Sea Ice in the Changing Climate: Modeling a Multiscale Nonlinear System Organizer: Kenneth M. Golden Department of Mathematics University of Utah

AAAS Annual Meeting, 19 February 2010

SEA ICE covers 7 - 10% of earth's ocean surface

- boundary between ocean and atmosphere
- mediates exchange of heat, moisture, momentum
- indicator and agent of climate change

sea ice formation

cold dense brine is rejected, forming **bottom water**

bottom-water formation drives deep circulation throughout the world's oceans

GLOBAL THERMOHALINE CONVEYOR BELT

polar ice caps critical to global climate in reflecting incoming solar radiation

white snow and ice reflect

dark water and land absorb

Change in winter Arctic sea ice extent

Change in summer Arctic sea ice extent

Perovich

Can Arctic sea ice rebound?

.... or have we passed a critical threshold,

a "tipping point" ?

Lorenz butterfly

Extent & seasonal variation of sea ice

Arctic

Antarctic

Is global warming

Antarctifying

the Arctic ?

climate change is amplified in the polar regions

14 September 2008

IPCC (Intergovernmental Panel on Climate Change) projections

global climate models *underestimate* observed decline in summer Arctic sea ice extent

September 2007

March 2009 Boé, Hall, Qu 2009

Antarctic sea ice

climate models predict declines in annual average ice area and volume, *however*...

Southern Hemisphere Sea Ice Concentration Trends for Autumn 1979 – 2007

John Turner (Tony Worby) some features of sea ice and its marine environment relevant to climate modeling

sea ice is a composite material

pure ice with brine, air, and salt inclusions

X-ray computed tomography of brine inclusions in sea ice

brine volume fraction $\phi = 5.7 \%$ T = -8° C

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007

volume fraction and *connectivity* of brine phase increase with temperature

sea ice displays *multiscale* structure over 10 orders of magnitude

0.1 millimeter brine inclusions polycrystals dm cm m vertical horizontal brine channels 1 meter

pancake ice

1 meter

100 kilometers

sea ice albedo determined by melt ponds

flow through sea ice

depth, Chukchi Sea (photo by Perovich)

depends on microstructure

Critical behavior of fluid transport in sea ice on - off switch for fluid flow

critical brine volume fraction $\phi_c \approx 5\% \iff T_c \approx -5^\circ C$, $S \approx 5$ ppt **RULE OF FIVES**

> Golden, Ackley, Lytle *Science* 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu, *Geophys. Res. Lett.* 2007 Pringle, Miner, Eicken, Golden *J. Geophys. Res.* 2009

on - off switch helps control:

- 1. melt pond evolution
- 2. surface flooding and snow-ice formation
- 3. salinity profile evolution and brine drainage
- 4. transport of heat and gases (CO₂)
- 5. microbial activity; nutrient replenishment
- 6. electromagnetic signatures; remote sensing

of the American Mathematical Society

Notices

May 2009

Volume 56, Number 5

Climate Change and the Mathematics of Transport in Sea Ice

page 562

Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

page 586

Real analysis in polar coordinates (see page 613)

What must we understand better about

sea ice processes & air-ice-ocean interactions

to improve climate projections?

What must be represented more realistically in models?

linkage of scales

e.g. microstructure \rightarrow permeability \rightarrow melt pond evolution

 \rightarrow ice pack albedo \rightarrow sea ice trajectory \rightarrow global climate

Sea Ice in the Changing Climate: Modeling a Multiscale Nonlinear System

Marika Holland	Large-scale models and feedback mechanisms
Donald Perovich	Melt ponds and ice-albedo feedback
Wieslaw Maslowski	Arctic Ocean dynamics and sea ice decline
John Wettlaufer	Critical threshold for summer Arctic sea ice
Hajo Eicken	Sea ice hydraulics and melt pond evolution
Cecilia Bitz	Sea ice microphysics and brine transport

Mathematics Awareness Month - April 2009

Mathematics and Climate

Find out how math and science are used to address questions of climate change:

 $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho}$ $\frac{\partial \rho}{\partial t} \; + \; \nabla \cdot \left(\rho \mathbf{u} \right) \; = \;$

www.mathaware.org

Committee Chair: Kenneth Golden (University of Utah)

Kerry Emanuel (MIT) Margot Gerritsen (Stanford) Jon Huntsman, Jr. (Governor of Utah) David Neelin (UCLA) Mary Lou Zeeman (Bowdoin)

Inez Fung (UC Berkeley) David Holland (NYU) Jay Zwally (NASA)

Joint Policy Board for Mathematics: American Mathematical Society, Mathematical Association of America, Society for Industrial and Applied Mathematics, American Statistical Association