wetter northeast part of the Okefenokee Swamp
had Korcak exponent B = 0.624. This corresponds to D approximately 1.2 by
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the Mandelbrot formula D = 2B (see Sections 3.6 and 6.2). Mixed broadleaf
(not oak) patches had B < 0.5, corresponding to D approximately 1.

In contrast, Krummel er al. (1987) found D approximately 1.5 from
measurements of the boundaries of large patches in a disturbed forest
environment, as predicted by the Markovian model.

10.7.2 Testable hypotheses

Here is a short list of hypothescs which should be tested in further work on
fractal models.

1. Patchiness (as measured by the exponent B) decreases with successional
stage. If true, this would provide an objective test for successional stage, and
evidence as to whether a system has reached a climax slaie—in a climax
state the species with the least patchy distribution should be the most
abundant. This hypothesis is suggested by both the Okefenokee data
(Hastings et al. 1982) discussed above and the intuitive idea of succession
moving toward a stable climax state in the absence of disturbances.
Moreover, if this hypothesis is true, then fractal methods might be used to
help select indicator species, which would be most susceptible to ecosystem
changes.

2. Regions where disturbance plays a major role in patterns can be
dentified by comparing the area coverage with the patchiness. If the
dominant species, as measured by area coverage, have more patchy distribu-
tions than other species, then disturbances play a role in vegetation patterns,
and conversely. These ideas might be used in forest and Crop management.
In particular, consider an ecosystem which is subject to relatively regular
fires, such as Yellowstone National Park. There has been intense debate
about whether to extinguish all fires, particularly destructive fires, those fires
which affect nearby communities, or no fires, It is clearly important to obtain
objective measures of the role of fires in preserving the ecosystem diversity,
for example by holding back succession. See also Section 10.7.1 above.

3. Early species in senescence-mediated succession have less patchy distri-
butions than comparable species in overcropping mediated succession. Sce
also Section 10.7.1 above.

10.7.3 Discussion

It is easy to find dynamics which expiains the existence of the two scaling
regions, as in Section 10.3. One need mercly study grassland-shrub-try
systems and postulate relatively slow long-range immigration of shrubs and
trees, together with rapid succession of grassland to shrubs and trees,
Suppose further that the probability that a given patch is invaded is
proportional to its area. Then the succession process causes ‘cell extinction’
in larger patches. The small patches are not similarly subject to succession,
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and their cell extinction process is determined by nearest-neighbour inter-
aclions with adjacent vacant land and other types.

The study of parasites and plant diseases might provide another example.
Consider a hypothetical parasite or disease which is maintained at low
endemic levels, spreads randomly, and rapidly destroys patches of a par-
ticular species; examples include Dutch elm disease. Such a parasile or
disease would destroy large patches much more often than small isolated
stands.

It would be interesting and important to study the role of diversity
in regulating agricultural pests.

10.7.4 Measurement of dynamical scales

The Stommel diagram (Stommel 1963, 1965; Haury et al. 1978) is a
fascinating representation of the many spatial and temporal scales of
variability in the dynamics of ocean plankton. We list here the predominant
scales associated with various levels in the Stommel diagram and derive
implicit spatio-lemporal exponents H, which have implications for the
consequent underlying dynamics. The exponent H is given by the renormal-
ization relationship

As? = Ar?H (10.19)

of fractal processes (see Section 2.4). Consider a process on temporal scales
T, <t < T, and spatial scales 8, < 5 < 5;. Formula (10.19) implies that

(S2/8:)% = (/). (10.20)
We convert formula (10.20) to a formula for ‘orders of magnitude® by
applying base-10 logarithms:
log,o(S,/S,)* = logmez/Tl)m,
and thus
logo S, —logo S; = H(log,p T3 — logye T3}

Solving for H yields

H = (log,, T, — log,o T1)/(log,o S; = log,o Sy), (10.21)

the quotient of the number of orders of magnitude in the temporal scales
divided by the number of orders of magnitude in the spatial scales.

Most of the processes in Table 10.4 display scaling exponents of approxi-
mately 0.5, the value in diffusion processes, or 1.0, the value in deterministic
transport processes. There are two exceptions. Swarms may display large-
scale spatial coherence, and the apparent exponent H =3 appears to
reflect this coherence. The value H = 0.3 for small ocean basins probably
reflects physical boundaries and their role in making spatial variability grow
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more slowly than a classical Brownian process. We can only speculate about
this type of analysis on the basis of the Stommel diagram, but future
possibilities seem exciting. See also Frontier (1987).

107.5 Automated measurement of ecosystem patterns and processes

Recent advances in remote sensing and vegetation mapping offer the
intriguing possibility of incxpensive automated surveys (o detect early
changes in ecosystem patterns and processes (Meltzer 1990; Meltzer and
Hastings 1992).

Satellite images are typically available with 30-metre resolution, signifi-
cantly better than the resolution used by the authors cited here. Tilton (1987)
described a computerized contextual classifier to produce vegetation maps
automatically from multispectral satellite data. The advent of more powerful
parallel computers will make computerized classification easy and readily
available. Computerized classification offers several advantages over hand
classification —it is easier to standardize, there is no artificial smoothing of
boundarics, and small patches will not be missed.

Finally, it is easier to directly analyse digital images than ‘analogue’
vegetation maps which involve a second translation back to digitized data
in order to compute fractal exponents.

It is estimated that with these advances, one person with an 80386 SX
based personal computer could analyse surveys of typical grasslands several
times per year, and thus provide easily affordable backup to more expensive
field ecologists. Finally computerized classification has the advantage of
being objective, not subjective.

10.7.6 Model verification with the use of several computations of exponents

As in Section 10.2, Korcak’s (1938) patchiness exponent B has been widely
used to study vegelative ecosystems for several reasons. First, B directly
measures patchiness as defined by a distribution of areas. Secondly, expo-
nents involving perimeters involve accurately knowing the boundaries of
patches, and accurately measuring their perimeters. Finally, there is a
conjectured connection between patchiness and persistence (Sections 10.2
and 10.4-10.6).

On the other hand, it may be more appropriate to use fractals for studying
boundary irregularities. For example, Bradbury er al. (1984) used the
‘dividers’ method in another setting, and Krummel et al. (1987) used the
area-perimeter exponent (see Section 10.3). Box counting techniques can
also be used to determine the fractal dimension of the patch boundaries (see
Section 3.5; see also Frontier (1987)).

The computation of several fractal exponents in a single application might
be a useful way to further test the applicability of fractal models. For example,
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in a fractal set of islands, the fractal dimension of the boundary D is twice
the Korcak exponent B (see Section 3.6.1).

10.7.7 Counting species on earth

The species-area exponemt arises in a well-known relationship (Preston
1962; MacArthur and Wilson 1967, May 1975; Sugihara 1980) between the
number s of species found in a sampling region, its arca 4, and linear scale -

$ = const x A™2% = const x |5, (10.22)

Consider now scarching for new species in an expanding family of circles
centred at a given point. Let X be the set of points where new specics arc
found; that is, moving out from the centre into larger circles, a point is added
to X cach time a new species is found. By the above formula, X has cluster
dimension 0.5 (sec Section 3.3), and thus space appears 0.5-dimensional from
the point of searching for new species. Since new species would then appear
on a Cantor-like set of dimension 0.5, we need a search space of dimension
more than 2 — 0.5 = 1.5 (by the intersection formula of Section 3.7.3 the
search space will meet X in a set of positive dimension, (cf. Lovejoy et al.
1986)).

In addition, the telescope microscope formula of Section 3.1 relates the
species-area formula to the effects of reaching down to look for smaller and
smaller species. Suppose we have found s species of size at least Al in a
quadrat of linear scale I, and thus a relative scale I/Al By the species area
formula, we expect approximately kS5 species of size at least Al in a quadrat
of linear scale kl or relative scale ki/Al. However, searching for even smaller
species, of minimum size Alfk, on the original quadrat also increases the
relative scale to kI/Al, and yields an expected number of species k™ 5.
Fractals thus suggest, as a testable hypothesis, an extended species area
relationship

s = const x (I/AI)*5, (10.23)

However, May's (1978, 1988, 1990) work on the number of species shows
that formula (10.23) cannot hold on all scales. *Very roughly, as one goes
from animals whose characteristic linear dimension [Al] is a few metres
down to those of around I ¢cm (a range spanning many orders-of-magnitude
in body weight), there is an approximate empirical rule which says that for
each tenfold reduction in length (1000-fold) reduction in body weight) there
are 100 times the number of species.” (May 1990, p.178). Thus s scales
inversely as A%, and not as AI°-5, '

There may be several explanations. First, Hutchinson and MacArthur
(1959) argued that the number of species should scale with the number of
new roles (niche hypervolume) and that terrestrial organisms, which sec the
world as two-dimensional, should see a iwo-dimensional niche space. On
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the scale of Al, this argues for the empirical rule that s scales inversely as
As?. This argument, however, suggests a species area exponent of 0.5, May
(1988) applied the hypothesis of Morse et al. (1985) that roughly equal
amounts of energy flowed through each size category (cl. Odum 1953). Since
the mass of an amimal scales as the cube of its size, and its energy
consumption as the 0.75 power of its mass (Peters 1983), the number of
individuals should scale approximately as Al 2-2*, Moreover, work of Morse
et al. (1985) on availability of space on various types of vegetation found
that leaf boundaries had dimension approximately 1.5, and thus that leaves
have dimension approximately 2.3,

These observations suggest that a possible sharp breakpoint in the scaling
behaviour of the number of species s as a function of the linear scale I On
scales of 10 metres and above, s scales as 1%, in accord with the usual
species-area formula (10.22). However, on scales of 1 metre and below, s
scales as 1. In order to reconcile these observations, we suggest the following
curious hypothesis: the niche space present in a habitat of spatial scaie  had
dimension 2 for scales [ of order 10 metres and above, bul has dimension 8
on scales | of order 1 metre and below. Thus niche volume is proportional
to I? for scales I of order 10 metres and above and proportional to I* on
scales of | metre and below.

Substituting these formulae for the niche volume into the generalized
species-niche volume relationship

n = const x {niche volume)®**, (10.24)

as described by Sugihara (1980) yields the predicted scaling behaviour of the
number of species, both above and below the predicted breakpoint. The high
dimension of niche space at small scales may reflect both habitat volume
(Morse er al. 1985; May 1990; Scheuring 1991), and specialization and
competition in several nonspatial dimensions (cf. May 1990). In particular,
Scheuring argues that the habitat dimension is the fractal dimension of the
vegetation (Morse ef al. 1985), which is typically strictly between 2 and 3.
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Case study: scaling behaviour of
density-dependent populations under
random noise

11.1 Introduction

The prediction of local species extinction is a useful goal and test for
population models. Essentially by definition, the population levels of a
species which persists for a long time remain within a bounded range, and
thus there is an asymptotic value to the range of population fluctuations.
The challenge is therefore to predict the long-term range of population values
from availabie time series which are frequently relatively short. (The range
of a population over a time interval is defined to be the difference between
the maximum and minimum population values.) Sugihara and May (19904)
suggested that the range of population values might sometimes follow fractal
or power law scaling: over a time interval of duration At, the range of
population valucs R(Ar) scales as

R(AD = const x (A", (LD

In this case, the scaling exponent H measures the rate of growth of
population fluctuations with the time interval At. Larger values of H
correspond to more rapid increases of the range of fluctuations. Thus,
neglecting the role of the constant in equation (J1.1) and initial population
size, larger values of H should correspond to increasing likelihood of
extinction. A preliminary investigation (Sugihara and May, 1990a) of two
bird species, the least fiycatcher and the American redstart, appeared to
confirm this conjecture.

The use of fractals to study local extinction is appealing; however, several
important issues remain. The first problem involved the large degree of
uncertainty in estimating H from the field data, particularly from time series
which typically contained 10 to 15 data points. The second problem involved
model verification. Is the underlying population dynamics truly fractal?
Finally, can this approach be extended across a wide spectrum of bird
species?

This chapter addresses these problems. Some technical problems in
computing fractal exponents from the given field data are overcome—
however, the uncertainty in computed exponents remains relatively large




Case study: scaling behaviour of populations under random noise 139

because the time series are very short. Theoretical and simulation methods
confirm the existence of this uncertainty.

We also consider two alternative approaches to modelling the dynamics
of the populations under study. The first approach involves the nonlinear
prediction techniques of May and Sugihara (1990b). These methods appear
to offer the promise of a multispecies model using only the time series of
population values of a single species. The first step in applying these methods
is to compute the dimension of the dynamics of the system (Grassberger and
Procaccia 1983). However, it takes the order of 10° data points to identify
a D-dimensional system (Smith 1988; Ruelle 1990; Ghil et al. 1991), and the
lime series under study contain only 10-30 data points. Thus nonlinear
methods are not practical in this study.

The second approach involves linear density-dependent models which
make usc of the hypothesis that fluctuations of natural populations depend
upon both environmental noise and density-dependent control. The scaling
behaviour of the density-dependent model is examined and contrasted with
the scaling behaviour of the fractal model.

In particular, note that the range of population values of any species with
arbitrarily long-term persistence is necessarily bounded. Thus the fluctua-
tions cannot follow a single power law (11.1) since that would imply an
unbounded range of Auctuations. Moreover, samples of a bounded popula-
tion with some random fluctuations taken at sufficiently long time intervals
are close Lo uncorrelated. Thus, over such intervals, applying the local growth
of moment method for computing fractal exponents (Section 4.3) yields

p = E((xz — x)(x; = Xo))/E((x; — x0)*) = —E(x,;)*/2E(xo)* = ~1, (11.2)

and thus H = — 1. (Long-term persistence implies that the mean population
increment is 0, in which case p may be interpreted as the coefficient of
correlation.)

Both the alternative model and field data are found to exhibit more than
one scaling region, with the scaling exponent a decreasing function of the
sampling interval, in contrast to the power law (11.1).

We compare these models by applying them not only to natural popula-
tions but also to simulations. Simulated data is gencrated using both random
walk models (the simplest fractal models) and the density-dependent model
developed below. The fractal exponent H associated with each data set is
computed in several ways, as in Chapter 4. One would expect each of these
methods to yield the same value of H for fractal processes. Other tests for
fractal behaviour (Section 6.5) are aiso applied to the data. Unfortunately,
many results are inconclusive or limited by the relative shortness of
population time series. Nonetheless, computation of fractal exponents is
shown to be useful in understanding the scaling behaviour of population
fluctuations.

This chapter is organized as follows. Linear density-dependent models are
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described in Section 11.2, and their scaling behaviour is derived in Section
11.3. We next compare all three models: nonlinear prediction, fractal, and
linear density dependent, beginning with general considerations in Section
11.4. Tests for comparing the other two models are developed in Section
115, Results occupy the next two sections, followed by a discussioen in
Section 11.8. We used bird population data from Holmes et al. (1986), and
butterfly population data from Harrison et al. (1991) for the first 27 years
of data and Ehrlich {personal communication) for the last 2 years of data;
see also Ehrlich (1965), Ehrlich and Murphy (1981), Harrison et al. (1986),
and Murphy et al. (1986). We invite readers to try other technigues for
analysing these data. The bird data are given in the Appendix at the end of
this chapter.

11.2 A linear model for density dependence

We shall begin with a linear model for density dependence with additive
noise because such a model is easy to analyse mathematically as well as by
simulation. We shall also see that our conclusions hold gqualitatively for
nonlinear models displaying density dependence. The linear model is obtained
by first linearizing the well-studied logistic equation (in continuous time)
about its stable equilibrium. The logistic equation

d
d"= ry(1 = y/K) (11.3)
{

is perhaps the simplest differential equation exhibiting density dependence,
that is, a decrease in the rate of population growth at large populations, The
logistic model is parametrized by an intrinsic growth rate (the growth rate
for very small population levels) r, and a carrying capacity K. It is easy to
see that the logistic equation has a stable equilibrium at y = K, and that the
linearized system about this equilibrium takes the simple form

dx

- _rx, 1.4
a- (1.4)

where x = y — K, and —r is the eigenvalue or Lyapunov exponent. Equation
(11.4) may be considered as a prototype for density dependence in that there
is a stable equilibrium population level, and the return of the popuiation
level to equilibrium is characterized by a linear differential equation. The
effect of random fluctuations is easily introduced by rewriting equation (11.4)
in differential form and adding a random walk term dB to yield the linear
density-dependent model

dx = —rxdf + dB. (11.5)
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For later reference, the linear density-dependent model has a natural time

scule
ty = 1/r; {11.6)

a fluctuation decays to a fraction /e or about 37% of its original value after
a time t,.

This model may be used to generate time series of simulated population
fluctuations whose statistics can be readily compared with those of natural
populations. It is worth noting that equation (11.4) represents a linear model
with additive noise despite the nonlinearity of the logistic equation. The
scaling behaviour of model populations governed by equation (11.5) can be
determined analytically. In contrast, determining the scaling behaviour of
more complex models would appear to require a combination of qualitative
results and simulation methodology. We shall see below that the scaling
behaviour of model (11.5) is typical of that of more complex models, and
thus that our conclusions are morc robust than many conclusions drawn
from linear models.

We now compare the linear density-dependent model to fractal models
used by Sugihara and May (1990a). First, recall that fractal processes are
stationary. It is easy to see that time serics generated by the linear
density-dependent model are asymptotically stationary since the effect of the
initial conditions, or any subsequent fluctuations, decays as exp(—rz). Con-
sequently, the distribution of {x(¢)} for large ¢ can be found by integrating

4
f exp[ —r(t — 5)] dB(s). (1.7)
1]
Thus, for large ¢, the distribution of {x()} is asymptotically normal with
mean 0, just as for the fractal model.

However, in contrast to the case of fractal processes, the increments Ax
depend explicitly upon the value of x. This can be used to decide whether
data are better modelled by fractal or linear density-dependent models.

REMARKS 11.1 The linear density-dependent model (11.5) is a one-
parameter generalization of random walks in the sense that setting the
intrinsic growth rate r equal to 0 yields a random walk.

We now derive the scaling behaviour of the linear density-dependent
population model with additive noise,

11.3 The main theorem

THeoreM 111 Consider the linear density-dependent population model
with additive noise (equation {11.5) above):

dx = —rx dt + dB.
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In the limit of large ¢ for any time step h, the increments
Ax(t) = x{t + h) — x(t) have expectation 0, and successive increments
Ax(t) = x(t + h) — x(t) and Ax{t + h) = x(t + 2h) — x(t + h) have coeffi-
cient of correlation p = — 41 — exp(—rh)].

Proof. We begin with some preliminary observations. Since ¢ is large, we are
in the asymptotically stationary region and need not consider initial condi-
tions, Thus, the expectation of any increment is 0. Since the model equation
(11.5) is linear, we may obtain x(r + h) from x{t) by first applying the
noise-free equation

dx = —rxdt (11.8)

(which, incidentally, describes the mean process associated with equation
{11.5)) and then adding the effect of noise in the time interval from ¢ to ¢ + h.
We obtain

x(t + h) = e~ "™"x{t) + Aw', (11.9)
x(t + 2k) = e~ "™x(t + h) + Aw"
= e~ Mhy(r) + e~ AW + Aw". (11.10)

Here Aw' represents the effect of the random walk term dB(s) over the time
interval t < s <1 + h. We have

1+k
Aw’=j exp{ —r(t + h — 5)] dB(s), (11.11)
r
and Aw” is given by a similar integral over the time interval ¢ +h <

s <t + 2h. Since the process {x(1)} is asymptotically stationary, that is, its
statistics are independent of ¢ for large r, we may write

a? = E([x(D]* = E{[x{t + M)]?). (11.12)
Similarly, using stationarity of the random waik process:
ai, = E((Aw')?} = E((Aw")?). (11.13)

We now compute
o? = E([x(t + h)1?)
= e ¥ E([x(t)])*) + 2E(e "x(t)Aw') + E((AW')?)
(by equation (11.9))
= e~ E([x(0)]) + E((Aw)
(since x{t) and Aw' are independent and E(Aw') = ()

=e" s + 07,
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Thus, simplifying the above calculation, we have

62 =e g & gl,.

A series of straightforward calculations now yields the variance
E([x(t + b)) — x(0)]*) = 26*(1 —e™™), (11.14)

the same result for the variance of the next successive increment, and the
covariance

E([x(r + h) — x()1[x(t + 2b) — x{t + B)]) = —a?(1 —ec " ™)2. (11.15)

Combining equations (11.14) and (11.15) yields the required formula for the
correlation of successive increments

p=—ll—e"). (11.16)
®

REMARKS 11.2

1. The same resuit holds for the corresponding discrete-time model,
obtained by discretizing with time step z, with a stable equilibrium with
eigenvalue exp(—rt), provided that the time step t is sufficiently smail that
the discretization closely follows the differential equation. (Instabilities may
result at Jarge time steps compared with the intrinsic time scale 1/r; see
Section 7.4). The proof is similar and omitted.

2. The amplitude of {x(t)} (for example, the square root of the variance
of {x(t)}) depends linearly upon the amplitude of the noise, once the process
is in the asymptotically stationary range, that is, for time ¢t much larger than
the natural time scale t, = 1/r). The amplitudes of the increments depend
similarly uwpon the amplitude of the noise. Both stalements are easy
consequences of formula (11.7). However, formula (11.14) provides the most
useful estimates. Since the population increments have expectation 0, their
variance is the same as their second moment. The variance of a typical
increment over one time step, o, and the variance of the difference between
the population and its mean value, g2, are related as follows:

62 =201 —e™"). (11.17)
More generally, over h time steps, the relationship is

of = 20¢%(1 —e™™), (11.18)

The linear model with additive noise has a natural time scale of 1fr in
contrast to fractal models. This yields three broad but distinct scaling regiouns,
depending upon whether the time step under consideration is much shorter
than 1/r, approximately equal to 1/r, or much larger than 1/r, each with its
own approximate power law. Table 11.1 summarizes the power laws. In
particular, this model predicts that density-dependent populations will have
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Table 11.1 Scaling behaviour of the Jinear density-dependent model

Time scale (in terms of the Power law for increments
natural time scale 1/r Ax = x(t + At) — x(1)

Short times (At « 1/r) Ax = const x Ar'?
Intermediate times  (Af = 1/r) Ax = const x At (D< H <))
Long times (At > 1/r) Ax =zconst (H =0}

H < } over intermediate and long time scales. For time steps Ar very long
compared with 1/r, the values of x(t) and x(t + Ar) are asymptotically
independent, and the scaling behaviour agrees with the general formula (11.2)
for independent samples from a bounded random variable.

The model is in agreement with Sugihara and May’s (1990q) thesis that
if two species have different exponents H (and equal initial population sizes)
then the one with the larger exponent H has greater likelihood of extinction.
Moreover, the model gives an additional insight into this result. Given two
species, the species with the stronger density dependence, and consequently
the stronger return to equilibrium (larger value of r, or more negative
eigenvalue —r), will have a smaller scaling exponent over any fixed
time scale, although this effect will be very slight over very long time scales.
In principle, the eigenvalue —r, which measures the Lyapunov stability, can
be estimated by using regression 1o estimate the exponential decay of the
correlation toward —1. Thus Sugihara and May are in effect measuring the
strength of density dependence, and the stronger the density dependence, the
slower will be the growth of variance.

11.3.1 Non-Brownian noise

A thought-experiment shows that similar results hold even in the presence
of non-Brownian fractal noise with Hurst exponent H,. Short-time (At « 1/r)
scaling behaviour must refiect only the scaling behaviour of the noise, and
thus be characterized by the same Hurst exponent. Long-term behaviour
{Ar > 1/r) must follow the general formula (11.2), and yield H approaching
zero. Finally, H must decay smoothly from its short-term value H, to its
long-term value of 0 as the time step At is increased.

11.3.2 Nonlinear models

It 1s easy 1o see that a broad class of nonlinear models, including density-
vague models, have the same three scaling regions as the linear density-
dependent model wih additive noise. If the model under study has an
equilibrium, and a characteristic time scale 1, for the return to equilibrum
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Fig. 11.1 Density-dependent and density-vague dynamics. (a) Density dependent
(solid) and density vague (dashed} control. {b) Equivalent potential wells. Density-
dependent dynamics is equivalent 1o a random walk in the solid potential well;
density-vague dynamics to a random walk in the dashed potential well.

(to = 1/r in the linear model), then fluctuations over very short times {Af « tg)
reflect only the noise. Fluctuations over very long times (A1 > t;) reflect the
long-term variance of population, and there is an intermediate scaling region
with intermediate behaviour. Consider, however, the density-vague model in
which the population fluctuates randomly between a lower level x; and an
upper level x;,. Suppose that the noise and thus the short-term fluctuations
are a random walk (H = 1). Then the scaling property x = '/ of random
walks implies (hat the time 1 required for the population level to reach one
of the boundaries {x, or x,) is of order

T = ((xy — x,))/al. (11.19)

For times ¢ < 7 the scaling behaviour of population fluctuations reflects that
of the noise since there are no other expected effects, and the expected scaling
cxponent H is just 5. For ¢ > t the boundaries play a role. in the case of
reflecting boundaries, the population x(¢) at time ¢ is a sample from a uniform
distribution on the interval x; < x < x,;. Figure {1.1a compares the behaviors
of the density-dependent and density-vague models. The physical analogue
of the linear density-dependent model consists of a ball undergoing a random
walk in a parabolic potential well (see Fig. 11.1b). Similarly, the density-
vague model corresponds to a random walk in a rectangular potential well.

11.4 Testing the models

We shall now test fractal and density-dependent models on real populations
and simulated random walks and simulated density-dependent data. As
described in the introduction to this chapter, we shall study 13 bird
population time series from Holmes et al. {1986) and two butterfly time series
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from Harrison et al. (1991) and Ehrlich (personal communication). The
bird populations are divided into two groups, one consisting of those
species which went locally extinct (at least one census found no breeding
pairs) during the study period and the other of those which did not go locally
extinct. Some species which persisted throughout the study period might
have gone extinct immediately after the study period. In addition, recall that
we are seeking predictors of local extinction events. We therefore did not use
data from the last year of any population which persisted throughout the stud y
or data from local extinction events themselves. As is the case in all
analysis of short time series, the results may be sensitive to our decision not
to use these data.

The simulated data consisted of simulated random walks and simulated
density-dependent models. Both models are subsumed under the formula

Ax =rx + Aw. (11.20)

In the random walk case, r = 1. In the density-dependent case, 0 <r < 1 at
short time scales, and r is negative at scales so long that the population
overshoots the equilibrium. Most of the simulations use the random
number generator in Turbo Pascal. An alternative random num ber generator
(Wickman and Hill 1987) was used to test the dependence upon choice of
random number generator in selected cases.

We seck to answer the following questions.

1. Which of the proposed models can be reasonably applied to the data?
2. Among the reasonable models, which best fits the data?

3. What does each of these models tell us about other models?

4. How can scaling exponents be best computed? What is the uncertainty?
5. What are the best predictors, if any, of population extinction?

Questions (1), (2), and (4) are important and naturally related. Many
authors have simply computed a scaling relation over a large range of scales,
and observed a good fit to a power law. These authors have simply ignored
additional model verification. This works well if there is a good theoretical
argument for a power law, and if there are many data points. However, here
there are reasonable arguments for each of two competing models, and there
are relatively few data points for each population. It is therefore especially
important to carefully verify the hypotheses of any model.

As in Chapter 10, one must decide whether to do any preprocessing of
the data. On the other hand, it also appears reasonable on general theoretical
grounds to model population fluctuations multiplicatively, and to thus study
the fluctuations of logarithms of population values, that is to ‘log transform’
all population data. It appears reasonable in terms of both resource
availability and traditional density dependence to work directly with non-
log-transformed data. We note that since the logarithm is approximately
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linear over a range of 3 or 4 to 1, it should make little difference whether
the data are log-transformed or not. In order to check this, we begin by
computing the Hurst exponent, using both raw and log-transformed data.
(In fact, we found little difference between results obtained from raw and
log-transformed data. Therefore, subsequent calculations used only raw
data)

11.5 Fractal versus density-dependent models; methodology

We use the following techniques to fit and test the applicability of fractal
and linear density-dependent models.

11.5.1 Computing the Hurst exponents

We compute the Hurst exponents in all three ways described in Chapter 4
(see also Section 6.2): Hurst’s growth of range technique, a related growth
of moment technique, and a local technique which computes H in terms of
the expectation of the product of successive increments. The first two
compute the exponent H as an implicit ‘average’ over a fixed scaling region.
The last computes a separate value of H for each time increment used.

Since the time series of bird populations covered a maximum of 16 years,
we shall use a 5-year scaling region for the first two computations. Since
Ehrlich (personal communication) observed that the computed exponent
may depend upon the starting point, it is important to use all possible
starting points within each time series for each time increment used. For
example, consider a time series of 10 data points, one point for each year,
after the last data point is deleted as explained above. For a I-year time
increment there are 9 possible starting points, namely ¢ = 1, 2, ..., 9. For a 4-
year increment there are only 6 possible starting points, namely f = 1, 2, ..., 6,
since starting after year 6 leaves less than 4 years remaining. In general, for
a time increment of length h, and time series of length T, there are T — h
possible starting points. For each species and time increment, we compute
the average second moment over all possible starting points, and the average
range (defined moment over all possible starting points, and the average
range (defined as the difference between the maximum value and the
minimum value of the population in the time increment under study) over
all possible starting points. Under the fractal hypothesis, the second moment
should scale as Ar*¥, and the range as At¥, where At is the time increment
and H is the fractal exponent. The empirical exponent H is computed by
log-transforming the time increments, second moments, and ranges to obtain
models

log(second moment) = const + 2H log(At) (11.21)
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and
log(range) = const + H log(A!), (11.22)

and fitting the above log-transformed models with linear regression. We do
this for both raw and log-transformed population data (see also Section 4.2).

For short time series of real dala, computation of the growth of range
(formula (11.22)) appears to offer an advantage over computation of the
growth of second moment (formula (11.21)) since the average range (as we
have defined it) is automatically a nondecreasing function of the time lag for
any time series. The application of formulae (11.21) and (11.22) in many
cases yield different values of H. This suggests that the data are not fractal
and also calls for additional analysis of the validity of formula (11.22) if only
a few values of At arc used in the calculation. Details appear in the following
section,

For each species, and for time increments of one and two years, we also
compute the correlation p between successive population increments, under
the assumption that the expected population increment is 0. This assumption
is very difficult to test for short time series; nonetheless the method computes
a local fractal exponent (see Section 4.2). The correlation and Hurst exponent
H are related by the formula

22" =2+ 2p. (11.23)

As above, we form averages over all possible starting points.

If the populations were fractal, all methods should yield roughiy the
same values of H, and in particular p and H would be independent of the
time interval used. However, according to formula (11.6) above, for density-
dependent populations, g and thus H would be decreasing functions of the
time interval used.

Simulations and further analysis will be used to establish baselines and to
see how well the above theoretical resuits hold for the short time series under
study. We shall use the standard random number generator in Turbo Pascal
as well as another random number generator (Wickman and Hill 1987) to
generate the random walks used in these simulations. (There was no
difference between the results with the two random number generators.)
One cannot overemphasize the need to establish the scaling behaviour of
neutral random models in applications such as the present one.

11.5.2 Other tests

In addition, we shall test whether the population increments y(t + h) — ¥{¢)
depend upon the starting population values y(t) for one- and two-year
time increments k. In the case of fractal models, the increments are
independent of the starting values. This follows from the axioms in Section
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2.4, The increments do depend on the starting values in the case of density
dependence. Simulation and theoretical analysis will be used to establish
the expected behaviour under the null hypothesis of no density dependence.

In equilibrium density-dependent models, population levels tend to return
to their equilibrium levels. This simple observation suggests an equally simple
test for densily dependence (Tanner 1966). Assuming that the mean value
of a population is a reasonable estimate of its equilibrium value, does the
population value tend to decrease when it is above the mean and increase
when it is below the mean? We shall apply this test to both real and simulated
data.

In addition, we shall attempt to fit real population data to the linear
density dependent model of Section 11.2. More precisely, we shall use linear
regression to fit the data to the following discrete-time version of that model:

(it 4+ 1) =y =exp(=r)[pt + 1) — yq] + Aw. (11.24)

11.6 The Hurst exponent: results

We first describe the results of several computations of the fractal exponent
H for real populations. Recall that bird populations were divided into two
groups—those which persisted and those which went locally extinct.

Fractal exponents computed from the growth of second moment showed
little difference between the two groups. Surprisingly, [ractal exponents
computed from the growth of range are higher in the persistent species than
in the species which became extinct. Moreover, the two methods do not yield
consistent values, which suggests a nonfractal model.

Note, however, in a curious apparent paradox, that the exponents
compulted from short samples of random walks show the same inconsistency,
although they become asymptotically consistent for longer walks. These
results therefore neither confirm nor rule out fractal models.

In contrast the local growth of moment method yields a fractal exponent
which depends upon the sampling interval, and the exponent seen to decrease
with the sampling interval. This behaviour suggests a density-dependent
(non-fractal) model.

In conclusion, computations of the Hurst exponent for real population
data display inconsistencies which suggest that the data are not fractal.
However, short samples from the simulated random walks, the simplest
fractal models, display many of the same inconsistencies. These results and
their implications will now be discussed in more detail.

Tabie 11.2 summarizes the results of studying the growth ol second
moment and the growth of range, using raw and log-transformed data.

The two methods used to compute the Hurst exponent generally yield
different answers, with the second moment growing more slowly than the
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Table 11.2  Computation of H from growth of second moment and growth of range.
The coefficient of correlation (ol lincar regression applied to log-transformed
increments) is shown in parentheses whenever it is less than 0.99; unreported values
are at least 0.99. In one case, that of the dark-eyed junco, marked with an asterisk,
the growth of second moment gave a Hurst exponent outside the allowed range
0<H<l

Growth of second Growth of
moment range

Transformed Raw Transformed
Species Raw data data data data

(Birds which did not go extinct)

Swainson’s thrush 40 (.98) 42 69 .66
Wood thrush J6 (97) 38 (97 J4 72
Ovenbird 28 (.94) 32 {.96) 63 .68
American redstart .26 (.95) 16 (95) 68 .63
Red-eyed vireo A8 (79 A8 (79) 60 61
Veery 03(19) 10 (.54) 64 .67
Hairy woodpecker 0 @ 01 (.09) 34 36
Median .26 .08 68 .67
(Birds which went extinct)

Least fycatcher .29 (.80} 28 g2 58
Downy woodpecker 22 (81) 22{719) A6 .51
Philadelphia vireo A8 (.55) .24 (.66} 48 48
Winter wren 14 (.54) 16 (.59) 50 47
Hermit thrush A0 (.55) .10 (.40) 69 69
Dark-eyed junco 02 (—08y —.02(-02)" 5457
Median 16 19 52 54
(Butterflies—two colonies of bay checkerspots)

JRC* .09 (8D 32 g1 62
JRH 31 .24 (.98) Jo o .59

* See Harrison et al. (1991) for notation.

range. This suggests that the time series are not fractal. In order to find
baselines for the above computations, we also apply the two methods
of computing the fractal exponent to randomly generated time series of
several lengths. The first set of simuldtions used the random number
generator ‘random’ in Turbo Pascal. The results of these simulations are
summarized in Table 11.3.

There appears to be a large difference between the computed and
theoretical behaviours of the growth of range using a maximum lag of 5.
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Table 113  Fractal exponents for simulated random walks of various lengths and
maximum lags. Data are shown as median values followed by the maximum and
minimum for ten replicates of each length and maximum lag. Taking longer series
is similar to averaging over shorter series

Time series Method lor computing H
Maximum Growth of Growth of
Length lag second moment range
16 5 31 (—.07 to .76) .66 (.38 10 94)
100 5 54 (09 1o .63) 73 (.59 to .80)
1000 5 50 (A48 to .53) 73 (72 to 14)
1000 25 .50 (.46 to .54) .66 (.64 to .67)

The expected value of the scaling exponent of a random walk is 0.5, and the
observed values were typically between 0.63 and 0,75, The growth of second
moment for the shortest series also appeared somewhat too slow (experi-
mental H = 0.31 versus theoretical H = 0.5); this is not evident in the longer
series. Therefore the growth of range calculations are repeated using a
different random number generator (Wickman and Hill 1987). Similar results
were obtained. This suggests that the second moment of increments of a
short random walk grows more slowly than their range grows. We then
analyse a discrete-time discrete-space random walk with time step 1 and
spatial step 11 by enumerating all possible short sequences of spatia
increments, and computing the expected range R(Ar) for short time lags. The
results presented in Table 11.4 are obtained.

Table 11.4 Growth of range R(A¢) for At at most
5, compared with the value (Ar)**? expected from
the axioms for a continuous-time Brownian pro-

cess
Expected R(Ar)
from analysis
Time lag, At of ail paths (Ar)''2
1 1.0 10
2 15 1414
3 20 1.732
4 2375 20
5 2,75 2.236
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The expected value for the Hurst exponent associated with a short
discrete-time discrete-space is readily obtained by fitting the data in the
second column of Table 11.4 o the equation

R(Af) = const x (A1)'2 {11.25)

This yields H = 0.63 for the growth of range, in close agreement with the
random walk simulations. The simulations and theory show the need for
care in analysing the scaling behaviour of short time series. The significance
of these results will be discussed below.

11,6.1 Comparison of simulated and real data

The two methods for computing the value of H show relatively large
differences when applied to real data. In addition, the values of H obtained
from the growth of second moment arc generally less than 4, the value
expected for a random walk, and the values of H from the growth of range
are generally more than 4. This is most likely due to the short durations
of samples and lags since similar effects were seen for short simulated random
walks. As the length of simulations was increased, the range in observed
values of H falls. This is an expected consequence of sampling, since the
number of data points averaged in each computation of the range grows
with increases in the duration of the time series under study. It is reasonable
to expect that, for significantly longer simulations, the value of H computed
from growth of range would approach the theoretical value of 0.5.

The observed values of H for real data are comparable to those for random
walks. There appeared to be no significant differences between populations
which went extinct and populations which did not go extinct. The power
law for the growth of range consistently showed better fits than the power
law for the growth of second moment. This suggests that the best approach
to computing fractal exponents for short time series is o compute the
growth of range. However, one must then use simulation or other techniques
in order to relate the results obtained to those expected for various
models,

We next compute [ractal exponents with a local method: using the relative
expectation of products of successive increments in the population value (sce
Section 4.3). This yields Hurst exponents H for each time increment, as
presented in Table 11.5.

As above, we also repeated the calculations with data obtained from
simulated random walks for comparison, obtaining roughly similar results.

However, for nine of the 15 populations (13 bird species plus 2 colonies
of bay checker-spot butterflies) under study the local Hurst exponent
H decreased as the lag was increased from one year to two years. In a random
walk, there is no tendency for H to increase or-decrease, and therefore the
theoretical expected number of such decreases follows a binomial distribution




Case study: scaling behaviour of populations under random noise 153

Table 11.5 Computation of H using the local growth of moment method for time
increments (fags) of one and two years. Computations using the average growth of
second moment from Table 11.3 are included for comparison. Note that p is not the
coefficient of correlation unless the expectation of population increments is 0. In the
axioms for fractals, formula (2.26) requires H > 0 and thus p > —0.5. Cases where

this does not hold are indicated by asterisks

Lag =1 Lag =2 H from average
growth of

Species P H P H moment
(Birds which did not go extinct)
Swainson's thrush —.08 A4 -.33 21 40
Wood thrush —.18 .36 —~.19 35 .36
Ovenbird -.28 .26 -.35 19 28
American redstart —.21 32 —.38 14 .26
Red-eyed vireo -.24 30 —.38 16 18
Veery =22 32 —.68 —.33% .03
Hairy woodpecker -.58 -.12* -.29 .26 0
Median 32 26 .26
(Birds which went extinct)
Least fiycatcher - 43 —-.25 .29 29
Downy woodpecker — 45 07 36 a2 22
Philadelphia vireo =.70 —.38* =21 33 .18
Winter wren —.60 —.15* —.14 39 14
Hermit theush -.32 21 —~.70 —.26% .03
Dark-eyed junco ~.49 .02 -4l 01 02
Median 04 31 16
(Butterflies—two colonies of bay checkerspots)
JRC* —.36 18 =.55 - 07"
JRH —.18 a5 -.32 23

* See Harrison et al. (1991) for notation

B(i15,0.5) and is thus equal to 7.5 + 1.9. This suggests that there may be
density-dependent effects, although the significance level is low. (p > 0.15

from the statistics of the distribution).

11.7 Is there density dependence?

We therefore test for density dependence, testing both the applicability of
the density-dependent model, and the fact that the increments of a fractal
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Table 11.6 A study of the correlation between the population size
and the population change over the next year. A change was classified
as ‘away from mean’ if the population moved away from its mean
value, and ‘towards mean’ if the population moved toward its mean
value. Those cases in which there were more than twice as many
moves towards the mean as moves away from the mean are flagged
with asterisks

Away from No Towards
Species mean change mean

(Birds which did not go extinct)

Swainson's thrush 4 1 g*
Wood thrush 2 2 i0*
Ovenbird 1 4 g*
American redstart 5 1 8
Red-eyed vireo 4 0 10*
Veery 2 4 g*
Hairy woodpecker 5 4 5
Totals 23 16 59*
(Birds which went extinct)

Least flycatcher 4 1 7
Downy woodpecker 2 5 4*
Philadelphia vireo 5 4 4
Winter wren 2 1 &}
Hermit thrush 5 1 3
Dark-eyed junco 0 1 6
Totals 18 14 29
Bird grand totals 41 30 88*
{Butterflies—two colonies of bay checkerspots)

JRC* 11 0 17
JRH 10 1 t7

* See Harrison er al. (1991) for notation

process are independent of the values of the process itself. We first ask
whether the population tends to decrease when it is above the mean and
{o increase when it is below the mean, a characteristic of all density-
dependent models. The resuits are summarized in Table 11.6.

We next repeat the calculations for simulated data (see Table 11.7).

In the case of a random walk, one would expect the number of population




Case study: scaling behaviour of populations under random noise 155

Table 11.7 A study of the correlation between the population
size and the population change over the next year for stmulated
random walks and the density-dependent mode! (11.5) dx =
—rx dt + dB. The value r =0 is a continuous-time random
walk (Brownian motion); if r +# 0 the model has a natural time
scale of I/r years. Data are shown as totals from 30 simulations
of each model; each simulation for 15 years (14 increments in
population value)

Away from Towards

Model mean mean
Random walk 183 (43.6%) 237 (56.4%)
density-dependent, with

natural time scale:

4 years (r = 0.25) 157 (37.4%) 263 (62.6%;)

2 years (r = 0.5) 142 (33.8%) 278 (66.2%;)

1 year (r = 1) 129 (30.7%4) 291 (69.3%)

changes away from the mean to equal the number of population changes
toward the mean. However, consider a case where the population has just
Jumped above the mean, then moves up once and down once to cross the
mean and become less than it, There are two moves towards the mean and
one move away [rom the mean. In general, each time the population crosses
the mean there will be one more move towards the mean than away from
it, In the case of long time series, there will be relatively large excursions
and relatively few times when the population crosses the mean compared
with the case of short time series. Thus the expected distribution of moves
towards and away from the mean in the limit of long series need not hold
for short time series. In fact, in a more extensive simulation of 10000 short
continuous-time random walks of 14 time steps, the population moved
toward the mean 63.3% of the time. Table 11.8 provides additional examples.

The bird data showed no change in population 18.8% of the time (30 of
159 cases), perhaps because the populations were so small. We therefore
performed a final simulation: 1000 integer-valued random walks, each
involving 15 points or 14 changes, with the additional property that the
population remained constant approximately 18—19% of the time. The actual
results were as follows:

6616 steps toward the mean (47.25%)
2547 steps with no change (18.20°%)
4837 steps away from the mean (34.55%,).
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Table 11.8 The percentage ol moves to-
ward the mean for time series obtained from
sampling continuous-time random walks as
a function of the number of time steps .
Dala are averages of 10000 replicates and
are presented in the form: means + standard

deviation
Percentage of moves
n towards mean
5 739 4 15.5
10 652+ 121
15 62.0 + 10.3
25 60.3 + 7.7
50 574456
100 552140
1000 517+ 1.3

We first analysed the bird data using the y? test with two degrees of
freedom. First, there is a small but apparently not significant difference
between the birds which persisted and those which went extinct (x? = 0.96,
p > 0.5). Actual data are then compared with simulated data as a null
hypothesis. A significant excess of moves toward the mean was interpreted
as evidence of density dependence. The bird populations which persisted
are density dependent (x* = 7.19, p < 0.05), whereas those which went
extinct are less density dependent (x* = 1,22, p > 0.4, not significant). Overall
the bird populations displayed a small amount of density dependence: there
is a marginally significant excess of moves toward the mean (x* = 6.14,
p = 0.05). Thus density dependence on a one-year scale may be correlated
with persistence,

However, this distinction is lost when the population changes over
two-year periods are similarly analysed: for both sets of bird popula-
tion values moves toward the mean 66% of the time and away {rom the
mean only 22% of the time. What is the significance of this apparent loss of
density dependence?

We next compute the Lyapunov exponent (—r) assuming a linear
density-dependent model, both to determine an appropriate time scale and
to learn more about density dependence. More precisely, we fit the data to
a discrete-time version of the linear density-dependent model

x(t + 1) = rx{t} + Aw, (11.26a)
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where, as usual, x denotes the difference belween a population level and its
‘equilibrium’ value, and

r'=cxp(—r). (11.26b)

The average population level is used as an estimate of Lthe equilibrium. Note
that the parameter r' above may be negative, indicating that one-year
population changes overshoot the mean: with the population changing from
above the mean to below the mean or vice versa. In these cases the implicit
one-year lime scale in equation (11.26b) is too long to reliably apply linear
models and thus determine the Lyapunov exponent. Otherwise, ' above is
positive and is related to the Lyapunov cxponent in the original continuous-
time model (11.4) by the formula

r' =exp(—r), orequivalently r = —In(r'). (11.27)

For comparison, we also use a two-year time delay, and compare the
resulting parameter »’ with its expected value in the absence of significant
effects due to timec delays, namely, the square of the value of r' in the
model with a one-year delay (11.26b). The resulis are presented in Table
11.9.

Again, real data appeared significantly different from simulated random
walks. The natural time scale of the discrete time model is given by the
formula

r'* = |/e, or equivalently t, = ~1/In; (11.28)

compare formula (11.6). The apparent natural time scale of bird populations
which went extinct was about ! year, half the apparent time scale (0.93 year)
of bird populations which did not go extinct. We use the phrase ‘apparent
time scale’ because both time series represent only annual data, making it
difficult to study systems with faster dynamics.

Moreover, the eigenvalue r’ associated with a two-year unit time step in
a linear difference equation model should be the square of the eigenvalue
associated with a one-year unit time step since a two-year time step
corresponds to two successive one-year steps. An informal examination of
the data in Table 11.9 shows significant deviations from this behaviour
in all 6 bird populations which went extinct, but only 2 of the 7 bird
populations which did not go extinet, and in neither butterfly population.
These results suggest that the combination of nonlinearities with short time
scales may make extinction more likely. May’s (1974) work on ecosystem
dynamics suggested that the combination of nonlinearities and significant
time delays might yieid chaotic dynamics, reminiscent of the discrete-time
logistic equation (cf. Collet and Eckmann 1980).
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Table 119 The parameter r' in the discrete-time linear model x{(r + lag) =
'x(1) + Aw, for lags of one and two years. Apparently significant anomalies in the
two-year value are denoted by asterisks

Lag

1 year, 1 year, 2 years,
Species d r? ¥y
(Birds which did not go extinct)
Swainson’s thrush .85 73 79
Wood thrush .63 39 34
Ovenbird 41 16 11
American redstart 32 A0 10
Red-cyed vireo 34 A1 020
Veery 086 0073 — 42"
Hairy woodpecker 0 0 20
Median 34 11 .10
{Birds which went extinct)
Least flycatcher 75 .56 g
Downy woodpecker o 0 A
Philadelphia vireo .48 22 67"
Winter wren —.08 0064 .38
Hermit thrush .19 038 —.17*
Dark-eyed junco -.27 073 —.11*
Median 06 0036 25
{Butterfliies—two colonies of bay checkerspots)
JRC* 21 044 —-0.023
JRH .60 35 34
{Random walk simulations of various lengths)
10 years A7+ .10 22 +.10 A5+ .15
15 years .66 + .073 43 +.10 41 £+ .16
100 years 94 +.002 .88 +.004 88 + .006

* See Harrison ef al. (1991) for notation

11.7.1 The time scale of density dependence.

Although bird populations which persisted throughout the study appeared
to show apparently stronger density dependence over one-year periods than
those which went locally extinct, this difference was lost over two-year
periods. We now relate this behaviour to the natural time scales of the
populations obtained using the linearized analysis of formulae {11.26)
through (11.28).
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Both sets of populations had time scales of one year or less. These time
scales may be too short for samples at two-year periods to uncover significant
differences in ‘linear’ features in the dynamics such as density dependence
(see Figure 11.1). This effect is especially pronounced in the presence of
significant non-linear effects shown in Table 11.9.

In addition, possible chaotic dynamics may obscure densily dependence
over longer time scales, since the dynamics of a chaotic system depends
sensitively upon the initial conditions. Thus, especially in the presence of
noise, the linkage between the population value at time ¢ and its value at
timet + 1 may be lost at time ¢ + 2, making it hard to see density dependence
over a two-year scale,

11.8 Discussion

We examined several models for population fluctuations: the fractal model
introduced by Sugihara and May (1990a), a linear density-dependent model,
and general nonlinear models. Our time series are too short for nonlinear
techniques, but they may be the most promising for other applications.

The scaling behaviour of real populations appeared more consistent with
the density-dependent model than with the fractal model. Moreover, by one
simple test for density dependence, namely the tendency to move toward the
mean, the degree of density dependence over one-year time lags appears to
correlate with persistence. Unfortunately, this distinction is lost over two-
year periods, perhaps as a result of sampling problems or underlying chaotic
dynamics.

Persistent populations also displayed longer time scales and a significantly
closer fit to lincarity than species which went extinct. Perhaps extinction
arises from a combination of nonlinearities and time scales much shorter
than the annual cycle of temperate woodland birds, a combination which
can yield chaotic dynamics. It is interesting that the apparent time scale of
persistent species was approximately onc year, as might be expected from
the biology.

The fractal exponent remains a potentially useful tool even in the case of
density dependence, since computation of the fractal exponent can locate
scaling regions and help estimate the long-term range of population fluctua-
tions,

11.9 Appendix

Table 11.10 lists the bird population data, from Holmes et al. (1986),
suggested by Ehrlich (personal communication), used in this study. Each
time series consists of annual data, starting in 1969. We invite readers
to try other techniques for analysing these data.
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Table 11.10  Bird population data, following Holmes et al. (1986)

Population time series (truncated at extinction)

Species

{Birds which did not go extinct)
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