
Theory of the Sea Ice Thickness Distribution

Srikanth Toppaladoddi1,2 and J. S. Wettlaufer1,2,3,*
1Yale University, New Haven, Connecticut 06520-8109, USA

2Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
3Nordita, Royal Institute of Technology and Stockholm University, SE-10691 Stockholm, Sweden

(Received 18 July 2015; published 2 October 2015)

We use concepts from statistical physics to transform the original evolution equation for the sea ice
thickness distribution gðhÞ from Thorndike et al. into a Fokker-Planck-like conservation law. The steady
solution is gðhÞ ¼ N ðqÞhqe−h=H , where q and H are expressible in terms of moments over the transition
probabilities between thickness categories. The solution exhibits the functional form used in observational
fits and shows that for h ≪ 1, gðhÞ is controlled by both thermodynamics and mechanics, whereas for
h ≫ 1 only mechanics controls gðhÞ. Finally, we derive the underlying Langevin equation governing the
dynamics of the ice thickness h, from which we predict the observed gðhÞ. The genericity of our approach
provides a framework for studying the geophysical-scale structure of the ice pack using methods of broad
relevance in statistical mechanics.
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Earth’s climate system is a complex nonlinear dynamical
system [1]. Three main research approaches in climate
science are common. (a) Observation of the past and
present state of the system and extrapolation to the future.
(b) Numerical simulations using global circulation models,
which treat the system with the deterministic approach of
weather forecasting by modeling the processes on a coarse-
grained scale. (c) Constructing a low-order description of
the system or subsystem of the climate, in the vein of
theoretical physics. There are substantial cultural and
technical differences between these approaches. All have
value and all have limitations. Evidently, the ready avail-
ability of computing power has made approach (c) less
favorable. Here, we show that one of the key variables in
polar climate, the sea ice thickness distribution gðhÞ, can be
fruitfully examined quantitatively with a core set of tools in
statistical physics.
Although there are high-fidelity measurements of the

area of the ice cover during the satellite era [2], the key
quantity reflecting the climatological state of the sea ice
cover is its volume, making gðhÞ the central state variable
of the system. The thickness distribution underlies and
reflects ice melting or freezing due to the thermodynamic
forcing of the ocean and the atmosphere, and mechanical
deformation: rafting, ridging, and the formation of open
water [3]. Nonetheless, although the theory of ice thickness
distribution has been with us for 40 years, we still seek a
basic understanding of its components in order to test its
predictions [2].
The theory of Thorndike et al. [3] is described by a

continuous, deterministic partial differential equation that
contains the principal physical processes mentioned above
and is given by

∂g
∂t ¼ −∇ · ðugÞ − ∂

∂h ðfgÞ þ ψ ; ð1Þ

where u is the velocity of the ice pack and f is its growth or
melting rate. The principal reason for the difficulty in
testing the theory arises from the so-called redistribution
function, ψ , intended to capture mechanical processes.
Although from observational, theoretical, and numerical
perspectives we have gained a quantitative explanation
for many aspects of the redistribution function (e.g.,
Refs. [4,5], and references therein), a closed mathematical
analysis of the original theory is still principally limited by
this term. In what follows, by viewing ψ within the
framework of kinetic theory, we show that the original
theory can be rewritten as a Fokker-Planck-type equation.
In so doing, a number of useful advantages arise. First, we
can determine the steady solution analytically. Second, we
provide access to the full range of methods and approaches
of nonequilibrium statistical physics. In this Letter we
describe just two: (1) by comparison with observations, we
deduce the transport coefficients in the new evolution
equation, which allows for its full numerical solution in
a geophysically relevant setting, and (2) we derive the
corresponding Langevin equation for the evolution of the
ice thickness itself.
A central ansatz in stochastic dynamics is to consider

the “microscopic noise” underlying a “macroscopic proc-
ess” as decorrelating on a time scale far faster than the
macroscopic displacement. The classical test is Brownian
motion, wherein the inertial macroscopic displacement of
a pollen grain in water evolves slowly relative to the
collisional events driving its motion. This is embodied in
the fluctuation-dissipation theorem (e.g., Ref. [6]).
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Within this framework we recast ψ as follows. Each of
the “microscopic” mechanical processes that influence the
ice thickness distribution—rafting, ridging, and the for-
mation of open water—occur over a time scale that is very
rapid relative to the geophysical-scale changes of gðhÞ. We
thus view these processes as the collisions of solvent
molecules with a Brownian particle; the individual colli-
sions have a probability of displacing the particle, but
their phase space is so enormous that we do not study
them individually. In the same vein, we do not study the
individual floe-floe interactions in the ice pack. Rather, we
write ψ as

ψ ¼
Z

∞

0

½gðhþh0Þwðhþh0;h0Þ−gðhÞwðh;h0Þ�dh0: ð2Þ

Here, the first and second terms represent the processes by
which (i) ice floes of thickness hþ h0 become ice floes of
thickness h and (ii) ice floes of thickness h become ice
floes of thickness h − h0, respectively, with wdh0 being the
transition probability per unit time for these events.
Taylor expanding the right-hand side of Eq. (2) and

substituting this is into Eq. (1), we obtain

∂g
∂t ¼ −∇ · ðugÞ − ∂

∂h ðfgÞ þ
∂
∂h ðk1gÞ þ

∂2

∂h2 ðk2gÞ; ð3Þ

where

k1¼
Z

∞

0

h0wðh;h0Þdh0 and k2¼
Z

∞

0

1

2
h02wðh;h0Þdh0: ð4Þ

Thus, we have transformed the original theory into a
Fokker-Planck-type of evolution equation. Note that in
the absence of ice motion, Eq. (3) is exactly the Fokker-
Planck equation, an advection-diffusion equation for the
probability density [1,6]. Here, the coefficients [Eq. (4)] are
the first and second order moments of the transition
probability between ice thickness categories.
Choosing L as the horizontal scale, Heq as the vertical

scale and U0 as the velocity scale, we find three time scales
in the problem: (1) the thermal diffusion time scale,
tD ¼ H2

eq=κ, with κ being the thermal diffusivity of ice;
(2) the time scale associated with the horizontal motion of
ice floes, tm ¼ L=U0; and (3) the relaxation time scale of
the ice floes when they are involved in collisions, tR ∼ 1=_γ,
where _γ is the collisional strain rate. These time scales are
such that tm ≈ tR and τ≡ tR=tD ≪ 1. Hence, we have
f0 ¼ Heq=tD, ~k1 ¼ Heq=tR, and ~k2 ¼ H2

eq=tR as the scales
for the remaining terms. Maintaining the prescaled nota-
tion, the dimensionless equation can be written in one
spatial dimension as

∂g
∂t ¼−

∂
∂xðugÞ− τ

∂
∂hðfgÞþ

∂
∂hðk1gÞþ

∂2

∂h2 ðk2gÞ: ð5Þ

Now, we obtain the steady solely h-dependent solution
of Eq. (5) with boundary conditions gð0Þ ¼ gð∞Þ ¼ 0. The
growth rate f in the original theory of Thorndike et al. [3]
was determined numerically from the climatologically
forced Stefan problem for the ice thickness. If ΔT is the
temperature difference over a solid layer of thickness h, we
take a standard analytical solution for its diffusive growth
into an isothermal liquid (e.g., Ref. [7]). Here, one balances
heat conduction through the layer (∝ ΔT=h) against latent
heat production at the interface (∝ dh=dt≡ f) giving

f ¼ 1

S

�
1

h

�
; ð6Þ

with S ¼ L=cpΔT being the Stefan number, in which L is
the latent heat of fusion and cp is the specific heat at
constant pressure. Ignoring the advection term leads to

∂g
∂t ¼ −

∂
∂h

��
ϵ

h
− k1

�
g

�
þ ∂2

∂h2 ðk2gÞ; ð7Þ

where ϵ≡ τ=S ≪ 1 because S ≫ 1 and τ ≪ 1. Because the
small parameter multiplies regular singularities, which
become Oð1Þ when h ¼ OðϵÞ, we keep all terms in
Eq. (7), to which we seek the stationary solution and
rewrite it as

d2g
dh2

þ d
dh

��
1

H
−
q
h

�
g

�
¼ 0; ð8Þ

where H ¼ k2=k1 and q ¼ ϵ=k2. The first integral is

dg
dh

þ
�
1

H
−
q
h

�
g ¼ B; ð9Þ

where B is the integration constant. We solve Eq. (9) using
an integrating factor eh=H−qlnðhÞ, which requires B ¼ 0 to
satisfy gð0Þ ¼ gð∞Þ ¼ 0, and we find the solution

gðhÞ ¼ N ðqÞhqe−h=H: ð10Þ

The prefactor is determined by the normalization conditionR∞
0 gðhÞdh ¼ 1 and is N ðqÞ ¼ ½H1þqΓð1þ qÞ�−1, with
ΓðxÞ being the Euler gamma function. Hence, N ðqÞ is
unique and single valued for RðqÞ > −1 and RðHÞ > 0.
Note that q and H have an independent interpretation
within the framework of the theory and are the sole fitting
parameters. Clearly, for h ≪ 1, gðhÞ is controlled by both
thermodynamics and mechanics, whereas for h ≫ 1, gðhÞ
is controlled solely by mechanical interactions.
A Fokker-Planck equation describes the evolution of the

probability density of a random process, but to study the
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random process itself (h in our case) we study the Langevin
equation corresponding to Eq. (7), which we write as

dh
dt

¼
�
ϵ

h
− k1

�
þ

ffiffiffiffiffiffiffi
2k2

p
ξðtÞ; ð11Þ

where ½ðϵ=hÞ − k1� and
ffiffiffiffiffiffiffi
2k2

p
are the drift and diffusion

terms, respectively, and ξðtÞ is Gaussian white noise (e.g.,
Ref. [8]). Clearly, our assumption of k2 being a constant in
the determination of the solution for gðhÞ in Eq. (10)
translates into additive noise in the corresponding Langevin
equation shown in Eq. (11).
We now compare our theory with the thickness distri-

butions obtained during the ICESat mission [9]. Figure 1
shows fits of our solution (10) to the distribution functions
for the period of February through March (F-M) for
(a) 2008 and (b) 2004, for which we have chosen to
demonstrate both the typical fit (2008) and the worst fit
(2004) of our solution to the observations (cf. Fig. 6 of
Ref. [9]). The key reasons for deviations are (1) the
observations span the ice cover and yet—near landmasses
and depending on wind direction—it is possible that k1 and
k2 will differ locally, (2) we neglected the advection term
when determining the solution, (3) the form of f used in
Eq. (3) is the solution of the ideal Stefan problem for
growth only, and (4) we are comparing the steady solution
to the data. Incorporating these and related issues are key
aspects of a thorough numerical study of Eq. (5) which are
part of a longer treatment.
Now, from the values of q and H, we obtain k1 and k2

and use them in Eq. (11) to evolve h itself. The solution to
the Langevin equation corresponding to Fig. 1(a) is shown
in Fig. 2. Invoking ergodicity, Eq. (11) clearly qualitatively
reproduces the observed gðhÞ and thus acts as an ideal and
simple model to study the thickness distribution.
We have transformed the original evolution equation for

the sea ice thickness distribution, gðhÞ, from Thorndike

et al. [3], to a Fokker-Planck-like equation by recasting the
redistribution function, ψ , using an analogy with the theory
of Brownian motion. The idea is that the mechanical
processes embodied in ψ (rafting, ridging, and the for-
mation of open water) are thought of like the collisions of
solvent molecules with a Brownian particle—the individual
events that change the ice thickness occur on time and
space scales that are short relative to the geophysical-scale
changes of gðhÞ. Thus, we do not treat the individual floe-
floe interactions in the ice pack, but rather only the
moments of the transition probabilities for these events.
That the integrals describing these moments rapidly con-
verge to take constant values is borne out by comparison
with observations; the stationary solution [Eq. (10)] of the
new evolution equation captures the basin-scale measure-
ments of the distribution. Finally, the corresponding
Langevin equation (11) is evolved with observationally
constrained parameters to study the evolution of h itself.
The associated agreement of the gðhÞ obtained from this
approach with the observations is consistent with an
ergodic thickness field. The simplicity of the approach
and its immediate connection with the edifice of non-
equilibrium statistical mechanics make it appealing for a
wide range of reasons, from a context for comparison with
observations to the simplification of models.
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FIG. 1 (color online). Comparison of our theory with satellite
measurements for February through March (F-M) of (a) 2008 and
(b) 2004. Circles are the distribution functions from ICESat [9]
and lines are the fits using Eq. (10). In (a), q ¼ 1.849 and
H ¼ 0.783 m, and in (b), q ¼ 1.848 and H ¼ 0.910 m.
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FIG. 2 (color online). Solution to the Langevin equation (11)
for F-M 2008. Here, ϵ ¼ 0.046, k1 ¼ 0.048, and k2 ¼ 0.025. The
ensemble size used is Nen ¼ 105 and the time step for the Euler-
Maruyama scheme [10] is Δt ¼ 10−5. The total nondimensional
integration time is T ¼ 140. Panels (a) and (b) show the thickness
distribution and four realizations from the ensemble, respectively.
In (a), the circles represent gðhÞ from the Langevin equation and
the solid curve is the fit using Eq. (10), which gives q ¼ 1.838
and H ¼ 0.777 m.
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