358 S. TORQUATO

57. 1. F. Thovert, 1. C. Kim, S. Torquato, and A. Acrivos, J. Appl. Mech. Tech. Phys,
67 (1990), 6088.

58. S. Torquato, J. Appl. Phys. 58 (1985), 3790.

59. R. C. McPhedran and G. W. Milton, Bounds and exact theories for the transport
properties of inhomogeneous media, Appl. Phys. A26 (1981), 207-220.

60. R. C. McPhedran and D. R. McKenzie, Proc. Roy. Soc. Lond. Ser. A 359 (1978),
45,

61. D. R. McKenzie, R. C. McPhedran, and G. H. Derrick, Proc. Roy. Soc. Lond. Ser.
A 362 (1978), 211.

62. N. Silnutzer, Ph.D. Thesis, University of Pennsylvania (1972).

63. S. Torquato and F, Lado, J. Appl. Mech., in press.

64. Z. Hashin, in Mechanics of Composite Materials, (F. W. Wendt, H. Liebowitz, and
N. Perrone, eds.), Pergamon Press, New York, 1970.

65. L C. Kim and S. Torquato, J. Appl. Phys. 68 (1990), 3892,

66. F. Lado and S. Torquato, J. Chem. Phys. 93 (1990), 5912.

67. J. R. Willis, J. Mech. Phys. Solids 25 (1977), 185.

68. M. Beran and J. E. Molyneux, Quart. Appl. Math, 24 (1965), 107.

69. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963), 127,

70. J. C. Smith, J. Res. Nat. Bur. Standards 80A (1976), 45.

71. S. Torguato, J. Chem. Phys. 85 (1986), 7178.

72. P. R. Richards, Phys. Rev. B 35 (1987), 248.

73. 1. D. Beasley and S. Torquato, Phys. Fluids 1 (1989), 199.

74. A. E. Scheidegger, The physics of flow through porous media, Univ. of Toronto
Press, 1963.

75. G. V. Schulz, Z. Phys. Chem. B 43 (1936), 25.

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING and DEPARTMENT OF
CHEMICAL ENGINEERING, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC 27695-
7910

E-mail address: TORQUATO@CIMS2.NYU.EDU

Lectures in Applied Mathematics
Volume 27 (1991)

Classical Transport in Quasiperiodic Media

KENNETH GOLDEN

Abstract. Classical transport coefficients such as the effective conduc-
tivity or diffusivity of a quasiperiodic medium were observed [1]
to depend discontinuously on the frequencies of the quasiperiodic-
ity. For example, for a one-dimensional medium with a potential
V(x) = cosx + coskx, the effective diffusion coefficient D* (k) has
the same value D for all irrational k, but differs from D and de-
pends on k for k rational, where it is thus discontinuous. Here we
review some recent progress [2-4] in understanding this discontinuous
behavior. In particular, a class of examples which explicitly exhibit
the discontinuity in dimensions d > 2 is constructed. In addition,
we examine some rather surprising consequences of the discontinuity
for the rate of approach to limiting behavior of diffusion or conduc-
tion in quasiperiodic media as time or volume becomes infinite, It
is found that these rates can be “arbitrarily slow,” which contrasts
with the power laws observed for random media, A very general the-
orem yielding such slow rates is described, and its consequences for
quantum transport are aiso discussed.

1. Introduction. Quasiperiodic systems exhibit fascinating properties
and arise in many settings, An example of such a system is a one-
dimensional medium with a potential ¥ (x) = cosx +coskx. When k&
is irrational, ¥ (x) is quasiperiodic, and when k is rational, ¥(x) is
periodic. Mathematically, quasiperiodic media represent a special case
of stationary random ergodic media, and can be thought of as “inter-
polating” between periodic and random. One way in which quasiperi-
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odicity can arise is in a modulated structure, i.e., a periodic structure
such as a crystal lattice which is perturbed or modulated periodically
with a period different from that of the underlying structure. For ex-
ample [5], Ti;,Ni,,Fe, alloy subjected to charge density waves forms
a modulated structure, where the periods of the alloy and the wave can
be commensurate (rationally related) or incommensurate (irrationally
related). Another way in which quasiperiodicity can arise is apparently
through the lattice structure itself, as evidenced by the exciting discov-
ery of so-called “quasicrystals” [6], where the atoms are believed to be
arranged in a quasiperiodic manner.

In systems such as modulated structures where the period of the ap-
plied wave can be tuned to be commensurate or incommensurate with
that of the underlying structure, one is interested in how the physi-
cal properties of the system change as this is done. It was observed
in [1] that classical transport coefficients of a quasiperiodic medium
in RY with a potential ¥(x) and/or conductivity o(x) depend dis-
continuously on the frequencies of the quasiperiodicity. For example,
with V(x) = cosx + coskx in d = 1, the effective diffusion coeffi-
cient D*(k) has the same value D for all irrational k but differs from
D and depends on k for k rational, where it is thus discontinuous.
(Furthermore, D*(k) is continuous at irrational k.)

Here we give an overview of some recent progress [2-4] in analyzing
this discontinuous behavior displayed by quasiperiodic media. The re-
sults are of two different types. The first type concerns explicit examples
of the discontinuity in dimensions d > 2, where the general argument
given in [1] for d = 1 does not apply. In these systems, for example
in d = 2, we take a plane slice of a three-dimensional checkerboard of
cubes with conductivities o, and ¢,. When the plane, characterized
by a matrix k, is at an “irrational” angle, the resulting quasiperiodic
medium has an effective conductivity tensor ¢"(k) which is invariant
under interchange of o, and o0, . The Keller interchange equality [7, 8]
then yields the surprising result that det(¢*) has the same value 0,0,
for all irrational planes. The discontinuity is obtained by exhibiting a
particular rational angle for which det(¢™) has a value different from
0,0,. The checkerboard is but a special case of a general class of ex-
amples that yield the discontinuity in this way.

The second class of results concerns some striking consequences of
the discontinuity for the rate of approach to limiting behavior of diffu-
sion or conduction in quasiperiodic media as time or volume becomes
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infinite. For example, we consider diffusion X, in a quasiperiodic po-
tential V(x) in RY, where lim,_,_ P(t) = lim_, _E[X}]/t = D* =
tr (D*(V)), D*(V) is the effective diffusion tensor, and E denotes av-
eraging over diffusion paths and the phase in the potential (see Section
2). We find that when the irrational parameters characterizing V' (x) are
very well approximated by rationals, &(¢) approaches its limit through
a series of “plateaus” which correspond to the rational approximants,
where the better the approximation, the longer the plateau. In fact, say
in d =1 with V(x) = cosx -+ coskx, there is a dense set I' such
that for each k €', | (k, t) — D" (k)| , roughly speaking, approaches
zero as ¢ — oo “arbitrarily slowly,” i.e., more slowly than any pos-
itive function g(t) — 0 as ¢ — oo which can be explicitly written
down (expressible). For example, when k€T, |2 (k, 1) ~ D*(k)|—0
more slowly than 1/log---logt, for any fixed number of iterations of
the logarithm. (Note that the k’s in I" are not expressible.) We can
also prove corresponding statements for related functions such as the
“yelocity” autocorrelation function as ¢ — oo and the frequency (w)
dependent diffusivity as @ — 0, as well as for |o"(k, L) — g k)| —0
as L — co for the length (L) dependent conductivity ¢*(k, L) of a
finite sample of a quasiperiodic medium.

The arbitrarily slow approach that we see for quasiperiodic media is
in marked contrast to the behavior in random systems [9-12], where
the rates of approach are widely believed to have power law structure.
Our results demonstrate that in quasiperiodic systems, the functions
characterizing the approach to limiting behavior obey no such universal
law, be it algebraic, logarithmic, or whatever.

The above results about rates of approach are based on a very general
theorem about any function f(k, ¢) which is continuous in k and ¢,
but for which F(k) = lim,_,__ f(k, ) is discontinuous on a dense set
of k’s. In this case, there is always a dense set of k’s for which the
rate of approach of f(k, t) to F(k) is arbitrarily slow.

Due to the generality of the above theorem, any system which ex-
hibits discontinuous limiting behavior can display the arbitrarily slow
approach. For example, in quantum transport in quasipericdic poten-
tials [13,14), it is found that the nature of the wave functions satisfy-
ing the time dependent Schrédinger equation with a potential g(x) =
cosx + acos(kx + 0) depends very sensitively on the rationality of
k. Presumably, similar results to the above hold for appropriately de-
fined time dependent functions characterizing the approach to limiting
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behavior, which will be briefly discussed in the lattice case at the end.

2. Formulation, We first formulate the notion of a quasiperiodic lo-
cal conductivity or potential field in RY . Subsequently we consider
the effective conductivity and diffusion problems in such quasiperiodic
media.

Let () be a function on the unit n-torus 7" = R"/Z", e T",
which we identify with its periodic extension to all of R". The local
conductivity field o,(x, 8) on R? is obtained from & via

(2.1) 6 (x, 0) = (0 +kx) = 6(148)
with translations on R" given by
d
(22) T0=0+kx=0+ kx, ,
- i=1
where k is an n by d matrix k = [_k_T, ,l_c}], ki k;j=0,i#],

1
k, € R". A local potential field Vi(x, 8) on R is obtained similarly
from some ¥ (8) on T".

The “flow” on 7" induced by (2.2) leaves invariant Lebesgue mea-
sure df on T". It is also ergodic relative to df when the equa-
tions k,-i=0,...,k, i =0 have no simultaneous integral solutions
1 €Z", i # 0 [15]. We say that k is “irrational” in this case, i.e.,
when r'; is ergodic, and is “rational” otherwise. When n =2, d = 1

and k=k = [k, kz]T, k isirrational when k,/k, is irrational. When
n>d+1, k can have various degrees of rationality depending on the

dimension of the ergodic components of T:z .
Given o, (x, 8), we consider the electric field £ j(x, g) = E.

S0 2T

and current field J,(x, 8) = J (6 + kx) satisfying

(0+kx)

(23) Li(x, 0) = o,(x, OE,(x, 0),
(2.4) v.J; =0,
(2.5) V xE, =0,
(26) fEx 8)dx=c,
2
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where ¢ ’ is a unit vector in the jth direction in R? , and the integral

in (2.6) is an infinite volume average of E i (x, 8) over RY.
We shall be most interested in two-component media, arising from

(2.7) 6(8) =0, %,(0) + 0, 2,(6) ,

where o, , o, > 0, and the indicator functions X ,(8), i =1, 2, satisfy
X, + X, = 1. Due to the absence of smoothness in this case, equations
(2.4) and (2.5) should be understood to hold weakly in an appropriate
subspace of L*(T", d6) [16), where 5-’{7 is identified with the generator
of translations in the direction of k ;.

The effective conductivity tensor ¢" =a"(k, 0) is defined via

(2.8) o'e, = o(x, OE,(x, 0)ds ,

Rd
which is symmetric. If k is irrational, o*(k, @) is almost surely (with
respect to 46) a constant independent of @, while if k is rational,
o" will depend on ¢ only through the ergodic component to which 8
belongs. In any dimension [16],

(2.9) a*(k,Q):Llim o' (L,k,0),

where a"(L, k, ) is the conductivity of a sample of side 2L of
g,(x, 8), which in one dimension has the form

* —~1 1 L -1
(2.10) [0°(L. &k, O)]" =57 » [6,(x, ©)] dx ,
and the convergence in (2.9) is in L*(T", d@). The integration on the
right side of (2.10) can be viewed as integration over a trajectory of the
flow 8 = k, which is ergodic only when k is irrational. In this case,
the integration is over all of 7", so that

(2.11) s =/T" [6(8)] " do

is independent of k. However, when k is rational, the trajectory de-
generates to a closed orbit, over which the integration is different from
its value over all of 7", which is the source of the discontinuity.

We shall also be interested in diffusion in a potential V(x,0) =
P(@+kx), x €R?, § € T", which is uniformly bounded and smooth,

i.e., having uniformly bounded derivatives to third order. Given Vs
we consider the R%-valued process X , governed by

(2.12) dX, =~V V(X )dl+dW,
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wherg Xo=0 apd W, is standard Brownian motion with mean O and
covariance matrix fJ, where 7 is the identity. The transition density
u(x, t) satisfies the (forward) equation

Ou

2.13 — =L i =
(2.13) 57 = Lu, ltllrgu(_&, 1) =4(x) ,
where

.1
(2.14) L'=5A+V (VK.

For X, governed by (2.12), s_X_[/ez converges as ¢ — 0 [see, e.g., 17]
to __VK,(D*(k)) , with D*(k) = lim,_,_ D(k, 1), D,.j(k, t) = E[X:X;"]/t,
where E denotes expectation over Brownian motion paths in (2.12) as
well as an average over T with respect to the “equilibrium” measure

(2.15) u(de) = e 0 g9 / / 00
" -

We shall be interested in 2 (k, #) = tr(D(k, #)) and D*(k) = tr(D*(k)).
As in the case of conduction, there is an exact formula for D*(k) in
d=1 [see, eg, 1], -

(2.16) D))" = ][ezyﬁdx fe‘”’-k.dx.

3. Higher-dimensional examples of discontinuous behavior of &” (k).
We now coqstmct explicit examples of systems for which a"(k) is dis-
continuous in k. First we look at the one-dimensional case o, (x) =

&.(x, kx) where & is a checkerboard on T2 , and then we consider its
higher-dimensional analogs.

.3:1. d 2='1 - Let &(8) on the unit 2-torus 7'? be defined as follows.
Divide T* into four equal squares with the common vertex (4, 4). On
the squares let §(8) take the positive values g, 0ro, ina che2<:1’<<32rb;)ard
arrangement, with, say, ¢, on the square nearest thezorigin. Extend this
by periodicity to the whole plane, R? , and define

(3.1) ak(x)=ak(x,Q=Q)=&(x,/cx)

which we visualize as the restriction of & ;
: of & to a traject
passing through the origin. jectory of slope &
Now for g, (x) in (3.1),

(3.2) [0" (k) ™" = py(k)/0, + p,(K)/a, |
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where pj(k) is the proportion of length that the line of slope k in
R? spends in regions (squares) where & = g j=1,2, for the above
described checkerboard. For further simplicity we assume that ¢, = 1
and 0, = o0,

Then we have

THEOREM 3.1. For og,(x) = &(x, kx) with & the above checker-
board of squares of o, =1 and o, =co, and k >0,

(3.3)
1 Lo
35 k irrational
1
o % - 5117(_1 , k=2%, p,q=odd, relatively prime integers
I .
7 k = £, otherwise.

The proof, by D. Barsky, is contained in the Appendix of [2].

3.2. d = 2. The analog of the checkerboard for T 3 is obtained by
dividing it into eight equal cubes with common vertex (3, 1, §) with
& taking the values o, and o, in a checkerboard fashion. Given k
and this &, (2.1) defines o, (x, 8), which is quasiperiodic when k is
irrational and periodic when the coordinates of both k, = (k,,, k;,)
and k, = (k,,, k,,) are rational.

As indicated in the Introduction, we obtain a discontinuity in det(c™)
by first examining it for k irrational, and then by exhibiting a particular
rational for which its value is separated from those in the irrational case.

Our principal tool will be the Keller interchange equality [7,8]: let
o"(0,,0,) be the effective conductivity tensor of any ergodic two-
component material and let ¢"(o,, ;) be the effective tensor of the
material with o, and o, interchanged. Then

(3.4) (0, , 0,)0,(0,, 0,) = 0,0, ,

where g; < o, are the eigenvalues of the symmetric matrix " . The
following observation allows (3.4) to provide information about det(a™).

LEMMA 3.1. For k irrational, the quasiperiodic medium o, (x, 8)
arising from the checkerboard on T? satisfies
(3.5) a'k;0,,0,)=0"(k;0,,0),
i.e., o (k) isinvariant under the interchange of the components.

PrRoOoOF. Suppose k is irrational; then o"(k) is independent of §
almost surely. However, interchange of the components ¢, and o, is
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induced by (,, 0,,0;) — (6, + 4,0,,6,) on T°. Thus a*(k) is
interchange invariant. 0

As an immediate consequence of (3.4) and Lemma 3.1, we have

THEOREM 3.2. Let o, (x,8) = 6(8 +kx), x € R, where & is a
checkerboard of o, and g, on T 3. Then Jor all irrational k,

(3.6) det (o”(k)) = 0,0, .

We now obtain the discontinuity. Let the cube nearest the origin
in T3(z [0, 1]3) have conductivity 0,. Consider the plane passing
through (1, 0, 0), (0, 1, 0), and (0, 0, 1), and then translate it down-
ward so that it passes through (0, 0, 3/4). Let k, span this plane
and let §, = (0,0, 3/4). The resulting pattern ako(gc_, 8,) is a peri-
odic array of six-pointed stars with a central hexagon of o, , which is
“isotropic”, o (ko; 84) = o (ky; 8,)9; ;> due to the six-fold symmetry
about the center of the hexagon. However, this array is not interchange
invariant, since P = % while p, = %, which indicates that we should
not expect that det(a” (k,; 8,)) = 0,0, .

LEMMA 3.2. There exist g, and o, such that for the resulting &
and k,, 8, as above,

(3.7) det (0" (ko3 0,)) # 0,0, .

The proof is obtained by using the isotropy of al.'}.(ko »84) =074, i
and the arithmetic mean upper bound on o* .
Theorem 3.2 and Lemma 3.2 together yield a discontinuity in

det (6" (k)) at k = k,. Since det(o™) is a continuous function of o*
we have

3

COROLLARY 3.1, Let o, and o, be as in Lemma 3.2. Then o (k)
s discontinuous at k = k,.

We have constructed here only one example of a rational k for which
the discontinuity can be proven. When the denominators in the rational
numbers in k are much larger, so that p, and p, are both very close to
% , the proof involving the simple bound will not work, as much tighter
bounds on ¢ would be required. Nevertheless, we expect that " (k)

is discontinuous at “most” rational k.
33. d>3.Ford > 3, the inequality

(3.8) a:(a1 , az)a;(az, o) > 0,0,
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replaces (3.4), for all pairs of eigenvalues ¢; and a; , which was first
proved by Shulgasser [18]. Since Lemma 3.1 holds for T" as well as
T3, slight manipulation of (3.8) yields

THEOREM 3.3. Let 0,(x,0) = 6(8+kx), x € Rd, d > 3, where
& is a checkerboard of o, and a@, on T", n>d+1. Then for all
irrational k,
(3.9) det (" (k) > (0,0,)"" .

The discontinuity is established by finding ratz%lal k for which there
are o, and o, such that det (6" (k)) < (a,, 0;)"". . .

We remark that whenever interchange of ¢, and o, in the amblerllt
environment & on R” is induced by a change in realization Q — g,
which, in fact, can be assumed to be a translation, the con(:'lusmns of
Theorem 3.2 for d = 2 or Theorem 3.3 for d > 3 hf)ld. T.hls’obgerva-
tion yields a large class of media which exhibit the discontinuity in the
same way as the checkerboard.

3.4. Phase averaging. Let us consider explicitly the “ppase” 8 of the
local conductivity field, for example in one dime*nsion w1tl} o(x, 8) =
A+cos(x +6,) +cos(kx +6,), 4>2. Then ¢”(k, 6) will depend on
g for k rational but not for k irrational. For the d =2 S:hecl‘cerboard
gxample one can see this as well by observing that for k 1rrat1ona‘1 the
relative volume fractions p, and p, =1-p, of g ‘and o, are inde-
pendent of phase, with p, =p, = %, while for l*( raTlonal they d?pend
on phase. In other words, the discontinuity in ¢ arises from a d1§con-
tinuity in the microgeometry, as characterized by the volurr%e frac_’uOI.ls.
It is surprising that even after averaging oyer phase, the dlﬁcontu;{uny
persists, which we can prove in d = 1. Given ak_(x, 6) =6(8+kx),

0eT", define
(3.10) W= [ ok, 0d8 .
where o*(k, 8) is the effective conductivity of o.(x,8). Also llet
[?f]“1 be given by the right side of (2.11). Then, using Jensen’s in-
equality, we can prove

THEOREM 3.4. For d=1,
(3.11) on(k) 27 .

Furthermore, equality holds in (3.11) if and only ifna*(_lg_ , 8) is indepen-
dent of 8 (almost surely with respect to dé on T).
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While we belieye b'ut have not yet proven that the discontinuity is
generally present in higher dimensions for azv(k) , which is the analo
of (3.10) for d > 1, we can prove ¢

THEOREM 3.5. For d > 1, a:v(k) is upper semicontinuous in k.

4. Arbitrarily slow approach to limiting behavior. We now discuss the
conseguences of the discontinuity for the rate of approach to limitin
behavior of diffusion and conduction in quasiperiodic media. First wg
pre.sent a general result about functions with discontinuous l'imit f;
which all the results about diffusion and conduction follow, o

4.1. General results on a imi
. pproach to limits. The state i
theorem is aided by the following ment of the basie

DEFINITION. For two functions g(t) and A(t) with lim, | g(t)=0
—00

and lim h(t) = . ' ‘
often, t—0o P(8) = 0, we say that g(¢) is greater than h(t) infinitely

(4.1) g(t) > h(r) ,
if there is a sequence t, — oo such that
(4.2) glt,)>ht), vn.

We now state the principal result.

THEOREM 4.1. Let f(k,t):RY — . ]
o TEORS (k, t) %[0, 00) = R satisfy the following
(1) f(k, t) is jointly continuous in Xk € RY and ¢ e (0, o)
(11) lim,_,_ f(k, t)=F(k) exists for all k € RY,
(ii1) F(k) is discontinuous on a dense set 4 c R .

Then for any sequence of functions {gj(t) » 1 €[0, c0)} with lim g:1)
~ ‘ ' t~—o0 ©f
=0 foreach j, there exists a dense ser T c RY such that for each k ejF

(4.3) £, 0= F®)l > g(1) ., V).

The idea of the proof is to construct each k in I" as the limit of
a sequence {k‘n} such that F is discontinuous at each k. . Because
of ‘the dls'contmuity at k,, F(k,) can be bounded away nfllom F(k)
while 'kn is arbitrar'ily close to k. Then for a corresponding arbitrarily
long time f(k, ¢) is close to F (k,), which serves as a “plateau” for
S(k, t). These arbitrarily long plateaus give rise to the slow decay of
|f(k, t) — F(k)| as stated in the theorem. 7P

CLASSICAL TRANSPORT IN QUASIPERIODIC MEDIA 369

A rather striking consequence of Theorem 4.1 involves the notion of
an expressible function, i.e., one which can be defined, either explic-
itly or implicitly, using standard mathematical symbols. An example
of such an implicitly defined function is one that satisfies, say, a dif-
ferential or integral equation which has a unique solution. Since any
expressible function is determined by a finite string of symbols from a
finite alphabet, there are only countably many such functions. Clearly,
then, we have

CoRrOLLARY 4.1. Let f(k, t) satisfy the conditions of Theorem 4.1.
Then there exists a dense set T' C RY such that for each k€T,

(4.4) £k, 1)~ F(K)| > 8(0) .
for every expressible function g with lim,_, g(t)y=0.

We remark that there is no contradiction here because for k € I,
|f(k, t) — F(k)| is not expressible.

To appreciate how slowly | f(k, ) —F (k)| decays for k € I', observe
that | f(k, t)-—F(k)[i>0 (log---log t)'] , t — oo, for any fixed number of
iterations of the logarithm. Indeed, no law, be it algebraic, logarithmic,
or whatever can capture the behavior of |f(k, ¢) — F(k)|, not even in
the weak sense of upper bounds.

While T in the above results is dense, it is presumably of Lebesgue
measure zero, so that it is analytically “small”. However, by replacing
condition (iii) above with a slightly stronger one, namely that F(k) =
o(k) for some continuous ¢ when k ¢ 4 and F(k) # ¢(k) when
k € A, T can be shown to be a dense Z;. That is, it is a dense,
countable intersection of open sets, which is (topologically) generic.

4.2. Diffusion in quasiperiodic potentials. We now apply Corollary
4.1 to D (k, t) and related functions. While conditions (i) and (ii) are
clearly satisfied by, say, 2 (k, t), we must discuss condition (iii). In one
dimension, given any ¥, one can in principle check the explicit formula
for D*(k) to see if it is discontinuous on a dense set in R. Typically
there is a dense set of rationals on which D*(k) is discontinuous. (In
fact, typically D*(k) satisfies the stronger condition mentioned at the
end of the previous section.) In higher dimensions, although an explicit
formula for D*(k) is lacking, we believe for the following reasons that
typically D*(k) is discontinuous on a dense set in R" . First, as argued
in [1], the integrals involved in representation formulas for D" are
averages over trajectories on tori which depend discontinuously on k, as
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in one dimension. Secondly, the findings of Section 3 for & (k) (which
can be defined via a diffusion process) suggest that the discontinuity is
generic. Accordingly, we shall state our results for systems with this
property, and make the following

DEFINITION. A potential ¥ on T is “typical” if D*(k) is discon-
tinuous in k on a dense set in R”

Now, applying Corollary 4.1 to & (¢), we have

THEOREM 4.2. Let V on T" be typical. Then for diffusion X, in
RY sarisfying (2.12) with V(x,8) = V(@ +kx), x € R’, 8 e T",
there is a dense set T c R™ such that for every k e T,

(4.5) @ (k, ) - D' ()] > g(1) ,
Jor every expressible function g(t) with lim,_,__ g(f) = 0.

We remark that the k’s in I' here are irrationals that are very well
approximated by rationals. Furthermore, in one dimension, and pre-
sumably in higher dimensions, Theorem 4.2 holds for a dense & set
as well,

We now wish to state results corresponding to Theorem 4.2 for other
functions of interest, namely the “velocity autocorrelation” function
and the frequency dependent diffusivity. The “velocity autocorrelation”
function (VAF) is defined by

(4.6) ) = E[VV(Xy) VV(X)] 20,
which is related to & (k, t) via

(4.7) DK, 1) 1/ ais/

Now, from Theorem 4.2 and (4.7) we can prove

TurorEM 4.3. Let V on T" be typical with X, as in Theorem 4.2.
Then there is a dense set T C RY such that for every k€T,

(4.8) c(k, 2) > h(t)
for every expressible h which is integrable on [0, o0).

In order to state our.last result of this subsection, we introduce the
frequency dependent diffusivity

(4.9) Bk, ) = wz/ e E[Xdr
0
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which can also be written in terms of the VAF

(4.10) Dk, w):l—/ e~ c(k, 1) dt .

0
By appl}iing an w — 0 version of Corollary 4.1 to D(k, »), where
lim__,D(k, )= D"(k), we have

w—0

THEOREM 4.4. Let V on T" be typical with X , as in Theorem 4.2.
Then there is a dense set T C RY such that for every k€T,

(4.11) D(k, w) - D*(K)| > g(w) , @—0,
for every expressible function g(w) with lim,_, g(w) = 0

4.3. Conduction in guasiperiodic media. Recall from Section 2 that
6*(L, k, 0) is the effective conductivity of a sample of side 2L of
o,(x, 0), which in d =1 has the form (2.10). We are interested in
averaging ¢*(L, k, §) over T" to obtain

(4.12) o'k, D)= [ o'k, L, 08,

which is continuous in k, as well as L. Then
(4.13) Jim o'k, L) =a,,k) ,

where a ,(K) is the same as in Section 3.4.
Asin Secuon 3, we say that 6 on T" is “typical” if aav(k) is discon-

tinuous in k on a dense subset of RY . We have again using Corollary
4.1,

THEOREM 4.5. Let & on T" be typical. Then for ¢"(k, L) in (4.12)
arising from a local conductivity field o,(x, 0) = 6(8+kx), there exists

a dense set T c RY such that for each k €T
(4.14) 0" (k, L)~ &}, (k)| > g(L) , L—co,
for every expressible function g(L) with lim, _,  g(L)=0.

4.4. Quantum transport in quasiperiodic potentials. We consider the
time dependent Schrodinger equation on the lattice Z in one dimension
defined by the Hamiltonian

(4.15) H=0+ecos2nkx, , x;€Z,
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where A is the discrete Laplacian in d = 1. When k is rational, H
has purely absolutely continuous spectrum, and

>N | iH 2.2
(4.16) blk,n= > [ F)x;
j=—x
which is a quantum analog of the mean squared displacement for some
initial f* of compact support, has “ballistic” asymptotic behavior. That
is, when £ is rational,

(4.17) lim Z(k, 1) = lim @ =B"(k)>0.

However, when ¢ is large enough and % is irrational with good dio-
phantine properties, then H has only localized states [19, 20]. In this
case it can be shown [21] that

(4.18) lim & (k, 1) =0,

so that Z(k, t) apparently displays discontinuous limiting behavior
similar to Z(k, ¢) for classical diffusion, with % (k, t) continuous in
k and . Presumably B(k) is discontinuous on a dense set. Then
there exists a dense set I" such that for each k € " ,

(4.19) B (e, 1)~ B'(k)) > g(1) ,

for every expressible function g with lim,_ _g(t) = 0. Presumably
the k’sin such a I are irrationals that are very well approximated by
rationals,
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