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Fig. 1.1. First few stages in the aggregation rule which is iterated to form a Sierpinski gasket 
fractal. After [1.16) 

from physics and chemistry on the one hand to fluid dynamics and meteorology 
on the other. The purpose of this opening chapter is to provide the nonspecialist 
with a brief introduction to fractal and multifractal phenomena. 

Although there are many different types of fractal and multifractal phenom­
ena, we shall concentrate on a few examples which we hope will prove useful 
to the reader. 

1.2 Nonrandom Fractals 

Fractals fall naturally into two categories, nonrandom and random. Fractals 
in physics belong to the second category, but it is instructive to first discuss 
a much-studied example of a nonrandom fractal-the Sierpinski gasket. We 
simply iterate a growth rule, much as a child might assemble a castle from 
building blocks. Our basic unit is a triangular-shaped tile shown in Fig. 1. la, 
which we take to be of unit mass (M = 1) and of unit edge length (L = 1). 

The Sierpinski gasket is defined operationally as an "aggregation process" 
obtained by a simple iterative process. In stage one, we join three tiles together 
to create the structure shown in Fig. 1.lb, an object of mass M = 3 and edge 
L = 2. The effect of stage one is to produce a unit with a lower density. If we 
define the density to be 

fl(L) = M(L)/L2
, (1.1) 

then the density decreases from unity to 3/4 as a result of stage one. 
Now simply iterate-i.e., repeat this rule over and over ad infinitum. Thus 

in stage two, join together-as in Fig. 1.lc-three of the fl = 3/4 structures 
constructed in stage one, thereby building an object with fl= (3/4)2 • In stage 
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Fig.1.2. (a) Sierpinski gasket fractal after four stages of iteration. (b) A log-log plot of e, 
the fraction of space covered by black tiles, as a function of L, the linear size of the object. 
After [1.18] 

three, join three objects identical to those constructed in stage two. Continue 
until you run out of tiles (if you are a physicist) or until the structure is infinite 
(if you are a mathematician!). The result after stage four-with 81 black tiles 
and 27 + 36 + 48 + 64 white tiles (Fig. 1.2a) may be seen in floor mosaics of the 
church in Anagni, Italy, which was built in the year 1104. Thus although this 
fractal is named after the 20th century Polish mathematician W. Sierpinski, it 
was universally known some eight centuries earlier to every churchgoer of this 
village! 

The citizens of Anagni did not have double-logarithmic graph paper in the 
12th century. If they had possessed such a marvelous invention, then they might 
have plotted the dependence of eon L. They would have found Fig. 1.2b, which 
displays two striking features: 

• e(L) decreases monotonically with L, without limit, so that by iterating 
sufficiently we can achieve an object of as low a density as we wish, and 

• e(L) decreases with Lin a predictable fashion-a simple power law. 

Power laws have the generic form y = Ax°' and, as such, have two parameters, 
the "amplitude" A and the exponent a. The amplitude is not of intrinsic in­
terest, since it depends on the choice we make for the definitions of M and L. 
The exponent, on the other hand, depends on the process itself-i.e., on the 
"rule" that we follow when we iterate. Different rules give different exponents. 
In the present example, e(L) = L°' so the amplitude is unity. The exponent is 
given by the slope 'Jf Fig. 1.2b, 

a= slope= log 1 - log(3/4) = log 3 _ 2_ 
log 1 - log 2 log 2 

(1.2) 

Finally we are ready to define the fractal dimension dt, through the equation 

(1.3) 

If we substitute (1.3) into (1.1), we find 

e(L) = A Ld1-2
• (1.4) 
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Comparing (1.2) and (1.4), we conclude that the Sierpinski gasket is indeed a 
fractal object with fractal dimension 

dt = log3/log2 = 1.58 ... (1.5) 

Classical (Euclidean) geometry deals with regular forms having a dimension 
the same as that of the embedding space. For example, a line has d = 1, and a 
square d = 2. We say that the Sierpinski gasket has a dimension intermediate 
between that of a line and an area-a kind of "fractional" dimension-and 
hence the term fractal. 

1.3 Random Fractals: The Unbiased Random Walk 

Real systems in nature do not resemble the floor of the Anagni church-in 
fact, nonrandom fractals are not found in nature. Nature exhibits numerous 
examples of objects which by themselves are not fractals but which have the 
remarkable feature that, if we form a statistical average of some property such 
as the density, we find a quantity that decreases linearly with length scale when 
plotted on double logarithmic paper. Such objects are termed random fractals, 
to distinguish them from the nonrandom geometric fractals discussed in the 
previous section. 

Consider the following prototypical problem in statistical mechanics. At 
time t = 0 an ant 1 is parachuted to an arbitrary vertex of an infinite one­
dimensional lattice with lattice constant unity: we say Xt=O = 0. The ant carries 
an unbiased two-sided coin, and a clock. The dynamics of the ant is governed 
by the following rule. At each "tick" of the clock, it tosses the coin. If the coin 
is heads, the ant steps to the neighboring vertex on the east [xt=l = + 1). If the 
coin is tails, it steps to the nearest vertex on the west [xt=I = -1]. 

There are laws of nature that govern the position of this drunken ant. For 
example, as time progresses, the average of the square of the displacement of 
the ant increases monotonically. The explicit form of this increase is contained 
in the following "law" concerning the mean square displacement: 

(1.6) 

Equation (1.6) may be proved by induction, by demonstrating that (1.6) implies 
(x2)t+l = t + 1. 

Additional information is contained in the expectation values of higher 
powers of x, such as (x3 )t, (x4 )t, and so forth. We can immediately see that 

1 The use of the term ant to describe a random walker is used almost uni­
versally in the theoretical physics literature-perhaps the earliest reference to 
this colorful animal is a 1976 paper of de Gennes that succeeded in formulating 
several general physics problems in terms of the motion of a "drunken" ant 
with appropriate rules for motion. 


