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Fractal Geometry of Sea Ice Structures

Ken Golden, University of Utah



Arctic sea ice extent September 15, 2020

Russia

median extent |
" (1981-2010)

ice-albedo
feedback

Alaska

Canada

Sea ice concentration (percent) NSIDC

B |

15 100




ice extent (million square km)

Predicting what may come next
requires lots of math modeling.
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Sea lce is a Multiscale Composite Material

microscale
brine inclusions polycrystals

A W ; P D. Cole K. Golden
Weeks & Assur 1969 H. Eicken - R A ey
Golden et al. GRL 2007 Gully et al. Proc. Roy. Soc. A 2015
millimeters centimeters
mesoscale macroscale
Arctic melt ponds Antarctic pressure ridges sea ice floes sea ice pack

K. Frey K. Golden J. Weller NASA
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HOMOGENIZATION for Composite Materials
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Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



What is this talk about?

A tour of recent results on multiscale modeling of
physical and ecological processes in the sea ice
system, with a focus on novel mathematics.

fractal geometry

microscale
mesoscale

macroscale



fractals

self-similar structure
non-integer dimension




microscale



brine volume fraction and connectivity increase with temperature

T=-15°C, $=0.033 T=-6°C, $=0.075 T=-3°C, $=0.143

T=-8°C, ¢$=0.057 T=-4°C, ¢=0.113

X-ray tomography for brine in sea ice Golden et al., Geophysical Research Letters, 2007



Critical behavior of fluid transport in sea ice

impermeable  permeable “‘on - off” switch
w10") e on c for bulk fluid flow
Arctic field data :
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Golden, Ackley, Lytle Science 1998

R U L E o F F IV E S Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

C.Haas

K. Golden

Antarctic surface flooding

September - evolution of salinity profiles
show-ice

estimates - ocean-ice-air exchanges of heat, CO,

0 25 50 75 100
percent snow ice

T. Maksym and T. Markus, 2008



Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007

percolation theory

Geophysical for fluid permeability
gosearc 2 N critical
an!_ A?Gtuzl'e EEE k(d)) - kO ( (I) B 005 ) exponent
Volume 34 Number 16 t

American Geophysical Union kO — 3 X 10'8 m2

from critical path analysis
in hopping conduction

hierarchical model
rock physics

network model

rigorous bounds

microscale X-ray tomography for
brine inclusions

governs confirms rule of fives

mesoscale brine percolation threshold

processes of ¢ = 5% for bulk fluid flow

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

A unified approach to understanding permeability in sea ice ® Solving the mystery of

booming sand dunes ¢ Entering into the “greenhouse century”: A case mtdv from Switzerland theo ries ag ree closely

-

n with field data




measuring
fluid permeability
of Antarctic seaice

SIPEX 2007



Sea ice algae secrete extracellular polymeric substances (EPS)

affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?
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® 2D random pipe model with bimodal distribution of pipe radii

® Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden

Multiscale Modeling and Simulation, 2018
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Zhu, Jabini, Golden,
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Ann. Glac. 2006



Thermal Evolution of Brine Fractal Geometry in Sea Ice

Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer,
Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2022

fractal dimension of the
coastline of Great Britain
by box counting

N(e) ~e P

brine channels and
inclusions “look”
like fractals

(from 30 yrs ago)

X-ray computed
tomography of
brine in seaice

columnar and granular



Fractal Dimension Dy

19

18

The first comprehensive, quantitative study of the fractal dimension of
brine in sea ice and its strong dependence on temperature and porosity.

® Fractal dimension from boxcounting
Theoretlcal predlctlon

0.05 0.1 0. 15 0.2 0.25 0.3

Brine Porosity ¢

X-ray tomography DLA model

0.35

— Dy=3-— In¢ The red curve is exact for the Sierpinski

In(A mm/)\max pyramid (an exactly self-similar geometry);
discovered for sandstones - statistically

self-similar porous media like sea ice.
Katz and Thompson, 1985; Yu and Li, 2001
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brine channel diffusion limited
in seaice aggregation



Implications of brine fractal geometry on sea ice ecology and biogeochemistry

10 cm 1cm 2 mm

Brine inclusions are home to
ice endemic organisms, e.g.,
bacteria, diatoms, flagellates,
rotifers, nematodes.

The habitability of seaice
for these organisms is
inextricably linked to its
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.
(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.






mesoscale



the seaice packis a fractal

displaying self-similar structure on many scales

NASAS A
& e 3ok L‘»‘g 5 ; ( w‘z“&f_\
floe size distribution, area-perimeter relations, etc. important

in dynamics (fracture), thermodynamics (melting)

Toyota, et al. Geophys. Res. Lett. 2006
Rothrock and Thorndike, J. Geophys. Res. 1984

5 &




The sea ice pack has fractal structure.

Self-similarity of sea ice floes
Weddell Sea, Antarctica

[
o

fractal dimensions of Okhotsk Sea ice pack
smaller scales D~1.2, larger scales D~1.9

Toyota, et al. Geophys. Res. Lett. 2006
Rothrock and Thorndike, J. Geophys. Res. 1984




wave propagation in the marginal ice zone (MIZ)

first theory of key parameter

g Stieltjes integral representation and bounds in wave-ice interactions only

i the complex viscoelasticity of the ice - ocean layer fitted to wave data before
Sampson, Murphy, Cherkaev, Golden 2023

| Keller, 1998

‘ Mosig, Montiel, Squire, 2015

Wang, Shen, 2012

Analytic Continuation Method
Bergman (78) - Milton (79)
integral representation for £*
Golden and Papanicolaou (83)

Milton, Theory of Composites (02)

homogenized
parameter
depends on

&4 seaice

~ concentration

" andicefloe
geometry

like EM waves




melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



fractal curves in the plane

they wiggle so much that their dimension is >1

simple curves Koch snowflake space filling curves

Peano curve

Brownian
motion

D=1 D=1.26 D=2



clouds exhibit fractal behavior from 1 to 1000 km

use perimeter-area data to find that
cloud and rain boundaries are fractals

D = 1.35

S. Lovejoy, Science, 1982

simple shapes

A=L°

P=4L=4VA

P~VA

for fractals with
dimension D

PvA

D=1.52..



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
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Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



fractal dimension curves depend on
statistical parameters defining random surface
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Topology of the sea ice surface and the
fractal geometry of Arctic melt ponds

Physical Review Research (invited, under revision)

Ryleigh Moore, Jacob Jones, Dane Gollero,
Court Strong, Ken Golden

Several models replicate the transition in
fractal dimension, but none explain how it arises.

We use Morse theory applied to the random surface model
to show that saddle points play the critical role in the fractal transition.

e Saddle Point pOhdS coalesce
el gl oy a3 (change topology) and

complexify at saddle points
saddles drive the fractal transition



Morse theory

Morse theory tells us that changes in the topology of a surface occur at
critical points of smooth functions on the surface: maxima, minima, and saddles.



Main results

Isoperimetric quotient - as a proxy for fractal dimension - increases
in discrete jumps when ponds coalesce at saddle points.

15 -
WY
12

Pond Evolution: v *\V
p2 9 m N S
4mA L )
v A e
3 —
0 | | | | | | | | |
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Level Set Height

Horizontal fluid permeability “controlled” by saddles ~ electronic transport in 2D random potential.

drainage processes, seal holes



melt pond evolution depends also on large-scale “pores” in ice cover

photo courtesy of C. Polashenski and D. Perovich

Melt pond connectivity enables vast expanses of melt water to
drain down seal holes, thaw holes, and leads in the ice.



Euler characteristic = # maxima + # minima = # saddles
Topological topological invariant

Data Analysis persistent homology
filtration - sequence of nested topological spaces, indexed by water level

4O Expected

Euler Characteristic Curve (ECC)
30 |
tracks the evolution of the EC of

20+ the flooded surface as water rises

10
zero of ECC ~ percolation

0 percolation on a torus
creates a giant cycle

Euler Characteristic

-10

20
Bobrowski &

30 | | | | Skraba, 2020 : :
- image analysis

-1 0.5 0 0.5 1 ;
: Carlsson, 2009 porous media
Level Set Height 500 realizations cosmology

Vogel, 2002 GRF  brain activity




melt pond donuts




From magnets 100 year old model for magnetic materials
to melt pOﬂdS used to explain melt pond fractal geometry

ti.

magnetic domains Arctic melt ponds magnetic domains Arctic melt ponds
cobalt cobalt-iron-boron

2D Ising model

A/VI/IA/IA//;/T/V/ - :pln down

Ma, Sudakov, Strong, Golden, New J. Phys. 2019
Golden, Ma, Strong, Sudakov, SIAM News 2020




Ising Model for a Ferromagnet

\ ) fﬂ W o +1 spinup blue
T "7 1 -1 spindown  wahite

Curie point
applied :—HE S; —JE ;S i
i T H ‘ J

critical temperature
magnetic
field <1,7>

nearest neighbor Ising Hamiltonian

islandsof  Pr . .*
like spins . g . 1
N B vrm= g Ly

E...'-.i'._l-.': e j

o effective magnetization

energy is lowered when nearby spins align
with each other, forming magnetic domains

rnagnetic domains  eit ponds (Perovich) magneticdomains  melt ponds (Perovich)
in cobalt in cobalt-iron-boron



Ising model for ferromagnets —3> Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys., 2019

ZH S; —J Z SiS;

<%,7>

4 1 water (spinup) random magnetic field
- §o represents snow topography

ice (spin down)

magnetization M pond area fraction > _ (M+1) only nearest neighbor
~ albedo 2 patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized
by Glauber spin flip dynamics, system “flows” toward metastable equilibria.

Order from Disorder
. .r.- ?

*-w:w

pond size
distribution exponent

observed
(Q( Yz Ml MY e ¥ N4 Observed -1.5
" A L € sy, AV . s (Perovich, et al. 2002)
i v ] model -1.58
ﬁ;‘ TPReE AAR S 1010 10710° 10
,..J_' S i et A (m?) -
Ising melt pond Scientific American
EOS, PhysicsWorld, ...

model photo (perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data



. Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

WINDOWS

Perovich

Have we crossed into a
new ecological regime?

The frequency and extent of sub-ice
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, lams, Schroeder,
Flocco, Feltham, Science Advances 2017

no bloom bloom The effect of melt pond geometry on the distribution
of solar energy under first year sea ice
massive under-ice algal bloom Horvat, Flocco, Rees Jones, Roach, Golden

Geophys. Res. Lett. 2019

Arrigo et al., Science 2012
(2015 AMS MRCQ)



SEA ICE ALGAE

Can we improve agreement between algae models and data?

80% of polar bear diet can be traced to ice algae*.

*Brown TA, et al. (2018). PloS one, 13(1), €0191631



HETEROGENEITY IN INITIAL CONDITIONS

At each location within a larger region, we could consider

dN

Nutrients ikl NP — nN
dp
Algae —f = VBNP = 6P
N(0) = P(0) =

VAN VAR VAN

growth rate, Initial nutrients, Initial algae,




HOW DO WE ANALYZE THIS MODEL?

Monte Carlo simulations?

0.25} —E[N]
0.2r
2]
_E 0.15 0.02 ?é)
2 01} ©
0.01
0.05¢
0 ‘ : 0
0 50 100 150 200

time (days)

Too slow! Full algae model takes 8 hours (cloud
computing).
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Uncertainty quantification for ecological models with random
parameters©

Jody R. Reimer"?©® | Frederick R. Adler'">® | Kenneth M. Golden' | Akil Narayan'~

'Department of Mathematics, University Abstract
of Utah, Salt Lake City, Utah, USA

2 el g ol e There is often considerable uncertainty in parameters in ecological models. This
School of Biological Sciences, University

of Utah, Salt Lake City, Utah. USA uncertainty can be incorporated into models by treating parameters as random
3Scientific Computing and Imaging

Institute, University of Utah, Salt Lake
City, Utah, USA uncertainty quantification methods, such as polynomial chaos approaches, allow

variables with distributions, rather than fixed quantities. Recent advances in

Correspondences for the analysis of models with random parameters. We introduce these methods
Jody R. Reimer, Department of

Mathematics and School of Biological with a motivating case study of seaice algal blooms in heterogeneous environments.

Sciences, University of Utah. Salt Lake We compare Monte Carlo methods with polynomial chaos techniques to help
City, Utah, USA. . .
Email: reimer@math.utah.edu understand the dynamics of an algal bloom model with random parameters.

Introduce polynomial chaos approach to widely used
ecological ODE models, but with random parameters.



ECOLOGICAL INSIGHTS

=== Mean
0.02 1 +1 stdev range
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® Jower peak bloom intensity

® Jonger bloom duration

® able to compare variance to data



macroscale



Marginal |Ce Zone ® biologically active region

|V||Z ® intense ocean-sea ice-atmosphere interactions

@ region of significant wave-ice interactions

transitional region between
dense interior pack (¢ > 80%)
sparse outer fringes (c < 15%)

MiZ WIDTH How to objectively

fundgmental Igngth scale of. measure the “width”
ecological and climate dynamics .
of this complex,

Strong, Climate Dynamics 2012 : 9
non-convexregion:

Strong and Rigor, GRL 2013



Objective method for measuring MIZ width
motivated by medical imaging and diagnostics

Strong, Climate Dynamics 2012 39% widening
Strong and Rigor, GRL 2013 1979 -2012

streamlines of a solution

" o . to Laplace’s equation
average” lengths of streamlines /

4x107°

%1072

%1073

%1073

crossection of the
Arctic Marginal Ice Zone cerebral cortex of a rodent brain

analysis of different MIZ WIDTH definitions

Strong, Foster, Cherkaev, Eisenman, Golden
J. Atmos. Oceanic Tech. 2017

Strong and Golden
Society for Industrial and Applied Mathematics News, April 2017



Observed Arctic MIZ

I MIZ 15 February 2003| 0
B M1Z 15 August 2003
—— model domain

low fractal low perimeter
dimension to area ratio $
Winter - J—
MIZ >/ | L
90 E
r
Summer/
MIZ . ;
60 N
high fractal high perimeter .
dimension to area ratio 50 N

90" W




Model larger scale effective behavior
with partial differential equations that
homogenize complex local structure and dynamics.

Arctic MIZ Predict MIZ width and location with
N N basin-scale phase change model.

seasonal and long term trends

2 cm mushy layer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 quuid

sea ice concentration vy

NaCl-H20 in lab
(Peppin et al., 2007;, J. Fluid Mech.)

Partial differential equation models
and deep learning for the seaice

] ) Annual cycle of Arctic marginal ice zone location and
concentration field, 2023 y 9

width explained by macroscale mushy layer model, 2023

Delaney Mosier, Eric Brown, Court Strong,
Jingyi Zhu, Bao Wang, Ken Golden C. Strong, E. Cherkaev, and K. M. Golden



MIZ as a moving phase transition region

pC%_T =V (kVT)+ S Classical small-scale application

a Solid .
§ = lpler— )T+ pL1 5 e o

2 cm mushy layer

T — 1T, «
=1 —
v (n—n)

km:(g+1—w

—1
ks ki ) homogenization
kz = wks + (1 - ¢>kl

NaCl-H,0 in lab
(Peppin et al., 2007;, J. Fluid Mech.)

Macroscale application

p effective density S models nonlinear phase change
T temperature 1) sea ice concentration
¢ specific heat k effective diffusivity

L latent heat of fusion l liquid, s solid

e Develop multiscale PDE model for simulating phase transition fronts to predict
MIZ seasonal cycles and decadal trends

 Model simulates MIZ as a large-scale mushy layer with effective thermal
conductivity derived from physics of composite materials



MIZ observations MIZ model vs. observations
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Evolution of the Fractal Geometry of the Arctic Marginal Ice Zone

Julie Sherman, Court Strong, Ken Golden, submitted 2023

Compute the fractal dimension of the boundary of the Arctic MIZ by
boxcounting methods; analyze seasonal cycle and long term trends.

early summer

2012

fractal dimension

1.30

125

1.20

Observed 1980-1983 Observed 2019-2022

Fit 1980-1983

Fit 2019-2022

July

P

October

early autumn



Arctic MIZ fractal dimension from 1980 to 2021
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Geographical distribution of average fractal dimension
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Conclusions

Fractals appear naturally in the sea ice system.

Mathematics of sea ice advances the theory of composites,
inverse problems, and other areas of science and engineering -
like fractal geometry of natural structures

Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.

Modeling sea ice leads to
unexpected areas of math and physics!
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Anomalous diffusion
in sea ice dynamics

Ice floe diffusion in winds and currents

observations from GPS data:

Jennifer Lukovich, Jennifer Hutchings,
David Barber, Ann. Glac. 2015

® On short time scales floes observed (buoy data) to exhibit Brownian-like
behavior, but they are also being advected by winds and currents.

e Effective behavior is purely diffusive, sub-diffusive or super-diffusive
depending on ice pack and advective conditions - Hurst exponent.

modeling:

Huy Dinh, Ben Murphy, Elena Cherkaev, floe scale model to analyze transport regimes in
Court Strong, Ken Golden 2022 terms of ice pack crowding, advective conditions
Delaney Mosier, Jennifer Hutchings, Jennifer Lukovich, learning fractional PDE

Marta D’Elia, George Karniadakis, Ken Golden 2022 governing diffusion from data



From Microbes to Megafauna: How they impact and are impacted by the physics of sea ice

How do the physical properties of sea
ice affect the communities it hosts?

How does the presence of lifein and on
sea ice affect its physical properties?

Golden g



transport in percolation theory

lattice homogenization

MICRO » MACRO

local conductivity (electrical or fluid)  effective conductivity or fluid permeability

insulator conductor

y off : on

X))

oy probability p

bond —>= 9 o robability 1-p o
0 pc 1 =p

consider local conductivities }

1 and h>0 percolation threshold
smooths, softens transition o(p) ~ oo (p—p) p—pt

UNIVERSAL critical exponents for lattices -- depend only on dimension
1 <t <2 (foridealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

non-universal behavior in continuum



polar bear
foragingina
fractal icescape

Nicole Forrester
Jody Reimer
Ken Golden

It costs the polar bear
5 times the energy to
swim through water
than to walk on sea ice.

il m What pathway to
pre ‘ii A minimizes energy spent?




Polar Bear Percolation

Optimal Movement of a Polar Bear in a

Heterogenous Icescape

Cost of Polar Bear Path
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Filling the polar data gap with hole in satellite coverage
partial differential equations of sea ice concentration field

previously assumed
ice covered
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Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007
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Ay=0 fill = harmonic function with
learned stochastic term

, NOAA/NSIDC Sea Ice Concentration CDR
Strong and Golden, Remote Sensing 2016 .
Strong and Golden, SIAM News 2017 product update will use our PDE method.






